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Abstract
This article investigates the problem of communication relay establishment for
multiple agent-based mobile units using a relay vehicle. The objective is to drive
autonomously the relay vehicle to attain a position for communication relay
establishment while maintaining the other vehicles inside of its field-of-view.
A bearing-based control law is proposed for the relay drone and designed for
both single and multiple agents. We also provide a collision avoidance scheme
that ensures no collisions between the relay and other agents. Numerical simu-
lations and experimental results are reported as well to show the efficacy of the
proposed approach.
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1 INTRODUCTION

With recent technological advances, the use of unmanned aerial vehicles (UAVs), or more generally drones, has become
widespread both in practical applications and in many areas of research. Due to their relatively low cost, small size, and
increased efficiency, one of the key areas in which drones have found themselves being investigated is in the robotics
and communications community, mainly focusing on coordination of drones using relays for ensuring connectivity.1-4 In
addition, new research has shown that drones are able to effectively be employed as communication relays5,6 between
ground units, allowing them to overcome communication difficulties caused by obstacles or terrain features, such as
buildings or mountainous terrain. The approach in these works often assumes a centralized level of coordination,7
known locations of ground units,8,9 or focuses on a small finite subset of connectivity topologies within decentralized
frameworks.10,11

Part of the latest research has been dedicated to positioning a relay drone when the initial ground unit locations are
unknown and for mobile ground units;12 nevertheless, further limitations arise as the relay drone is assumed to be able to
perform tracking of ground units only from a fixed altitude.13 Indeed, in many applications, such as those for surveillance
tasks on mountainous terrain,14 we find situations in which a relay drone should ideally not be set at a constant vantage
point, but rather should self-adjust to any required position to communicate with other agents in the network. To solve for
this, we devise an approach based on multi-agent formation control.15-18 At its most fundamental level, formation control
involves the coordination of a team of agents to achieve some spatial formation shape. From a control systems perspective,

Abbreviations: GPS, global positioning system.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. Advanced Control for Applications: Engineering and Industrial Systems published by John Wiley & Sons Ltd.

Adv Control Appl. 2022;e103. wileyonlinelibrary.com/journal/adc2 1 of 21
https://doi.org/10.1002/adc2.103

https://orcid.org/0000-0003-1728-1331
https://orcid.org/0000-0002-2931-245X
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadc2.103&domain=pdf&date_stamp=2022-04-11


2 of 21 FABRIS and ZELAZO

the challenge in formation control is to find distributed strategies, for example,19,20 for the control and estimation of
multi-agent systems (MASs)21,22 that achieve a desired formation with guarantees on certain properties such as stability
and performance.

Remarkably, the sensing and communication capabilities in an MAS largely influence the resulting control strate-
gies that can be employed. Indeed, if all agents had access to accurate and reliable global state information (such
as from GPS) with the ability to broadcast their state to the entire ensemble, then strategies for achieving formation
control could be approached using more traditional methods from modern control theory (see also the study in Ref-
erence 23, coping with GPS-denied environments). Nonetheless, the measurements available for each agent to achieve
the task of formation control are often inherently local in nature and nonlinear functions of the agent states. Com-
mon examples include range sensors for measuring the distance between agents and bearing sensors for measuring
the bearing angle from the body frame of one agent to another agent. For such sensing mediums, the combinato-
rial discipline known as rigidity theory24 has emerged as the correct framework for studying these formation control
problems.

Rigidity is a combinatorial theory for characterizing the “stiffness” or “flexibility” of structures formed by rigid bodies
connected by flexible linkages or hinges. In Reference 25, it was shown that formation stabilization using distance mea-
surements can be achieved only if rigidity of the formation is maintained. Formation rigidity also provides a necessary
condition for estimating relative positions using only relative distance measurements.26,27 Similar to distance-based rigid-
ity theory, a novel extension based on bearing measurements has been lately developed, known as bearing rigidity28-30

(sometimes referred to as parallel rigidity). Whereas rigidity theory is useful for maintaining formations with fixed dis-
tances between neighboring agents, bearing rigidity focuses on maintaining formation shapes, that is it attempts to keep
the bearing vector between neighboring agents constant. Bearing rigidity was used in References 31-34 for deriving dis-
tributed control laws for controlling formations with bearing measurements. In References 26 and 35-37, it was employed
for the localization problem in robotic networks using bearing measurements. Bearing rigidity has also proven useful for
stabilization of formations using direction-only constraints.36,38

To the author’s best knowledge, most existing works assume a static information exchange network and do
not incorporate real-world constraints such as sensing and communication range and field-of-view constraints.10,39,40

However, these real-world constraints introduce state-dependent nonlinearities to the information exchange problem
which can be difficult to solve. This aspect was partially addressed for the formation control problem in
References 41 and 42.

Contributions: In this article, we study the feasibility of using a consolidated bearing-based-formation-control
approach to drive an autonomous relay vehicle (RV) on a two-dimensional scenario in order to maintain relay capability
between multiple aerial and/or ground vehicles addressed as the agents (i.e., a robotic MAS), while keeping said agents
inside a given field-of-view (FoV). The reasons for this are disparate, for example, preservation of connectivity for the
underlying network of agents43 or surveillance of inaccessible regions.44

Our major contribution rests upon an innovative method leveraging bearing-based formation control in which
the need for both a centralized level of coordination and distance measurements is completely removed, providing
advantages such as mitigating the effect of a single point of failure and, more generally, expanding the most recent
and cutting edge findings in this research front (see, e.g., Reference 45). More precisely, the objective is to drive
the RV to a position for relay establishment in a planar environment while maintaining the other vehicles inside of
its FoV and avoiding collisions. To this purpose, a bearing-based control law is proposed for the RV guidance and
designed to track both single and multiple vehicles. In particular, by tuning the relay control gain above a certain
threshold derived analytically in closed form, it is shown that an MAS can be tracked at the best relay capabilities
over time. It is then guaranteed that the agents on the verge to exit the RV’s FoV are continuously tracked over
time, implying that the whole considered MAS is kept in the RV’s FoV, whenever a stable formation protocol is
employed to govern it. Furthermore, the implementation of a specific collision avoidance strategy for this aim is also
developed, representing our second main contribution. Such theoretical advances are finally validated by numerical
simulations.

Article organization: The remainder of this article is arranged as follows. In Section 2, we introduce mathemati-
cal preliminaries and examine more deeply the concepts of bearing-based formation control. Section 3 describes the
system model adopted and defines our proposed control strategy, analyzing its working principles and implement-
ing an effective collision avoidance strategy. Section 4 is devoted to the results of our numerical simulations. Finally,
Section 5 briefly concludes our work, discussing future directions, and the Appendix contains the analysis of the
function.
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Basic notation: Hereafter, symbol R denotes the set of real numbers. Letter t addresses continuous time instants. We
indicate with Im ∈ Rm×m and 0 the identity matrix of dimension m and the null vector, respectively. Moreover, symbols⊤

and |A| denote the transpose operator and the cardinality of set A, respectively. Let w ∈ Rm be a vector, then ||w|| denotes
its Euclidean norm, that is, ||w||2 = w⊤w. Given an angle 𝛼 ∈ [0, 2𝜋), we use the short notation c𝛼 = cos(𝛼) and s𝛼 =
sin(𝛼). For 𝛼 ∈ [−1, 1], arccos(𝛼) and arcsin(𝛼) indicate the inverse cosine and sine functions of 𝛼. Lastly, sign(𝛼), with
𝛼 ∈ R, addresses the sign function that returns 1 if 𝛼 > 0; −1 if 𝛼 < 0; 0 if 𝛼 = 0 and [𝛼]+ = 𝛼, if 𝛼 ≥ 0; [𝛼]+ = 0, otherwise.

