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Gaussian Volterra processes as models of

electricity markets

Yuliya Mishura ∗ Stefania Ottaviano† Tiziano Vargiolu‡

Abstract

We introduce a non-Markovian model for electricity markets where
the spot price of electricity is driven by several Gaussian Volterra pro-
cesses, which can be e.g., fractional Brownian motions (fBms), Riemann-
Liouville processes or Gaussian-Volterra driven Ornstein-Uhlenbeck pro-
cesses. Since in energy markets the spot price is not a tradeable asset,
due to the limited storage possibilities, forward contracts are considered
as traded products. We ensure necessary and sufficient conditions for the
absence of arbitrage that, in this kind of market, reflects the fact that the
prices of the forward contracts are (Gaussian) martingales under a risk-
neutral measure. Moreover, we characterize the market completeness in
terms of the number of forward contracts simultaneously considered and
of the kernels of the Gaussian-Volterra processes.
We also provide a novel representation of Ornstein-Uhlenbeck (OU) pro-
cesses driven by Gaussian Volterra processes. Also exploiting this result,
we show analytically that, for some kinds of Gaussian-Volterra processes
driving the spot prices, under conditions ensuring the absence of arbi-
trage, the market is complete.
Finally, we formulate a portfolio optimization problem for an agent who
invests in an electricity market, and we solve it explicitly in the case of
CRRA utility functions. We also find closed formulas for the price of op-
tions written on forward contracts, together with the hedging strategy.
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1 Introduction

Soon after the liberalization of electricity markets in Europe, I. Simonsen in [19]
presented empirical evidence that electricity prices demonstrate stylized facts
(most notably, antipersistence and self-similarity) which are well explained by
fractional Brownian motion (fBm). This was confirmed in several successive
empirical studies (see e.g. [7] and references therein). However, the wide ap-
plication of fBm in energy markets, as well as in general financial markets, was
hindered by the fact that fBm is not a semimartingale, thus (roughly speaking)
it produces the possibility of arbitrage (see e.g. the wide discussions on this
aspect in [4, Chapter 7] and [12, Chapter 5]). Partial remedies to this could be
the introduction of transaction costs, or the use of mixed-fBm models; however,
both of these models are comparatively difficult to consider analytically.

The aim of this paper is to show that it is indeed possible to use fBm, and
even more general Gaussian Volterra processes, in electricity markets without
introducing arbitrage. We also provide an application of our model to portfolio
optimization and option pricing problem.

In order to illustrate our approach, we start with the following toy model.
Assume that the spot price of electricity is of the form St = ϕ(t) + S̄t, where
ϕ is a deterministic seasonality function and S̄ evolves according to Langevin
equation as

dS̄t = −λS̄t dt+ σ dBH
t (1)

under the real-world probability measure P, where λ > 0 is the mean-reversion
speed, σ > 0 is a constant volatility and BH is a fBm with Hurst exponent
H ∈ (0, 1) (the value H = 1/2 corresponds to the well-known case when BH is
a standard Brownian motion) with respect to a given filtration (Ft)t≥0. This
means that BH is a centered Gaussian process such that BH(0) = 0 and that
its covariance function is given by

E[BH
s BH

t ] =
1

2
(s2H + t2H − |t− s|2H).

In turn, this implies that the correlation of future increments of BH with the
past trajectory is positive (i.e., BH is persistent) when H > 1/2 and negative
(i.e., BH is antipersistent) when H < 1/2. Moreover, for H > 1/2, the decay
of this dependence as the time intervals grow apart is slow, and we talk about
long-range dependence (long memory). For H < 1/2, this decay is fast, and
referred by short-range dependence (short memory). The Hurst index is also
a measure for the roughness of the paths of fBm: the larger the Hurst index,
the smoother the paths. Other basic properties captured by H are stationarity

of increments. that is (BH
t+h − BH

h )t≥0
d
= (Bt)t≥0, h > 0 and self-similarity,

that is (a−HBH
at)t≥0

d

= (BH
t )t≥0, a > 0. It can be shown that BH is the

unique centeredH-self-similar Gaussian process with stationary increments. We
underline, moreover, that if H ∈ (0, 1

2 ) ∪ (12 , 1) the fBm is neither a Markov
process nor a semimartingale (as most Gaussian-Volterra processes). [9, 12].
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These properties are transferred also to the process S̄, and consequently to the
spot price S.

One of the main peculiarities of electricity market is however that the spot
price of electricity S is not liquidly traded. What is traded instead are forwards
with delivery periods. In our model, we focus on the instantaneous forward
price F (t, T ), where T ≤ T̄ is the time to maturity and t ∈ [0, T ]. Assuming
that there exists a risk-neutral pricing measure Q equivalent to the measure P,
the forward price of electricity at time t with maturity T > t can be expressed
as

F (t, T ) = EQ[ST | Ft]. (2)

This means that, under the pricing measure Q, the prices F (·, T ) of traded
forward prices are automatically martingales for any maturity T . We take the
filtration (Ft)t≥0 that is the filtration generated by the underlying Brownian
motion W , for which the fBm BH can be written via Molchan-Golosov repre-
sentation ([14, Thm 5.2]) as

BH
t =

∫ t

0

K(t, s) dWs, ∀t ≥ 0, (3)

whereK is a deterministic Volterra-type kernel (more details are given in Section
3). The filtrations generated by W and BH coincide. Thus, in this case the
dynamics of F (·, T ) under Q is given by the relation

dF (t, T ) = K̄(T, t) dWQ
t , (4)

where WQ is a Q-Brownian motion, obtained from W via a Girsanov transfor-
mation, and K̄ is a Volterra kernel, connected to K via an exponent function
appearing when we solve Langevin equation (see Proposition 14 for the details).

This toy model can be generalized in several directions. We do this by as-
suming that the deseasonalized spot price S̄ is the sum of several Gaussian fac-
tors, each one being a different Volterra process with respect to a n-dimensional
standard Brownian motion W . This Volterra processes can be e.g. fBms, or
Riemann-Liouville processes, or fBm-driven Ornstein-Uhlenbeck mean-reverting
processes as in Equation (1), possibly with different Hurst exponents; as par-
ticular case of this we could have mixed fBm, which are sums of fractional and
standard Brownian motions. By assuming that the filtration (Ft)t≥0 is gen-
erated by W and that there exists a pricing measure Q equivalent to P such
that the forward prices are defined by Equation (2), we prove that their dy-
namics follow a multidimensional version of Equation (4). Thus, starting from
the spot price being a possibly non-Markovian and non-semimartingale process,
we obtain that forward prices F (·, T ), with any fixed maturity T , are Gaussian
martingales. We also provide necessary and sufficient conditions for this market
to be complete, based on the number of forward contracts simultaneously traded
in the market and on the kernels of the Volterra processes.

In doing this, we follow the main stream of literature, justified also by mar-
ket practice, to model the forward prices F (t, T ), relative to an instantaneous
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delivery of electricity at time T . However, the real contracts traded in electricity
markets use instead the quantities F (t, Tj , Tk), each one of these being the price
at time t of a so-called flow forward or swap contract (see e.g. [2, 3, 8, 17]),
which delivers a fixed intensity of electricity over the period [T1, T2], where
0 ≤ t ≤ T1 < T2. A common market practice when the delivery period T2 − T1

is small (for example, for hourly or daily forward contracts) is to model not
directly the traded quantities F (t, T1, T2), but rather to model F (t, T̃ ) with
T̃ ∈ [T1, T2] as a proxy (for example, T̃ being the middle point of [T1, T2]). We
show in Lemma 10 that this market practice is justified also in our framework,
as we prove that, if the kernel K(T, t) is Hölder in T with some exponent ρ
(feature shared by many kernels of fractional processes, see Section 5 for de-
tails), then the tracking error between the real price F (t, T1, T2) and the proxy
F (t, T̃ ) tends to zero with order (T2−T1)

2ρ. However, let us note that when the
delivery period is of the order of one month, one trimester or one year, in which
case the approximation of Lemma 10 can possibly be not accurate enough, we
can still use the results of absence of arbitrage and completeness of our model,
but take care of substituting the kernels K(Tj, t), relative to “instantaneous”
forwards introduced in Equation (10), with the kernels K̄(t, Tj , Tk) in Equation
(22), relative to the forward contracts which are actually traded in the market.

We provide some examples of Gaussian Volterra processes which can be used
to model electricity spot prices, such as Riemann-Liouville (RL) processes, frac-
tional Brownian motions, as well as Ornstein-Uhlenbeck (OU) processes driven
by them, and lastly a mixed case where we consider an OU process and an
OU process driven by a fBm. We show analytically that, when these kind of
processes drives the spot prices, under conditions ensuring the absence of arbi-
trage, market completeness is satisfied. We also provide a novel representation
of Ornstein-Uhlenbeck (OU) processes driven by Gaussian Volterra processes
and, accordingly, we show how to treat fractional Brownian motions as a par-
ticular case of fractional OU processes. When this can be applied, we use this
result for our analysis.

We apply this model to the problem of portfolio optimization in electricity
markets. More precisely, we assume that an agent can trade in several for-
ward contracts having maturities T1 < T2 < . . . < Tm, and wants to find the
optimal portfolio by maximizing the expected utility of the terminal wealth,
thus resulting in a stochastic control problem. It is well known that, for non-
Markovian processes classical methods based on dynamic programming and
Hamilton-Jacobi-Bellman equation are not suited. Apart from the special case
of linear-quadratic problems, methods which are used in this framework are
based on the stochastic maximum principle or on the martingale approach (see
e.g. [4, Chapter 9] for several examples). Here we choose to use the martingale
approach: however, differently from [4, Chapter 9.5], our framework allows us
to be free not to use complex tools like the Wick-Ito-Skorohod integral. Instead,
by using the Molchan-Golosov compact interval representation in Equation (3)
and the dynamics (4) implied by it, we are able to represent the optimal wealth
process as a suitable deterministic function, depending on the utility function
and on the initial capital, computed in terms of the density dQ

dP , which is of Gir-
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sanov type. Assuming that the Girsanov kernel in dQ
dP is deterministic, we are

able to provide analytically the optimal portfolio strategy for an agent maximis-
ing a Constant Relative Risk Aversion utility. Then, we consider the problem
of pricing for vanilla calls and puts written on a traded forward, by using a ver-
sion of the Bachelier formula; in this case we also provide the hedging strategy.
We give also the pricing formula for a more exotic derivative used in electricity
market, called reliability option.

