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A B S T R A C T

Wearable cardiac monitors can usefully contribute to early detection of potential cardiovascular pathologies.
However ECG trace data streaming over wireless links creates some significant challenges, due to the amount
of data to be transmitted. We employ a signal analysis approach based on a Gaussian dictionary to model
ECG traces in a compressed way. The algorithm operates on fixed-length segments, and achieves effective
compression for wireless data transmission, associating just 6 bytes to each Gaussian feature. At the same time
it enables accurate reconstruction of ECG traces from the reduced data set. We tested our method on a set of
46 ECG recordings taken from the Physionet MIT-BIH Arrhythmia Database, obtaining 90% data compression
rates, while percent relative deviation of reconstructed traces is always below 5%.
. Introduction

Recent years have witnessed an explosive growth in the availability
f wearable cardiac monitoring devices, from fitness trackers to med-
cal grade monitors analysing multiple-lead electrocardiogram (ECG)
ignals [1]. On account of their reduced impact on patient quality of life
nd mobility, these devices can contribute to heart profile evaluation
nd enhance diagnostics. In particular, continuous heart monitoring
lays an important role in early detection of potential cardiovascular
athologies, that are a major cause of death worldwide.

In a mobile context, data acquisition and processing devices are
asked with delivering healthcare measurement information to a data
ollection and analysis centre, most likely a cloud-based one [2]. For
nstance, Bluetooth low-energy (BLE) is often employed for short-range
ata transmission from sensing units to a smartphone, the latter then
roviding the link to a cloud-based application [3]. The combination
rovides good throughput, while range is dependent on wireless net-
ork coverage and transmission endurance can be limited by energy

onsumption. Other solutions are based instead on 5G communication
echnology, which offers higher bandwidth and low latency, with the
dvantage of direct connection to the mobile network [4].

Unobtrusive long-term cardiac monitoring requires guaranteed
hroughput to reliably transfer an accurate continuous flow of mea-
ured data [5], hence endurance and transmission range need to be
mphasized. It is also useful to remember, as a reference, that one
CG channel sampled at 500 Hz with 12-bit resolution produces 6000
its per second. This yields over 500 Mb per lead in a single day [6],
reating some significant challenges to mobile applications streaming
ata over wireless links.

∗ Corresponding author.
E-mail address: claudio.narduzzi@unipd.it (C. Narduzzi).

Several papers have presented effective data compression algo-
rithms for wireless applications [7,8]. The focus is on the use of simple,
low complexity algorithms to reduce the amount of transmitted data
and prolong sensor battery life, while minimizing information loss [9].
However, compression is often treated as an independent problem,
so that signal reconstruction is required before ECG-specific feature
analysis [10].

Signals recorded during largely unrestricted daily life activities can
be affected by acquisition noise, motion and electrode artifacts [11],
placing greater emphasis on de-noising. In this regard, compressive
sensing (CS) exploits to advantage the underlying sparse-signal assump-
tions [12,13]. Besides achieving useful compression ratios, CS allows
detection of significant ECG features directly from compressed data,
dispensing with the need to reconstruct waveforms first [6,14]. On
the contrary, traditional Holter recorders preserve information about
whole traces, enabling trained clinicians to carry out detailed analyses
of waveforms where the need arises.

The signal analysis approach we present in this paper relies on a
compact morphological feature set that enables accurate reconstruction
of ECG traces, while providing an effective compression scheme for
wireless data transmission. The focus is on reliable, continuous determi-
nation of model parameters describing an unbroken sequence of signal
segments. We concentrate on showing the ability to generate accurate
feature streams, regardless of the specific subject state, as a way to build
confidence in the use of features. For this purpose we adopt a signal
model based on Gaussian kernels, exploiting the fact that a moderate
number of suitable components suffices to accurately represent each
segment. This allows to meet different challenges at the same time:
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1. achieve greater robustness against noise and artifacts in recorded
traces;

2. support accurate and reliable trace interpretation for analysis
and diagnosis;

3. provide compact representations of trace data for archiving,
transmission and efficient analysis.

The paper expands on the signal analysis approach presented in [15],
hence representing its extended discussion.