2 PRELIMINARIES

Several tools from bearing-based formation control may assume a crucial role while identifying an effective strat-
egy for autonomous communication relay positioning under FoV constraints. In this study, we consider a team of
n agents and denote by pi = pi(t) ∈ Rd the position of agent i in a d-dimensional Euclidean space, so that pi =[
p1,i · · · pd,i

]⊤. This choice is motivated by the fact that, frequently, an abstraction made in the formation con-
trol literature is to model each vehicle as a simple kinematic point mass.25,46,47 Moreover, in practical applications,
autonomous vehicles are often modeled in 2D and 3D spaces (d = 2, 3). Here, d = 2 is set, as we deal with mobile
robots deployed on planar environments. The spatial configuration of all the agents is then denoted by the stacked
vector p =

[
p⊤

1 · · · p⊤
n
]⊤. Generally, each vehicle is able to sense certain quantities that are a function of their

relative states, such as the distance between vehicle i and j defined as dij = ||pj − pi|| (e.g., in distance-based and
displacement-based formation control18), or the bearing between vehicle i to vehicle j, denoted by gij and defined by the
unit vector

gij =
pj − pi||pj − pi|| , (1)

(e.g., in bearing-based formation control48). In the following, bearing vectors of the same type of (1) are going to be
used for strict guidance purposes; whereas, short-range distance measurements are going to be employed in collision
avoidance only.

In addition, the sensing and communication topology of a multi-vehicle system is here described by a graph.49 A
graph, here denoted by  = ( , ), is defined by a set of nodes,  = {1, … ,n}, and a set of edges,  ⊆  ×  , describing
the incidence relationship between nodes. Thus, agent i is associated to the node i ∈  in the graph and has access to a
relative measurement with vehicle j if and only if eij ∶= (i, j) ∈  . In the sequel, we indicate the neighborhood of node vi
as the set i = {j | (i, j) ∈ }.

With the above set-up, the foundations of the control strategy we are going to pursue assume that the robots are
able to measure the bearing angle to neighboring agents and the formation is also specified by bearing measurements.
In this direction, we recall that a desired formation can be characterized by set  (p) = {p ∈ Rnd | gij = g∗

ij, ∀eij ∈ },
wherein quantities g∗

ij represents the (i, j)th desired bearing to be achieved. Note that set  (p) is specified by bearings
(1) only and, as shown in Reference 48, its use naturally leads to the adoption of the following gradient-like formation
control law

ṗi = −
∑
j∈i

Pgij
g∗

ij, i ∈ {1, … ,n}, (2)

where

Pgij
= Id − gijg

⊤
ij ∈ R

d×d (3)

is an orthonormal projection operator. Observe that control law (2) is distributed, as each neighbor only relies on the
measured bearing to its neighbors and the desired bearing angle. The control also has a geometric interpretation, since
each term Pgij

g∗
ij in (2) is orthogonal to gij, for all t ≥ 0, implying that the bearing-based control law (2) attempts to reduce

the bearing error between agents i and j.
In the next section, the above preliminaries provide the key in the development of a control law that allows an

additional robotic entity, the so-called RV, to track an MAS having its own dynamics.
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3 AUTONOMOUS RELAY TRACKING

We consider a distinct variation of the bearing-only formation control problem wherein one designated agent, that is, the
RV, is tasked with maintaining a line-of-sight measurement to one or more other agents only. Each agent is tasked with
its own individual mission and includes way point tracking or variations of the coverage control problem (see References
50 and 51). Here, the agents may not have any coordination constraints, in principle, meaning that they are not required
to perform any collaborative tasks such as formation control. It is simply assumed each agent has its own task to perform.
Moreover, the RV does not have any information on the trajectories of the independent agents except some basic dynamic
constraints of the agents, such as their maximum speed. Thus, the proposed control strategy for the relay is based only
on sensed information and relative state information between itself and the agents.

3.1 System model and problem statement

We assume that the agents and RV have full knowledge of a global inertial frame and operate on a planar environment
(d = 2). The relay dynamics is modeled as a first-order integrator, namely

ṗr(t) = ur(t), (4)

where pr(t) ∈ Rd is the relay position and ur(t) ∈ Rd is the relay control in velocity; whereas, the agents’ dynam-
ics is solely characterized by the presence of a global upper bound for the ith agent velocity ṗi, i = 1, … ,n.
Formally:

Assumption 1. The speed of each agent is upper bounded by the constant vM > 0 (known by the RV), such that

‖‖ṗi(t)‖‖ ≤ vM , ∀i ∈  ,∀t ≥ 0.

We also assume that the RV is equipped with one or more bearing measurement sensors with no range constraint but
some FoV constraints. The line-of-sight sensor for the RV is always facing towards a fix direction while the drone itself can
move freely, as shown in Figure 1. The RV can obtain a bearing measurement to each drone (green arrows) taken w.r.t. a
common reference frame xy. The FoV constraint for the RV is characterized by two unit-length vectors gFoV1, gFoV2 ∈ Rd

describing an angle 𝛾FoV = 2𝛾 , 𝛾 ∈ (0, 𝜋∕2], such that

g⊤
FoV1gFoV2 = c2𝛾 ,

with 𝛾 denoting the angle between the bisector

g∗ =
gFoV1 + gFoV2‖‖gFoV1 + gFoV2

‖‖ , (5)

and one of the FoV vectors gFoV1, gFoV2. Also, we define the distance between the RV and ith agent as dri(t) = ‖‖pi(t) − pr(t)‖‖
and, based on (1), we let gri(t) = (pi(t) − pr(t))∕dri(t) ∈ Rd be the unit vector pointing from the RV to the ith agent, with

F I G U R E 1 Top view illustration of the control problem
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gr(t) =
[
g⊤

r1(t) · · · g⊤
rn(t)

]⊤ ∈ Rdn denoting the ensemble vector containing all these relative bearing measurements. We
say that the measurement gri falls inside the FoV domain if

gri ∈  = {g ∈ R
d | (Rz(𝜋∕2) gFoV1)

⊤g ≥ 0 and
(Rz(𝜋∕2) gFoV2)

⊤g ≤ 0},

where

Rz(𝛼) =

[
c𝛼 −s𝛼
s𝛼 c𝛼

]
,

is the well-known rotation matrix expressing a vector rotation about the z axis, forming a three-dimensional reference
frame along with plane xy, by an angle 𝛼 ∈ [0, 2𝜋).

After these premises, the control problem we attempt to solve is then summarized as follows.

Problem 1. Design a control law ur(t) = ur(gri(t)) based only on the bearing measurements gri(t), i ∈  , such that it
ensures all agents remain in the RV’s FoV, that is gri(t) ∈ , ∀i ∈  , ∀t > 0 whenever gri(0) ∈ .

In the next subsection, we propose our control strategy; however, the following two hypotheses are also assumed
henceforth in order to preserve the meaning of such bearing measurements over time and guarantee the tracking to begin
from the initial time instant, respectively.

Assumption 2. At t = 0, it holds that gri(0) ∈ , ∀i ∈  .

Assumption 3. There exists 𝜖 > 0 such that ∀t ≥ 0 it holds that dri(t) ≥ 𝜖, ∀i ∈  .

In fact, Assumption 3 is not trivially satisfied. In the following section, we first develop control strategies assuming this
assumption holds. Then, in Section 3.3, we augment our control strategies with a collision avoidance term that guarantees
Assumption 3 holds.