The paper is organized as follows. In Section 2, we first introduce the model
in its full generality, with the spot price driven by m Gaussian-Volterra pro-
cesses. Then, we provide sufficient and necessary conditions for the absence of
arbitrage, as well as for the completeness of the market. In Section 3 we give
some examples of Gaussian Volterra processes which can be used to model elec-
tricity spot prices, examples which include various kinds of fractional processes.
We show analytically that, when this kind of processes drives the spot prices,
under conditions ensuring the absence of arbitrage, market completeness is sat-
isfied. We point out that in this section there are mathematical results that
are interesting on their own, such as Proposition 14 and Lemma 15, where we
provide a novel representation of Ornstein-Uhlenbeck (OU) processes driven by
Gaussian Volterra processes. Section 4 states the optimization portfolio prob-
lem in terms of utility maximisation problem for an agent who invests in an
electricity market; we present explicit solution to this problem for the case of
Constant Relative Risk Aversion (CRRA) utility functions. Finally, in Section
5, we present the problem of pricing and hedging for classical vanilla options,
i.e. calls and puts, written on the forward contracts, as well as the pricing of
the so-called Reliability Options.
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2 The model

Let (Ω,F ,P) be a probability space endowed with the filtration (Ft)t≥0 gen-
erated by a n-dimensional standard Brownian motion {Wt, t ≥ 0}, completed
with all the P-null sets. We assume that all the stochastic processes considered
below are adapted to this filtration.

We now fix a final horizon T̄ < +∞, and assume that the spot price of
electricity at each time t ∈ [0, T̄ ] is a n-factor process, i.e. driven by n Gaussian
Volterra processes, see, e.g. [13], as

St =

n
∑

i=1

∫ t

0

Ki(t, s)dW
i
s + ϕ(t) =

∫ t

0

K(t, s) · dWs + ϕ(t), (5)

where the deterministic functions Ki : [0, T̄ ]2 → R, i = 1, . . . , n are Volterra

kernels such that
∫ t

0
K2

i (t, s)ds < ∞ for all t ∈ [0, T̄ ], i = 1, . . . , n, and ϕ ∈
C0([0, T̄ ]) is a deterministic seasonality function. The integral term in the
right-hand side of Equation (5) contains a scalar product of the n-dimensional
Brownian motion W and the Rn-valued function K, defined as

K(t, s) := (K1(t, s), . . . ,Kn(t, s)) ∀s, t ∈ [0, T̄ ]. (6)

This allows the process S to be the sum of several Gaussian components,
e.g. the sum of a Brownian motion and an Ornstein-Uhlenbeck (OU) process as
in [11], or a variant of this model driven by fractional Brownian motions and/or
fractional OU processes, possibly with different Hurst exponents, and so on.
As one can see, the toy model presented in the Introduction corresponds to a
fractional OU process. More details about these models, together with details
about the Volterra kernels suited for this, can be found in Section 3.

We assume that the spot price of electricity S = (St)t∈[0,T̄ ] is not traded
in the market, but the traded products are instead m forward contracts with
maturities 0 < T1 < . . . < Tm ≤ T̄ , and we assume that the general dynamics
of the jth forward price F (·, Tj) with maturity Tj , j = 1, . . . ,m, evolves as

dF (t, Tj) = µ(t, Tj) dt+ σ(t, Tj) · dWt (7)

for t < Tj , with the terminal condition F (Tj , Tj) = STj
, where µ and σ are

deterministic functions defined for 0 ≤ t ≤ Tj ≤ T̄ , with values respectively in
R and Rn, such that µ(·, Tj) is integrable and σ(·, Tj) is square integrable on
[0, Tj] for all j = 1, . . . ,m. To complete the picture, we assume (as usual) that
also a riskless asset can be traded: the price of this asset can be assumed to be
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identically equal to 1 without loss of generality (see e.g. [5, Chapter 10.3] or
Definition 12.1.1. and subsequent comment in [15] for details).

In the following section, we will discuss the conditions for absence of ar-
bitrage and completeness in our market. In doing this, we follow closely the
framework present in [15], which is especially suited to the general dynamics
presented in Equation (7)1. As it is well known, these notions are related to
that of portfolio. As we already pointed out, in electricity markets, the spot
price S is not traded (and, if a proxy for that is quoted, it cannot be stored
without transaction costs, that in this case means some energy loss), while for-
ward contracts with maturities Tj , j = 1, . . . ,m are. Thus, we assume that an

agent can build a financial portfolio by investing at time t the quantity ∆j
t in

the forward contract with maturity Tj, j = 1, . . . ,m. To keep things simple,
we assume that our agent is interested in trading in this market only while all
these forward contracts are still traded: since each forward contract is defined
only until its maturity Tj , the global portfolio position ∆t := (∆0

t ,∆
1
t , . . . ,∆

m
t )

is well-defined only for t ∈ [0, T1], being T1 the first maturity of our forwards:
thus, we assume that our agent trades in the market only until a final time T ,
with T ≤ T1. As a consequence, we will give all the relevant definitions about
portfolio, arbitrage and completeness relative to the final horizon T .

Starting from the discussion above, we assume that an agent builds a fi-
nancial portfolio by investing at time t ∈ [0, T ], with T ≤ T1, the quantity
∆0

t in the riskless asset, and the quantity ∆j
t in the forward contract with

maturity Tj, j = 1, . . . ,m. This results in a portfolio value defined as

X∆
t := ∆0

t+
∑n

j=1 ∆
j
tF (t, Tj). We call this portfolio self-financing if the dy-

namics of its value is

dX∆
t =

n
∑

j=1

∆j
tdF (t, Tj), t ∈ (0, T ], (8)

with initial condition X∆
0 := x ≥ 0. In this definition, we implicitly assume

that (∆j
tµ(t, Tj))t and (∆j

tσ(t, Tj))t are progressively measurable processes with
sample paths belonging to L1([0, T ]) and L2([0, T ]) for almost all ω, respectively.
We call a self-financing portfolio admissible if there exists C ∈ R such that
X∆

t ≥ C for almost all (t, ω) ∈ [0, T ] × Ω. Finally, an admissible portfolio is
called an arbitrage if X∆

0 ≡ 0, P{X∆
T ≥ 0} = 1 and P{X∆

T > 0} > 0.
In order to rule out the possibility of arbitrage, in the next section we present

the classical criterion of existence of an equivalent martingale measure.

2.1 Absence of arbitrage

Let us consider a function θ : [0, T̄ ] → Rn such that

∫ T

0

|θ|2sds < ∞.

1whereas other similar sources are more specialized in assuming that asset prices are strictly
positive, see e.g. [5, 16]

7



Also, consider another probability measure Q ∼ P on (Ω,FT̄ ) whose density
process with respect to P for any t ∈ [0, T̄ ] is given by

Zt =
dQ

dP

∣

∣

∣

∣

Ft

= exp

(

−
∫ t

0

θs · dWs −
1

2

∫ t

0

|θs|2ds
)

, (9)

where
∫ t

0 θs · dWs =
∑n

i=1

∫ t

0 θisdW
i
s . If this measure Q is such that the price

of all traded forward contracts in the market are Q-martingales, then Q is
an equivalent martingale measure (EMM) and no arbitrage opportunities exist
in the market [15, Lemma 12.1.6]. In particular, for forward prices F (·, Tj),
j = 1, . . . ,m, this, together with the terminal condition F (Tj , Tj) = STj

, implies
that each forward price satisfies

F (t, Tj) = EQ

[

STj
|Ft

]

, t ∈ [0, Tj], j = 1, . . . ,m. (10)

Thus, we have a pricing relation between the spot and forward price, that leads
to an arbitrage-free pricing dynamics for the forward price.

Now, we provide a necessary and sufficient condition for the absence of ar-
bitrage in the market.

Proposition 1 Let K(Tj , t) be defined by Equation (6) and Q ∼ P be defined

by Equation (9) with
∫ T̄

0
|θ|2sds < ∞. Then the process WQ = {WQ

t , t ∈ [0, T̄ ]},
defined as

WQ
t = Wt +

∫ t

0

θsds, t ∈ [0, T̄ ] (11)

is a Brownian motion on
(

Ω,F , (Ft)t∈[0,T̄ ],Q
)

, and we have that

St =

∫ t

0

K(t, s) · dWQ
s + ϕQ(t), (12)

where

ϕQ(t) := ϕ(t)−
∫ t

0

K(t, s) · θsds (13)

is the new deterministic seasonality function under Q. Moreover, there is no
arbitrage in the market, i.e. Equation (10) holds, if and only if the dynamics of
F (·, Tj) under Q is

dF (t, Tj) = K(Tj, t) · dWQ
t , t ∈ [0, Tj], F (Tj , Tj) = STj

, (14)

and the dynamics of each F (·, Tj), j = 1, . . . ,m, under P is given by Equation
(7), where

µ(t, Tj) = K(Tj, t) · θt and σ(t, Tj) = K(Tj, t), for a.a t ≤ Tj. (15)

The proof of this proposition is quite standard and follows in part that of [15,
Theorem 12.1.8]. For the readers’ convenience, we present a version adapted to
our case in the Appendix.
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Remark 2 Let us note that {F (t, Tj), t ∈ [0, Tj]} as solution of (47) is a Markov
process. Thus, starting from the spot price being a possibly non-Markovian and
non-semimartingale process, as is well known e.g. for fractional Brownian mo-
tion, we obtain that the forward prices with any fixed maturity Tj, j = 1, . . . , n,
are Gaussian and Markov martingales under the measure Q.

Remark 3 Equation (15) states that µ and σ, which in principle are defined
only for their second argument equal to the observed maturities Tj, j = 1, . . . ,m,
are instead defined structurally as functions of the vector of Volterra kernels K
(and θ), which instead are defined for all times, also different from Tj. For this
reason, if Equation (15) is true, we can extend the definition of µ and σ for T
possibly different from Tj, j = 1, . . . , n, as

µ(t, T ) = K(T, t) · θt and σ(t, T ) = K(T, t).