The quality of data for ECG analysis, reconstruction and interpre-
tation is discussed in the final Section, for which purpose we refer to
the well-known set of ECG traces contained in the MIT-BIH Arrhyth-
mia Database, hosted at https://physionet.org [16]. These traces are
extensively employed for research and represent a thoroughly studied
set of measured data, carefully annotated with beat labels and revised
over the years, providing a reliable reference benchmark that includes
normal heart beats as well as anomalies of different kinds.

2. Gaussian modelling of ECG segments

A Gaussian kernel 𝑔𝜎 (𝑡) is defined as:

𝜎 (𝑡) =
1

√

2𝜋𝜎
𝑒−

𝑡2

2𝜎2 (1)

here 𝜎 is the dispersion (shape) parameter. On account of the kernel
ood localization property, a sum-of-Gaussians is an adaptable and
ersatile model, that suits very well the features of ECG traces. The use
f Gaussian mixture models was proposed in [17] for the generation
f realistic synthetic ECG traces and in [18] for ECG compression and
lassification. Several authors have since considered Gaussian models
n ECG-related works and adapted them to different purposes.

Cardiac cycles correspond to sequences of elementary waves repre-
enting different stages of activity (P wave, QRS complex formed by
, R and S waves, and 𝑇 wave), that can be modelled by 𝐼 Gaussian
ernels in the form:

(𝑛𝑇𝑠) =
𝐼
∑

𝑖=1
𝑎𝑖𝑔𝜎𝑖 (𝑛𝑇𝑠 − 𝜏𝑖), (2)

here 𝑎𝑖 is the magnitude of the 𝑖th Gaussian component and 𝜏𝑖 its
ocation, or time position relative to a given reference point.

Each elementary wave in a cardiac cycle could be modelled by just
ne Gaussian kernel, but the addition of a second kernel for P and

waves is suggested in the literature to help describe asymmetries,
ielding a total of seven Gaussian kernels, at least, to model a single
eart beat [18]. In practice the location and number of wave complexes
an vary within ECG physiological bounds, and may also be affected by
ome pathology.

An ECG trace is a sequence of individual cardiac cycles. If (2)
s employed as a model for single heart beats, its application with
CG traces must rely on preliminary partitioning into shorter lengths
ontaining a single heart beat each. Single-beat segmentation is then
ritically dependent on detection of peaks associated with the R waves,
hich requires a reliable R-peak detection algorithm running on the
onitoring device. Since cardiac cycles can vary in length as a conse-

uence of heart rate variability, ECG trace partitioning usually results
n variable-length segments.

In our approach we adopt instead fixed segmentation, that al-
ows to dispense with R-peak detection [19]. ECG traces are parti-
ioned into equal-length segments, represented by a sample vector 𝐱 =
[𝑥(𝑛1𝑇𝑠),… , 𝑥(𝑛2𝑇𝑠)]𝑇 , where 𝑇𝑠 is the sampling interval, 𝑛1𝑇𝑠 < 0 <
2𝑇𝑠 with 𝑛2 − 𝑛1 + 1 = 𝑁 , and superscript ‘T’ denotes transposition.
egment length is equal to 𝑁𝑇𝑠 regardless of the number of heart
eats within. The use of a Gaussian dictionary was shown to provide
romising results in the analysis of ECG traces.

Although fixed segmentation allows an easier implementation from
firmware perspective, two kinds of problems are introduced, due to

he generally random position where segment edges fall within an ECG
2

race:
• the number of cardiac cycles within a segment is variable, de-
pending on segment length and heart rate. An average rate may
be estimated for individual subjects in a steady condition, but
even this can change with subject activity;

• segment edges might fall in critical positions over significant parts
of the trace, such as a QRS complex. In this case model estimation
accuracy can be hampered by significant edge effects.

he first issue is addressed by considering (2) as a generic model,
pplied to a full fixed segment, and setting a generic upper bound 𝐼𝑚𝑎𝑥
n the total number of kernels within. The second problem is harder
nd is in fact critical to the success of the proposed approach. It requires
areful implementation of segment overlapping, and will be the focus
f discussion in Section 4.

