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Abstract: Stable and uniform beams with low divergence are required in particle accelerators;
therefore, beyond the accelerated current, measuring the beam current spatial uniformity and stability
over time is necessary to assess the beam performance, since these parameters affect the perveance and
thus the beam optics. For high-power beams operating with long pulses, it is convenient to directly
measure these current parameters with a non-intercepting system due to the heat management
requirement. Such a system needs to be capable of operating in a vacuum in the presence of strong
electromagnetic fields and overvoltages, due to electrical breakdowns in the accelerator. Finally, the
measure of the beam current needs to be efficiently integrated into a pulse file with the other relevant
plant parameters to allow the data analyses required for beam optimization. This paper describes the
development, design and commissioning of such a non-intercepting system, the so-called beamlet
current monitor (BCM), aimed to directly measure the electric current of a particle beam. In particular,
the layout of the system was adapted to the SPIDER experiment, the ion source (IS) prototype of
the heating neutral beam injectors (HNB) for the ITER fusion reactor. The diagnostic is suitable to
provide the electric current of five beamlets from DC up to 10 MHz.

Keywords: neutral beam injector; negative ions accelerator; beam fluctuations; SPIDER; ITER

1. Introduction

SPIDER [1] (Source for the Production of Ions of Deuterium Extracted from a Radio
frequency plasma) is the ion source (IS) full-scale prototype of the ITER heating neutral
beam (HNB) and has been operating at the Padova Neutral Beam Test Facility (NBTF)
since June 2018. The main purpose of the SPIDER experiment is to optimize the ITER HNB
IS, and it is currently the largest radiofrequency-driven negative ion source operating in
the world.

The main beam diagnostics are beam emission spectroscopy, visible imaging and
the diagnostic calorimeter STRIKE [2], and none of those systems can provide a direct
measurement of the beamlet current. In the past, the beamlet current has always been
indirectly estimated by STRIKE; which consists of 16 unidirectional carbon fiber–carbon
matrix (CFC) composite tiles, placed downstream of the set of grids that accelerate the
beam. The tiles are exposed to the beam, and their temperatures are recorded using two
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infrared cameras. The beamlet current is then estimated from the thermal footprint of each
beamlet via calorimetry, thanks to the moderate broadening of the temperature profile
guaranteed by the anisotropy of CFC. However, this measurement also takes into account
the thermal effect of neutral particles generated inside the accelerator (i.e., H0 generated
by stripping part of the negative ions) and passing through the grid apertures, and it
has a low time resolution. For this reason, an electrical measurement was introduced to
measure the current collected by each tile of STRIKE, which required a positive bias of
the tiles to recollect the electrons emitted from the surface due to the impact of energetic
particles from the beam. While this additional measurement provides useful information,
it has some important drawbacks as only the average beamlet current of each tile can be
extrapolated, losing the possibility of a spatial distribution of the beam on a scale smaller
than the beamlet group. Moreover, since the tiles are positively biased, electrons generated
between the last grid of the electrostatic accelerator and STRIKE, via the interaction of the
beam with the background gas, are also collected from the electric measurement, leading to
an overestimation of the beam current.

In this framework, the development of a new diagnostic system capable of precisely
measuring the beamlet current with satisfactory time and spatial resolution is particularly
advised and the purposes are several. Firstly, to directly measure the beamlet current to
compare it to established SPIDER diagnostics. Secondly, for the possibility of assessing the
beam uniformity, utilizing the beamlet separation. Finally, to investigate whether the RF
field and a beating frequency in the plasma due to the differing oscillator frequencies affect
the beamlet’s current, and thus optics [3]. For these reasons, a new beam diagnostic called
beamlet current monitor (BCM) was designed, developed, installed, commissioned and
tested in SPIDER.

2. SPIDER

The ITER HNBs are required to supply 16.5 MW power each, with beam particles
(hydrogen or deuterium) electrostatically accelerated up to 1 MeV and with a divergence
lower than 7 mrad [4]. The plasma generation in neutral beam ion sources is typically
conducted either by filament arc discharge (e.g., the negative ion source for neutral beam
injection at JT-60 [5]) or via inductive coupling, as is performed at IPP-Garching’s BUG [6]
and ELISE [7] facilities. The plasma generation in SPIDER is based on the latter system, by
upscaling the design of the RF-driven BUG and ELISE ion sources.

In SPIDER, the plasma is generated inside the IS by eight driver coils arranged
in a 4 × 2 matrix; the driver coils of each row are connected in series and powered by
a 200 kW self-excited push–pull RF generator. Each generator can oscillate within a
1 MHz ± 0.1 MHz range, and the self-oscillation frequency is imposed by the plasma pa-
rameters and by an adjustable variable capacitor Cv located at the output of each oscillator.
For each oscillator, the value of Cv is adjusted to match the load impedance (transmission
line, matching network, plasma equivalent impedance and stray parameters of the circuit),
resulting in a variation of several kHz among the four generators since the load impedance
is not identical for all the generators. Furthermore, the working frequency of each oscillator
cannot assume any value (by adjusting Cv) within the oscillator frequency range due to
the frequency flip phenomenon [8] which consists of an uncontrolled jump of the oscillator
frequency when operating close to the resonant frequency of the load. This phenomenon
further reduces the possibility to obtain good matching of the load with the same oscillation
frequency for all generators.

The negative ions are generated inside the IS by volume or by surface production
mechanisms, with the latter using evaporated cesium in the source to decrease the work
function of the H− production surfaces. With Cs, the extracted current density increases by
around a factor of 5–10 [9]. To optimize the H− extraction, a transverse magnetic filter is
generated inside the ion source to confine fast electrons in the upstream region of the IS
(driver region), avoiding the H− destruction by high-energy electrons in the proximity of
the plasma grid (PG), which closes the plasma chamber. This magnetic field is generated



Sensors 2023, 23, 6211 3 of 29

by DC flowing vertically inside the PG and returning via a busbar system, which can be
regulated from 0 A up to 5 kA.

The negative ions are then extracted from the IS and accelerated by a three-grid
electrostatic accelerator composed of the PG, extraction grid (EG) and grounded grid (GG)
which can be biased up to−108 kV,−96 kV and 0 V, respectively, with respect to the ground
potential. Each grid presents 1280 apertures divided into 16 beamlet groups, formed by
16 rows with five beamlets each, arranged in a 4 × 4 matrix. Embedded magnets are also
present in the EG to suppress the co-extracted electrons [1] by bending their trajectory
without substantially affecting the trajectories of the negative ions due to their much larger
Larmor radius. The ion deflection by the suppression magnets is adjusted at the GG
via electrostatic or magnetic compensation; the former via the displacement of the GG
holes and the latter by embedded magnets inside the GG. Finally, a ferromagnetic sheet is
placed in contact with the downstream side of the GG to confine the magnetic field inside
the accelerator.

