
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
http://dx.doi.org/10.1090/proc/13148

Article electronically published on April 27, 2016

COURANT-SHARP EIGENVALUES

OF THE THREE-DIMENSIONAL SQUARE TORUS

CORENTIN LÉNA

(Communicated by Michael Hitrik)

Abstract. In this paper, we determine, in the case of the Laplacian on the flat
three-dimensional torus (R/Z)3 , all the eigenvalues having an eigenfunction
which satisfies the Courant nodal domain theorem with equality (Courant-
sharp situation). Following the strategy of Å. Pleijel (1956), the proof is a
combination of an explicit lower bound of the counting function and a Faber–
Krahn-type inequality for domains in the torus, deduced, as in the work of
P. Bérard and D. Meyer (1982), from an isoperimetric inequality. This in-
equality relies on the work of L. Hauswirth, J. Pérez, P. Romon, and A. Ros
(2004) on the periodic isoperimetric problem.

1. Introduction

A well-known result by R. Courant in [7] (see also [8,18]) gives an upper bound
on the number of nodal domains of an eigenfunction of the Laplacian. If Ω ⊂ R

n

is an open, bounded, and connected domain, with a sufficiently regular boundary,
and if u is an eigenfunction of the Laplacian with a Dirichlet or Neumann bound-
ary condition, associated with the k-th eigenvalue λk(Ω) , the eigenvalues being
arranged in non-decreasing order and counted with multiplicities, then u has at
most k nodal domains. In [18], Å. Pleijel sharpened this result by showing that, for
a given domain Ω in R

2, and for the Dirichlet boundary condition, an eigenfunction
associated with λk(Ω) has less than k nodal domains, except for a finite number
of indices k . This was generalized in [5] by P. Bérard and D. Meyer to the case
of a compact Riemannian manifold, with or without boundary, with the Dirichlet
condition on the boundary, in any dimension. It has been shown by I. Polterovich
in [19], using estimates from [21], that the analogous result also holds in the case
of the Neumann boundary condition, for a domain in R

2 with a piecewise-analytic
boundary.

These results leave open the question of determining, for a specific domain or
manifold, all the cases of equality. This problem has been the object of much atten-
tion in recent years, motivated in part by its connection with a minimal partition
problem (see [10]). It is stated in [18] that when Ω is a square, equality can only
occur for eigenfunctions having one, two or four nodal domains, associated with
the first, the second or the third (which are equal), or the fourth eigenvalue respec-
tively. A complete proof of this fact is given by P. Bérard and B. Helffer in [3]. The
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2 C. LÉNA

case of the disk with the Dirichlet boundary condition is treated in [10] and the
case of the sphere in [11, 17]. The case of the flat torus (R/Z)2 has been studied
in [16]. The present work is a continuation of this paper in the three-dimensional
case. The cases of the equilateral torus, and of some triangles with a Dirichlet
boundary condition are investigated in [4]. The case of the square and the right-
angled isosceles triangle with the Neumann boundary condition are treated in [13]
and [1] respectively. A first three-dimensional example was studied by B. Helffer
and R. Kiwan in [12]: the cube with a Dirichlet boundary condition. In [14], all
the cases of equality for the sphere, and for the ball with a Dirichlet or Neumann
boundary condition, are determined, in dimension greater than two. In the present
paper, we will show that for the flat torus (R/Z)3 , equality in the Courant nodal
domain theorem holds only for eigenfunctions having one or two nodal domains,
respectively associated with the first eigenvalue, or eigenvalues two to seven (which
are equal). This provides us with another three-dimensional example.

Let us fix some definitions and notation that will be used in the sequel. In the
rest of this paper, T3 stands for the three-dimensional torus

T
3 = (R/Z)3

equipped with the standard flat metric, and −ΔT3 stands for the (non-negative)
Laplace-Beltrami operator on T

3 . If Ω is an open set in T
3 with a sufficiently

regular boundary, we write (λk(Ω))k≥1 for the eigenvalues of −ΔT3 in Ω , with the
Dirichlet boundary condition on ∂Ω , arranged in non-decreasing order and counted
with multiplicities. In particular, λk(T

3) is the k-th eigenvalue of −ΔT3 . If u is
an eigenfunction of −ΔT3 , we call nodal domains of u the connected components
of T3 \ u−1({0}) , and we denote by ν(u) the cardinal of the set of nodal domains.
With any eigenvalue λ of −ΔT3 , we associate the integer

κ(λ) = min{k ∈ N
∗ : λk(T

3) = λ} .
Let us state the Courant theorem in this notation.