. Dictionary-based analysis

For any given segment, parameter estimates for model (2) can be
btained by solving the least-squares problem:

min
𝑎𝑖 ,𝜎𝑖 ,𝜏𝑖

𝑛2
∑

𝑛1

[

𝑥(𝑛𝑇𝑠) −
𝐼
∑

𝑖=1
𝑎𝑖𝑔𝜎𝑖 (𝑛𝑇𝑠 − 𝜏𝑖)

]2

. (3)

nfortunately, this problem is non-linear in the continuous parame-
ers 𝜏𝑖 and 𝜎𝑖, and is often associated with computationally-intensive
lgorithms, ill-suited to a wearable context [20,21].

One step towards reducing the complexity of the problem is a
witch of dispersion and location parameters from continuous-valued to
iscrete-valued, thus creating a finite two-dimensional parameter grid.
or dispersion values, the grid was designed so that when the time
ocation of an elementary wave is matched by a dictionary element,
heir relative amplitude deviation never exceeds ±5% and is usually
uch less. This resulted in a non-uniform grid, increasing by 10% steps
ithin a range determined by physiological bounds and by bandwidth

imitations of the data acquisition system [22]. Sample positions are
natural choice for the set of location parameter values, the range of

ariation will be discussed later.
It is important to remark that by these criteria a pre-defined stan-

ard grid independent from subjective features can be defined, with the
enefit of enhancing repeatability and comparability among analysed
CG traces. This leads almost naturally to approaching the problem by
ictionary-based analysis. The dictionary can be seen as a predefined

pool of Gaussian kernels, each characterized by a different combination
of values for parameters 𝜏 and 𝜎. Each dictionary element (atom) can
be described as a column vector of 𝑁 sampled values of a Gaussian
kernel:

𝐠
(𝜏ℎ ,𝜎𝑗 )

=
[

𝑔𝜎𝑗 (𝑛1𝑇𝑠 − 𝜏ℎ),… , 𝑔𝜎𝑗 (𝑛2𝑇𝑠 − 𝜏ℎ)
]𝑇

. (4)

here 𝜏ℎ is a specific time position in a set of 𝐻 allowable values and
𝑗 is a specific dispersion taken from a set of 𝐾 possible choices.

The generic dictionary matrix 𝐃 has the form:

=
[

𝐃𝜎1 𝐃𝜎2 … 𝐃𝜎𝐽

]

(5)

here each 𝑁 × 𝐻 matrix block contains 𝐻 column vectors 𝐠
(𝜏ℎ ,𝜎𝑗 )

characterized by different time shifts, but with a common value of
parameter 𝜎𝑗 . The size of the full dictionary 𝐃 is 𝑁×𝑀 , with 𝑀 = 𝐻𝐽 .
Because of the way 𝐃 is built, the indication of column index 𝑚 suffices
o determine values of both 𝜏 and 𝜎, that is: 𝐠

(𝜏ℎ ,𝜎𝑗 )
= 𝐝𝑚 for some 𝑚.

Since a dictionary only allows discrete sets of values for parameters 𝜎
and 𝜏, correct design and a suitable trade-off between the size of the
dictionary and waveform approximation accuracy are essential.

The analysis algorithm picks the index values of dictionary columns
that best match model (2) for the given segment 𝐱. Indicating by  the
elected set of dictionary column indices, the signal estimate is then:
̂ = 𝐃 �̂� , where 𝐃 =

[

𝐝𝑚
]

𝑚∈ . Given 𝐃 , amplitude coefficients
�̂� are obtained by straightforward least-squares solution of (3). The


https://physionet.org
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acquired ECG trace is first pre-processed to remove low frequency noise
and baseline wander due to respiration and motion artifacts. These
components are extracted by applying two cascaded median filters. The
first filter of 200-ms width removes QRS complexes and P waves, its
output is then processed by a median filter of 600-ms width to remove
𝑇 waves [23]. The resulting signal contains baseline wander, that is
then subtracted from the original ECG trace. The pre-processed trace is
then divided into a sequence of constant-length segments for analysis.