Since the beginning of the SPIDER operation, electric arcs involving the back of the
IS started to arise when the vessel pressure was above 40 mPa (corresponding to 0.1 Pa
inside the IS for H2) under some experimental conditions due to large RF voltages [10].
Therefore, ahead of a major modification of the pumping system, a molybdenum mask of
0.25 mm thickness was fastened downstream of the PG (a set of pushers press the mask
against the PG) to reduce the number of open apertures [11]. Initially, a mask with 80 open
apertures was used, with a further reduction to 28 for Cs evaporation. This temporary
solution provides a lower gas flow conductance between the IS and the vessel, allowing
operation up to 0.45 Pa in the source with minimized RF discharge occurrence.

The presence of this newly available space between open grid apertures, a consequence
of the use of the PG mask, was deemed a perfect opportunity to design and install a
temporary diagnostic dedicated to the measurements of single beamlets.

3. BCM Concept Design

The design of the BCM is driven by the dual desire to measure both the DC and AC
components of the accelerated beamlet current. The primary requirements, based on the
experimental performance of SPIDER and the expected beam current with Cs evaporation,
are summarized in Table 1.

Table 1. Identified main requirements for the BCM diagnostics.

Requirements Value Note

Current full-scale ≥40 mA Max beamlet current Ib for the nominal accelerated
D-current of 50 A

Current resolution ≤1 mA Max allowed beam non-uniformity for Ib = 10 mA
(early phase of surface production operation)

Sensitivity ≥5 mV/mA Typical ADC sensitivity considering noise
Bandwidth DC-10 MHz Beatings in the kHz range and MHz harmonics due to RF
Clearance ≥20 mm Beamlet cross-section at GG, divergence and deflection

External diameter 100 mm Minimum distance between adjacent beamlets, divergence
Repeller voltage ≥100 V STRIKE potential

Although the average current of a single beamlet was estimated to be about 3–5 mA via
STRIKE calorimetry, the full scale of the BCM system was chosen by considering the SPIDER
nominal beamlet current when operating with cesium close to the optimal parameters,
since BCM is planned to operate in both the volume and surface production phases.

A resolution lower than 1 mA, i.e., the minimum current variation which can be
resolved, was defined on the basis of the maximum non-uniformity allowed (10%) consid-
ering a beamlet current of 10 mA, corresponding to the expected accelerated current in the
early phase of surface production with non-optimized source parameters. The sensitivity,
i.e., the output voltage of the instrument over the input current, was chosen to be at least
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5 mV/mA on the basis of the typical sensitivity of general-purpose oscilloscopes, also
considering the installation of the diagnostic in a noisy environment such as SPIDER.

High-frequency fluctuations in the plasma, measured by a Langmuir triple probe [12],
were identified at the fundamental frequency of the oscillators and their harmonics (Figure 1,
highlighted blue). This observation is supported by the literature. High-frequency har-
monics around the RF excitation field frequency may be present [13], and in particular,
the ones up to three times the fundamental frequency seem to be the most relevant in
terms of magnitude [14]. Peaks between 1 kHz and 100 kHz were also observed (Figure 1,
highlighted green), with the lower frequency peaks compatible with the beatings of the
power delivered to the plasma from each RF generator (blue cells of the table in Figure 1).
For all the aforementioned reasons, a bandwidth from DC up to 10 MHz is a requirement
of the BCM diagnostic.
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Figure 1. Langmuir triple probe signal, shot 8288, blip 3, volume operation with three out of four RF
generators active. Generators working frequencies and related beating frequency are also shown in
the red and light blue cells of the table (left). Zoom view around the beating frequencies (top right)
and around the RF fundamental frequency (bottom right).

Beyond the electrical requirements of the current transducer, the measurement system
shall also be equipped with a repeller which is a positively biased copper electrode crossed
by the beam and placed downstream of the GG. The purpose of the repeller is to prevent
positive ions, generated between the GG and STRIKE due to beam–gas interactions, from
entering backwards to the current transducers of the BCM under the effect of the stray
electric field penetrating through the GG apertures in the downstream region [15]. Fur-
thermore, the STRIKE positive bias also helps positive ions move backward towards the
GG. The requirement in terms of repeller voltage was chosen as Vrep ≥ 100 V, which is a
reasonable value for reducing the backstreaming ion current consistently since STRIKE is
usually biased at 60 V.

Finally, the sensor size has also been assessed carefully, considering the available
room, beam deflection, width and divergence downstream of the GG. This is a basic
requirement since the interception of a steady-state high-energy beamlet (or part of it)
would compromise not only the reliability of the BCM diagnostics but also the reliability of
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the whole SPIDER experiment. The sensor sizing was assessed in [2] by considering the
worst conditions in terms of optics: 60 mrad divergence and 20 mrad horizontal deflection
with a beamlet width at the exit of the GG equal to 16 mm, corresponding to the aperture
diameter. In this conservative configuration, the minimum distance between the center of
two adjacent apertures is 66 mm since the vertical pitch of the GG is 22 mm and a minimum
of two apertures are masked between two beamlets, providing the maximum available
space for the individual diagnostics (Figure 2). Therefore, the requirements concerning the
sensor size were defined as clearance≥ 20 mm and external diameter≤ 100 mm depending
on the distance from the GG (keeping below 200 mm).
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Figure 2. Vertical cross-section of 2 adjacent beamlets downstream of the GG (orange, apertures in
white) with PG mask installed for the worst optics conditions (yellow cones) and for typical optics
conditions (red cones); quotes are in mm. Example of minimum inner and outer diameters required
for sensors (blue) depending on the distance from the GG.

4. Sensor R&D
4.1. AC Sensors

Two off-the-shelf current transformers (CTs) were chosen based on the high-frequency
requirements, the BERGOZ ACCT-055 10 mA full scale (3 Hz–1 MHz) [16] and the Magnelab
CT-F5.0_BNC (4.8 kHz–400 MHz) [17]. As an alternative to commercial CTs, a custom
passive CT was designed and built in-house, based on the literature [18–20].