This allows us to write the seasonality function ϕQ(T ) under Q, by comparing
Equation (13) with (15), as

ϕQ(T ) := ϕ(T )−
∫ T

0

µ(t, T )dt. (16)

2.2 Completeness

From here on, we assume that the market is arbitrage free, thus, at least one
EMM Q exists: by virtue of Proposition 1, this implies that there exists a

deterministic function θ : [0, T̄ ] → Rn such that
∫ T̄

0 |θ|2sds < ∞ and that satisfies

µ̄(t) = K̄(t)θt and σ̄(t) = K̄(t) for a.a. t ≤ T1, (17)

where

µ̄(t) :=







µ(t, T1)
...

µ(t, Tm)






, σ̄(t) :=







σ(t, T1)
...

σ(t, Tm)






,

and

K̄(t) = (Ki(Tj , t))
i=1,...,n
j=1,...,m =







K1(T1, t) . . . Kn(T1, t)
...

. . .
...

K1(Tm, t) . . . Kn(Tm, t)






. (18)

At this point, we want to investigate the completeness of our market. We
follow [15] and say that our market is complete if, for every possible payoff Y ∈
L∞(Ω,FT ,P), we can find a real number y and a portfolio ∆ = (∆1, . . . ,∆n)
such that

Y = y +

n
∑

j=1

∫ T

0

∆j
tdF (t, Tj) a.s. (19)
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and such that the process

y +

n
∑

j=1

∫ s

0

∆j
t ·K(Tj, t)dW

Q
t , 0 ≤ s ≤ T,

is a Q-martingale.

Remark 4 If the market is complete, then the representation in Equation (19)
usually can be extended to payoffs Y which are also non-bounded, see e.g. [15,
Exercise 12.3] for an extension to payoffs Y ∈ L2(Ω,FT ,P).

Theorem 5 The market (F (·, Tj))j=1,...,m, is complete if and only if K̄(t) :
Rn → Rm has a left inverse K̄−1

left(t), i.e. there exists a matrix K̄−1
left(t) : R

m →
Rn such that

K̄−1
left(t)K̄(t) = Im for a.a. t ≤ T , (20)

where Im is the identity matrix of order m.

Proof. We refer to [15, Theorem 12.2.5].

Let us note that, by virtue of the previous theorem, if the market is complete
then the function θt satisfying (17) is unique. Indeed, the only solution is given
by

θt = K̄−1
left(t)µ̄(t).

Thus, we have a unique EMM Q.

Remark 6 The existence of the left inverse for which equation (20) holds is
equivalent to the injectivity of K̄(t) for a.a. t ≤ T . Thus, rank(K̄(t)) = n for
a.a. t ≤ T1, in particular, m ≥ n.

Remark 7 We require, for convenience, the injectivity of K̄(t) “for a.a. t ≤
T”. However, we can note that completeness could still hold for T > T1 as long
as the remaining forward contracts span a diffusion matrix (that is K̄(t) with
reduced number of rows) with rank equal to n ≤ m. Thus, in this case, even
if we have assumed, from the beginning, that we are interested in trading only
until T ≤ T1 in principle, we can trade even after some contracts have reached
maturity, continuing to have a complete market.

Corollary 8 If m = n the market is complete if and only if K̄(t) is invertible
for a.a. t ≤ T .

Remark 9 We underline that the forward prices F (t, Tj), j = 1, . . . ,m, that we
model here are only an approximation (or better, the building blocks) of the real
contracts that are traded in electricity markets. Those last can be represented
by the quantities F (t, Tj, Tk), each one of these being the price at time t of a
forward contract2 which delivers a fixed intensity of electricity over the period

2also called swap contracts in this framework by some authors
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[Tj, Tk], where 0 ≤ t ≤ Tj < Tk ≤ T̄ . More precisely, according to [3] and to the
no-arbitrage condition

F (t, Tj, Tk) =
1

Tk − Tj

∫ Tk

Tj

EQ[ST |Ft]dT =
1

Tk − Tj

∫ Tk

Tj

F (t, T )dT,

valid when the settlement takes place at the end of the delivery period (this
relation represents well also other kind of settlement rules, see Proposition 2.1
and Remark 1 in [17] for details), its dynamics under Q is

dF (t, Tj , Tk) = K̄(t, Tj, Tk) · dWQ
t , (21)

where the function K̄ : R3 → Rn is defined as

K̄(t, Tj , Tk) =
1

Tk − Tj

∫ Tk

Tj

K(T, t)dT. (22)

However, a common market practice when the delivery period Tk − Tj is short
(for example, for hourly or daily forward contracts) is to model not directly the
traded quantities F (t, Tj, Tk), but rather to model F (t, T̃ ) with T̃ ∈ [Tj , Tk] as a

proxy (for example, T̃ being the middle point of [Tj, Tk]). This market practice
is justified also in our framework, as the next lemma shows.

Lemma 10 If the dynamics of F (t, T̃ ) and F (t, Tj , Tk) are given respectively

by Equations (14) and (21), with T̃ ∈ [Tj, Tk], and the kernel K(T, t) is Hölder
continuous in T ∈ [0, T̄ ] with exponent ρ ∈ (0, 1] uniformly in t ∈ [0, T̄ ], then

Var[F (t, T̃ )− F (t, Tj , Tk)] = O((Tk − Tj)
2ρ).

Proof. Since both F (t, T̃ ) and F (t, Tj, Tk) are defined by Wiener integrals, we
have

Var[F (t, T̃ )− F (t, Tj , Tk)] =

∫ t

0

|K(T̃ , s)− K̄(s, Tj , Tk)|2ds.

Assume now that |K(T, s)−K(T ′, s)| ≤ C|T −T ′|ρ for all T, T ′ ∈ [0, T̄ ] and for
a suitable C. Then, from Equation (22) we have that

|K(T̃ , s)− K̄(s, Tj, Tk)| =
∣

∣

∣

∣

∣

1

Tk − Tj

∫ Tk

Tj

(K(T̃ , s)−K(T, s))dT

∣

∣

∣

∣

∣

≤

≤ 1

Tk − Tj

∫ Tk

Tj

C|T̃ − T |ρdT =
C

(1 + ρ)(Tk − Tj)
[(T̃ − Tj)

1+ρ + (Tk − T̃ )1+ρ] ≤

≤ C

(1 + ρ)(Tk − Tj)
[(Tk − Tj)

1+ρ + (Tk − Tj)
1+ρ] =

2C

1 + ρ
(Tk − Tj)

ρ.

Thus,

Var[F (t, T̃ )− F (t, Tj , Tk)] ≤
∫ t

0

(

2C

1 + ρ
(Tk − Tj)

ρ

)2

ds ≤

≤ 4C2T̄

(1 + ρ)2
(Tk − Tj)

2ρ,

11



which yields the conclusion.

Remark 11 While the case when the delivery period Tk − Tj is short can be
treated with the aid of Lemma 10, this is not the case which concerns some
forward contracts commonly met in electricity markets, where Tk − Tj can be
of order of one month, one trimester or one year. Instead, in the case of long
delivery periods, when the approximation of Lemma 10 can possibly be not accu-
rate enough, we can still use the results of Sections 2.1 and 2.2, but take care of
substituting the kernels K(Tj , t), relative to “instantaneous” forwards introduced
in Equation (10), with the kernels K̄(t, Tj , Tk) in Equation (22), relative to the
forward contracts which are actually traded in the market. When this is done,
one should carry out the same kind of computation that we show in Sections
3, 4, and 5 for the specific situation. However, the possible scenarios could be
quite involved: in fact, the “classical” assumption in academic literature is that
these delivery period do not overlap (i.e. forward contracts are all of the same
kind, e.g. monthly contracts); conversely, the typical situation in real market is
that these contracts do have overlapping delivery periods (a discussion on why
and how this happens can be found e.g. in [10]), as the next example shows.
In cases like this, one should also be careful to avoid what is defined in [17] as
“no overlapping arbitrage” (NOA), i.e. the possibility of building an arbitrage by
considering forward contracts whose delivery period overlap (i.e., have a non-
empty intersection). As this would deviate the focus from the main topic of this
paper, we do not enter in further detail here.

Example 12 Assume that we are at the beginning of May, 2024; then a typical
situation is that the market quotes monthly forward prices for June, July and
August 2024 (called respectively Jun/24, Jul/24 and Aug/24), for the 3rd and
4th trimester 2024 (Q3/24 and Q4/24) and for the calendar year 2025 (Cal-25),
without further granularity until the end of May. This corresponds to setting Tj

as follows:

Tj actual date
T1 01-06-2024
T2 01-07-2024
T3 01-08-2024
T4 01-09-2024
T5 01-10-2024
T6 01-01-2025
T7 01-01-2026

and the quoted forward prices as

12



market name corresponding stochastic process
Jun/24 F (t, T1, T2)
Jul/24 F (t, T2, T3)
Aug/24 F (t, T3, T4)
Q3/24 F (t, T2, T5)
Q4/24 F (t, T5, T6)
Cal-25 F (t, T6, T7)

As we can see, the intervals [Tj , Tk] overlap, as Jul/24 and Q3/24 have the
same initial time and Aug/24 has the delivery period [T3, T4] which is strictly
contained in [T2, T5], i.e. in the delivery period of Q3/24.

3 Gaussian Volterra Processes to model elec-
tricity spot prices

In this section, we provide some examples of Gaussian Volterra processes which
can be used to model electricity spot prices. We show analytically that, under
conditions ensuring the absence of arbitrage, the completeness of the market is
satisfied (see Theorem 5 and Corollary 8). While this is straightforward when
the number of factors n is 1, checking this for n > 1 involves proving that
the matrix K̄(t) is non-singular for a.a. t ∈ [0, T ]. This is generally true, and
quite straightforward to prove, when the kernels K have different functional
form from one another, resulting in factors which belong to different classes of
Gaussian processes, for example when we have a standard Ornstein-Uhlenbeck
process and an Ornstein-Uhlenbeck process driven by a fractional Brownian
motion (fractional Ornstein-Uhlenbeck, fOU processes), see e.g. Section 3.5.
Less trivial is the case when the Gaussian processes belong to the same class,
for example when we have two fractional Brownian motion with different Hurst
exponents. For this reason, in the following sections we check the most common
cases that one could face, namely the case of Riemann-Liouville (RL) processes,
and the case of a fBm, in both the cases with Hurst exponent H > 1/2 and
H < 1/2. We also show how to formulate these results for Ornstein-Uhlenbeck
(OU) processes driven by them, obtaining the original driving processes in the
case when the mean-reversion speed is zero: for this reason, we first present how
to treat OU processes driven by a generic Gaussian Volterra process, and then
we will analyze the cases when the OU processes are driven by Gaussian-Volterra
processes of the same kind as seen above, namely RL processes and fBm with
H > 1/2. We will analyze in detail the case when one has only n = 2 factors,
as all the cases with n > 2 get more and more complicated to handle. The only
exception is when we have a generic number n of RL fBm, in which case market
completeness is equivalent to the determinant of a generalized Vandermonde
matrix being nonzero, which we check to be true.