Remark 1. In practice, it takes a small time tr > 0 for the RV to detect a moving target and calculate the corresponding
guidance strategy. Consequently, if one agent is moving outside the FoV, it may escape the region before the RV has
computed the corresponding control action. To this purpose, it is possible to define a transient region 𝜆 ∈ (0, 𝛾) nearby
the boundary of the FoV cone for preventing such a scenario. In particular, given the highest admissible delay Tr ≥ tr, an
estimate 𝜆∗ for the smallest admissible transient region can be derived by imposing TrvM ≤ s𝜆𝜖. The term s𝜆𝜖 represents
a lower bound estimate for the minimum escaping distance. For this reason, one obtains 𝜆∗ = arcsin(TrvM∕𝜖). A safer
version 𝛾S ∈ (0, 𝜋∕2] of the FoV angle 𝛾 can be calculated as 𝛾S = 𝛾 − 𝜆, with 𝜆 ∈ [𝜆∗, 𝛾), if 𝜖 is selected so that 𝜖 ≥ TrvM .
The latter inequality needs to hold, since TrvM∕𝜖 ≤ 1 is required for 𝜆∗ to be well-defined. Finally, the use of the angle 𝛾S
can replace1the adoption of angle 𝛾 to ensure a suitable transient region.

3.2 Control strategy

The general control strategy we propose is based on the bearing-only control law introduced in (2). In particular, we
assume the RV controls its position based on the measurements of the other agents, and devise such bearing-based control
law in three steps by taking into account the following tracking scenarios: a single agent, two agents, and the general case
of n ≥ 1 agents. The details of these three cases are discussed in the sequel.

3.2.1 The single agent case

In the single agent case (n = 1), the control law for the RV takes the form

ur(gr1) = −KrPgr1
g∗, (6)

1Throughout this article, we consider to take the limit of tr towards 0 neglecting the communication delay between RV and agents. Hence, for sake of
simplicity, Tr = 0 is set (leading to 𝜆∗ = 0) and 𝛾S = 𝛾 is adopted.
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F I G U R E 2 Single agent case scenario: Geometric construction employed in Proposition 1

where Kr > 0 is a control gain, Pgr1
is the orthonormal projection operator defined in (3), evaluated at gr1, and g∗ is the

bisector characterized in (5). The fact that input (6) allows the RV to keep track of the sole agent 1 is shown in the following
proposition.

Proposition 1. Under Assumptions 1–3 and the presence of a single agent, the adoption of control law (6) with Kr ≥ K⋆
r =

vM∕s𝛾 implies that gr1(t) ∈ , ∀t ≥ 0.

Proof. It is sufficient to think of the only possible worst case scenario (see Figure 2), in which agent 1 is located along
the FoV vector gFoV1, w.l.o.g., that is gr1 = gFoV1, and is escaping with a velocity ṗ1 from the FoV, such that ‖‖ṗ1

‖‖ = vM ,
ṗ⊤

1 gFoV1 = 0 and ṗ⊤
1 gFoV2 ≤ 0. By leveraging the properties of projection operator Pgri

(see (3)), one has g⊤
FoV1Pgr1

g∗ =
g⊤

r1Pgr1
g∗ = 0; thus, vectors ṗ1 and Pgr1

g∗ are parallel. Therefore, one can impose inequality ‖ur‖ = Kr ‖‖Pgr1
g∗‖‖ = Krs𝛾 ≥

vM = ‖‖ṗ1
‖‖ to compute the maximum speed effort needed by the RV to track agent 1 and the thesis follows. ▪

3.2.2 The two agent case

Starting from the two agent case (n = 2), there are two configurations of interest that specify the agent position relative to
the RV. As the relay FoV describes a cone, we consider the agent positions relative to the cone bisector, defined by vector g∗

in (5). As illustrated in Figure 3, such positions can be distinguished by the side discriminator function𝜒 ∶ R2d → {0,±1},
such that

𝜒(gr) = sign(g⊤
r1Pg∗gr2). (7)

Function in (7) returns 1, if both the agents lay on the “same side,” namely they belong to the angular portion delimited by
the bisector g∗ and one of the bearing vectors gFoV1, gFoV2. It returns −1, if the two agents lay on “opposite sides,” namely
one of them belongs to the angular portion between g∗ and gFoV1 and the other belongs to the angular portion between
g∗ and gFoV2. It returns 0, whenever there exist at least one agent laying on the bisector g∗. See also the next paragraph
for a more precise, formal and comprehensive description of the side discriminator function in a scenario presenting a
generic number of agents.

(A) (B)

F I G U R E 3 (A) Two agents belonging to the same side of the FoV (yellow). (B) Two agents lying on the different sides of the FoV
(yellow and pink)
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In this direction, we propose a switching controller for the RV. The main idea is to follow the control strategy given in
(6), when both agents are on the same side of the bisector g∗, and switch to a controller that utilizes both measurements,
when the agents are on opposite sides of g∗. If 𝜒 ≥ 0, we denote with gr ∈ Rd the unit vector that points toward the agent
closest to gFoVj, depending on the side j where agents lay, namely

gr = arg max
{gr1,gr2}

{
max

j∈{1,2}
g⊤

rigFoVj

}
. (8)

We are now prepared to present the switching controller for the scenario with n = 2 agents:

ur(gr) =

{
− KrPgr

g∗, if 𝜒(gr) ≥ 0;
− Kr(Pgr1

+ Pgr2
)g∗, if 𝜒(gr) < 0.

(9)

The validity of this control law, that is, the fact that (9) allows the RV to keep track of all agents in the FoV for all t ≥ 0, is
proven in the following lemma.

Lemma 1. Let us define the real positive quantity

q∗
𝛾 =

⎧⎪⎨⎪⎩
2s3

𝛾 , if 𝛾 ∈
(

0, 𝜋
6

]
;

3
2
s𝛾 − 1

2
, if 𝛾 ∈

(
𝜋

6
,
𝜋

2

]
.

(10)

Then, under Assumptions 1–3 and the presence of two agents, the adoption of control law (9) withKr ≥ vM∕q∗
𝛾 implies that

gri(t) ∈ , for i = 1, 2, ∀t ≥ 0.

Proof. The proof can be split into a couple of macro cases, as control law (9) switches according to 𝜒 .
If 𝜒 ≥ 0 then Proposition 1 applies by considering only the agent k ∈ {1, 2} corresponding to bearing gr. Indeed, this

is the closest agent—in terms of angles—to one of the FoV vectors gFoV1, gFoV2, since maximization in (8) is equivalent to
the minimization of the angle between gri and gFoVj, defined as

𝜙
(j)
i = arccos(g⊤

rigFoVj), j = 1, 2.

Consequently, the trajectory of the other agent (the one different from k) can be neglected by controller ur, as 𝜒 ≥ 0 and,
therefore, the thesis follows.

Otherwise, if 𝜒 < 0 then we think of the worst case scenario in which agent 1 is located, again, w.l.o.g., along the FoV
vector gFoV1 and is escaping with a velocity ṗ1 such that ‖‖ṗ1

‖‖ = vM , ṗ⊤
1 gFoV1 = 0 and ṗ⊤

1 gFoV2 ≤ 0.
Now, the proof requires the geometric constructions depicted in Figure 4. Let us define w1 = −Pgr1

g∗ = ‖w1‖b1 and
w2 = −Pgr2

g∗ = ‖w2‖b2, such that ‖b1‖ = ‖b2‖ = 1. By the properties of projection operators Pgri
it holds that ‖w1‖ = s𝛾 ,‖w2‖ = s𝛾−𝜙, assigning𝜙 = minj∈{1,2} 𝜙

(j)
2 . The vector addition wr between w1 and w2 is thus given by wr = s𝛾b1 + s𝛾−𝜙b2.

Since the angle (between 0 and 𝜋) taken from b1 to b2 is equal to (𝜋 − 2𝛾 + 𝜙), then one has

‖wr‖2 = s2
𝛾 + s2

𝛾−𝜙 − 2c2𝛾−𝜙s𝛾s𝛾−𝜙. (11)

Therefore, redefining wr = ‖wr‖br, with ‖br‖ = 1, it is possible to rewrite case 𝜒 < 0 in (9) alternatively as ṗr =
Kr ‖wr‖br. At the light of these observations, we distinguish between two nested cases. Case (i) deals with agent 1 solely
escaping from the FoV, while case (ii) copes with both agents 1 and 2 exiting the FoV.