Theorem 1. For any eigenvalue λ of −ΔT3 and any eigenfunction u associated
with λ, ν(u) ≤ κ(λ) .

Following [10], we say that an eigenvalue λ of −ΔT3 is Courant-sharp, if there
exists an associated eigenfunction u such that ν(u) = κ(λ) , that is to say if it
satisfies the case of equality in the Courant theorem. We will prove the following
result.

Theorem 2. The only Courant-sharp eigenvalues of −ΔT3 are λk(T
3) with k ∈

{1, 2, 3, 4, 5, 6, 7} .

The proof follows the approach used by Å. Pleijel in [18] and in the case of a
compact manifold by P. Bérard et D. Meyer in [5] (see also [2]). In Section 2,
we establish an isoperimetric inequality and we use it to prove a Faber–Krahn-type
inequality for domains in T

3 . This is the most delicate part, since the isoperimetric
problem in flat tori has not been solved in full generality in dimension greater than
two (see [15] for the case of dimension two). To bypass this obstruction, we combine
a partial result obtained by L. Hauswirth, J. Pérez, P. Romon, and A. Ros in [9]
with a procedure inspired by the method of P. Bérard and D. Meyer in [5, Appendix
C] (see also [2, II]). In Section 3, we get a lower bound of the counting function
by an elementary counting argument. In Section 4, we combine these results to
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COURANT-SHARP TORUS 3

show that eigenvalues whose index is greater than 270 cannot be Courant-sharp,
and we identify a (small) finite set containing all Courant-sharp eigenvalues. In
Section 5, we use a Courant-type theorem with symmetry to show that one of the
eigenvalues in the previous set is not Courant-sharp. This idea goes back to the
work of J. Leydold (see [17]) and was already used, with a similar aim, in [11–13].
The only remaining eigenvalues are those of Theorem 2.

2. A Faber–Krahn-type inequality

Let us first prove the following version of the isoperimetric inequality. In the
rest of this section, | · | stands either for the three-dimensional Lebesgue measure
or the two-dimensional Hausdorff measure, and B3 for the (Euclidean) unit ball in
R

3 .

Proposition 3. Let Ω be an open set in T
3 with |Ω| ≤ 4π

81 . We have

(1)
∣∣∂B3

∣∣ ∣∣B3
∣∣− 2

3 ≤ (|∂Ω|+ 2 |Ω|) | |Ω|−
2
3 .

We introduce the notation IR3 :=
∣∣∂B3

∣∣ ∣∣B3
∣∣− 2

3 (this is the minimal isoperimet-

ric ratio in three dimensions, in the Euclidean case). We have IR3 = (36π)
1
3 .

Remark 4. The right-hand side of inequality (1) is not homogeneous. When |Ω|
becomes small, inequality (1) gets closer to the isoperimetric inequality in the Eu-
clidean case, which is asymptotically optimal according to [5, Lemma II.15].

The proof relies on the following result, which is a special case of [9, Theorem
18].

Proposition 5. Let U be an open set in T
2 × R with |U| ≤ 4π

81 . Then∣∣∂B3
∣∣ ∣∣B3

∣∣− 2
3 ≤ |∂U| |U|−

2
3 .

Let us comment on the value 4π
81 appearing in Proposition 5. Following [20], for

any positive number V > 0 , we call isoperimetric region of volume V an open set
Ω in T

2×R , with |Ω| = V , such that |∂Ω| is minimal. We call isoperimetric surface
the boundary of an isoperimetric region. We also define the isoperimetric profile I
by

I(V ) := inf
{
|∂Ω| : Ω ⊂ T

2 × R and |Ω| = V
}
.