13



3.1 From Gaussian Volterra processes to Gaussian Volterra-
driven Ornstein-Uhlenbeck processes

Consider the Gaussian Volterra process

Zt =

∫ t

0

KZ(t, s)dWs, (23)

where W is a one dimensional Wiener process and KZ is a kernel such that
∫ t

0 K
2
Z(t, s)ds < ∞ for any t > 0. Under this assumption EZ2

t < ∞ for any
t > 0. Consider the Langevin equation of the form

Yt = α

∫ t

0

Ysds+ Zt, t ≥ 0, (24)

where we search for a solution Y = {Yt, t ≥ 0} having Lebesgue-integrable

sample paths, so that the integral Ut :=
∫ t

0 Ysds in the right-hand side is well

defined. Denoting Ut =
∫ t

0 Ysds, we can rewrite the above equation as

U ′
t − αUt = Zt, (25)

as the process U has continuous sample paths which are a.e. differentiable
with respect to the Lebesgue measure. Moreover, if Z is continuous a.s., then
equation (25) holds for all t > 0. The condition of continuity of Z is based
on the standard Kolmogorov continuity theorem: we here follow [13], which
specifically analyzes Gaussian Volterra processes. Let Z = {Zt, t ≥ 0} be a
centered Gaussian process. If there exists C > 0 and δ > 0 such that

E|Zt − Zs|2 ≤ C|t− s|δ for all 0 ≤ s ≤ t ≤ T, (26)

then the process Z has a modification that is continuous on [0, T ] which, more-
over, satisfies Hölder continuity on [0, T ] of any order 0 < γ < δ

2 .

Remark 13 In the general case of a Gaussian Volterra process Z defined as in
Equation (23), the condition (26) is reduced to (see e.g. [13])

∫ s

0

(KZ(t, u)−KZ(s, u))
2du+

∫ t

s

K2
Z(t, u)du ≤ C|t− s|δ.

Proposition 14 Let the condition (26) be fulfilled. Then Equation (25) has
the unique continuous solution

Ut = eαt
∫ t

0

e−αsZsds, (27)

and Equation (24) has the unique continuous solution

Yt = U ′
t = αeαt

∫ t

0

e−αsZsds+ Zt, (28)
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which can be represented as a Gaussian-Volterra process as

Yt =

∫ t

0

KY (t, u)dWu,

with

KY (t, u) = α

∫ t

u

eα(t−s)KZ(s, u)ds+KZ(t, u). (29)

Proof. If the condition (26) holds, then Equation (25) is a linear ordinary
differential equation in U with non-homogeneous term Z, which is a continuous
random function (here we consider the continuous modification of Z). Thus, the
standard theory of ordinary differential equations gives the unique continuous
solution as in Equation (27), which is differentiable and has derivative given by
Equation (28). This is obviously solution of Equation (24), and it is very easy
to see that this equation admits a unique solution. Take in fact two solutions
Y 1 and Y 2: then we have that

Y 1
t − Y 2

t = α

∫ t

0

(Y 1
s − Y 2

s )ds

which, by the Gronwall lemma, has as consequence Y 1
t − Y 2

t ≡ 0 for all t >
0, thus, Y 1 ≡ Y 2, and the solution is unique. According to [18, Chapter 4,
Theorem 64], we can apply the stochastic Fubini theorem to the first term in
the right-hand side of (28) and get that

Yt = αeαt
∫ t

0

e−αs

∫ s

0

KZ(s, u)dWuds+

∫ t

0

KZ(t, u)dWu =

∫ t

0

KY (t, u)dWu,

where KY is defined as in Equation (29): this concludes the proof.

The advantage of (29) is that we immediately get it avoiding any other
operator or transformation, fractional or not. However, if we want to reduce
(29) to one term, then some additional assumptions are needed.

Lemma 15 If KZ is such that KZ(u, u) = 0 and is differentiable in the first
variable, with ∂KZ

∂s Lebesgue integrable in s, then

KY (t, u) =

∫ t

u

eα(t−s) ∂KZ(s, u)

∂s
ds (30)

Proof. Under the previous assumptions, we can integrate in (29) by parts and
get that

KY (t, u) = eαt
(

−e−αsKZ(s, u)|tu +

∫ t

u

e−αs ∂KZ(s, u)

∂s

)

ds+KZ(t, u)

= −KZ(t, u) + eα(t−u)KZ(u, u) +

∫ t

u

eα(t−s) ∂KZ(s, u)

∂s
ds+KZ(t, u)

and the result follows.
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Remark 16 If to relate (29) and (30) to fractional Brownian motion and frac-
tional Ornstein-Uhlenbeck process, then (29) is valid for any H ∈ (0, 1), while
(30) is valid only for H ∈ (1/2, 1). More detail is given below. More general
kernels are studied in [13].

Now, let us consider some examples of Gaussian-Volterra processes.

3.2 Riemann-Liouville processes

The Riemann-Liouville (RL) process is defined as

UH
t = cH,U

∫ t

0

(t− s)H− 1

2 dWs (31)

where W is a standard 1-dimensional Brownian motion, and normalizing factor
cH,U , by analogy with fractional integrals, is chosen as cH,U := 1

Γ(H+ 1

2
)
.

So, the RL process is a Gaussian-Volterra process having the kernelKUH (t, s) :=

cH,U (t − s)H− 1

2 . This kernel is square-integrable in [0, t] for any H > 0, and it
is well known that UH has continuous sample paths for all H > 0. However,
the conditions that we gave to have an OU process driven by this process with
the good properties seen in Section 5.1 are valid only when H > 1/2. In fact,
we have that KUH (s, s) = 0 if and only if H > 1/2; in this case,

∂KUH (t, s)

∂t
= cH,U

(

H − 1

2

)

(t− s)H− 3

2

which is integrable in t for H > 1/2. For this reason, we will analyze OU
processes driven by RL processes only in the case H > 1/2, while we have a
much more general result for RL processes. We underline that the increments
of RL processes are not stationary [9].

3.2.1 Riemann-Liouville processes, n factors

As announced, in the case of RL processes, we can prove that n different factors,
each one with a different Hurst exponent, make the matrix K̄(t) nonsingular
for all t > 0. Consider n independent Riemann-Liouville processes represented
as in Equation (31), driven by n independent standard 1-dimensional Brownian
motions. We assume that the Hurst exponent Hi, i = 1, . . . , n, are all different;
thus, without loss of generality, we can assume that 0 < H1 < H2 < . . . < Hn <
1.

From Corollary 8, a sufficient and necessary condition for the completeness
of the market in this case is

∣

∣

∣

∣

∣

∣

∣

cH1,U (T1 − t)H1−
1

2 . . . cHn,U (T1 − t)Hn−
1

2

...
...

...

cH1,U (Tn − t)H1−
1

2 . . . cHn,U (Tn − t)Hn−
1

2

∣

∣

∣

∣

∣

∣

∣

6= 0 (32)
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for any 0 ≤ t ≤ T , where T < T1 < . . . < Tn. Let us note that, as well
as in the subsequent subsections, in order to assess whether the matrix (18)
is invertible we can neglect the normalizing constants appearing in each line.
Without loss of generality, we assume that 0 < H1 < H2 < . . . < Hn < 1.
Then, by letting αi := Hi − 1

2 and xj := Tj − t, for i, j = 1, . . . , n, the following
result is instrumental in proving the completeness.

Theorem 17 Let us consider the determinant of the form

∆n(x1, . . . , xn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

xα1

1 . . . xα1

n

xα2

1 . . . xα2

n
...

...
...

xαn

1 . . . xαn
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (33)

Then, for any αi ∈ R such that α1 < . . . < αn and 0 < x1 . . . < xn, we have
∆n > 0.

Let us note that the matrix in (33) is the transpose of the matrix in (32):
clearly we can use the above result for our case, because the determinant is the
same for a matrix and its transpose. Moreover, let us note that the matrix in
(33) has the form of the so-called unsigned exponential Vandermonde matrix.
The result on the positiveness of the determinant for the signed exponential
Vandermonde matrix can be found in [20]. However, the proof for the case of
the unsigned exponential matrix is not explicitly provided there, thus we report
our proof in the Appendix A for the readers’ convenience.

In our case, as xj = Tj − t, we have 0 < T1 −T ≤ x1 < . . . < xn ≤ Tn for all
t ∈ [0, T ], so we can see that the conditions of Theorem 17 are satisfied. Thus,
also the determinant of the matrix of the processes’ kernels K̄(t) is positive for
all t ∈ [0, T ]. Therefore, in the case the electricity spot price is the sum of n RL
processes, we can assert that our market is complete, when the number m of
forward contracts is equal to n. Let us note that the completeness is still valid
in the case m > n, by Theorem 5: indeed, thanks to Theorem 17, we have a
minor of order n different from zero, so the rank of the matrix is n

3.2.2 Ornstein-Uhlenbeck processes driven by RL processes, H >
1/2

By Lemma 15, an OU process with mean-reversion speed α driven by a RL fBm
with Hurst exponent H > 1

2 is a Gaussian-Volterra process, with kernel given
by

KY (t, s) = cH,U

∫ t

s

eα(t−u)

(

H − 1

2

)

(u − s)H− 3

2 du.