Case (i): 𝜙 ∈ (0, 𝛾]. According to this configuration, the RV is required to track agent 1 only. Hence, we consider the
projection r1 of RV’s velocity ṗr onto the direction of ṗ1 and impose that the minimum among all potential speeds ‖r1‖ be
greater than vM , as𝜙 varies. Denoting with 𝜃 = 𝜃(𝛾, 𝜙) ∈ [0, 𝜋∕2 − 𝛾] the angle between−g∗ and br, such that−b⊤

r g∗ = c𝜃 ,
the norm of r1 is yielded by

‖r1‖ = Kr ‖wr‖ c𝜋∕2−𝛾−𝜃 = Krs𝛾c𝜃 ‖wr‖ + Krc𝛾s𝜃 ‖wr‖ . (12)
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F I G U R E 4 Two agent case scenario: Geometric construction employed in Lemma 1. Unit vectors g⊥
FoVj = Rz((−1)j𝜋∕2)gFoVj, with

j = 1, 2, are also defined to help the visualization

Moreover, from the fact that

c𝜃 ‖wr‖ = −w⊤
r g∗ = s𝛾b⊤

1 (−g∗) + s𝛾−𝜙b⊤
2 (−g∗) = s𝛾c𝜋∕2−𝛾 + s𝛾−𝜙c𝜙+𝜋∕2−𝛾 = s2

𝛾 + s2
𝛾−𝜙,

the expressions c𝜃 ‖wr‖ = s2
𝛾 + s2

𝛾−𝜙 and s𝜃 ‖wr‖ =
√‖wr‖2 − c2

𝜃
‖wr‖2 can be written explicitly as a function of 𝛾 and

𝜙 only. Indeed, substituting such expressions and (11) in (12), one obtains ‖r1‖ = Krq𝛾 (𝜙), where function q𝛾 ∶ [0, 𝛾] →
[q∗

𝛾 ,max(2s3
𝛾 , s𝛾 )] ⊂ (0, 2] is defined as

q𝛾 (𝜙) = s3
𝛾 + s𝛾s2

𝛾−𝜙 + c𝛾
√

s2
𝛾 + s2

𝛾−𝜙 − 2c2𝛾−𝜙s𝛾s𝛾−𝜙 − (s2
𝛾 + s2

𝛾−𝜙)2. (13)

As demonstrated in the Appendix, quantity q∗
𝛾 actually coincides with the minimum of (13). Also, it is worth to notice that

q∗
𝛾 ≤ s𝛾 for all values of 𝛾 ∈ (0, 𝜋∕2]. Hence, the control gain selection can be done by setting min𝜙∈(0,𝛾] ‖r1‖ = Krq∗

𝛾 ≥ vM .
Case (ii): 𝜙 = 0. This configuration is slightly different because the position of agent 2 is exactly located on

the gFoV2 direction. Hence, the RV may lose tracking of agent 1, agent 2, or both of them. For this reason, we
add a further consideration to the previous premises in order to tackle the worst case scenario arising when 𝜙 =
0: we assume that agent 2 is also escaping with a velocity ṗ2 from the FoV, so that ‖‖ṗ2

‖‖ = vM , ṗ⊤
2 gFoV2 = 0 and

ṗ⊤
2 gFoV1 ≤ 0.

Besides this preliminary observation, the geometric constructions discussed for the previous case 𝜙 ∈ (0, 𝛾] remain
valid here. In particular, one has ‖r1‖ = Krq𝛾 (0) = 2Krs3

𝛾 . Similarly, defining r2 as the projection of wr onto the direction
of ṗ2, it holds that ‖r2‖ = ‖r1‖, by geometrical symmetry (wr lays on the same direction of the bisector −g∗). Therefore,
inequality 2Krs3

𝛾 ≥ vM leads to a particular control gain selection for 𝜙 = 0. However, the latter inequality cannot be used
as a general condition for the control gain selection because for 𝛾 ∈ (𝜋∕6, 𝜋∕2] it holds that q∗

𝛾 = (3s𝛾 − 1)∕2 < 2s3
𝛾 = q𝛾 (0).

Thus, imposing again Krq∗
𝛾 ≥ vM concludes the proof. ▪

3.2.3 Generalization for n > 2 agents

We finally discuss our main contribution, a bearing-based control law for the autonomous tracking of n > 2 agents. To
provide such a formalization, we need to introduce a few new quantities. First, we determine whether an agent i ∈  is
moving in the left or right part of the FoV w.r.t. bisector g∗ defined in (5). Alternatively, i may also be located exactly at
the FoV bisector. To do so, we first define set M = {1, 2, 3} and function si ∶ Rd → M, such that

si(gri) =
⎧⎪⎨⎪⎩

1, g⊤
ri(gFoV2 − gFoV1) = 0;

2, g⊤
ri(gFoV2 − gFoV1) < 0;

3, g⊤
ri(gFoV2 − gFoV1) > 0;

(14)
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which returns si = 2, if pi belongs to the left half the FoV domain (planar portion between gFoV1 and g∗, i.e., the left side);
otherwise, si = 3, if pi belongs to the right half the FoV domain (planar portion between gFoV2 and g∗, i.e., the right side).
Alternatively, si = 1 is taken, if pi belongs to the bisector along g∗.

Subsequently, setting s = s(gr) =
[
s1(gr1) · · · sn(grn)

]⊤ ∈ Mn, we also define functions 𝜎1, 𝜎2, 𝜎3 ∶ Mn → M,
such that

𝜎j(s) = |{i ∈  | si = j}|, j = 1, 2, 3, (15)

yielding respectively for j = 1, 2, 3 the number of agent laying on the bisector, left side, and right side.
Then, setting 𝝈 = 𝝈(s) =

[
𝜎1(s) 𝜎2(s) 𝜎3(s)

]⊤ ∈ M3, we are now allowed to generalize the side discriminator
function in (7) for n agents via function 𝜉n ∶ M3 → {0,±1} having the form

𝜉n(𝝈) =
⎧⎪⎨⎪⎩

1, if 2 ≤ max{𝜎2, 𝜎3} = n − 𝜎1 ≤ n;
0, if n − 1 ≤ 𝜎1 ≤ n;
−1, otherwise;

(16)

by finally assigning the function composition that extends 𝜒(gr) into 𝜒n(gr) ∶= 𝜉n(𝝈(s(gr))). Indeed, in its characteriza-
tion, one configuration consists in at least two agents laying on the “same side” of the vector g∗ (for 𝜒n = 1), with all the
others, if any, laying exactly on the bisector. This means, more formally, that the maximum length of projection g⊤

rigFoVj is
attained either for j = 1 or j = 2, for each agent i ∈  ⊂  , with  = {i ∈  | gri ≠ g∗}, || ≥ 2. Whereas, another config-
uration (𝜒n = −1) describes agents located on “opposite sides” of the bisector, that is, there exist k1, k2 ∈  , with k1 ≠ k2,
such that gri ≠ g∗ for i = k1, k2, and the length of projection g⊤

rigFoVj is maximized for j = 1, if i = k1, and for j = 2, if
i = k2. Alternatively, 𝜒n takes 0 value whenever these two possibilities lose proper meaning. In particular, the following
result holds.

Proposition 2. For the case n = 1, one has 𝜒1(gr) = 0,∀gr ∈ Rd. Also, for the case n = 2, one has 𝜒2(gr) = 𝜒(gr),∀gr ∈ Rd.