The current transformer (Figure 3a) consists of a magnetic core that surrounds the H−

beamlet. The secondary winding is wound around the core for N turns and terminated by
a parallel load resistance Rl. The secondary winding has a magnetizing inductance that,
along with the core losses, can be expressed as a parallel inductance Lm and resistance
Rm, with series resistance Rs, in the CT equivalent circuit (Figure 3b). To measure the
transfer function, the sensor was connected to an HP 4194A Network Analyzer, with input
impedance (R0 parallel to C0), via an RG58 coaxial cable with series inductance Lm and
resistance Rm and parallel capacitance Cc, modeled as a π-junction.
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The current through the secondary winding of the CT Is is the current of the primary
winding Ip, in this case, the beamlet current, divided by the number of turns:

Is =
Ip

N
(1)

For a simplified ideal current transformer, the gain in the mid-frequency range is:

K =
Rl
N

(2)

with the gain K dependent on the load resistance and the number of turns. A load resistance
of 50 Ω and 10 turns were chosen to give the required 5 V/A gain. The low-frequency
cutoff (−3 dB) flow of a CT:

flow = Rl/2πLm (3)

is dependent on Lm, since Rl is chosen to set the gain. The impedance Lm and losses Rm
of a magnetic core are dependent on the frequency, core permeability and geometry [21].
With the geometry limited by the available space around the beamlets, a high permeability
material, nanocrystalline VITROPERM 500F [22,23], was chosen due to its high relative
permeability µr = 50, 000.

The CT was modeled in both MATLAB and PSIM, with the impedances in the MAT-
LAB model grouped as in Figure 3c. By treating the circuit as a voltage divider, the transfer
function can be calculated (see Appendix A):

K =
1
N

.
Z1Z3Z5

Z2Z4
(4)

Using the MATLAB and PSIM models, a CT was designed to meet the gain, frequency
and space requirements, with the parameters given in Table 2.

Table 2. CT parameters for model and measurement.

CT Parameter Value

ri [m] 0.03
ro [m] 0.045
h [m] 0.02

N 10
µr 50,000

Rs [Ω] 0.22
Rc [Ω/m] 0.048
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Table 2. Cont.

CT Parameter Value

Lc [nH/m] 250
Cc [pF/m] 100

Lc [m] 15
Rl [Ω] 50

Ro [MΩ] 1
Co [pF] 50
K [V/A] 4.9

flow (−3 dB) [Hz] 1000

A CT prototype was constructed including a 15 m RG58 coaxial cable (the length
required for the installation in SPIDER) connecting the CT to the 50 Ω load resistor. Figure 4
shows the measured response (purple crosses), which compares favorably with the MAT-
LAB (yellow line) and PSIM (red points) models. At high frequencies, the gain and phase
exhibit resonances, with the gain oscillations damped below 20 MHz. These resonances are
due to the transmission line, which at 15 m was modeled as 50 junctions, giving a closer
match to the measured frequency response.
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4.2. DC Sensors

The sensor chosen to fulfill the DC and low-frequency measurements is the LEM CTSR
0.3p [24], a closed-loop fluxgate [25] with a sensitivity of 4 mV/mA. While the sensor
fulfills most of the design requirements, this sensitivity is insufficient since the noise picked
up on the cables from the sensor to the acquisition system may easily exceed this value.
Additionally, the sensor has a “natural” offset of 2.5 ± 0.005 V, which must be removed to
utilize the full range of the measuring oscilloscope, since it is not convenient to read a small
quantity (e.g., few mV) when the full scale of the acquisition system ADC is higher than
three orders of magnitude (e.g., FS > 2500 mV). A custom conditioning circuit was designed
both to cancel out the offset (Figure 5) and to amplify the output signal to obtain a sensitivity
of the order of 250 mV/mA. The circuit’s central component is the INA 114 instrumentation
amplifier from Texas Instruments. Provided with an input signal Vin, a reference signal Vref
(2.5 V in our case, taken directly from the LEN internal reference) and an interchangeable
resistor Rg, the amplifier produces a signal Vout given by:

Vout = (Vin −Vref)

(
1 +

50kΩ
Rg

)
(5)
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For example, a resistor of 813 Ω (chosen value) provides a multiplication factor of 62.5
and, taking into account the sensitivity of the sensor, a final gain of 250 mV/mA.

4.3. Mounting Structure

Each sensor group consists of a custom mounting structure containing the DC sensor,
its conditioning circuit (protected from the plasma by a copper shield), the AC sensor and
the repeller. The repeller is insulated from the grounded support structure by a PEEK
spacer, and the structure is equipped with three PEEK locking dices and three centering
screws to ensure a robust and adjustable ensemble (Figure 6). Each group is fixed to the PG
mask pushers support structure downstream of the grounded grid, and an alignment tool
was used to properly align the sensors with the beamlet aperture.
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4.4. Vacuum Testing

Preliminary tests to assess the compatibility of the instruments for the installation
inside SPIDER were carried out with a twofold purpose. Firstly, to evaluate the outgassing
as a function of the temperature and identify the nature of the contaminants (e.g., halogens
must be absolutely avoided, since they react vigorously with cesium to produce salts).
Secondly, to check the functionality of the DC sensor in HV, since active electronics are
present and therefore local overheating, due to self-heating, may occur, leading to a change
in the transfer function.

A dedicated test stand composed of a small stainless steel vacuum chamber (V ≈ 25.l,
A = 0.75 m2), a turbomolecular pump (Leybold Turbovac TMP 361, Spnom_N2 = 345.l/s), a
full-range pressure gauge (Leybold ITR90) combining Bayard-Alpert and Pirani sensors
and a mass spectrometer (Inficon Transpector 2) were used. The wall of the chamber was
covered by a heating cable wrapped around the outer side of the bake-out system, and,
finally, some thermocouples were placed both on the outer side of the wall and inside the
chamber; a sketch of the experimental setup is shown in Figure 7.
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Figure 7. Scheme of the experimental setup adopted for the characterization of the instruments in
a vacuum.

Before testing the instruments, the vacuum chamber was pumped down, and after 6 h,
it was baked at 95 ◦C for 24 h, and then pumped at room temperature for up to 90 h until a
base pressure of 2 × 10−7 mbar was reached. The bake-out temperature was chosen on the
basis of the maximum rated temperature of the instruments to be tested so that the same
cycle in principle could be applied to each sensor. The pump-down curve of the empty
vacuum chamber is shown in Figure 8 (dashed line) where the typical t−1 dependency of
the pressure due to the outgassing flux reduction over time is visible. The bake-out system,
after an increase in pressure due to an increase in the desorbed gas flux stimulated by the
temperature increase, allowed the chamber to approach its base pressure.
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Figure 8. Pump-down curve of Magnelab CT-F5 (solid line) compared to that of the empty cham-
ber (dashed line). Chamber temperature is shown in the bottom plot: red = outer thermocouple,
black = inner thermocouple.