Proposition 18 Consider two OU processes with the same mean-reversion speed
α, driven by two independent RL fBm with 1

2 < H1 < H2, and let 0 < T1 < T2.
In this case
∣

∣

∣

∣

∣

cH1,RL

∫ T1

s
eα(T1−u)(u− s)H1−

3

2 du cH2,RL

∫ T1

s
eα(T1−u)(u− s)H2−

3

2 du

cH1,RL

∫ T2

s
eα(T2−u)(u− s)H1−

3

2 du cH2,RL

∫ T2

s
eα(T2−u)(u− s)H2−

3

2 du

∣

∣

∣

∣

∣

6= 0.
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Proof. We can prove, equivalently, that

∆RL(T1, T2) 6= 0,

where

∆RL(T1, T2) =

∣

∣

∣

∣

∣

∫ T1

s
e−αu(u− s)H1−

3

2 du
∫ T1

s
e−αu(u− s)H2−

3

2 du
∫ T2

s e−αu(u− s)H1−
3

2 du
∫ T2

s e−αu(u − s)H2−
3

2 du

∣

∣

∣

∣

∣

.

Obviously, ∆RL(T1, T1) = 0, and

∂∆RL(T1, T2)

∂T2
= e−αT2

∣

∣

∣

∣

∣

∫ T1

s e−αu(u− s)H1−
3

2 du
∫ T1

s e−αu(u − s)H2−
3

2 du

(T2 − s)H1−
3

2 (T2 − s)H2−
3

2

∣

∣

∣

∣

∣

Consider now the difference

(T2 − s)H2−
3

2

(T2 − s)H1−
3

2

−
∫ T1

s
e−αu(u − s)H2−

3

2 du
∫ T1

s e−αu(u − s)H1−
3

2 du
=

(T2 − s)H2−
3

2

(T2 − s)H1−
3

2

− e−αξ(ξ − s)H2−
3

2

e−αξ(ξ − s)H1−
3

2

for a suitable ξ ∈ (s, T1) to be chosen due to the Cauchy theorem about the
ratio of increments of differentiable functions. Then we have

(ξ − s)H2−
3

2

(ξ − s)H1−
3

2

= (ξ − s)H2−H1 < (T2 − s)H2−H1 =
(T2 − s)H2−

3

2

(T2 − s)H1−
3

2

,

which implies that ∂∆RL(T1,T2)
∂T2

> 0: this, joint to ∆RL(T1, T1) = 0, implies that
∆RL(T1, T2) > 0 for all T2 > T1.

3.3 Ornstein-Uhlenbeck processes driven by fBMs, H >
1/2

Consider now the case of fBM BH with Hurst index H ∈ (12 , 1). Then BH

admits the compact interval representation of the form

BH
t = cH

∫ t

0

s
1

2
−H

∫ t

s

ϕH(u, s)du dWs,

where W is a Wiener process,

cH :=

(

H − 1

2

)(

2H Γ(32 −H)

Γ(H + 1
2 )Γ(2 − 2H)

)

1

2

and
ϕH(u, s) := uH− 1

2 (u − s)H− 3

2 .
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In other words, in this case the kernel is

KBH (t, s) = cHs
1

2
−H

∫ t

s

ϕH(u, s)du

For H > 1/2, this kernel is square-integrable in [0, t] and is such that BH has
continuous (even Hölder up to order H) sample paths. Moreover, the condi-
tions that we gave to have an OU process driven by this process with the good
properties seen in Section 5.1 are valid. In fact, following Lemma 15, we have
that KBH (s, s) = 0 and

∂KBH (t, s)

∂t
= cHs

1

2
−HtH− 1

2 (t− s)H− 3

2 = cHs
1

2
−HϕH(t, s)

which is integrable in t for H > 1/2. Thus, we can also analyze OU processes
driven by fBm. After Lemma 15, an OU process with mean-reversion speed α
lead by a fBm is a Gaussian-Volterra process with kernel

KY (t, s) := cHs
1

2
−H

∫ t

s

eα(t−u)ϕH(u, s)du.

Proposition 19 Let us consider two fOU process with the same mean-reversion
speed α and 1

2 < H1 < H2, and consider also 0 < T1 < T2. Then, we have

∣

∣

∣

∣

∣

cH1
s

1

2
−H1

∫ T1

s eα(T1−u)ϕH1
(u, s)du cH2

s
1

2
−H2

∫ T1

s eα(T1−u)ϕH2
(u, s)du

cH1
s

1

2
−H1

∫ T2

s eα(T2−u)ϕH1
(u, s)du cH2

s
1

2
−H2

∫ T2

s eα(T2−u)ϕH2
(u, s)du

∣

∣

∣

∣

∣

6= 0.

Proof. We can prove, equivalently, that

∆(T1, T2) 6= 0,

where

∆(T1, T2) =

∣

∣

∣

∣

∣

∫ T1

u e−αsϕH1
(s, u)ds

∫ T1

u e−αsϕH2
(s, u)ds

∫ T2

u e−αsϕH1
(s, u)ds

∫ T2

u e−αsϕH2
(s, u)ds

∣

∣

∣

∣

∣

.

Obviously, ∆(T1, T1) = 0, and

∂∆(T1, T2)

∂T2
= e−αT2

∣

∣

∣

∣

∫ T1

u
e−αsϕH1

(s, u)ds
∫ T1

u
e−αsϕH2

(s, u)ds
ϕH1

(T2, u) ϕH2
(T2, u)

∣

∣

∣

∣

Consider now the difference

ϕH2
(T2, u)

ϕH1
(T2, u)

−
∫ T1

u
e−αsϕH2

(s, u)ds
∫ T1

u e−αsϕH1
(s, u)ds

=
ϕH2

(T2, u)

ϕH1
(T2, u)

− e−αξϕH2
(ξ, u)

e−αξϕH1
(ξ, u)
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for a suitable ξ ∈ (s, T1) to be chosen due to the Cauchy theorem about the
ratio of increments of differentiable functions. By definition of ϕH , we have

ϕH2
(ξ, s)

ϕH1
(ξ, s)

= ξH2−H1(ξ − s)H2−H1 < TH2−H1

2 (T2 − s)H2−H1 =
ϕH2

(T2, s)

ϕH1
(T2, s)

,

which implies that ∂∆(T1,T2)
∂T2

> 0: this, joint to ∆(T1, T1) = 0, implies that
∆(T1, T2) > 0 for all T2 > T1.

This result ensures that for the case in which the electricity price is driven
by two fOU process with 1

2 < H1 < H2, the same mean-reversion speed α and
0 < T1 < T2, the market is complete. Since for α = 0 the two OU processes
degenerate in two fractional Brownian motions, the result holds true also for
this simpler case.

3.4 Fractional Brownian motions, H < 1/2

Now, let Z = BH , a fBm with Hurst index H ∈ (0, 1
2 ). In this case, we have

the representation

BH
t =

∫ t

0

KH
B (t, s)dWs, t ≥ 0

for ease of notation in the following, we denote KH
B := KH , which explicitly can

be written as

KH(t, s) = c̄H

[

(

t

s

)H− 1

2

(t− s)H− 1

2 +

(

1

2
−H

)

s
1

2
−H

∫ t

s

uH− 3

2 (u− s)H− 1

2 du

]

= c̄HsH− 1

2

[

(

t

s

)H− 1

2

(

t

s
− 1

)H− 1

2

+

(

1

2
−H

)∫ t/s

1

vH− 3

2 (v − 1)H− 1

2 dv

]

= c̄HsH− 1

2 K̃H

(

t

s
, 1

)

,

where

c̄H =

(

2H Γ(32 −H)

Γ(H + 1
2 )Γ(2− 2H)

)

1

2

,

and

K̃H(r, 1) = rH− 1

2 (r − 1)H− 1

2 +

(

1

2
−H

)∫ r

1

ϕH(v)dv, (34)

with ϕH(v) = vH− 3

2 (v − 1)H− 1

2 . In the following, for brevity, we denote
KH(r) := K̃H(r, 1). Notice that

K ′
H(r) =

(

H − 1

2

)

rH− 1

2 (r − 1)H− 3

2 .
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Now, let 0 < T < T1 < T2 and 0 < H1 < H2 < 1
2 . We want to investigate

the behaviour of the matrix (18), that in this case writes:

∆(s) =

∣

∣

∣

∣

c̄H1
sH1−

1

2KH1
(T1

s ) c̄H2
sH2−

1

2KH2
(T1

s )

c̄H1
sH1−

1

2KH1
(T2

s ) c̄H2
sH2−

1

2KH2
(T2

s )

∣

∣

∣

∣

,

specifically, we wonder if there are any points 0 < s ≤ T where ∆(s) is zero.
Thus, in the following, we proceed to answer this question. Equivalently, it is
sufficient to analyze the behavior of the determinant

∆̃(R1, R2) =

∣

∣

∣

∣

KH1
(R1) KH2

(R1)
KH1

(R2) KH2
(R2)

∣

∣

∣

∣

,

for 1 ≤ R1 ≤ R2, where R1 = T1

s and R2 = T2

s . Obviously, ∆̃(R1, R1) = 0, for

any R1 > 1. Moreover, from (34) it is evident that for any R2 > 1, ∆̃(R1, R2) →
+∞ as R1 ց 1. Also, it is evident that ∆̃(R1, R2) has no limit in (1, 1).

To study the specifics of this manifold, let us calculate

∆̃(R1, R2) = KH1
(R1)KH2

(R2)−KH1
(R2)KH2

(R1)

= KH2
(R2)KH2

(R1)

[

KH1
(R1)

KH2
(R1)

− KH1
(R2)

KH2
(R2)

]

.

Let f(R) =
KH1

(R)

KH2
(R) . So, we are interested in the sign of the difference f(R1)−

f(R2) for 1 < R1 < R2. We have

f ′(R) =

[(

H1 −
1

2

)

RH1−
1

2 (R − 1)H1−
3

2KH2
(R)

−
(

H2 −
1

2

)

RH2−
1

2 (R− 1)H2−
3

2KH1
(R)

]

· (KH2
(R))−2

=
RH1−

1

2 (R − 1)H1−
3

2

(KH2
(R))2

[(

H1 −
1

2

)

KH2
(R)

−
(

H2 −
1

2

)

RH2−H1(R− 1)H2−H1KH1
(R)

]

.

Thus, we have to study the sign of the term in the square brackets that we
denote by I(R). By some computations, we obtain

I(R) = (H1 −H2)R
H2−

1

2 (R − 1)H2−
1

2

−
(

1

2
−H1

)(

1

2
−H2

)∫ R

1

uH2−
3

2 (u − 1)H2−
1

2 du

+

(

1

2
−H1

)(

1

2
−H2

)

RH2−H1(R− 1)H2−H1

∫ R

1

uH1−
3

2 (u − 1)H1−
1

2 du.