Dictionary-based signal analysis centres on finding a sparse solution
to a matrix–vector equation, formally:

�̂� = argmin
𝐚

‖𝐚‖0 subject to: ‖𝐱 − 𝐃𝐚‖2 < 𝜖 (6)

here 𝐚 is the vector of Gaussian kernel coefficients 𝑎𝑖 and 𝜖 is a
hreshold value associated to the energy of the residual 𝐫 = 𝐱 − 𝐃�̂�.

To find all the components of model (2) we apply an orthogonal
atching pursuit (OMP) recursive greedy algorithm [24]. OMP itera-

ions can be summarized as follows. After initializing the set of selected
ictionary column indices to the empty set,  = ∅ and the signal
stimate to �̂�=𝟎, the following steps are applied iteratively:

1. compute 𝐫 = 𝐱 − �̂�, then select dictionary index: 𝑚∗ = argmax𝑚
|𝐝𝑇𝑚𝐫|

2

2. accordingly update the selected index set:  =  ∪ 𝑚∗ and the
dictionary submatrix 𝐃 ;

3. compute a new amplitude estimate: �̂� =
(

𝐃𝑇
𝐃

)−1 𝐃𝑇
𝐱 ;

4. calculate the new signal estimate: �̂� = 𝐃 �̂� .

terations are stopped either when the maximum allocated number
f Gaussian kernels 𝐼𝑚𝑎𝑥 has been reached, or when percent relative
eviation (PRD) of �̂� from the analysed segment 𝐱 drops to 1% or lower.

The final value, defined for the 𝑘th segment as 𝑟(𝑘) =
√

‖�̂�𝑘−𝐱𝑘‖2

‖𝐱𝑘‖2
, is

computed and associated to the segment as an indication of estimation
quality.

4. Fixed segmentation

Segmentation is essential to the approach presented in this paper,
and although fixed segmentation may appear straightforward, it calls
for great care in dealing with edge effects. In fact, it may happen that
the larger elementary waves fall close to either end of the analysed
segment, resulting in significant truncation of the relevant waveform.

Another issue is the choice of 𝐼𝑚𝑎𝑥 for Gaussian model (2) when
applied to an ECG trace segment, since in this case the number of
components is unknown and the position of QRS complexes relative
to segment bounds is also unknown.

The number of heart beats within a segment can vary from one seg-
ment to the next. For a given length, upper bounds can be determined
based on the expected range of physiological heart rate values, and it
is advisable to also allow for possible arrhythmia events. On the other
hand, the number of OMP iterations per segment is upper bounded by
𝐼𝑚𝑎𝑥, that should not be set too high.

4.1. Overlap

A Gaussian model is quite adaptable and can fit a variety of wave-
forms, including truncated ones, which unfortunately means that the
analysis algorithm is easily affected by edge effects. It will attempt
to replicate truncation by concentrating as many Gaussian kernels as
needed close to the edge of the analysed segment, but the resulting
local overfitting may cause sub-optimal allocation and underfitting
elsewhere in the segment, because of the limited number of kernels
allotted for each segment.
3

The problem has been addressed by segment overlapping as follows:
• head and tail edge extensions to the segment are introduced to
help deal with truncation effects. Accordingly, dictionary column
vector length is increased to 𝑁 + 2𝑃 , where 𝑃 is the edge
width and corresponds to the maximum value of the dispersion
parameter 𝜎 within the dictionary;

• an overlap, the same length as the extension, is introduced be-
tween consecutive segments. As a consequence, elementary wave-
forms subjected to truncation are considered in both segments,
but only the better fitting estimate is kept. Effective segment
length is thus reduced to 𝑁 − 2𝑃 .

he segment structure is shown in Fig. 1, where the cross-hatched
arts at the two ends represent the edge allowance and single-hatched
ectangles represent the overlap areas, that are the same width as the
dges. The ratio 𝜂 = 𝑁−2𝑃

𝑁+2𝑃 can be taken as an indication of the effect
of fixed-size overlapping on processing efficiency.

4.2. Location parameter range

Two different criteria were tested to determine the range of location
parameter values within the Gaussian dictionary. In the first case, the
range of variation for 𝜏 coincides with the segment length, that is 𝐻 =
𝑁 , and dictionary matrix size is (𝑁+2𝑃 )×𝑁𝐽 . Gaussian kernels located
close to the bounds of segment edge extensions can be truncated, but
even in this condition they are ensured to be correctly reproduced up
to at least ±𝜎 of their position. This is shown by the small subset of
ictionary vectors, with a single value of the dispersion parameter,
lotted in Fig. 2(a), where hatched and cross-hatched parts have the
ame meaning as in Fig. 1.