4.4.1. AC Sensor Outgassing Tests

The off-the-shelf AC sensors (Magnelab CT-F5), being completely passive, were tested
to assess the outgassing rate as a function of the temperature and their capability to
stay in a vacuum (e.g., without explosions due to trapped air at room pressure inside
it). Additionally, this test enabled us to degas the sensors to reduce the contamination
of the SPIDER vacuum as much as possible since no information about their vacuum
behavior was provided by the manufacturer. The pump-down curve of the Magnelab
CT-F5s compared to that of the empty chamber is shown in Figure 8. All three samples
foreseen for the diagnostics implementation in SPIDER were inserted into the chamber
after a cleaning phase using acetone; the inner thermocouples were placed between the
sample holder and the instruments as shown in Figure 9a.
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Figure 9. Magnelab CT: (a) in a vacuum chamber; (b) sample n◦ 3 (M3) after bake-out at 90 ◦C.

The experiment involved long periods with sustained external heating, and it was
possible to deduce that the sensors would behave normally below 45 ◦C, as can be seen by
the fact that the oscillation in the pressure signal (supposedly due to boiling) disappeared
and the pressure approached the 10−7 mbar decade after a fast drop.

The residual gas analysis (RGA) during the pump-down curve is shown in Figure 10
where the main contaminants appeared to be water vapor (mass 17 and 18) and nitrogen
(mass 28) both for the room temperature case and for the hot sensor case. Nevertheless, for
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this latter, other, heavier contaminants appeared, in particular, mass 44 (C02) and mass 92
(expected to be toluene, commonly used for fast-drying paints).
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On the basis of this test, an additional requirement in terms of the range of working
temperatures in the vacuum inside SPIDER was defined as t < 45 ◦C; for this purpose, a
thermal analysis was also carried out and is reported in Section 4.4.3.

After the test, the sensors were removed from the vacuum chamber and visually
inspected: numerous microbubbles were observed on the painted surface, and a big bubble
on sample n◦ 3 (M3) in the proximity of the BNC connector was also present, as shown
in Figure 9b. The transfer functions of all three samples were measured with a spectrum
analyzer (HP 4194A) to check if the nominal one was preserved after the test in UHV. This
was confirmed for sensors M1 and M2, while the M3 sensor reported a slightly higher value
for its low cutoff frequency.

The custom current transformer based on the VITROPERM 500F material was also
tested in a high vacuum. The nanocrystal material is made of a very thin ferrite tape
(14 µm to 20 µm) which is very brittle and is therefore provided already coated with epoxy
resin or enclosed in a high-quality (UL94-V0, Class F) sealed plastic casing. The plastic
casing type was chosen since epoxy resin (Class A) was expected to be less stable with the
temperature; nevertheless, the sealed plastic case was not vacuum-tight, and, therefore,
two small holes were carefully made in the casing to avoid trapped volumes (interspace
between the core and the case) and therefore virtual leaks when exposed to a vacuum.
The baseline pressure obtained during the pump-down test was 2 × 10−6 mbar, which
was considered an acceptable value. The fact that this value is slightly higher than the
off-the-shelf sensors might be due to the much greater overall surface of the tape exposed to
the vacuum (>1 m2), considering the dimensions of the core and the tape thickness, as well
as the fact that no bake-out was applied during this test. Unfortunately, the results when
external heating was applied are not reliable since the pressure gauge was not working
properly, and they have been excluded.

However, the absence of reliable outgassing data at high temperatures was not con-
sidered limiting for the installation, since from thermal simulations (already carried out
on the basis of the results of Magnelab CT), the expected working temperature should not
exceed 35 ◦C.
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4.4.2. DC Sensor Vacuum Tests

After initial benchmarking tests, the vacuum and temperature responses of the LEM
sensor (together with the custom signal conditioning circuit) were tested. After removing
its plastic casing to avoid trapped volumes, one of the DC sensors and its custom circuit
were fastened to the mounting structure used for the installation in SPIDER, which also acts
as a heat sink. Thermocouples were fixed to the critical components of the sensor, as well
as on the vacuum chamber walls both on the inner and outer sides as shown in Figure 11.
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Figure 11. DC sensor experimental setup for the tests in a vacuum.

The pump-down curve is shown in Figure 12a, at room temperature (point A) to
assess the outgassing rate and the thermal management when operating in a high vacuum,
where the temperature increase in the sensor is only due to self-heating, as well as with
external heating (point B) to check the sensor transfer function when subjected to external
heating. The sensor outgassing rate was relatively low since the pressure reached values
below 1 × 10−7 mbar. In addition, the identified solution to manage the heat dissipation of
the sensor was found to be satisfactory also during the external heating (50 ◦C chamber
temperature and self-heating of the instrument).
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Figure 12. (a) Pump-down curves of DC sensor at room temperature and with external heating,
(b) chamber temperature during the experiment (orange: outer thermocouple, blue: inner thermocou-
ple, yellow: sensor thermocouple). Points A and B correspond to self-heating and external-heating
phases, respectively.

The custom circuit designed to remove the sensor’s “natural” offset before amplifica-
tion is not perfect, as Vin–Vref with no external current is not precisely zero. An offset of
approximately 10 mV remains, rising to several volts after amplification. In bench testing,
the offset has proved to be unstable, changing each time the sensor is powered on/off
but then remaining constant during operation, even with external heating up to 60 ◦C.
Therefore, the behavior of the offset in vacuum was assessed both at room temperature and
with external heating applied.

Figure 13a shows the evolution of the offset in the 80 min following the switching on of
the sensor. In the first 10 min, the offset rises steadily until it reaches 3.5–4 V. It then remains
at this level for the following 70 min. This behavior correlates to the rise in temperature of



Sensors 2023, 23, 6211 13 of 29

the sensor’s components only due to the self-heating produced by the power dissipated by
the electronics.
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Figure 13. (a) DC sensor offset in vacuum at startup, with the vacuum chamber temperature kept
constant at room temperature (point A of Figure 12), and (b) DC sensor offset in a vacuum while
raising the ambient temperature (point B of Figure 12).

The sensor is expected to reach higher temperatures in SPIDER when exposed to
the ion beam. The same test was therefore performed by heating the vacuum chamber
up to temperatures around 70–80 ◦C (Figure 13b) after reaching the thermal equilibrium
due to the self-heating process only. The sensor’s temperature is sensitive to the raising
temperature of its surroundings and reaches a maximum temperature of 50 ◦C, compared
to 33–34 ◦C, when no external heating was applied to the chamber. However, this had no
effect on the sensor’s offset, which remained in the order of 3.8–4 V. Any variation in the
offset of an individual sensor is thus attributed to the initial rise in temperature after being
switched on, stabilizing once a steady temperature is reached. This behavior is mandatory
to have a reliable measurement, as the external heating due to the beam presence should
not affect the offset and the measurement.

