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The possibility to analyse the tumour genetic material shed in the blood is undoubtedly one of the main achievements of
translational research in the latest years. In the modern clinical management of advanced non-small cell lung cancer, molecular
characterisation plays an essential role. In parallel, immunotherapy is widely employed, but reliable predictive markers are not
available yet. Liquid biopsy has the potential to face the two issues and to increase its role in advanced NSCLC in the next future.
The aim of this review is to summarise the main clinical applications of liquid biopsy in advanced non-small cell lung cancer,
underlining both its potential and limitations from a clinically driven perspective.
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INTRODUCTION

The role of precision medicine in advanced non-small cell lung
cancer (NSCLC) has been continuously increasing in the latest
years. The path to achieve complete molecular information is
certainly long and challenging, as it is affected by the evolving and
ever-changing nature of the neoplastic phenomenon itself. Cells
mutability, metabolic changes and micro-environmental features
defining different metastatic sites are able to influence the spawn
and the growth of divergent tumoural sub-clones [1, 2], while
cancer therapy itself affects clonal selection and host-tumour
interaction [3].

Ideally, molecular information should derive from different
anatomic sites, both at baseline and recurrence. In daily practice,
however, tumour accessibility and patients’ clinical conditions
often dictate the timing, quantity and final quality of tumour
sampling [4, 5]. Molecular characterisation obtained from tissue
biopsy is intrinsically partial and often not feasible due to low
quantity or poor quality tumour DNA.

Tumour cells are able to shed macromolecules into the
bloodstream, both from primary and metastatic sites. Assays
capable of sampling, isolating and testing analytes from a
biological fluid are referred to as a liquid biopsy. Liquid biopsy
is minimally invasive and easily repeatable. Various biologic
analytes could be isolated from peripheral blood, i.e. circulating
tumour DNA (ctDNA), circulating tumour cells (CTCs), circulating
exosomes, platelet RNA and ctRNA. ctDNA is certainly the most
studied one [6, 7]. Cell-free DNA (cfDNA) in blood refers to
degraded DNA fragments, derived mostly from normal white
blood cells and stromal cells; in cancer patients, a fraction of

cfDNA is represented by ctDNA, released from tumour cells
through apoptotic and necrotic cell death or via active processes
[8, 9]. ctDNA is amenable to be tested for the presence of somatic
mutations, gene copy number variations (CNVs) and gene
rearrangements and has a good concordance rate with tissue
analysis [10-13].

Historically, the first clinical application of liquid biopsy in
advanced NSCLC was the detection of sensitising EGFR muta-
tions [14-19] (Fig. 1). These pioneer studies were followed by
the advent and widespread application of high-throughput
sequencing methods, such as next-generation sequencing
(NGS), which broadened our capacity for genomic profiling.
NGS widened the spectrum of detection of somatic mutations
from ctDNA, leading to different opportunities. First, whenever a
druggable alteration was found, matched therapy might be
offered [20-22]. Second, the presence of certain mutations or
co-mutations could provide prognostic and predictive informa-
tion [23, 24]. Last, the detection of tumour-specific genetic
alterations at baseline and the measurement of their variation
during treatment could be useful to monitor the course of the
disease [25-27]. Large (>1.6Mb) NGS assays allow also
quantification of the tumour mutational burden (TMB), which
is the total number of somatic mutations per coding area of a
tumour genome. TMB is considered as a surrogate for tumour
neo-antigen load and therefore a potential predictive marker for
immune checkpoint inhibitors (ICls) [28-31].

Considering the feasibility of liquid biopsy as a diagnostic tool
and the huge amount of data obtainable, it is crucial to integrate
this technique into daily clinical workflow.
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Timeline of the development of liquid biopsy. Development of liquid biopsy, from the discovery of cell-free DNA in plasma (cfDNA) to

the capacity of detecting and analyzing tumour-associated genetic alterations.

The aim of this review is to analyse currently available data and
the main ongoing clinical trials, in order to provide a view on
potential future applications in the clinical practice of
advanced NSCLC.