Fig. 2(b) refers to one of the ECG traces analysed for this work (trace
o. 100 of the MIT-BIH Arrhythmia Database [16]). Estimated Gaussian
ernel amplitudes 𝛼𝑖 are plotted versus time location, normalized and
ndicated by the sample index, that is allowed to vary over the full
egment length. For a segment length of 2 s this corresponds to 𝑁 = 720
amples as shown, since the sampling rate is 360 Hz. Edge extensions
nd overlap areas are both 𝑃 = 48 samples long. This trace covers a
0-minute recording time and is partitioned into 1042 overlapping 2-
segments, that are all superposed in this figure. Effective analysed

egment length is actually 624 samples (1.73 s), that is, the blue part
f the plot in Fig. 2(b).

Although overlap accounts for little more than 13% of the seg-
ent length, discarded coefficient estimates in the leading and trailing

verlap areas, shown respectively in green and red, are about 25%
f the total provided by the algorithm. This confirms the clustering
ffect caused by over-fitting at the segment ends and suggests that the
verlap-and-discard approach described above can deal with this un-
esired aspect effectively. Estimates from the blue part of the segment
re kept and can be streamed out for wireless transmission.

It can be noticed in Fig. 2(b) that some amplitude coefficients in the
verlap areas are significantly larger, as a consequence of the attempt
o fit truncated waveform segments. In a few cases, this also leads to
he use of too many Gaussian kernels for this purpose, so that the bound
𝑚𝑎𝑥 is reached before a satisfactory fit is achieved in the useful part of
he analysed segment.

This led to the introduction of a second, different criterion for the
ange of 𝜏𝑖, that in this case is allowed to reach out a further 𝑃 points
eyond the segment edge extensions on either side, that is, 𝐻 = 𝑁+4𝑃 .
n this way, a variety of truncated Gaussian kernels are introduced in
he dictionary close to the edges, as illustrated in Fig. 3(a), providing
cope for better fit at the segment boundaries with fewer elements.
he result is shown in Fig. 3(b), where over-size values of 𝛼𝑖 are no

onger present resulting in consistently better fits, as will be shown
ater. Dictionary matrix is now a larger size, (𝑁 + 2𝑃 ) × (𝑁 + 4𝑃 )𝐽 ,
ut it must be emphasized that with this choice any selected truncated
ernel will fall in areas where it will eventually be discarded, without
ffecting ECG modelling accuracy.
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Fig. 1. Segment structure, with edges, overlap areas and two ranges of variation for 𝜏 as discussed in Section 4.
Fig. 2. Location parameter 𝜏 varies over the entire length of the segment. Green
(leading) and red (trailing) areas show overlaps where estimated coefficients are
discarded.

In the following we compare 0.5-s, 1-s and 2-s segmentation, noting
the terms of trade-off involved in a choice. Table 1 evidences how the
two criteria discussed above and the choice of different segment lengths
are related to dictionary size and to the inefficiency introduced by
overlap. Common parameters are the sampling rate of 360 Hz employed
for all traces considered in this work [16] and the number of values in
the dispersion grid, that is set to 𝐽 = 45.

4.3. Segment size and number of components

As already noted, fixed-size overlapping affects processing effi-
ciency, its increasing impact indicated by a decreasing value of 𝜂 as
segment length 𝑁 gets shorter. However, dictionary size also drops
with 𝑁 , relieving to some extent the computational effort. Finally, the
choice of a suitable upper bound to the number of Gaussian components
per segment, 𝐼𝑚𝑎𝑥, can affect both accuracy and computation.

In the following, we discuss these aspects considering a fixed value
𝐼𝑚𝑎𝑥 = 24, that we originally set for 2-s intervals as it enables to deal
with up to three QRS complexes in a segment, equating to a maximum
heart rate of 90 beats-per-minute (bpm). On average, this is adequate
4

Fig. 3. Range of variation of location parameter 𝜏 extends beyond the segment edge
extensions.