(35)
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We can see that if R ց 1, then I(R) → −∞, if R → +∞, then I(R) → +∞.
Moreover, it is easy to see that I(R) strictly increases. This means that for
some R∗, f ′(R) > 0, when 1 < R < R∗, f ′(R∗) = 0, and f ′(R) > 0 for R > R∗.
That is, R∗ is a minimum point of f . Moreover, when R ց 1 , f(R) → +∞
and when R → +∞, f(R) → f∞, where

f∞ =
1/2−H1

1/2−H2

∫∞

1 uH1−
3

2 (u− 1)H1−
1

2 du
∫∞

1 uH2−
3

2 (u− 1)H2−
1

2 du
,

and by the sign of the derivative of f , we have that there exists R∗ < R∗, for
which f(R∗) < f(R∗) = f∞.

Now, let us recall that we are interested in the sign of f(R1)−f(R2) in order
to determine the sign of ∆̃. Fix R1 and consider f(R1)− f(R2) as a function of
R2. From the analysis above, we have that if R1 < R∗, f(R2) decreases when
R2 increases from R1 to R∗, then for R2 > R∗, f(R2) increases up to f∞. Thus,

• if R1 < R∗, ∆̃(R1, R2) > 0 for all R2 > R1,

• if R∗ < R1 < R∗, then f(R1) < f∞ and there exists unique R0
2 > R∗

such that ∆̃(R1, R2) > 0 for R2 < R0
2, ∆̃(R1, R2) < 0 for R2 > R0

2 and
∆̃(R1, R

0
2) = 0,

• if R1 ≥ R∗, then ∆̃(R1, R2) < 0 for all R2 > R1.

Now, let R∗ < R̄1 < R∗ and R̄2 > R̄1 such that ∆̃(R̄1, R̄2) < 0. It means
that R̄2 > R∗ and for any R1 such that R̄2 > R1 > R̄1, f(R1) < f(R̄2) holds.
If ∆̃(R̄1, R̄2) < 0, it means that R∗ < R̄1, and then ∆̃(R1, R̄2) < 0 for all
R̄1 < R1 < R̄2.

Denote D+ and D− the sets in the ”triangle” bounded by the lines R1 =
1, R1 = R2, where ∆̃(R1, R2) > 0 and ∆̃(R1, R2) < 0, respectively. Then these
sets have the form as in the Figure 1.

1 R∗ R∗

1

D+

D−

Figure 1

1 R∗ R∗

1

T2

T1

∆̃
(

T1

s , T2

s

)

= 0

Figure 2
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Coming back to our original problem, we want now to understand how many
0 < s ≤ T < T1 < T2 exist for which ∆(s) = 0, that is equivalent to count how
many point (R1, R2) with R1 = T1

s and R2 = R1 · T2

T1

are such that ∆̃(R1, R2) =

0. Note that if s → 0, then, starting from some s0 , ∆̃(T1

s , T2

s ) < 0 for all s < s0.
Instead, if s → T , we can have two cases. It can be ∆(T ) ≤ 0 and then for all
0 < s < T , ∆(s) < 0. Or it can be ∆(T ) > 0, and in this case, by the analysis
above, we can assert that there is a unique 0 < s ≤ T such that ∆(s) = 0.
It corresponds to the unique point (T1

s , T2

s ) laying on the boundary of D− (see
Figure 2). So, we have the following result.

Proposition 20 If ∆(T ) < 0, then for all 0 < s ≤ T , ∆(s) < 0, on the other
hand, if ∆(T ) ≥ 0 there exists a unique 0 < s ≤ T such that ∆(s) = 0.

Thus, we have that the condition ensuring completeness of the market is satisfied
(see Corollary 8), indeed the determinant of K̄(t) vanishes at most in one point.

3.5 Mixed case (OU and fOU with H > 1/2)

As we already said at the beginning of this section, the cases when the Gaussian-
Volterra processes driving the spot price S belong to different classes are quite
straightforward to treat. As an example, we here report a result relative to
the case when we have two factors, namely a standard OU process and a fOU
process with H > 1/2.

Proposition 21 Let us consider a standard OU process, with kernel K1(t, u) :=
eα1(t−u), and a fOU process with H > 1/2, with kernel

K2(t, u) := cHu
1

2
−H

∫ t

u

eα2(t−s)ϕH(s, u)ds,

where, as before
ϕH(s, u) = sH− 1

2 (s− u)H− 3

2 .

If α1 ≤ α2, then for T1 < T2 we have

∣

∣

∣

∣

∣

eα1(T1−u) u
1

2
−H
∫ T1

u eα2(T1−s)ϕH(s, u)ds

eα1(T2−u) u
1

2
−H
∫ T2

u eα2(T2−s)ϕH(s, u)ds

∣

∣

∣

∣

∣

6= 0.

Proof. We can prove, equivalently, that

∆(T1, T2) 6= 0,

where

∆(T1, T2) =

∣

∣

∣

∣

∣

e(α1−α2)T1

∫ T1

u e−α2sϕH(s, u)ds

e(α1−α2)T2

∫ T2

u e−α2sϕH(s, u)ds

∣

∣

∣

∣

∣

.
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Now, ∆(T1, T2) 6= 0 is equivalent to

e(α1−α2)T1

e(α1−α2)T2

6=
∫ T1

u
e−α2sϕH(s, u)ds

∫ T2

u e−α2sϕH(s, u)ds
,

which is true if α1 ≤ α2, as in this case

e(α1−α2)T1

e(α1−α2)T2

≥ 1 >

∫ T1

u e−α2sϕH(s, u)ds
∫ T2

u
e−α2sϕH(s, u)ds

.

After these results related to the absence of arbitrage and completeness of our
model, in the following sections we will face some relevant problems in electricity
markets, as the portfolio optimization problem and the option pricing.

4 Optimal investment

Now we want to solve the problem of an agent who can invest in the electric-
ity market and wants to maximize the expected utility of her/his wealth at the
terminal time T ∈ [0, T1]. The dynamics for the portfolio wealth has already
been given in Equation (8), which we can rewrite as

dX∆
t =

n
∑

j=1

∆j
tdF (t, Tj) =

n
∑

j=1

∆j
tK(Tj, t) · dWQ

t = ∆tK̄(t)dWQ
t . (36)

We assume that no arbitrage exists in our market, i.e. there exists an equivalent
martingale measure Q. More precisely, the agent wants to solve the problem

sup
∆

EP[u(X
∆
T )], (37)

where u is a known utility function, i.e. a real function which is non-decreasing
and concave, and ∆ is chosen among the admissible strategies, as defined in
Section 2, with the additional requirements that u(X∆

T ) is well-defined and such
that Equation (36), with initial condition X∆

0 := x > 0, has a unique strong
solution X∆. We thus restrict our admissible strategies to the class satisfying
also the additional assumptions above, and denote this new class of admissible
strategy by A.

Since each F (·, Tj), j = 1, . . . ,m, is a martingale under any equivalent mar-
tingale measure Q, Equation (36) makes X∆ a local martingale, which is also
bounded from below if ∆ is an admissible strategy: this implies that X∆ is a
supermartingale under any equivalent martingale measure Q. Since X∆

0 = x,
this implies that

EQ[X
∆
T ] ≤ x. (38)

Remark 22 In the case when the utility function is well-defined only on non-
negative or strictly positive wealth, as in the cases U(x) = xγ , γ ∈ (0, 1) or
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U(x) = log x, respectively, requiring that u(X∆
T ) is well-defined is equivalent to

require that X∆
T ≥ 0 or X∆

T > 0 a.s., respectively. The first requirement simply
corresponds to take the constant in the definition of admissibility being equal to
zero, while the second one poses a slight restriction to this condition. In both
cases, by the properties of conditional expectation, the supermartingale property
for X∆ implies that also X∆

t ≥ 0 or X∆
t > 0 a.s. for all t ∈ [0, T ], respectively.

From now on, we assume that the market is complete, so that the equivalent
martingale measure Q is unique. For this reason, we can use the martingale
approach as in [5, Chap. 20] to solve the problem (37), which uses the fact that
every sufficiently regular payoff can be represented as an admissible portfolio
via Equation (19), with ∆ ∈ A. However, here the assets follow an arithmetic
dynamics (as e.g. in [3, 8, 15]), differently from the geometric dynamics of [5]
(and of the vast majority of financial literature), i.e. where the assets’ dynamics
are proportional to asset prices themselves. While this does not change the
structure of the optimal terminal wealth X∗

T , and consequently of the optimal
wealth process X∗ = (X∗

t )t, it will have an impact on the optimal portfolio
strategy ∆∗.

As in [5, Chap. 20], we incorporate the budget constraint in Equation (38)
into the Lagrange function

L(X∆
T , λ) := EP[u(X

∆
T )]− λ

(

EQ[X
∆
T ]− x

)

= EP

[

u(X∆
T )− λ

(

X∆
T ZT − x

)]

,

which is used in the problem

inf
λ>0

sup
∆∈A

L(X∆
T , λ)

Since in our setting the market is complete, this problem is brought back to the
formulation

inf
λ>0

sup
XT

L(XT , λ)

i.e., we now maximize in the generic random variable XT , remembering that,
once we obtain the maximizer X∗

T , in order to obtain the optimal portfolio
strategy ∆∗ we use a martingale representation for the optimal portfolio X∗

T =
X∆∗

T .
For λ > 0 fixed, we solve the equation

u′(X∗
T )− λ

dQ

dP
= 0,

from which [5, Proposition 20.3], the optimal terminal wealth X∗
T results in

X∗
T = I (λ∗ZT ) , (39)

with I = (u′)−1, and the Lagrange multiplier λ∗ is the one realizing the budget
constraint EQ[X

∗
T ] = x in Equation (38).
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Remark 23 We notice that the result for the optimal terminal wealth in Equa-
tion (39) is not new, and apparently also does not depend on the fact that we
are using Gaussian Volterra processes in our model. This is because the result
in Equation (39) is true for all complete markets with equivalent martingale
measure Q having density ZT with respect to the real-world probability P, where
agents want to maximize a utility function u. However, the dependency on
the specific features of our market, namely on the kernels Ki, already appears
implicitly when we take into account that the density ZT has the Girsanov rep-
resentation given by Equation (9), which contains the kernels in θ through the
representation results of Proposition 1. Moreover, when characterizing the op-
timal portfolio, its dependence on the particular structure of our market will be
even more evident, see e.g. Proposition 25 below.