Proof. The first part of the statement is trivial, since, if n = 1, then condition n − 1 ≤ 𝜎1 ≤ n in (16) is ensured to hold
true because either 𝜎1 = 0 or 𝜎1 = 1. The second part of the statement can be proven by observing the fact that si in
(14) is equal to 1 if and only if gri and g∗ are parallel, namely gri = g∗. Then, assuming n = 2 and focusing on the claim
𝜒2 = 𝜒 = 0, condition n − 1 ≤ 𝜎1 ≤ n in (16) holds if and only if gr1 = g∗ or gr2 = g∗, that is, if and only if term g⊤

r1Pg∗gr2
in (7) is null. Moreover, given the previous conclusion on 𝜒2 = 𝜒 = 0, it is possible to prove a correspondence between 𝜒2
and 𝜒 when 𝜒2 = 𝜒 = 1 is claimed. Indeed, if 𝜒2 = 1, then 𝜎1 = 0 is forced, as 1 ≤ 𝜎1 ≤ 2 cannot be possible. Therefore,
condition 2 ≤ max{𝜎2, 𝜎3} = n − 𝜎1 ≤ n in (16) boils down to max{𝜎2, 𝜎3} = 2. Since n = 2, then either 𝜎2 = 2 or 𝜎3 = 2,
meaning that both the agents lay on one of the sides (𝜒 = 1) and the thesis follows. ▪

The development of the general control law continues by computing gr ∈ Rd similarly to (8), namely through

gr = arg max
{gr1,… ,grn}

{
max

j∈{1,2}
g⊤

rigFoVj

}
(17)

and defining vector grj ∈ Rd as

grj = arg max
{gr1,… ,grn}

g⊤
rigFoVj, j = 1, 2. (18)

Unit vectors in (18) identify with both the closest bearings w.r.t. the two FoV vectors gFoV1, gFoV2.
With the geometrical entities introduced above, we are now ready to propose the general control law for the RV to

maintain the agents inside its FoV:

ur(gr) =

{
− KrPgr

g∗, if 𝜒n(gr) ≥ 0;
− Kr

(
Pgr1

+ Pgr2

)
g∗, if 𝜒n(gr) < 0.

(19)
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The next theorem discusses this general case of autonomous relay tracking in details.

Theorem 1. Let q∗
𝛾 be defined as in (10). Under Assumptions 1–3 and the presence of n ≥ 1 agents, the adoption of control

law (14)–(19) with Kr ≥ Kq
r = vM∕q∗

𝛾 solves Problem 1, that is, it implies that gri(t) ∈ , for i ∈ 1, … ,n, ∀t ≥ 0.

Proof. The proof is again faced by splitting the analysis into two macro cases according to control law (19) and leveraging
Proposition 2.

Case 𝜒n ≥ 0. Denoting with k the agent corresponding to gr and recalling case 𝜒2 = 𝜒 ≥ 0 in Lemma 1, similar
conclusions can be drawn trivially to show the thesis. Indeed, all the trajectories of the agents different from k can
be neglected and therefore Proposition 1 applies to k. However, it is worth to notice that even though dynamics pro-
vided by input (19) in this case boils down to (6), the gain condition Kr ≥ vM∕q∗

𝛾 is imposed. Such a selection for
the control gain complies with the requirements of Proposition 1, since it holds that q∗

𝛾 ≤ s𝛾 for all 𝛾 ∈ (0, 𝜋∕2], yet
it is more conservative in general (but also strictly necessary, as we will see for case 𝜒n < 0). According to Propo-
sition 3 in the Appendix, this fact can be proven by noting that q𝛾 (𝛾) = s𝛾 and q′

𝛾 (𝛾) = c𝛾 > 0 for all 𝛾 ∈ (0, 𝜋∕2).
Whereas, for 𝛾 = 𝜋∕2, equality q𝛾 (𝛾) = s3

𝛾 = 1 = s𝛾 implies that the control gain selection is exactly equivalent to that
in Proposition 1.

Case 𝜒n < 0. Let us denote with k1 and k2 the agents associated to gr1 and gr2, respectively. Here, Lemma 1 can be
applied neglecting all the agents different from (k1, k2). Indeed, in this scenario, dynamics provided by input (19) boils
down to (9), under case 𝜒2 = 𝜒 < 0, by treating (k1, k2) as agents 1 and 2 in said lemma. ▪

Proposition 2 also implies that the formulation in (19) is consistent with (6) in the single agent case and argument
in Theorem 1 reduces exactly to Proposition 1 and Lemma 1 as soon as n = 1 and n = 2, respectively, due to the lack of
further agents. Nevertheless, Proposition 1 remains a standalone theoretical result since it allows for a less conservative
control gain selection in the single agent case. To conclude, a final remark is given.

Remark 2. Control law provided in (19) is not affected by discontinuities as 𝜒n changes, since Pg∗g∗ = 0. This implies that
undesired chattering phenomena related to sudden unexpected oscillations in the RV dynamics do not arise.

3.3 Collision avoidance implementation

The control strategy devised in Section 3.2 allows the RV to maintain all agents inside its FoV over time. However, pos-
sible collisions among the RV and other vehicles have been neglected so far to simplify the setup and obtain the sharp
theoretical results previously discussed. Therefore, in this section, we intend to develop a more suitable control strategy,
able to guarantee the validity of Assumption 3 in practice. To this aim, short-range distance sensing is required to be
embedded in the RV in order to implement some safety measure that mitigates the severity of potential crashes between
robots. In this work we assume the RV is able to measure also distances to other agents that are with an 𝜖s-ball of the RV.
Furthermore, we denote by 𝜖 ∈ (0, 𝜖s) the minimum safety distance to the RV that ensures no collisions. In this direction,
dynamics in (4) is modified into

ṗr(t) = ur(t) + 𝝊r(t), (20)

wherein control input 𝝊r(t) ∈ Rd provides a collision avoidance term and ur(t) = ur(gr(t)) is taken as in (6) or (19). From
a design point of view, we can already identify the main features of such collision avoidance term, that is, defining

s(t) = {i ∈  | dri(t) ≤ 𝜖s} (21)

and

dr(t) =
⎧⎪⎨⎪⎩

min
i∈s

{dri(t)}, if s(t) ≠ ø;

𝜖s, otherwise.
(22)
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We can impose the factorization

𝝊r(t) = −𝜂𝜖(dr(t))ar(t)fr(t), (23)

in which 𝜂𝜖 ∶ dr(t) ∈ [0,+∞) → 𝜂𝜖(dr(t)) ∈ [0, 1] is a collision alert functionwhose support is a subset of [0, 𝜖s], ar(t) ≥ 0 is
the avoidance effort and −fr(t) ∈ Rd is a unit vector representing the escaping direction. In particular, function 𝜂𝜖(dr(t)) is
the only factor in (23) depending on short-range distance measurements and its design has a high degree of freedom. For
sake of simplicity, we only consider collision alert functions that can be generally characterized as:

𝜂𝜖(dr(t)) =
⎧⎪⎨⎪⎩

1, 0 ≤ dr(t) ≤ 𝜖;
𝜂𝜖(dr(t)), 𝜖 < dr(t) < 𝜖s;
0, otherwise.

(24)

For 𝜖 < dr < 𝜖s, function 𝜂𝜖(dr) can be determined in different fashions to render continuous the transition toward the
activation phasedr ≤ 𝜖 and deactivation phase dr ≥ 𝜖s, for example, by taking 𝜂𝜖(dr) nonincreasing in dr and such that
limdr→𝜖+ 𝜂𝜖(dr) = 1 and limdr→𝜖−s

𝜂𝜖(dr) = 0.
Some further preliminary definitions are needed for the discussion. Let us denote with

r(t) = {i ∈ s(t) | dri(t) = dr(t)} (25)

the set containing the sole agents to be addressed for accomplishing avoidance maneuvers. In particular, if r(t) ≠ ø, we
account for agents

(i∗(t), j∗(t)) = arg min
(i,j)∈r(t)×r(t) and i≤j

{gri(t)
⊤grj(t)}

belonging to r(t) in order to effectively build a collision avoidance strategy. Note that i∗(t) and j∗(t) may coincide, so we
define set ∗

r (t) = {i∗(t), j∗(t)}. If r(t) = ø then also ∗
r (t) = ø is adopted by convention. In addition, we define

nr(t) =
⎧⎪⎨⎪⎩

∑
k∈∗

r (t)
grk(t), ∗

r (t) ≠ ø;

g∗, otherwise.