It is conjectured (see for instance [9, Section 4]) that, depending on the volume
of the isoperimetric domain that they bound, isoperimetic surfaces in T

2 × R are
either spheres, cylinders, or pairs of parallel two-dimensional flat tori, of the form
T
2×{t} with t ∈ R. More explicitly, we can define, as in [9, Section 4], the spheres-

cylinders-planes profile ISCP : for V > 0 , ISCP (V ) is the least possible area for the
boundary of a region of volume V , among spheres, cylinders, or pairs of parallel
flat tori. Computation shows that

ISCP (V ) =

⎧⎨⎩
(36πV 2)1/3, if 0 < V ≤ 4π

81 (spherical range);

(4πV )1/2, if 4π
81 ≤ V ≤ 1

π (cylindrical range);
2, if 1

π ≤ V (planar range).

The above conjecture can be reformulated as I(V ) = ISCP (V ) for all V > 0 . The
result [9, Theorem 18] asserts that I(V ) = ISCP (V ) for V ∈

(
0, 4π

81

]
, that is to

say that spheres are indeed isoperimetric surfaces in the spherical range (the result
applies in fact to more general tori than T

2).
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4 C. LÉNA

Let us now prove Proposition 3. We consider the canonical coordinates (x, y, z)

on T
3 = (R/Z)

3
. For t ∈ [0, 1) we consider the surface Hz=t in T

3 defined by

Hz=t =
{
(x, y, z) ∈ T

3 : z = t
}
.

According to Fubini’s theorem

|Ω| =
∫ 1

0

|Ω ∩Hz=t| dt .

There exists therefore tz ∈ [0, 1) such that |Ω ∩Hz=tz | ≤ |Ω| . Let us now consider

the open set Ω̃ in T
3 defined by Ω̃ := Ω \ Hx=tz . It can be considered as a subset

of T2 × R . More precisely, let us consider the canonical projection

Π : T
2 × R → T

3

(x, y, z) �→ (x, y, z mod 1) .

The set Π−1 (Hz=tz ) consists of a family of parallel two-dimensional flat tori in
T
2×R , separated by a distance of 1 . They define a partition of T2×R into cells of

volume 1 . Let us denote by Ω̃0 the intersection of one of these cells with Π−1(Ω) .

It has the same volume as Ω̃ , and its boundary has the same area. Applying
Proposition 5, we get

(2)
∣∣∂B3

∣∣ ∣∣B3
∣∣− 2

3 ≤
∣∣∣∂Ω̃0

∣∣∣ ∣∣∣Ω̃0

∣∣∣− 2
3

.

On the other hand, cutting Ω with the plane Hz=tz adds 2 |Hz=tz ∩ Ω| to the area
of the boundary. We therefore get

(3)
∣∣∣∂Ω̃0

∣∣∣ = ∣∣∣∂Ω̃∣∣∣ = |∂Ω|+ 2 |Hz=tz ∩ Ω| ≤ |∂Ω|+ 2 |Ω| .

Combining inequalities (2) and (3), we get inequality (1). We have proved Propo-
sition 3. The above idea of cutting the domain was used in [5, Appendix C], with
geodesic balls, to prove an asymptotic isoperimetric inequality for domains in a
Riemannian manifold (see [5, Lemma II.15]).

Let us now use inequality (1) to obtain a Faber–Krahn-type inequality.

Proposition 6. If Ω is an open set in T
3 with |Ω| ≤ 4π

81 , we have

(4)

(
1−

(
2 |Ω|
9π

) 1
3

)2

λ1(B
3)

∣∣B3
∣∣ 2
3 ≤ λ1(Ω) |Ω|

2
3 ,

where λ1(B
3) is the first eigenvalue of −Δ in B3 with the Dirichlet condition on

∂B3 .

Remark 7. We have λ1(B
3) = π2 and therefore λ1(B

3)
∣∣B3

∣∣ 2
3 =

(
4
3

) 2
3 π

8
3 .

Proof. For any open set ω with |ω| ≤ |Ω| , we have, thanks to inequality (1),

(5)

(
1−

(
2 |Ω|
9π

) 1
3

)
IR3 ≤

(
1−

(
2 |ω|
9π

) 1
3

)
IR3 ≤ |∂ω| |ω|−

2
3 .