4.1 The case of CRRA utility functions

Let us now consider the case when the utility function is of Constant Rela-
tive Risk Aversion (CRRA) type, i.e. u(x) := 1

γx
γ , with γ < 1, γ 6= 0, or

u(x) = log x (which is often seen conventionally as ”the case γ = 0”, see e.g.
the discussion in [5, Chapter 20.7]). Then, in order for ∆ to be an admissible
strategy, we must impose that X∆

T ≥ 0 in the case γ ∈ (0, 1) and X∆
T > 0 in

all the other cases. Moreover, for all γ < 1 (including the case ”γ = 0”, which

is the case of a log utility function) we have that u′(x) = xγ−1, thus I(y) = y
1

γ−1 .

The optimal λ∗. From (39), we haveX∗
T = (λZT )

1

γ−1 , and imposing EQ[X
∗
T ] =

x we find

λ∗ =





x

EP

[

(ZT )
γ

γ−1

]





γ−1

.

Hereafter, we will follow [5, Ch. 20]. Let us set

H0 = EP

[

Z−β
T

]

, with β =
γ

1− γ
,

Then, the optimal terminal wealth writes

X∗
T = (λ∗ZT )

1

γ−1 =
x

H0
Z

1

γ−1

T , (40)

and the optimal expected utility is

EP[u(X
∗
T )] = EP

[

(X∗
T )

γ

γ

]

=
xγ

γ
H1−γ

0 ,

The Optimal Wealth Process. In (40), we have computed the optimal termi-
nal wealth X∗

T , but it is also possible to find an explicit formula for the entire
optimal wealth process X∗. In this, we follow [5, Chapter 20.5.2], but for the
reader’s convenience here we write an ad-hoc derivation for our case.
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Proposition 24 The optimal wealth process X∗ = (X∗
t )t≥0 is given by

X∗
t = x

Ht

H0
Z

− 1

1−γ

t , (41)

where

Ht := EP

[

Z−β
T

Z−β
t

∣

∣

∣

∣

∣

Ft

]

= exp

{

1

2

∫ T

t

β

1− γ
|θs|2 ds

}

. (42)

For the proof we refer to the Appendix.
The Optimal Portfolio. Let us denote by µH(t) := − 1

2
β

1−γ |θt|2 the drift of

the process H defined in (42), so that

dHt = HtµH(t)dt,

with the terminal condition HT = 1.

Proposition 25 The optimal portfolio process ∆∗ = (∆∗
t )t≥0 ∈ A is given by

∆∗
t = X∗

t

1

1− γ
θt · K̄left(t)

−1, for a.a. t ≤ T

For the proof we refer to the Appendix.

5 Option pricing

In electricity markets, we can price the classical vanilla options, i.e. calls
and puts, written on the assets F (·, Tj), j = 1, . . . , n. Assume, for simplicity in
notations, that the discount rate r = 0, and that the market is arbitrage-free
in the spirit of Proposition 1, i.e. that there exists a probability Q ∼ P such
that forward prices F (·, Tj) are Q-martingales for all j = 1, . . . , n. Then, for
example, the risk-neutral price at time t of a vanilla call option with strike price
K and maturity T written on the forward contract F (·, Tj), with Tj > T , is
given by

C(t, T ) = EQ[(F (T, Tj)−K)+ | Ft], (43)

while the price of a put option with the same strike price K and maturity T is
given by

P (t, T ) = EQ[(K − F (T, Tj))
+ | Ft]. (44)

We can immediately verify that, as in any other arbitrage-free market, the
call-put parity holds in the following form.
Lemma 26 If C(t, T ) and P (t, T ) denote respectively the call and put prices at
time t, both with strike price K and maturity T written on the forward contract
F (·, Tj), with Tj > T as in Equations (43)-(44), then we have

C(t, T )− P (t, T ) = F (t, Tj)−K
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Proof. From Equations (43)-(44), it easily follows that

C(t, T )− P (t, T ) = EQ[[(F (T, Tj)−K)+ − (K − F (T, Tj))
+] | Ft] =

= EQ[F (T, Tj)−K | Ft] = F (t, Tj)−K

by the martingale property of F (·, Tj).

By using the Bachelier formula adapted to this context (see e.g. [6, Eq.
(3)]), we can also produce a closed formula for the price of call options on
forwards (and consequently, by the call-put parity above, also for the price of
put options).

Proposition 27 The price of a call option at time t written on the forward
contract F (·, Tj) with strike price K and maturity T with Tj > T is

C(t, T ) = σ(t, T, Tj)(djN(dj) + n(dj)) =

= (F (t, Tj)−K)N(dj) + σ(t, T, Tj)n(dj)

where

σ(t, T, Tj) :=

√

∫ T

t

|K(Tj, u)|2 du, dj(t, T, Tj) :=
F (t, Tj)−K

σ(t, T, Tj)
, (45)

and the functions n and N are respectively the density and the cumulative dis-
tribution functions of a N(0, 1) law, i.e.

n(x) :=
1√
2π

e−
1

2
x2

, N(y) :=

∫ y

−∞

n(x) dx.

Moreover, the hedging portfolio for this call option is composed by the only asset
F (·, Tj) ( together with the money market account), and the quantity of this
asset to be held at time t is N(dj(t, T, Tj)).

Proof. It is sufficient to notice that, under the risk-neutral probability Q, the
distribution of F (T, Tj) is Gaussian with mean F (t, Tj) and variance σ2(t, T, Tj),
with σ(t, T, Tj) given by Equation (45). The conclusion about the call price fol-
lows then from [6, Eq. (3)], and the hedging portfolio from [6, Section 5.1].

Remark 28 Notice that in Proposition 27 we did not need to assume complete-
ness. In fact, even if the market is not complete, the forward price F (·, Tj) will
have distribution N(F (t, Tj), σ

2(t, T, Tj)) regardless on the particular equivalent
martingale measure Q governing prices. This is different e.g. from stochastic
volatility models, where different equivalent measures Q would give different dis-
tributions to the volatility process, thus the call price would depend on which
particular distribution the volatility has under the particular Q chosen. As a
consequence, in our model call prices are invariant with respect to Q, as the
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pricing formulas in Proposition 27 do not depend on Q but ultimately only on
the kernel vector K(Tj, ·), which does not vary with Q (and of course on F (t, Tj)
and K). Other more general derivatives, instead, could have a no-arbitrage price
possibly dependent on Q.

Remark 29 The results above are true for discounted prices, i.e. for a situation
where the interest rate applied to prices is r ≡ 0. When one wants to derive
explicitly the same results taking explicitly into account the presence of a risk-
free short rate r(u), u ∈ [t, T ], it is not difficult to see that in the case when r
is deterministic the call-put parity formula modifies into

C(t, T )− P (t, T ) = e−
∫

T

t
r(u) du(F (t, Tj)−K)

and the call price into

C(t, T ) = e−
∫

T

t
r(u) duσ(t, T, Tj)(dj(t, T, Tj)N(dj(t, T, Tj)) + n(dj)(t, T, Tj)).

The more general case when the intensity (ru)u is a stochastic process, possibly
dependent on F (·, Tj), can be treated with the usual change-of-numeraire tech-
niques, see e.g. [5, Chapter 26]. Here we decided not to present this in detail
so as not to further burden the reader.

However, in electricity markets other illiquid products can be found as well,
usually more involved than the vanilla products seen above. A notable example
is the so-called Reliability Option, which is present in several national markets
(see e.g. [1]), and which has the peculiarity that its payoff is defined on the spot
price S over the time span [T1, T2], with 0 ≤ T1 < T2 ≤ T̄ . More in detail, the
payoff of a Reliability Option with fixed strike price K written on the time span
[T1, T2] is found to be equal to [1]

RO(t, T1, T2) = EQ

[

∫ T2

T1

(ST −K)+dT

∣

∣

∣

∣

∣

Ft

]

=

=

∫ T2

T1

EQ

[

(ST −K)+ | Ft

]

dT. (46)

Proposition 30 The price at time t = 0 of the Reliability Option as defined in
Equation (46) is equal to

RO(0, T1, T2) =

∫ T2

T1

σ(0, T, T )(dTN(dT ) + n(dT )) dT

with σ(0, T, T ) as defined in Equation (45),

dT :=
ϕQ(T )−K

σ(0, T, T )

and ϕQ deterministic seasonality of S as defined in Equation (16).

Proof. The proof follows from the fact that, under Q, we have that ST ∼
N(ϕQ(T ), σ

2(0, T, T )). It is then sufficient to use this in the right-hand side of
Equation (46) with the Bachelier formula already used in Proposition 27.
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6 Conclusions