Its corresponding unit vector version is given by

nr(t) =
nr(t)‖‖nr(t)‖‖ (26)

and is such that −nr(t) represents the desired escaping direction for the RV. Finally, assuming 𝛾 ≠ 𝜋∕2, let us also define

vM(t) =
⎧⎪⎨⎪⎩

vM

nr(t)⊤grk(t)
, for any k ∈ ∗

r (t), if ∗
r (t) ≠ ø;

0, otherwise;
(27)

denoting the minimum speed required at time t for the RV to avoid collisions while moving virtually along −nr(t) in the
worst case scenario, that is, when all agents k ∈ ∗

r (t) are moving toward pr(t) with a velocity ṗk(t) = −vMgrk(t).
It is worth to note that if ∗

r (t) ≠ ø, then 0 < c𝛾 ≤ nr(t)⊤grk(t) ≤ 1 for all k ∈ ∗
r (t). Hence, vM(t) ∈ [vM , vM∕c𝛾 ] is

bounded for any 𝛾 ≠ 𝜋∕2. The collision avoidance action required for the RV as soon as dr(t) = 𝜖 can be thus identified
and quantified as

(ar(t), fr(t)) = (vM(t),nr(t)). (28)
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However, such a choice may lead to undesired effects for the FoV maintenance. Hence, to devise a good design approach
for 𝝊r(t), the following theorem is provided.

Theorem 2. Given 𝛾 ≠ 𝜋∕2, let us consider dynamics (20)– (24) and define r(t), nr(t) and vM(t) as in (25)–(27),
respectively. If Assumption 3 is satisfied at t = 0, then the set 𝜖(t) = {i ∈ s | dri(t) < 𝜖} remains empty for all t > 0 by
choosing

ar(t) =
⎧⎪⎨⎪⎩
[vM(t) + ur(t)⊤nr(t)]+

nr(t)⊤g∗ , if r(t) ≠ ø;

0, otherwise;
(29)

and

fr(t) = g∗, ∀t ≥ 0, (30)

where ur(t) is taken as in (6) or (19). Moreover, Problem 1 is solved by using a collision avoidance term𝝊r(t) as in (23), selected
according to (29) and (30).

Proof. First, observe that ur(t)⊤g∗ ≤ 0 holds true for any ur(t) under consideration and all t ≥ 0, thus suggest-
ing a characterization for the so-called admissible motion space of the RV r = {𝝎r ∈ Rd | 𝝎rg∗ ≤ 0 and ‖𝝎r‖ =
1} containing the potential directions 𝝎r for ṗr. It is then immediate to verify that −g∗ ∈ r, ur(t) ∈ r
and −nr(t) ∈ r, ∀t ≥ 0 by construction. This also denotes that choice in (30) is at least admissible to solve
Problem 1, thanks to the structure of the collision avoidance term in (23) and since ar(t) in (29) is nonnegative
for all t ≥ 0.

Now, since (28) represents the action for the RV sufficient to avoid collisions in the worst case scenario (without
accounting for the control task of ur), assuming that 𝜂𝜖 activates (i.e., it takes value 1) for dr = 𝜖, in order to show condition
𝜖(t) = ø,∀t > 0, it is sufficient to ensure

ṗr(t)⊤(−nr(t)) ≥ vM(t), ∀t > 0. (31)

Given this premise, the proof can be split into two scenarios resorting to quantity wr(t) ∶= −u⊤
r (t)nr(t) and illustrated by

means of Figure 5.

• Scenario wr ≥ vM . The latter condition is equivalent to have u⊤
r (−nr) ≥ vM , hence this scenario (depicted

in Figure 5A) implies that control input ur itself is sufficient to serve as a collision avoidance action.
Indeed, (ar, fr) = (0, g∗) guarantees condition (31) and solves Problem 1, since 𝝊r = 0 leads to ṗ⊤

r (−nr) =
(ur + 𝝊r)⊤(−nr) = −u⊤

r nr ≥ vM and it does not affect the control action carried out by ur. As a final
remark, notice that the case r = ø falls inside this scenario by definition, since u⊤

r g∗ ≤ 0 and, in this case,
(vM ,nr) = (0, g∗).

• Scenario wr < vM . In this scenario (depicted in Figure 5B), control input ur is not sufficient to concur fully
to a collision avoidance action; hence, additional effort is needed, that is ar > 0 is required. Such an missing
avoidance effort can be identified and quantified as (vM − wr) > 0 along the collision direction −nr. Nonethe-
less, substituting −(vM − wr)nr in place of 𝝊r and adding it to ur in (20) may lead to undesired trajectories of
pr, as the RV could lose track of the agents inside its FoV. What is however permitted is to exploit the direc-
tion of motion given by −g∗, as the latter represents an equilibrium for dynamics (4). Indeed, ur(gr) = 0 if all
gr components are equal to g∗. In other words, if 𝝊r has direction −g∗, the FoV control exerted by ur is not
affected. Because of this fact, fr = g∗ is chosen to solve Problem 1. Moreover, (ar, fr) = ((vM − wr)∕(n⊤

r g∗), g∗) is
sufficient to ensure (31); indeed, one has ṗ⊤

r (−nr) = (ur + 𝝊r)⊤(−nr) = (ur − arfr)⊤(−nr) = −u⊤
r nr + vM − wr = vM .

Also, note that, if nr is such that n⊤
r g∗ ≠ 0 then ar is well defined. This holds true, as n⊤

r g∗ ≥ c𝛾 > 0, assuming
that 𝛾 ≠ 𝜋∕2.

▪
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(A) (B)

F I G U R E 5 Illustration of the collision avoidance strategy under analysis: Possible scenarios. Here ∗
r = r = {1, 2} holds. (A) wr ≥ vM

and (B) wr < vM

4 NUMERICAL SIMULATIONS

To support the theoretical results obtained in Section 3 we provide here several numerical simulations sharing
the following setup. The maximum speed vM = 5 m s−1 is established for all the agents involved (RV excluded)
and a FoV angle of 𝛾FoV = 90◦ is set, leading to q∗

𝜋∕4 = (3
√

2 − 2)∕4 ≃ 0.5607. With this setup, we obtain K⋆
r ≃

7.0711 m s−1 and Kq
r ≃ 8.9181 m s−1. According to the previous theoretical results, we define the critical control

gain2 as

Krc =

{
K⋆

r , if n = 1;
Kq

r , if n > 1;

for which the proposed bearing-based control laws (6), (19) are effective only by adopting a control gain Kr such that
Kr ≥ Krc. In addition, we refer to the FoV borders as the half lines hFoVj(t) = pr(t) + 𝜆gFoVj, for j = 1, 2, with 𝜆 ranging over
[0,+∞). The initial position of the RV is set at pr(0) = 0 with a bearing bisector g∗ =

[
0 −1

]⊤, leading to gFoV1 = Rz(−𝛾)g∗

and gFoV2 = Rz(𝛾)g∗.
All simulations run over a time interval T = Tf − Ti ranging from Ti = 0 to Tf = 30 s and few snap-shots of the

trajectories are reported at time instants tk, where k ∈ {0, … , 5}, t0 = Ti and tk+1 = tk + T∕5. Also, the collision avoid-
ance strategy devised in Section 3.3 is here implemented through 𝜂𝜖(dr) = −dr∕(𝛿𝜖) + (1 + 𝛿)∕𝛿, with 𝛿 ∈ (0, 1], where
𝜖 = 5 m and 𝛿 = 0.01 are chosen, given the short-range distance sensing 𝜖s = 2𝜖. In particular, the first group of numer-
ical results asses the validity and limitations of the proposed control gain selection; whereas, the second one testes
the switching mechanism for n > 1 agents. Lastly, the final paragraph is devoted to a potential real-world application
example.