Let us now consider a positive eigenfunction u of −ΔT3 on Ω, with Dirichlet bound-
ary condition, associated with λ1(Ω). For any t > 0, the level set Ωt := {p ∈ Ω :
u(p) > t} satisfies |Ωt| ≤ |Ω| , and therefore inequality (5) applies with ω = Ωt .
The classical proof of the Faber–Krahn inequality using the co-area formula and
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COURANT-SHARP TORUS 5

the symmetrization of the level sets (see for instance [5, I.9], or [6, III.3]), combined
with inequality (5), gives us inequality (4). �

3. Lower bound of the counting function

We define the counting function by

N(λ) := �{k : λk(T
3) < λ} .

Proposition 8. For λ > 0,

(6) N(λ) ≥ 4π

3

(√
λ

2π
−

√
3

2

)3

.

Proof. The eigenvalues of −ΔT3 are of the form

λm,n,p = 4π2(m2 + n2 + p2) ,

with (m,n, p) ∈ N
3
0 . With each integer triple (m,n, p) we associate a finite dimen-

sional vector space Em,n,p of eigenfunctions such that

L2(T3) =
⊕

(m,n,p)

Em,n,p .

The vector space Em,n,p is generated by basis functions of the form

(x, y, z) �→ ϕ(2mπx)ψ(2nπy)χ(2pπz) ,

where ϕ, ψ, and χ are sines or cosines (more precisely, it is generated by the func-
tions of this form which are non-zero). It has dimension 2e , where e is the number
of non-zero integers in the triple (m,n, p) . For all λ > 0 and e ∈ {0, 1, 2, 3 }, let
us denote by ne(λ) the number of integer triples (m,n, p) ∈ N

3 having e non-zero
components and satisfying 4π2(n2 + m2 + n2) < λ . Taking the dimension of the
spaces Em,n,p into account, we have

N(λ) = n0(λ) + 2n1(λ) + 4n2(λ) + 8n3(λ) .

Let us now denote by Bλ the open ball in R
3 of center 0 and radius

√
λ/2π . We

define
n(λ) := �

(
Z
3 ∩Bλ

)
.

It is easy to see, by taking into account all the possible sign patterns, that

n(λ) = n0(λ) + 2n1(λ) + 4n2(λ) + 8n3(λ) = N(λ) .

Let us now obtain a lower bound of n(λ) . With each point (m,n, p) in Z
3 ∩ Bλ,

we associate the cube

Cm,n,p =

[
m− 1

2
,m+

1

2

]
×
[
n− 1

2
, n+

1

2

]
×
[
p− 1

2
, p+

1

2

]
.

We have

(7) n(λ) =

∣∣∣∣∣∣
⋃

(m,n,p)∈Z3∩Bλ

Cm,n,p

∣∣∣∣∣∣ .
Let us now show that we have

(8) B

(
0,

√
λ

2π
−

√
3

2

)
⊂

⋃
(m,n,p)∈Z3∩Bλ

Cm,n,p ,
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6 C. LÉNA

where B
(
0,

√
λ

2π −
√
3
2

)
is the ball in R

3 of center 0 and radius
√
λ/2π −

√
3/2 .

Indeed, let (x, y, y) ∈ B
(
0,

√
λ

2π −
√
3
2

)
, and let m, n, and p be the closest integers

to x, y and z respectively. On the one hand,

(x, y, z) ∈ Cm,n,p ,

and on the other hand, by the triangle inequality,√
n2 + n2 + p2 ≤

√
x2 + y2 + z2 +

√
3

2
<

√
λ

2π
,

so that (m,n, p) ∈ Z
3 ∩ Bλ . Inclusion (8) together with equality (7) gives us

inequality (6). �

Remark 9. The equality N(λ) = n(λ) can be proved more directly, by considering
the complex Hilbert space of complex-valued L2-functions on T

3, and by choosing
the functions (x, y, z) �→ ei2mπxei2nπyei2pπz , with (m,n, p) ∈ Z

3 , as an orthogonal
basis of eigenfunctions of −ΔT3 .

4. Reduction to a finite set of eigenvalues

We now proceed with the proof of Theorem 2.