We introduce a non-Markovian model for the spot price of electricity, based on a
n-factor Gaussian Volterra process, obtained by stochastic integrals of Volterra
kernels. As is customary in electricity markets, we assume that the spot price
is not traded, but forward contracts with maturities T1 < T2 < . . . < Tm are
traded in the market. We discuss conditions for absence of arbitrage and com-
pleteness. We characterize the dynamics of forward prices when there is no
arbitrage in terms of an equivalent martingale measure, finding that in that
case the risk-neutral dynamics of forward prices has zero drift and diffusion
coefficients equal to the Volterra kernels with a variable frozen to the forward
maturity. Moreover, we find that completeness is equivalent to the invertibil-
ity (in a generalized sense) of the matrix formed by the diffusion coefficients
of the traded forwards. In all the above discussion, we modeled forward prices
as having instantaneous delivery, while real contracts in electricity markets de-
liver electricity during a time span [T1, T2]: however, this is a common market
practice, which we show to be justified in our framework, as the tracking error
between the real asset and the one that we model goes to zero as a power of the
period length T2 −T1, thus this approximation is particularly robust for hourly
or daily contracts. However, when the delivery period is longer, e.g of the order
of one month, one trimester or one year, in which case the approximation of
Lemma 10 can possibly be not accurate enough, we can still use the results of
Sections 2.1 and 2.2, but take care of substituting the kernels K(Tj, t), rela-
tive to “instantaneous” forwards introduced in Equation (10), with the kernels
K̄(t, Tj , Tk) in Equation (22), relative to the forward contracts which are actu-
ally traded in the market.
After this, we analyze in detail examples of the most used Gaussian Volterra pro-
cesses in our particular framework, especially concerning market completeness.
The case when the Volterra kernels have functional forms which are different
among each other is usually quite straightforward, so we just give one exam-
ple of this case in Section 3.5. Instead, the more interesting case is when the
Volterra kernels refer to the same kind of processes. Thanks to a novel rep-
resentation of Ornstein-Uhlenbeck (OU) processes driven by Gaussian Volterra
processes, we show how to treat fractional Brownian motions as a particular
case of fractional OU processes. We then pass to analyze particular instances
of fractional processes, starting from Riemann-Liouville (RL) processes: in this
case, we find that n independent RL processes generate a complete market if
their Hurst exponents are all different from each other. The case of RL-driven
OU processes is more involved, and we are able to prove that two such processes
generate a complete market in the case when the mean-reversion speed is the
same and the Hurst exponents are different. We use the same framework, i.e.
two OU processes with same mean-reversion speed, also in the case of fractional
Brownian motions with Hurst exponents both greater than 1/2; we prove the
market completeness in a quite straightforward way, as the diffusion matrix is
invertible for all times. Instead, we do not present the case of OU processes
driven by fBm with Hurst exponent smaller than 1/2. We only consider two
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fBm driving the spot prices, with different Hurst exponents smaller than 1/2,
we find that the diffusion matrix is invertible at all times but one, but the as-
sumptions for completeness are still satisfied.
Finally, we find the optimal investment in forward markets, analyzing in detail
the particular case of CRRA utility functions, for which we characterize explic-
itly the optimal portfolio strategy. We also present option pricing formulas: in
the particular case of vanilla calls and puts written on a traded forward, we
find that the price is unique also in incomplete markets and given by a version
of the Bachelier formula, and we also give the hedging strategy. However, in
order to have a unique price for other kind of derivatives, possibly more exotic,
completeness should be assumed: as an example of this, we give the pricing
formula for a particular option in electricity market, called reliability option.
We underline that if we substitute the kernels K(Tj, t), relative to “instanta-
neous” forwards introduced in Equation (10), with the kernels K̄(t, Tj , Tk) in
Equation (22), one can carry out the same kind of computation that we show
in Sections 3, 4, and 5 for the specific situation.

A Appendix

Proof of Proposition 1.
The process defined in Equation (11) is a Q-Brownian motion according to the
Girsanov theorem [5], and Equations (12) and (13) follow from this and from
Equation (5).

Assume now that there is no arbitrage, i.e. Equation (10) is true for all
j = 1, . . . ,m. This, together with Equation (12), implies

F (t, Tj) =EQ

[

∫ Tj

0

K(Tj, s) · dWQ
s + ϕQ(Tj)

∣

∣

∣

∣

∣

Ft

]

=

∫ t

0

K(Tj, s) · dWQ
s + ϕQ(Tj).

whence the dynamics of {F (t, Tj), t ∈ [0, Tj]} under Q is given by Equation
(14), with F (·, Tj) resulting in a Q-martingale such that F (Tj , Tj) = STj

. By
substituting the definition of WQ, given by Equation (11), in the dynamics (14),
we obtain

dF (t, Tj) = K(Tj, t)(dWt + θtdt) = K(Tj , t)θtdt+K(Tj, t)dWt, (47)

which, compared with Equation (7), gives the desired conclusion.
Conversely, now assume that Equations (14) and (15) hold, which consis-

tently give the dynamics in Equation (7). Then, combining Equation (14) with
its terminal condition and Equation (12), we obtain

F (t, Tj) = STj
−
∫ Tj

t

K(Tj, s) · dWQ
s = ϕQ(Tj) +

∫ t

0

K(Tj, s) · dWQ
s .
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Since ϕQ(Tj) is deterministic and
∫ t

0
|K(Tj, s)|2 ds < +∞ for all t ≤ Tj < T̄ , it

is clear that F (·, Tj) are Q-martingales for all j = 1, . . . ,m.

Proof of Theorem 17.
We proceed by induction. Obviously, the statement is true for n = 1. Let us
assume that it is true for n−1. We can transform our determinant ∆ as follows:

∆(x1, . . . , xn) =

n
∏

i=1

xα1

i ∆̃(x1, . . . , xn),

where

∆̃n(x1, . . . , xn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 . . . 1
xα2−α1

1 xα2−α1

2 . . . xα2−α1

n
...

...
...

...
xαn−α1

1 xαn−α1

2 . . . xαn−α1

n

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Denote βi = αi − α1, i = 1, . . . , n, and transform ∆̃n into

∆̃n(x1, . . . , xn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 . . . 0

xβ2

1 xβ2

2 − xβ2

1 . . . xβ2

n − xβ2

1
...

...
...

...

xβn

1 xβn

2 − xβn

1 . . . xβn
n − xβn

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

xβ2

2 − xβ2

1 . . . xβ2

n − xβ2

1
...

...
...

xβn

2 − xβn

1 . . . xβn
n − xβn

1

∣

∣

∣

∣

∣

∣

∣

.

Since we have assumed that the statement holds for n− 1 we can assert that

∂n−1∆̃n(x1, . . . , xn)

∂x2 . . . ∂xn
=

∣

∣

∣

∣

∣

∣

∣

β2x
β2−1
2 . . . β2x

β2−1
n

...
...

...

βnx
βn−1
2 . . . xβn−1

n

∣

∣

∣

∣

∣

∣

∣

=

∏n
i=2 βi

∏n
i=2 xi

∣

∣

∣

∣

∣

∣

∣

xβ2

2 . . . xβ2

n
...

...
...

xβn

2 . . . xβn
n

∣

∣

∣

∣

∣

∣

∣

> 0.

Now, let us consider subsequently the derivative, starting with

0 <
∂n−1∆̃n(x1, . . . , xn)

∂x2 . . . ∂xn
=

∂

∂xn

(

∂n−2∆̃n(x1, . . . , xn)

∂x2 . . . ∂xn−1

)

.
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We see that
∂n−2∆̃n(x1, . . . , xn)

∂x2 . . . ∂xn−1

is increasing in xn, but

∂n−2∆̃n(x1, . . . , xn)

∂x2 . . . ∂xn−1
=

∣

∣

∣

∣

∣

∣

∣

β2x
β2−1
2 . . . β2x

β2−1
n−1 xβ2

n − xβ2

1
...

...
...

...

βnx
βn−1
2 . . . xβn−1

n−1 xβn
n − xβn

1

∣

∣

∣

∣

∣

∣

∣

,

and it equals zero if xn = x1. Therefore,

∂n−2∆̃n(x1, . . . , xn)

∂x2 . . . ∂xn−1
> 0

for xn > x1, that is our case. Thus, we can proceed in the same way and get
that

∂∆̃(x1, . . . , xn)

∂x2
> 0,

for x3 > x1, that is our case. But ∆̃n(x1, . . . , xn) = 0 if x2 = x1, therefore
∆̃(x1, . . . , xn) > 0.

Proof of Theorem 24. Since the wealth process of a self-financing portfolio is a
Q-martingale, we have

X∗
t = EQ[X∗

T |Ft] =
x

H0
EQ

[

Z
− 1

1−γ

T |Ft

]

.

By the abstract Bayes’ formula, we obtain

X∗
t =

x

H0

EP
[

Z−β
T |Ft

]

Zt
. (48)

From (9) we obtain

Z−β
T = exp

{

∫ T

0

βθs · dWs +
1

2

∫ T

0

β|θs|2 ds

}

,

that looks almost like a Radon-Nikodym derivative: this leads us to define the
P -martingale Z0 as

Z0
t = exp

{
∫ t

0

βθs · dWs −
1

2

∫ t

0

β2|θs|2 ds

}

,

whose dynamics is
dZ0

t = Z0
t βθt · dWt.
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Thus, now we have that

Z−β
T = Z0

T exp

{

1

2

∫ T

0

β

1− γ
|θt|2 dt

}

, (49)

Now, from (49) we have

EP
[

Z−β
T |Ft

]

= EP
[

Z0
T e

1

2

∫
T

0

β
1−γ

|θs|
2 ds|Ft

]

= Z0
t e

1

2

∫
t

0

β
1−γ

|θs|
2dse

1

2

∫
T

t

β
1−γ

|θs|
2ds

= Z−β
t e

1

2

∫
T

t

β
1−γ

|θs|
2ds.

From Equation (42), we have that

Ht = EP

[

e
∫

T

t
βθs·dWs−

1

2

∫
T

t
β|θs|

2ds
∣

∣

∣Ft

]

Since θ is deterministic, we have that
∫ T

t
βθs ·dWs is Gaussian and independent

of Ft, thus

Ht = exp

(

1

2
β(1− β)

∫ T

t

|θs|2ds
)

and Equation (42) follows from 1 − β = 1
1−γ . Putting all of this in Equation

(48) we obtain

X∗
t =

x

H0
Z−1
t Z−β

t Ht = x
Ht

H0
Z

− 1

1−γ

t .

Proof of Theorem 25. Starting from (41) for the optimal wealth process, by the
Itô formula we have that

dX∗
t = xZc

t

Ht

H0

(

µH(t) +
1

2
c(c− 1)|θt|2

)

dt− xZc
t

Ht

H0
cθt · dWt,

where c = −(1− γ)−1. We then have

dX∗
t = X∗

t (−cθt · dWt − c|θt|2dt) = −cX∗
t θt · dWQ

t (50)

By comparing the diffusion part in (36) and (50), we have

∆tK̄(t) = −cX∗
t θt. (51)

System (51) admits solution (for a.a. t ≤ T < T1) given that by Theorem 5
there exists a left inverse of K̄(t) for a.a. t ≤ T1. Thus, taking

∆t = −cX∗
t θt · K̄left(t)

−1,

we obtain (51); this solution is our ∆∗
t . Since X∗ appears linearly in ∆∗, mul-

tiplied by a square integrable deterministic function of time, we also have that
Equation (36) has a unique strong solution, thus ∆∗ is admissible and optimal.
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