Additional tests on the sensor’s response to a current in a vacuum, at 25 ◦C and 80 ◦C,
were carried out (Figure 14). Three cases were investigated, the DC response (left), the AC
response for signals at different amplitudes but at a fixed frequency of 1 kHz (center) and
the AC response for signals at different frequencies but with a fixed amplitude of 5 mA
peak-to-peak (right). In all three cases, the sensor’s performance seemed to change very
little from one temperature to another. The sensor’s gain in these experiments changed by
a factor of 5% at most, which is comparable to the measurement error and not considered
problematic; thus, good linearity is achieved when the sensor works in a vacuum in a range
of temperatures compatible with that expected in SPIDER.
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4.4.3. Thermal Simulations

Thermal simulations were carried out using Ansys to assess the temperature of the
sensors during SPIDER operation, in particular, driven by the temperature limitation of the
Magnelab sensor when operating in a vacuum due to the large and uncontrolled outgassing
rate when the temperature of the sensor exceeded 45 ◦C (see Section 4.4.1).

The potentially most critical issue is represented by the fact that the PG mask can reach
a relatively high temperature due to the input power given by the plasma; therefore, the
PG mask temperature could reach an equilibrium value up to 300 ◦C, where the supplied
power is mainly dissipated by radiative thermal transfer [11]. Therefore, the radiated power
might also reach the BCM sensors since many direct lines of sight between the mask and
the sensors are allowed by the EG and GG apertures.

The thermal simulation was carried out (Figure 15) considering only radiative heat
transfer (conservative hypothesis), assuming the following boundary conditions:
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• PG mask temperature set to 400 ◦C with emissivity equal to 1, representing the worst-
case scenario (black body emitter, including a safety margin in the PG temperature);
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• EG temperature set to 30 ◦C since it is actively cooled, and the emissivity of EG and GG
set equal to 0.2 (slightly oxidized copper, the grids were exposed to air and humidity
in the past [26]);

• Emissivity of pushers equal to 0.85 (pyrex glass [27]);
• Emissivity of the DC sensor and conditioning circuit equal to 0.75 (fiberglass of the

electric circuit board [28]);
• Emissivity of plasma shield equal to 0.2 (slightly oxidized copper, the plate was

exposed to air and humidity in the past [26]);
• Emissivity of sensors support structure equal to 0.1 (aluminum [27]);
• Emissivity of AC sensor equal to 0.03 (polished copper, the sensor surface was covered

by copper tape to prevent plasma etching and to reduce the absorbed power by
radiation [26]);

• Constant ambient temperature equal to 22 ◦C representing the vacuum vessel’s inner
surface which is at room temperature.

The simulation time was limited to 3600 s, which is the maximum pulse duration
foreseen for SPIDER operation; however, from Figure 15d, it can be seen that values are well
within the safety limits. The maximum temperature reached on the instruments due to the
radiated power from the PG mask is about 33 ◦C, on the copper plasma shield upstream of
the DC sensor (red line in Figure 15d), whereas the temperature on the AC sensor is almost
stable around the room temperature due to the shielding effect of the sensor’s mounting
structure. In general, the radiated power reaching the sensors is relatively low due to the
shadowing of the EG and GG grids; therefore, the installation of all the aforementioned
sensors was considered reliable, considering the issues correlated to heat management.

5. Overview of the System

The BCM system is divided into the following main sub-systems: the sensors and
the repeller disk (installed inside the vacuum vessel), cabling, the feedthroughs and surge
arresters (installed on the vacuum/air feedthroughs), the data acquisition system, the
power supply system and, finally, the CODAS database [29].

5.1. Sensor Installation

The position of the five beamlets chosen for the BCM measurements during SPIDER’s
first Cs campaign is shown in Figure 16. The beamlets are labeled according to the sensors
making the group: the DC/low-frequency sensors (labeled H1 to H5) followed by the AC
sensors (either Magnelab CT-F5s labeled M1 to M3, custom current transformer labeled
F, or Bergoz ACCT 055 labeled Bz). North and south are indicated in the figure to better
compare the positions of the sensor with the pictures taken inside the source during the
installation (Figure 17).
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Figure 17. Installation in SPIDER (north and south are indicated to keep track of the orientation of
the picture) showing the sensors fixed to the PG mask pusher structure.

The sensor’s mounting structure is metallically connected to the GG, which, during
the accelerator breakdowns, can oscillate between several kV values with respect to the
ground potential due to the stray inductance of the related ground connections.

Therefore, a reliable design was implemented to mitigate the risk of failure of the
BCM system, which could also compromise the reliability of the whole SPIDER experiment
(surge propagation to other subsystems and vacuum leak due to the rupture of the vacuum
feedthroughs).

To avoid any additional paths to ground for the breakdown current through the BCM
system itself, the instruments were insulated from the mounting structure by Kapton pads,
and the sensor’s power supply as well as the data acquisition system were insulated from
the ground. Finally, surge arresters were adopted to protect the feedthroughs (Figure 18).
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5.2. Feedthroughs and Surge Arresters

The DC sensors, the Bergoz, the Custom CT, and the repeller cables were connected to a
D-Subminiature feedthrough (900 V DC voltage), which was protected against overvoltage
by a dedicated PCB, hosting a set of transient voltage suppressors (TVS). The selected
transient voltage suppressors (TVS) were connected between each pin and the vacuum
vessel (Figure 18b top).
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A different choice was made for the Magnelab AC sensors since a 50 Ω matched
line is required to exploit the maximum bandwidth of the instruments. Therefore, they
were connected to 50 Ω SMA coaxial feedthroughs floating shield type (1 kV DC voltage)
(Figure 18a). For these feedthroughs, three electrode GDTs were chosen (instead of TVS) as
voltage suppressors due to the much lower stray capacitance (1.5 pF with respect to 300 pF)
to limit, as much as possible, the effect of the surge arrester in the high-frequency range
(Figure 18b bottom). The DC spark-over voltage is 350 V, whereas the impulse spark-over
voltage is <900 V for slew rates of 1 kV/µs. The main drawbacks of this type of surge
arrester with respect to TVS are the strong dependence of the pulse breakdown voltage to
the slew rate, the lower number of operations within the service life and after arc ignition,
they remain in the conductive state until the applied voltage is enough to sustain the arc
current (crowbar behavior) [30]. This type of GDT, like the TVS, becomes a “virtual short”
at the end of its life, always providing protection to the devices connected in parallel;
therefore, the protection of the system is always assured.

5.3. Data Acquisition and Power Supply System

The data acquisition system was designed to be as modular as possible and with
insulated channels so that any damage to a part of the system would not compromise the
whole data acquisition system.