Lemma 10. If λ is an eigenvalue of −ΔT3 that has an associated eigenfunction u
with k nodal domains, k ≥ 7 , then

(9)

(
1−

(
2

9πk

) 1
3

)2 (
4π4k

3

) 2
3

≤ λ .

Proof. Since
∣∣T3

∣∣ = 1 , one of the nodal domains of u has an area no larger than
1
k . Let us denote this nodal domain by D . We have |D| ≤ 1

7 < 4π
81 . According to

Proposition 6,

λ = λ1(D) ≥ |D|− 2
3

(
1−

(
2 |D|
9π

) 1
3

)2

λ1(B
3)

∣∣B3
∣∣ 2
3

≥ k
2
3

(
1−

(
2

9πk

) 1
3

)2

λ1(B
3)

∣∣B3
∣∣ 2
3 .

Using Remark 7, we get inequality (9). �

Corollary 11. If λ is a Courant-sharp eigenvalue, κ(λ) ≤ 269 .

Proof. If λ is an eigenvalue, κ(λ) = N(λ) + 1 > N(λ) . From Proposition 8, we
obtain √

λ

2π
<

(
3

4π

) 1
3

κ(λ)
1
3 +

√
3

2
,

while, if λ is a Courant-sharp eigenvalue (with κ(λ) ≥ 7), Lemma 10 implies
√
λ

2π
≥

(π
6

) 1
3

κ(λ)
1
3 − 1

3
.
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COURANT-SHARP TORUS 7

Table 1. The first 305 eigenvalues

λ
4π2 multiplicity κ(λ) K(λ)
0 1 1
1 6 2
2 12 8 10.19
3 8 20 16.83
4 6 28 24.26
5 24 34 32.40
6 24 58 41.16
8 12 82 60.37
9 30 94 70.74
10 24 124 81.58
11 24 148 92.87
12 8 172 104.59
13 24 180 116.71
14 48 204 129.24
16 6 252 155.41
17 48 258 169.03

We conclude that λ cannot be Courant-sharp if

κ(λ) ≥

⎛⎝ √
3
2 + 1

3(
π
6

) 1
3 −

(
3
4π

) 1
3

⎞⎠3


 269.65 .

�
Corollary 12. If λ is a Courant-sharp eigenvalue of −ΔT3 with κ(λ) ≥ 7 , then

(10) κ(λ) ≤
((

3

4π4

) 1
3 √

λ+

(
2

9π

) 1
3

)3

.

Corollary 13. If λ is a Courant-sharp eigenvalue, λ
4π2 ∈ {0, 1, 2} .

Proof. Table 1 gives the first 305 eigenvalues of −ΔT3 . In this table

K(λ) :=

((
3

4π4

) 1
3 √

λ+

(
2

9π

) 1
3

)3

.

The quantity K(λ) is not given for λ
4π2 ∈ {0, 1} , since κ(λ) ≤ 6 in these cases and

Corollary 12 does not apply. The table shows that if λ
4π2 ≥ 3 , κ(λ) > K(λ) , and

therefore, according to Corollary 12, λ is not Courant-sharp. �
The eigenvalues 0 and 4π2 are obviously Courant-sharp. To prove Theorem 2,

we have to show that the eigenvalue 8π2 is not Courant-sharp, which we will do in
the next section.

5. Courant-type theorem with symmetry

To prove that the eigenvalue 8π2 is not Courant-sharp, we rely on a Courant-
type theorem with symmetry, an idea introduced in [17], and used in [11–13] with
an objective similar to ours.
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8 C. LÉNA

Let σ be the isometry of T3 defined, in the standard coordinates, by

σ(x, y, z) = (x+ 1/2 mod 1, y + 1/2 mod 1, z + 1/2 mod 1) .

In particular, σ ◦ σ is the identity. We call a function u symmetric (resp. antisym-
metric) if u ◦ σ = u (resp. u ◦ σ = −u). We denote by L2

S,σ(T
3) (resp. L2

A,σ(T
3))

the subspace of L2(T3) consisting of all symmetric (resp. antisymmetric) functions.
We have the orthogonal decomposition:

L2(T3) = L2
S,σ(T

3)⊕ L2
A,σ(T

3).