Table 1
Key data for different segmentation lengths, with sampling rate: 360 Hz and 𝐽 = 45
dispersion values.

Segment length

0.5 s 1 s 2 s

Number of samples, 𝑁 180 360 720
Effective length 𝑁 − 2𝑃 84 264 624
Percent overlap 53.3% 26.6% 13.3%
𝜂 = (𝑁 − 2𝑃 )∕(𝑁 + 2𝑃 ) 0.3 0.58 0.76
Dictionary column size 276 456 816

Range for 𝜏𝑖 (1) 180 360 720
dictionary row size (1) 8100 16 200 32 400

Range for 𝜏𝑖 (2) 372 552 912
Dictionary row size (2) 16 740 24 840 41 040

for the kind of ECG traces we analyse in this work, but could be
increased to deal with faster heart beats. By keeping 𝐼𝑚𝑎𝑥 constant, we
are also able to consider its relation to segment length in the analysis
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Table 2
Summary of coefficient analysis on a single trace.

Segment length

0.5 s 1 s 2 s

Accepted estimates 19 926 19 026 17 177
Estimates per segment 2.58 7.73 16.48
Discarded, head 26 737 6647 2688
Discarded, tail 30 869 7101 2733
Total discarded 74% 42% 24%

summarized in Table 2, where the same trace referred to in Fig. 3(b) is
considered.

Results show that when the value of 𝐼𝑚𝑎𝑥 is large in relation to
segment length, further inefficiency arises from the excessive freedom
allowed the OMP algorithm in pursuing the target of PRD ≤ 1. This
s particularly noticeable from the wild overfits occurring in the edge
xtensions of the 0.5-s segment. The bound is obviously tighter for
he longer 2-s segment, whereas for the intermediate 1-s length the
otal number of accepted coefficient estimates settled to around 19,000.
edical annotations for the analysed trace show it comprises a total

f 2273 cardiac cycles, which means the average number of Gaussian
lementary waveforms per cycle varies between 7.5 and 8.8, depending
n segment length. This appears in good agreement with the literature
alue given in Section 2 since, in practice, it was noticed that R peak
aveforms are seldom symmetric and in this case at least one more
aussian kernel is employed to model them accurately.

. Performance aspects

To characterize the proposed approach we considered the full set
f 30-minute ECG recordings provided by the MIT-BIH Arrhythmia
atabase. Specifically, we selected only traces from modified limb lead

I, as they were available for 46 records. Results thus refer to the
nalysis of over 100,000 heart beats, some of which are labelled as
nomalies.

Specifically, a first group of 21 traces is representative of the variety
f waveforms and artifact that an arrhythmia detector might encounter
n routine clinical use. Anomalies, when present, are limited to ectopic
eats, that are not necessarily related to abnormal conditions. Subjects
re all adult, almost evenly divided between female and male, and
nder-sixty and over-sixty years olds. A second group of 25 subjects
s characterized by features of the heart rhythm, QRS morphology
ariation, or signal quality that may be expected to present significant
ifficulty to arrhythmia detectors because of complex arrhythmias and
onduction abnormalities [25]. For the purpose of our study, we are
nterested in determining whether such differences affect algorithm
erformances.

.1. Computing time and memory requirements

In our trials, MatLab running on a 2,6 GHz Intel Core i7 quad-
ore processor was employed to process the ECG traces, while the
atLab Profiler tool was used to analyse performance. Our analysis is

ummarized in Table 3.
It must be remembered that each OMP iteration step involves

atrix–vector products, the computation of a pseudo-inverse of pro-
ressively larger size and, above all, the search for a peak value over
vector the same size as the dictionary column. Computational cost

ncreases with the number of components modelled by (2). Shorter
egments can be processed faster, but the number of segments gets
arger and, with fixed overlap length, efficiency decreases.

It can be noticed that 1-s segmentation appears to provide a good
rade-off, resulting in the faster execution time, which translates into a
-minute time for a 30-minute trace. Even allowing for a less perform-
ng processor, there is good reason to believe that real-time analysis is
chievable in practice.
5

E

Table 3
Average computing results for the set of 46 traces from the MIT-BIH Arrhythmia
Database.