A relatively cheap solution that also allows the components to be easily replaced was
identified in the STEMlab 125-14 Red Pitaya boards (RPs). Those boards have two analog
inputs (±1 V or ±20 V, selectable), an input bandwidth at −3 dB of 60 MHz, a maximum
sampling rate of 125 Msps and a 14-bit ADC. These boards can be remotely controlled and
can be interfaced with the network or via WiFi or 1 Gbit Ethernet protocol.

For the BCM system, six RPs were implemented to acquire the 10 sensors; the data
communication for setting the parameters of the ADC and reading the acquired data is
based on Ethernet (Figure 19).
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Figure 19. Overview of the BCM power supply and data acquisition system.

The six RPs were powered by a set of six DC/DC converters (24 V/5 V) capable of
assuring 2 kV DC insulation both among the devices and to the ground. The primary of the
DC/DC converters was fed by a 230 V/24 V DC power supply rated 4 kV AC to withstand
voltage, also providing an additional insulation barrier to the ground. Finally, this power
supply was connected to the electric grid available inside the SPIDER bunker via a remotely
controlled socket, which can switch the whole BCM system on and off.

Additionally, the data transmission had to assure proper insulation for the RPs and to
the ground; therefore, a network switch with insulated ports was installed; this type of Eth-



Sensors 2023, 23, 6211 18 of 29

ernet port includes isolation transformers with a minimum isolation rating of 1500 VRMS
(2.1 kV peak) as required by the IEEE 802.3 standard for Ethernet interfaces.

The other power supplies are the DC sensor’s power supply, consisting of an AC/DC
230 V/±15 V power supply developed in RFX, and the Bergoz ACCT power supply
AC/DC 230 V/±15 V rated at 4 kV RMS I/O to withstand voltage feeding the ACCT
amplifier. All of the aforementioned components were enclosed in a 5U rack and placed
inside the SPIDER bunker about 4 m away from the VV. Finally, the repeller’s power supply,
a bipolar DC (−100 V < V < 100 V) power supply, was installed close to the BCM rack, and
it was also connected to the Ethernet switch to allow it to be controlled remotely. One pole
was connected to the VV and the other to the repeller disks so that only the plasma closed
the circuit. The repeller power supply is shown in Figure 20a, along with the BCM rack,
which houses the acquisition system in Figure 20b.
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5.4. CODAS

The internal organization of the RedPitaya acquisition system exploits the recent
system of chip (SoC) solution proposed by Xilinx, which embeds, in the same chip, a
programmable logic (PL) built on a state-of-the-art 28 nm high-k metal gate (HKMG)
technology FPGA, and a dual-core ARM Cortex-A9 MPCore processing system (PS). In
particular, the RedPitaya mounts the Zynq 7010 system that provides an Artix-7 middle-
range device. The key factor that characterizes this family of chips is not actually the
performance of the components themselves but the high bandwidth that the FPGA is
capable of sustaining when communicating with the other internal SoC components, i.e.,
the CPU core and the DMA controller. In this way, we can think of a very responsive system
that performs some small operations in a fast, strict, real-time environment, made possible
with the internal programmable logic, and on the other hand, the high-level acquisition
layer that is deployed within a complete operative system running on the processing
system side.

The RedPitaya legacy software bundle (Red Pitaya OS 1.04-7) comes with several
already-coded components such as a quite-fast oscilloscope, a frequency spectrum analyzer
and some other useful tools. All of them are implemented using high-level software-defined
components that, in turn, rely on one single specific FPGA firmware implementation that
runs underneath. Although all these applications seem very promising, they effectively
lack a comprehensive recording system fitting the actual performance that both the ADC
and the Zynq could provide. The problem resides in the firmware implementation that
is suited to record the input ADC data to an internal circular buffer that is eventually
accessed by the oscilloscope application to plot the curve. To achieve a reliable complete
recording of the overall input signal, the firmware had to be modified, enabling a well-fitted
buffer handling between the internal logic part and the processing part. More specifically a
complete recording pipeline of this kind that exploits a FIFO buffer and a DMA transaction
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to deploy acquired chunks of data directly into the system memory was implemented and
is described in [31].

The complete handling of acquired data passes through the described internal high
bandwidth communication that is possible thanks to the fast interconnection between
the two subsystems (PL and PS) residing in the same chip. Besides this effective internal
transaction of the acquired data from the ADC to the system memory, a specific Linux
system kernel module handles all the custom parametrization of the acquisition system.
Many different acquisition modes were implemented and can be then selected: a so-called
“streaming” acquisition that is meant to acquire continuously from a slowly changing input
signal, and a “triggered” acquisition where we adhere to the typical transient recorder
feature of a classical fast DAQ device.

In both cases, the output complies with the MDSplus mdsip segmented protocol.
Indeed, the overall SPIDER-CODAS acquisition system relies on the MDSplus framework
to orchestrate the acquisition of the many diagnostics involved. In particular, the segmented
acquisition system is a data stream that flows from the device to the experiment storage
system scattered by chunks called segments. The idea of the segmented acquisition is that a
segment over the data payload also has an idea of the acquisition time that those data relate
to, so all the segments can be identified both from the sequential entry into the storage
system but also from their time boundaries.

In the streaming implementation, all the segments are sent to the central CODAS at
regular intervals to make the system able to refresh the data visualization plots with the
newly acquired points. This makes it possible to see the experiment signals with a flow of
plot updates and to track the recording at each instant.

On the other hand, there are situations where we want to record signals where all
the information is contained in a very rapid time slot where the signal varies with a high-
frequency spectrum, and then the information goes down all over long periods of time. In
such a situation, the most compelling solution is the transient recording where either an
internal or an external trigger is able to activate fast data acquisition that lasts in the internal
memory, and that is then spooled to the central acquisition out of sync. If the internal
triggering system is active, the recorder acts as a standard oscilloscope and the device
records upon a particular change in the input signal; contrariwise, the external trigger can
be set to fire the acquisition from both an electrical timing event (timing highway) or a
network UDP multicast packet (MDSplus event).

So, depending on the nature of the input signal and the kind of sensor applied, the
acquisition mode was also chosen. The DC sensor data were continuously acquired with
a typical rate of 10 Ksps (CONTINUOUS acquisition mode), while the AC components
acquired by the CTs were recorded either with fixed time frames during the pulse blips or
with complete asynchronous MDSplus events that came from the synchronization of the
experiment phases in CODAS (i.e., the start of the extraction grid power supply and others).
In both cases, the acquisition modes are named SLOW or FAST, with typical sampling
frequencies of 300 Ksps and 10–25 Msps, respectively. Alternatively, the AC sensors can be
acquired at low frequency for the entire pulse using the CONTINUOUS mode if required.