Furthermore, since σ is an isometry, −ΔT3(u ◦ σ) = (−ΔT3u) ◦ σ for all u . This
implies that both subspaces L2

S,σ(T
3) and L2

A,σ(T
3) are stable under the action

of −ΔT3 . Let us now denote by HS,σ (resp. HA,σ) the restriction of −ΔT3 to

L2
S(T

3) (resp. L2
A(T

3)), and by (λS,σ
k )k≥1 (resp. (λA,σ

k )k≥1) the spectrum of HS,σ

(resp. HA,σ). The spectrum (λk(T
2))k≥1 is the reunion of (λS,σ

k )k≥1 and (λA,σ
k )k≥1 ,

counted with multiplicities. If λ is an eigenvalue of HS,σ , we define the index
κS,σ(λ) by

κS,σ(λ) := min
{
k : λS,σ

k = λ
}
.

In the same way, if λ is an eigenvalue of HA,σ , we define

κA,σ(λ) := min
{
k : λA,σ

k = λ
}
.

Let us now consider u , a symmetric eigenfunction of −ΔT3 , and D, a nodal
domain of u . The set σ(D) is also a nodal domain of u . Either σ(D) = D , in which
case we will say that D is symmetric, or we have a pair {D, σ(D)} of isometric nodal
domains. We denote by α(u) the number of symmetric nodal domains of u , and by
β(u) the number of pairs of isometric nodal domains, so that ν(u) = α(u) + 2β(u).

If u is an antisymmetric eigenfunction, and if D is a nodal domain of u , then
σ(D) is also a nodal domain of u , distinct from D since the signs of u on D
and σ(D) are opposite. Therefore the nodal domains of u can be regrouped into
pairs of isometric nodal domains. We denote by γ(u) the number of pairs, so that
ν(u) = 2γ(u) .

Let us now state a Courant-type theorem with the symmetry σ . The proof is
a simple variation of Courant’s original argument and will not be given here; for
more details see [11] and the references therein.

Theorem 14. If λ is an eigenvalue of HS,σ and u an associated symmetric eigen-
function, then

(11) α(u) + β(u) ≤ κS,σ(λ) .

If λ is an eigenvalue of HA,σ and u an associated antisymmetric eigenfunction,
then

(12) γ(u) ≤ κA,σ(λ) .

Let us make one additional remark, inspired by the treatment of the cube with
a Dirichlet boundary condition in [12]. The basis functions generating the vector
space Em,n,p (see the proof of Proposition 8) are symmetric if the sum m+n+ p is
even and antisymmetric if it is odd. For any integer triple (m,n, p) , m+ n+ p has
the same parity as m2 + n2 + p2 . This implies that the eigenfunctions associated
with a given eigenvalue are either all symmetric or all antisymmetric, according to
whether λ

4π2 is even or odd. Equivalently, the spectra of HS,σ and HA,σ are disjoint.
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COURANT-SHARP TORUS 9

Remark 15. If λ is an eigenvalue of −ΔT3 , it is an eigenvalue of either HS,σ or HA,σ,
as seen above. If we consider an associated eigenfunction, the original Courant
theorem (Theorem 1) still applies, but Theorem 14 can give more information.

Remark 16. If u is a symmetric eigenfunction associated with the eigenvalue λ , then
inequality (11) and the equality ν(u) = α(u)+2β(u) imply that ν(u) ≤ 2κS,σ(λ) . If
u is an antisymmetric eigenfunction associated with λ , inequality (12) is equivalent
to ν(u) ≤ 2κA,σ(λ) . We will actually only use the symmetric case in the following.

Let us now consider the eigenvalue 8π2 . It belongs to the spectrum of HS,σ , and
κS,σ(8π

2) = 2 . Any eigenfunction associated with 8π2 is symmetric, and, according
to Remark 16, it has at most 4 nodal domains. This bound is in fact sharp, since
for instance the eigenfunction (x, y, z) �→ cos(2πx) cos(2πy) has 4 nodal domains.
On the other hand, κ(8π2) = 8 , so that 8π2 , considered as an eigenvalue of −ΔT3 ,
is not Courant-sharp. This completes the proof of Theorem 2.
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