Segment length

0.5 s 1 s 2 s

Total time [s] 11 664 8408 13 550
Average per trace [s] 254 183 295

Total no. of segments 355 856 113 252 47 932
Segments per trace 7736 2462 1042

As far as memory requirements are concerned, dictionary matrix 𝐃
ust necessarily be stored into the edge device, accounting for most of

he space. For 1-s segmentation matrix size is 456 × 24840 at most,
ach matrix cell being a 32-bit floating point number. Total read-
nly memory size is then about 45 Mbyte, which is not particularly
emanding and might be compared with 500 Mbyte per channel per
ay for data acquisition by a standard Holter recorder.

.2. Data rate and compression

For each Gaussian kernel modelling the trace, the algorithm pro-
ides the amplitude estimate and the corresponding dictionary column
ndex. Each segment is in turn associated to an absolute position
ndex within the trace. The actual position of an elementary Gaussian
aveform is then the sum of the segment start index and relative
osition 𝜏𝑖 within the segment. Since amplitude accuracy is important
e use for this a 32-bit floating point format, while dictionary column

ndices are represented by unsigned 16-bit values, yielding a total of 6
ytes per estimate.

To complete the information for a segment, a further 32 bits are
eeded for the position index, such large size being enough to cover
ver 4 months of continuous recording at the 360 Hz sampling rate
onsidered in this paper. A single byte is employed to provide the num-
er of kernels employed to reproduce the segment, and another byte
ontains the segment PRD, that gives an indication of local estimation
uality, yielding an additional 6 bytes per segment.

With 𝐼𝑚𝑎𝑥 = 24, the maximum data size per segment is 150 bytes,
egardless of segment length. This would also be the required payload
ize, assuming Gaussian estimates are streamed out of the sensing unit
t one packet per segment. This is mostly in excess of the average
eeds, that can be assessed taking the average numbers of estimates per
egment, as provided in Table 2. Approximating to the larger nearest in-
eger to determine how many bytes per segment are needed, this works
ut to 24 bytes for a 0.5-s segment, 54 bytes for a 1-s segment and 108
ytes for a 2-s segment. Since the aim of the approach is to achieve
ontinuous streaming of ECG data, it can be seen that corresponding
ata rates are less than 500 bits per second, which is compatible
ith typical low-power wide-area network and narrow-band IoT 4G/5G
ata throughputs. If packet rates are considered instead, it should be
eminded that payloads might cover multiple segments, trading data
atency for efficiency.

Since heart rate and ECG trace shape can vary, an easy way to
ssess compression is by comparing the size of acquired traces with
he corresponding sequence of parameter estimates. This shows that a
0-minute ECG trace taking about 1 Mbyte is converted into a data
equence of approximately 100 kbytes. The resulting compression ratio
s around 90% and again corresponds to a data rate estimate of less
han 500 bit/s.

.3. Waveform reconstruction accuracy

If the Gaussian model that describes the ECG signal is accurate
nough, the proposed algorithm enables to reconstruct a trace without
ntroducing artifacts. Examples of reconstruction for one segment in an

CG trace are shown in Fig. 4, where it can be seen that some mild
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Fig. 4. Comparison between original (blue) and reconstructed (red) trace for
representative 2-s segments of three ECG traces in the MIT-BIH Arrhythmia Database.

Fig. 5. Percent relative deviation (PRD) for 46 analysed traces from MIT-BIH
Arrhythmia Database — 2-s overlap, dictionary size 816 × 32400.

smoothing is introduced in the reconstructed traces. A considerable
variety is presented, evidencing the adaptability of the dictionary to
different waveform shapes.

Percent Root mean square Difference (PRD) is an index of distortion
caused by model approximation, defined as:

PRD = 100 ⋅

√

√

√

√

∑
[

�̂�(𝑛𝑇𝑠) − 𝑥(𝑛𝑇𝑠)
]2

∑

𝑥2(𝑛𝑇𝑠)
(7)

where �̂�(𝑛𝑇𝑠) is the signal reconstructed by the proposed Gaussian
model and summations extend over a whole trace. The relevance of
PRD might be argued since, being defined by a summation, it tends
to smooth out the effect of local discrepancies, that on the contrary
might have particular significance in an ECG trace. In this case how-
ever, local accuracy for matched elementary waveforms is ensured by
6

dictionary design, as noted in Section 3. Therefore assessment by PRD
is appropriate to evidence the general quality of agreement.