4.1 Validation of the control gain selection and limitations

In this framework, we show how the control gain selection influences the RV’s trajectory and the maintenance of either
a single agent or a couple of agents under its tracking action.

2We also highlight that a tight upper bound of this quantity can be yielded by Krc ≤ Krc = vM∕s3
𝛾 for a generic 𝛾 ∈ (0, 𝜋∕2], since, by the structure of (13),

q𝛾 (𝜙) is lower bounded by s3
𝛾 . Thus, imposing Kr ≥ Krc is sufficient to ensure validity for the proposed control laws for any given admissible value of 𝛾 .
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(A) (B)

(C) (D)

F I G U R E 6 Gain selection in the single agent case: Few examples referring to the worst case scenario described in Proposition 1. (A)
Kr = 0.9Krc, (B) Kr = Krc, (C) Kr = 1.1Krc, and (D) Kr = 1.5Krc

4.1.1 Single agent case

With this group of simulations we intend to support the control gain selection proposed in Proposition 1 when the single
agent being tracked is escaping the FoV border hFoV1 and traveling in a straight path with a constant velocity ṗ1 perpen-
dicular to hFoV1, such that ‖‖ṗ1

‖‖ = vM . Figure 6 illustrates the behavior of the RV for different choice of the control gain
Kr w.r.t. the critical gain Krc. In particular, it is possible to appreciate that a gain Kr = 0.9Krc (see Figure 6A) is insufficient
to maintain the tracking, as the agent exits the FoV as soon as the simulation starts. From Figure 6B, it is instead clear
that the RV preserves the agent tracking precisely on FoV frontier since t = 0, if Kr = Krc is set. Figure 6C depicts the RV’s
trajectory for Kr = 1.1Krc: here, as time instants grow, it is possible to observe that the bearing gr1 points more and more
inward w.r.t. the FoV, that is, for t → ∞, gr1 aligns with g∗ because of the structure of law (6). Lastly, Figure 6D, wherein
Kr = 1.5Krc is taken, shows how essential a collision avoidance strategy is in order to allow the RV not to crash against
agents. Indeed, thanks to the method provided in Theorem 2, distance dr1(t) remains greater than 5.0288 m ≥ 𝜖 for all
t ≥ 0; whereas, dr1(t) would approach 0 as t grows, if 𝝊r(t) = 0 were assigned (see trajectory in green).

4.1.2 Two agent case

Within this subframework, we aim to justify the gain selection discussed in Lemma 1. The setup here adopted adheres to
the nontrivial worst case scenario arising from said lemma: at t = 0, we set agent 1 on the FoV border hFoV1 and agent 2
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(A) (B)

F I G U R E 7 Gain selection in the two agent case: Few examples referring to the worst case scenario described in Lemma 1. (A)
Kr = 0.9Krc and (B) Kr = Krc

close to the other border, describing an angle −𝜙∗
𝛾 from hFoV2, where 𝜙∗

𝜋∕4 = 𝜋∕8 rad is the angle minimizing q𝛾 (𝜙), that
is, q𝛾 (𝜙∗

𝛾 ) = q∗
𝛾 . The numerical simulations are reported in Figure 7. In particular, the selection Kr = 0.9Krc in Figure 7A

leads to a relay tracking failure, starting from the very first time instants (see instant t1, in which agent 1 clearly exits
the FoV). On the contrary, Figure 7B describes the presence of sufficient capabilities for the RV to maintain both agents
inside the FoV over the entire time interval T.

4.2 Validation of the switching mechanism

One of the main concerns about control laws (9) and (19) is represented by the manifestation of chattering phenomena, in
practice, when the controller switches from one policy to the other (e.g., from case 𝜒n ≥ 0 to case 𝜒n < 0 and vice versa).
In the following lines we provide few evidences showing that this issue does not subsist. In both simulations Kr = Krc is
assumed and at least one of the agents is characterized by a nonlinear dynamics designed ad-hoc to track the bisector
direction g∗ with possibility of overshoot.

4.2.1 Two agent case

In this example, we further reinforce the validity of Lemma 1 by showing that the switching behavior of the controller does
not affect negatively the tracking performances. Figure 8 illustrates this simulation: agent 2 crosses the bisector direction
5 times over interval T and causes the sign changes of 𝜒2, leading to the same number of switches for the control policy
in (9).

4.2.2 Generalization for n ≥ 1 agents

To support Theorem 1 and the switching capability of law (19), we have designed a numerical simulation involving n = 5
agents. In Figure 9, the relative tracking performances are depicted. It is worth to observe that not only 𝜒n changes sign
3 times, leading to the same number of switches for the control policy in (19), but also that maximization in (18) yields
several different results over the interval T. In other words, it is possible to appreciate that the bearing vectors on which
the control action within a specific policy of (19) is computed depends on the closest agents to the FoV borders hFoVj(t),
j = 1, 2, at each time instant t.
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F I G U R E 8 The continuity of law (9) is tested while its action switches over time. Two agents are monitored by the RV

F I G U R E 9 The continuity of law (19) is tested while its action switches over time. Five agents are monitored by the RV

4.3 Application example

With this final paragraph we intend to provide an application example giving more credit to the key theoretical result
in this article, namely, Theorem 1. Specifically, the following numerical simulation pertains to typical aspects revolving
around patrolling (see, e.g., works on camera network patrolling under unreliable communication,52 distributed partition-
ing strategies, visual optimization and perimeter patrolling53) and dynamic coverage (see, e.g., works on sensor networks,54

UAVs in a cellular system55). The common approach underneath these research fields usually leverages optimization
results on objects moving along a linear path.

Frequently, such studies lead to cope with regular spacial shapes and control patterns in order to govern opti-
mally the trajectories of the objects in question. At the light of this preliminary consideration, we propose here
a surveillance-type scenario in which the RV monitors a camera network made up by n = 5 elements, each of
them employed to cover/sense a certain portion of the planar environment. As illustrated in Figure 10, we let
camera 1 steer along a circular path (in blue), cameras 2, 3, 4 move along triangular patterns (in magenta, yel-
low, and cyan) within the aforementioned circular path and camera 5 stand still at the center (in green) of
the circle.

Again, we have set Kr = Krc to allow full tracking capabilities for the RV, as it is shown. From the simula-
tion data, it is also possible to observe that controller (19) switches its regime once, from 𝜒n = 1 to 𝜒n = −1 at t =
ts = 1.0870 s. Indeed, for t < ts, one has 𝜒n = 1; thus, all agents are identified as geometric elements laying on the
“same side” of the FoV (the left one, precisely) and camera 1 is considered the most external agent that can poten-
tially exit the FoV border hFoV1(t). Moreover, cameras 1,3,4 are the most recurrent agents determining control action
𝜒n = −1 computed in (19), as t ≥ ts (all cameras are recognized to belong to “different sides” of the FoV within
this regime).
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F I G U R E 10 Application example based on a surveillance-type scenario involving approaches from patrolling and dynamic coverage

5 CONCLUSIONS AND CONTINUED RESEARCH

In this article, we have tackled the problem of communication relay establishment for multiple mobile vehicles by
leveraging well-known formation control techniques. The bearing-based strategy devised allows the design of a scalable
distributed control law that accounts for FoV constraints that, remarkably, introduce hard nonlinearities to the system of
agents under consideration. The proposed bearing-based control law is also endowed with a collision avoidance strategy
that employs short-range distance measurements, granting the RV to maintain the agents under its FoV while preventing
physical impacts from occurring. The numerical simulations and application examples reported strongly match the theo-
retical results and performance analysis of the underlying approach. An extension to the three dimensional environments
(d = 3) is envisaged as future work.
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APPENDIX . ANALYSIS OF FUNCTION q𝜸(𝝓)

Here, the extrema of the function q𝛾 (𝜙) introduced in (13) are investigated formally. A plot of q𝛾 (𝜙) for different values of
𝛾 is also available in Figure A1.