5.5. Calibration

After the installation of the BCM in the vessel, a thorough calibration of each of
the sensors was performed before closing the vacuum vessel. This was conducted by
inserting a cable through the beam apertures of the sensor groups and applying various
signals using a remote-controlled Red Pitaya function generator. A remote Red Pitaya
oscilloscope monitored the sensors’ responses, as well as the signals sent through the
aperture, whose precise current values were determined using a shunt resistor. Figure 21
shows the calibration of the five DC sensors: although the offset values varied significantly
from one sensor to another, the sensitivities were reasonably close. The gains calculated
from the calibration ranged from 245 mV/mA to 266.6 mV/mA, keeping within 1% of the
value of 250 mV/mA targeted by the circuit design.
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The frequency response of the AC sensors is shown in Figure 22. All of the sensors
present a quasi-constant transfer function in the region 10 kHz–1 MHz, with sensitivities
exceeding 5 mV/mA. The Bergoz offers remarkable sensitivity, 1000 mV/mA for a band-
width of 10 Hz to 1 MHz (−3 dB). Finally, the custom transformer’s frequency response
highlights the importance of the choice of the parallel resistor: opting for 50 Ω instead of
100 Ω decreases the maximum sensitivity by a factor of two but helps to flatten the response
in the central region.
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6. Experimental Results

The BCM diagnostic was partially operational during the SPIDER experimental cam-
paigns S19 and S20 (December 2020 to March 2021—beam characterization without cesium)
and fully operational during S21 (April 2021 to July 2021—cesium operation).

6.1. DC Results

Figure 23 shows an example of the acquired voltage signal from one of the DC sensors
during a SPIDER beam extraction pulse with cesium in the source, and the subsequent
analysis required to calculate the beamlet current. The raw BCM signal (black points) and
a 500-point moving average (red line) are given in Figure 23a. The sensor has a non-zero
voltage offset that varies from sensor to sensor as described in previous sections. Due to
the magnetic nature of the DC sensor, the voltage also has a dependency on the plasma and
filter stray field as well as the current of the H− passing through it. Figure 23b shows the
reference settings for the RF power, plasma grid current and extraction and acceleration
voltages. As the RF power or plasma grid current changes (green and blue highlights
in Figure 23a,b) the sensor voltage changes with it. To ensure a steady voltage baseline
before and after beam extraction, at least two seconds of plasma with stable RF power
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and plasma grid current are required (time between the first and last pair of red dashed
lines in Figure 23a). The increase in sensor voltage during the application of extraction and
acceleration voltages is therefore solely attributed to the beam passing through the sensor.
The beamlet current Ibeamlet (blue in Figure 23d) is given by (6):

Ibeamlet =
(Vbeamlet −Vbaseline)/Gs (6)

where Gs is the individual sensor gain from the previous section. The voltage in the beam
extraction Vbeamlet and the baseline voltage in the steady-state plasma Vbaseline are shown
in red and black in Figure 23c, respectively.
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Figure 23. The first 40 s of shot 9145 for sensor H2 (with cesium in the SPIDER source): (a) sensor
voltage signal (black) and 500 pt. average (red); (b) extraction, acceleration, filter field current and RF
power signals (for the RF generator closest to the sensor); (c) averaged sensor voltage during beam
extraction (red) and during plasma steady state for baseline (black); (d) beamlet current calculated
from sensor voltage (blue) and ±1 s average at programmed times of interest (TOIs). The red dotted
lines represent changes in power supply parameters shown in (b).

The noise on the raw BCM signal at ±2 V is quite large, which, with a gain of 250 V/A,
corresponds to ±4 mA. In the case of surface H− production with cesium, the beamlet
currents of around 20 mA result in a clear increase in sensor voltage, as in Figure 23. In
volume production, with lower beamlet currents, the change in the sensor voltage with
beam extraction is less clear. However, with signal averaging, the beamlet current can still
be measured successfully [32].

The diagnostic was used extensively during the SPIDER cesium campaign. Figure 24
shows the first day of cesium operation, with an approximately threefold increase in
current density after the introduction of cesium, even with a lower total RF power. There
is an observed inhomogeneity in the beamlet currents (Figure 24a). This is due to the
differing availability of H− at the point of extraction. There are several factors affecting
the availability of H: magnetic drifts causing vertical asymmetry in the plasma density,
inhomogeneous cesium deposition on the plasma grid and the position of the beamlet
within the respective beamlet group (H2 and H4 in the beamlet group core and H1, H2 and
H5 at the group edge) [33].
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Figure 24. BCM DC results from the first day of SPIDER cesium operation: (a) beamlet current
density for the five DC sensors; (b) average beamlet current density for the BCM, STRIKE electrical
and AGPS electrical measurements; (c) total RF power and extraction and acceleration voltages. The
times when the cesium ovens were open are highlighted in orange.

The average beamlet current measured by the BCM compares favorably with the
STRIKE electrical measurement (Figure 24b). With the current PG mask STRIKE measures,
the electrical current, due to 28 beamlets, spread over 9 out of 16 tiles, while the BCM
measures 5 individual beamlets. The STRIKE electrical measurement requires a positive
bias of up to 100 V to collect electrons emitted from the surface due to beam particle impacts.
This bias can also collect electrons created in the vessel due to beam–gas interactions, which
increases the measured current above the beam current alone [34].

6.2. AC Results

For the AC sensors, the different acquisition modes (CONTINUOUS, SLOW and
FAST) were all tested and provided a number of interesting results. When operating in
the continuous acquisition configuration, the sensors (in particular, the Bz sensor, which
has high sensitivity at low frequencies) are capable of measuring the sudden current rise
at the beginning and end of extraction and acceleration. This can serve as an additional
measurement of the DC at beam startup.