PRD values are plotted in Figs. 5 and 6 for each of the reconstructed
traces in the MIT-BIH Arrhythmia Database, allowing a comparison
between the two approaches to segmentation presented in Section 4.
It should be considered that, for trace interpretation, the assessment
associated to the PRD metric is usually 0%–2% = very good, 2%–9% =
good [26].

With the first approach (Fig. 5) PRD values are always below 5%,
considered to correspond to good trace quality, even for the pathologi-
cal traces contained in the database. In this case edge effects related to
truncation and overfitting are not totally eliminated, contributing to a
slight increase in PRD that results in a common range of values for all
kinds of traces in the database.

The second approach achieves even better results although a sig-
nificant increase in the size of the dictionary is required, about 50%
for 1-s segmentation as can be noticed from Table 1. Accuracy gains
are shown by Fig. 6, where PRD values are mostly below 2%. In this
case trace quality is regarded as very good, and it is then possible to
differentiate performance for individual traces. For this reason, on the
abscissa of Fig. 6 the generic trace index is replaced by the MIT-BIH
Database numerical identifier associated to each trace [25].

It can be seen that the 2% PRD threshold is exceeded only in two
cases, namely trace nos. 108 and 222. Nevertheless, in the former
case (a female subject of 87 years) the trace is mostly a clean signal,
except some noise bursts and a few reported borderline arrhythmia
effects. Trace 222 (a female subject of 84 years, with atrial flutter and
fibrillation events) is also reported as mostly clean, although in this
case several intervals of high-frequency noise/artifacts are reported.
On the other hand, traces with significant arrhythmia events can all
be reconstructed from their feature stream with PRD < 2%. It appears
therefore that algorithm performances are indeed largely independent
of subject conditions, and a key goal of the approach has been achieved.

6. Conclusions

In the context of this work, a cardiac monitor is seen as the edge de-
vice in a networked, possibly cloud-based healthcare system. Advanced
cardiac monitors can often run rather sophisticated signal analysis
algorithms, suggesting that computing power is generally available to
support the monitoring framework we assume. Here, it is proposed to
concentrate that power on the analysis effort, enabling the monitoring
device to provide a continuous stream of model parameters, whereas
diagnostic interpretation, as well as waveform reconstruction where
needed, are tasked to core devices within the system.

Our model-based approach makes use of an algorithm where ac-
curacy and computational complexity can be tuned to meet the needs
of long-term ECG monitoring, overcoming issues about acquisition and
wireless transmission of signals by wearable devices.

Results presented so far demonstrate that an ECG trace can be de-
composed by Gaussian dictionary-based signal analysis and accurately
represented by an information stream, while ECG-specific references
such as R-peak position are unnecessary for trace segmentation.

A peculiar aspect of the approach is the fact that part of the mea-
surement information is implicitly contained in the dictionary column
index. In fact, each dictionary column contains the samples of the
relevant Gaussian kernel, and no explicit information about location
and dispersion parameters is needed at the wireless edge device that
actually monitors the heart.

On the other hand, the receiving network node can reconstruct the
full waveform given the amplitude estimate and the column index,
using the latter as a search key to access location and dispersion
parameter information. Although somewhat naïve, this mechanism can
be seen as an elementary form of data protection.

The proposed signal analysis approach achieves significant data
compression, allowing to send ECG trace data as a stream at around 500
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Fig. 6. Percent relative deviation (PRD) for 46 analysed traces from MIT-BIH Arrhythmia Database, 2-s overlap, dictionary size 816 × 41040.
bit/s, which is sustainable by low-power wide-area network devices in
mobile applications. Gaussian kernels achieve accurate morphological
modelling of ECG traces, allowing accurate waveform reconstruction.
Results presented in the paper confirm that algorithm performances are
mostly unaffected by any particular health condition for the range of
patients considered in the database.
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