Proposition 3. Let 𝛾 belong to(0, 𝜋∕2]. Then there exists a unique global minimizer 𝜙∗
𝛾 for the function q𝛾 (𝜙) defined in

(13), given as

𝜙∗
𝛾 = arg min

𝜙∈[0,𝛾]
q𝛾 (𝜙) =

⎧⎪⎨⎪⎩
0, if 𝛾 ∈

(
0, 𝜋

6

]
;

3
2
𝛾 − 𝜋

4
, if 𝛾 ∈

(
𝜋

6
,
𝜋

2

]
.

(A1)

F I G U R E A1 Plot of function q𝛾 (𝜙) for some values of 𝛾 ∈ (0, 𝜋∕2] as 𝜙 varies in [0, 𝛾]. Dashed lines indicate minima (𝜙∗
𝛾 , q∗

𝛾 )
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Moreover, if 𝛾 ∈ (0, 𝜋∕6) thenq𝛾 (𝜙) has no stationary points. Whereas, if 𝛾 ∈ [𝜋∕6, 𝜋∕2) then q𝛾 (𝜙) has a unique stationary
point coinciding with global minimum𝜙∗

𝛾 . Lastly, if 𝛾 = 𝜋∕2 thenq𝛾 (𝜙) has two stationary points: one is a global maximum,
that is,𝜙 = 0, and the other is a global minimum, that is, 𝜙 = 𝜙∗

𝜋∕2.

Proof. The proof is split into two parts: the trivial case 𝛾 = 𝜋∕2 and the more articulated case 𝛾 ∈ (0, 𝜋∕2).
For 𝛾 = 𝜋∕2, the function (13) can be easily simplified to

q𝜋∕2(𝜙) = 1 + c2
𝜙
. (A2)

Computing the first derivative q′
𝜋∕2(𝜙) of (A2) w.r.t. 𝜙 one obtains

q′
𝜋∕2(𝜙) = −s2𝜙,

which is equal to zero for 𝜙 = 0 and 𝜙 = 𝜙∗
𝜋∕2 = 𝜋∕2. Then, computing the second derivative q′′

𝜋∕2(𝜙) of (A2) w.r.t. 𝜙
one has

q′′
𝜋∕2(𝜙) = −2c2𝜙,

which is negative for 𝜙 = 0, as q′′
𝜋∕2(0) = −2, and positive for 𝜙 = 𝜋∕2, as q′′

𝜋∕2(𝜋∕2) = 2. Hence, there exists a unique
global minimizer 𝜙∗

𝜋∕2 = 𝜋∕2 for q𝜋∕2(𝜙). Also, q𝜋∕2(𝜙) has an additional stationary point that is a global maximum (i.e.,
at 𝜙 = 0).

We now consider 𝛾 ∈ (0, 𝜋∕2). By resorting to identity s2
𝜙

c2
2𝛾−𝜙

= s2
𝛾
+ s2

𝛾−𝜙
− 2c2𝛾−𝜙s𝛾s

𝛾−𝜙 − (s2
𝛾
+ s2

𝛾−𝜙
)2, valid for all

𝛾, 𝜙 ∈ R, the squared root term in (13) can be simplified yielding

q𝛾 (𝜙) = s3
𝛾 + s𝛾s2

𝛾−𝜙 + c𝛾s𝜙|c2𝛾−𝜙|. (A3)

Consequently, the first derivative q′
𝛾 (𝜙) w.r.t. 𝜙 of (A3) can be now computed and analyzed more easily. It turns out that

its expression is well-defined for all 𝜙 ≠ 2𝛾 − 𝜋∕2, whenever 𝛾 ∈ [𝜋∕4, 𝜋∕2), and is given by this compact form:

q′
𝛾 (𝜙) = sign(c2𝛾−𝜙)c𝛾c2(𝛾−𝜙) − s𝛾s2(𝛾−𝜙). (A4)

If (𝛾, 𝜙) ∈ [𝜋∕4, 𝜋∕2) × [0, 2𝛾 − 𝜋∕2) then (A4) becomes

q′
𝛾 (𝜙) = −c𝛾−2𝜙 < 0, (A5)

since (𝛾 − 2𝜙) ∈ (−3𝛾 + 𝜋∕2, 𝛾) ⊆ (−𝛾, 𝛾) ⊆ (−𝜋∕2, 𝜋∕2). Whereas, if (𝛾, 𝜙) ∈ [𝜋∕4, 𝜋∕2) × (2𝛾 − 𝜋∕2, 𝛾) or (𝛾, 𝜙) ∈
(0, 𝜋∕4) × [0, 𝛾] then (A4) becomes

q′
𝛾 (𝜙) = c3𝛾−2𝜙. (A6)

First derivative (A6) is null if and only if

𝜙 = 3
2
𝛾 − 𝜋

4
, for 𝛾 ∈

[
𝜋

6
,
𝜋

2

)
; (A7)

therefore, values of 𝜙 in (A7) represent all candidate stationary points for (A3) as 𝛾 varies. Note that, for 𝛾 ∈ (0, 𝜋∕6), no
stationary point exists because 𝜙 ≥ 0 needs to hold by definition.

Next, we provide the expression of the second derivative q′′
𝛾 (𝜙) w.r.t. 𝜙 of (A3) in order to show the strict convexity of

(A3) over the intervals (𝛾, 𝜙) ∈ [𝜋∕4, 𝜋∕2) × (2𝛾 − 𝜋∕2, 𝛾) and (𝛾, 𝜙) ∈ (0, 𝜋∕4) × [0, 𝛾]. In particular, over such intervals,
one has

q′′
𝛾 (𝜙) = 2s3𝛾−2𝜙 > 0, (A8)
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which is a positive quantity since 0 < 3𝛾 − 2𝜙 < 𝜋 holds in this nested case. Inequality (A8) thus implies that all values
of 𝜙 in (A7) are (at least local) minima.

To conclude the proof, it is worth to observe that q𝛾 (𝜙) is continuous in 𝜙 for all values of 𝛾 ∈ (0, 𝜋∕2). This fact
and inequalities (A5), (A8) lead to the following implications. On one hand, if 𝛾 ∈ (0, 𝜋∕6], function q𝛾 (𝜙) is strictly
increasing for all 𝜙 ∈ [0, 𝛾]. On the other hand, if 𝛾 ∈ (𝜋∕6, 𝜋∕2), function q𝛾 (𝜙) is strictly decreasing over the interval
[0, 3∕(2𝛾) − 𝜋∕4] and strictly increasing over the interval [3∕(2𝛾) − 𝜋∕4, 𝛾]. Hence, there exists a global unique minimizer
𝜙∗
𝛾 for q𝛾 (𝜙), whose overall expression is given in (A1). ▪

Corollary 1. Under the same assumptions of Proposition 3, the minimum valueq∗
𝛾 attained by q𝛾 (𝜙) is given by (10) and

max(2s3
𝛾 , s𝛾 ) is the maximum value attained by q𝛾 (𝜙).

Proof. The minimization follows from the computation of q∗
𝛾 = q𝛾 (𝜙∗

𝛾 ) through (A2) and (A3), wherein expression of 𝜙∗
𝛾 is

yielded by (A1). Similarly, leveraging the Weierstrass theorem and the observations made in Proposition 3, q𝛾 (𝜙) is max-
imized at 𝜙 = 𝛾 , if 𝛾 ∈ (0, 𝜋∕4] and at 𝜙 = 0, if 𝛾 ∈ [𝜋∕4, 𝜋∕2]. In particular, its maximum is given by max(q𝛾 (0), q𝛾 (𝛾)) =
max(2s3

𝛾 , s𝛾 ). ▪
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