The continuous configuration is also useful as a tool to compare the measurements
with and without beams. A clear difference can be observed when performing fast Fourier
transforms (FFT) on the signals before or during extraction, the latter displaying a large
number of peaks at amplitudes much higher than the former (Figure 25), therefore con-
firming that the frequencies revealed by the measurements are indeed present in the beam
and not artifacts of the ambient noise. The maximum frequency shown on these particular
FFTs is 5 kHz, i.e., half of the sampling frequency, as dictated by the Nyquist–Shannon
sampling theorem.
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When operating in the SLOW or FAST acquisition modes, the sensors measure the
data only during beam extraction. The sampling frequency is much larger than during
continuous acquisition and allows for studies at much higher frequencies, provided that
the measurement time window is reasonably short (Figures 26 and 27).
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When examining the FFTs performed on the AC signals, monitoring the changes in
the frequency and amplitude of the outstanding peaks from one blip to another is not a
trivial task to perform with the naked eye. This exercise can be facilitated by producing
spectrograms, where the FFTs are plotted side by side, using the y-axis to annotate the
frequencies and color-coding to represent the amplitude of the peaks (Figure 28). The
important peaks identified in the FFTs are easily recognized and can be correlated with the
changes in the source parameters from one blip to another. Comparing the spectrograms
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of several sensors can also help to understand the similarities or differences between the
individual beamlets. An example of a spectrogram of measurements using the SLOW
acquisition mode is shown in Figure 28a, where peaks in the range of 50–100 kHz and
others of the order of the kHz stand out. The RF generator frequencies (∼1 MHz) are clearly
visible on the spectrogram of measurements in the FAST acquisition mode (Figure 28b).
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The BCMs were used to perform an in-depth characterization of the AC component of
the SPIDER beam during the first campaign with cesium evaporation. Recurring oscillations
were found, their amplitudes were measured and compared to the DC values of the beamlet
currents and the frequencies were correlated with those of the RF oscillators and other
power supplies when possible [35].

7. Conclusions

A non-intercepting system aimed at measuring the current of individual beamlets of
the SPIDER experiment across the extracting area was designed, installed and widely ex-
ploited during the SPIDER S20 (March 2021) and S21 (April–November 2021) experimental
campaigns, referring to negative ion production by volume and surface production (cesium
injection) mechanisms, respectively.

The design of this system was undertaken within a reduced time window due to the
scheduled SPIDER shutdowns, representing the only possibility for the installation of this
diagnostic inside a vacuum vessel since the operation with a reduced number of beamlets
was foreseen only during these campaigns. For this reason, the available off-the-shelf
instruments were considered and developed against the SPIDER operational requirements,
and a custom wideband current transformer based on nanocrystal materials was developed
in parallel with the procurement of the former. All the instruments were extensively tested
before their installation in SPIDER to assess their behavior in a vacuum, considering heat
management, outgassing, transfer function and overall behavior. After having identified a
temperature threshold below which the instruments work properly, thermal simulations
were also carried out to assess the maximum working temperature of the instruments inside
SPIDER due to thermal radiation to verify if it was compatible with the proper operation of
the sensor.

The BCM system was also designed considering the overvoltage of the grounded grid
(where the sensors should have been fastened) expected during breakdowns; in particular,
strategies based on sensor insulation, surge arresters, insulated power supplies (PSSs)
and data acquisition systems (DASs) were adopted to assure adequate reliability. Further-
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more, a cheap and modular DAS and PSS, whose components were easily procurable and
replaceable, was designed.

The DAS design was based on six Red Pitaya boards, whose legacy software was
completely rewritten from an in-house version capable of recording and storing the mea-
surements on the SPIDER database in real time and synchronizing them with all of the
other pulse parameters and diagnostics, with a trigger provided by the CODAS system.
Furthermore, the implementation of several pre-defined features (sample rate, record length
and delay time from trigger signal) provided a very flexible DAS.

This system provided measurements of the current of single beamlets for the first
time within a bandwidth from DC up to more than 10 MHz. The first feature permitted
the assessment of beam uniformity as a function of the plasma parameters. The AC
bandwidth allowed this identification and thus confirmed the hypothesis that the beam
current oscillates both around the RF fundamental frequency (1 MHz) as well as at the
lower beating frequencies (kHz range) among the generators.

Dedicated data analyses exploiting the large amount of data collected by the BCM
system during all the foreseen campaigns are in progress with the purpose of character-
izing the beam features resolved in both time and space with respect to all the relevant
pulse parameters.
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Appendix A

The equation for the transfer function K of the current transformer circuit given in
Figure 3b can be calculated by treating the circuit as a series of voltage dividers (Figure A1).
Grouping the impedance of the entire circuit as Z1 (Figure A1a), the voltage across the
circuit U1 is given by:

U1 = IsZ1 (A1)
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U1 is also the voltage drop across the magnetizing impedance Zm and is equal to the
sum of the voltages across Zs and Z3. Treating the circuit in Figure A1b as a voltage divider,
the voltage across Z3, U2, can be expressed as:

U3 = U1
Z3

Z3 + Zs
(A2)

In a similar manner the voltage across Z5 (Figure A1c), which is the measured output
voltage Uout, is:

Uout = U3
Z5

Z5 + Zc
(A3)

The grouped impedances Z1, Z2, Z3, Z4 and Z5 used in the MATLAB model are
calculated from Figure 3c using the series and parallel impedance combinations:

Z5 =

(
1

Zcc
+

1
Zl

+
1

Zo

)−1
(A4)

Z4 = Zc + Z5 (A5)

Z3 =

(
1

Zcc
+

1
Z4

)−1
(A6)

Z2 = Zs + Z3 (A7)

Substituting (A1), (A2), (A4)–(A7) and (1) into (A3) gives the transfer function from (4):

K =
1
N

.
Z1Z3Z5

Z2Z4
(A8)

The individual impedances from Figure 3b used in the model are:

Zo =

(
1

Ro
+ jωCo

)−1
(A9)

Zl = Rl (A10)

Zcc =
2

jωCc
(A11)

Zc = Rc + jωLC (A12)

Zs = Rs (A13)

Zm =

(
1

Rm
+

1
jωLm

)−1
(A14)

The above formulas are valid when the transmission line is treated as a single π-junction.
When nc π-junctions are used in the model (Figure A1d), the transfer function becomes:

K =
1
N

.
Z1

’Z3
’Z5

’

Z2
’Z4

’ (A15)

where:

Z5
’ =

(
1

ncZcc
+

1
Zl

+
1

Zo

)−1
(A16)
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Calculating Z4
’ and Z3

’ becomes an iterative process over n steps from 1 to nc. For
n = 1:

Z4n =
Zc

nc
+ Z5

’ (A17)

Z3n =

(
2

ncZcc
+

1
Z4n

)−1
(A18)

For n = 2→ nc − 1 :

Z4n =
Zc

nc
+ Z3n−1 (A19)

Z3n =

(
2

ncZcc
+

1
Z4n

)−1
(A20)

For n = nc:

Z4n =
Zc

nc
+ Z3n−1 (A21)

Z3n =

(
1

ncZcc
+

1
Z4n

)−1
(A22)

Then:

Z4
’ =

nc

∏
1

Z4n (A23)

Z3
’ =

nc

∏
1

Z3n (A24)

Z2
’ = Zs + Z3

’ (A25)

Z1
’ =

(
1

Zm
+

1
Z2

’

)−1
(A26)
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