THE ACHIEVEMENTS OF YESTERDAY: FROM THE DISCOVERY
OF CFDNA TO THE ABILITY TO CHARACTERISE TUMOURS IN
PLASMA

The main historical steps at the basis of the development of liquid
biopsy as a tool in clinical practice are summarised in Fig. 1.

The presence of nucleic acids in the circulation was first
reported by Mandel and Metais in 1948 [32]. Since then, many
studies have reported a relative high concentrations of cell-free
nucleic acid in the blood of cancer patients [33, 34]. Different
mechanisms have been proposed concerning the source of
ctDNA: cell lysis, breakdown of circulating tumour cells, destruc-
tion of tumour micro-metastases and active release by tumour
cells [35]. ctDNA is frequently highly diluted in plasma and its total
concentration is also influenced by the clearance and degradation
by the nuclease activity.

After the discovery of ctDNA and its likely correlation with
metastatic potential, research efforts mainly focused on the
characterisation of tumour-associated genetic alterations in
plasma. In this context, highly sensitive analytical techniques, as
well as stringent and standardised pre-analytical procedures, are
needed, in order to face the short half-life of cfDNA and the
detection of low-frequency somatic mutations against a high
background level of wild-type cfDNA fragments. The recom-
mended workflow for plasma management considers the timing
for its collection particularly crucial, as the contamination with
DNA from leukocytes occurs if blood remains unprocessed for a
long time (up to 4 h) [36, 37]. In order to overcome the need for
rapid processing of plasma samples, commercial cell stabiliser
tubes have been recently developed to prevent white blood cells
degradation and to inhibit nuclease activity up to several days
after blood draw [38]. Moreover, in order to safeguard the cfDNA
stability and prevent its degradation in ex vivo plasma, immediate
cooling at 4°C and then storage in frozen conditions are strictly
required to minimise nuclease activity [36].

Over time, various analytical methods have been developed
and applied for the molecular characterisation of ctDNA. They can
be divided into narrow and broad approaches.

The former methods involve assays that are able to detect
genetic alterations in selected regions of cfDNA and are PCR-
based techniques. A prominent PCR-based platform is the cobas
EGFR mutation test (Roche diagnostics): a real-time PCR (rt-PCR)

test able to provide quantitative information about the presence
of specific EGFR gene alterations [39-41]. This assay is currently
approved by U.S. Food and Drug Administration (FDA) for the
detection of common sensitising EGFR alterations and of acquired
resistance mutations T790M in ctDNA. Although not FDA
approved, highly sensitive assays, such as the droplet digital
PCR (ddPCR), can also detect additional genetic alterations in
ctDNA with higher sensitivity and specificity [26, 42].

ddPCR is an approach based on water-oil emulsion droplet
technology: sample is partitioned so that each droplet has from
one to five molecules of DNA, and PCR amplification of the
template molecules occurs in each individual droplet [43]. Such
methods have several pros; the most important ones are
sensitivity, affordability and short turn-around time. Notably, their
analytical specificity reaches 98% [39-41]. Anyway, even though
the detection of EGFR mutations in ctDNA is possible even at low
mutated allele abundance (generally 0.5-1%), the sensitivity might
be relatively low (70-80%), translating into a rate of false
negatives of at least one out of five cases [44, 45]. This
phenomenon is believed to be linked to the amounts of ctDNA
shed into the plasma, which could be lower when tumour burden
or shedding capacity is limited [6, 46].

The main limit of the narrow approach is related to its possibility
to interrogate a very limited number of loci and are intrinsically
unable to provide comprehensive molecular characterisation.

In parallel, data on PCR-based techniques for plasma detection
of other important druggable gene alterations, such as ALK
rearrangements, are very limited, they show very low sensitivity
rates for fusion genes and prospective validation studies are not
available yet [47-49].

On the other hand, high-throughput NGS-based multi-gene
tests can be performed in order to interrogate in a single workflow
several genomic alterations, including single nucleotide variant
(SNV), small insertions and deletions (indels), gene rearrange-
ments, CNVs, and define their variant allelic frequency (VAF). The
amount of information a single NGS analysis can provide is strictly
linked to the size of the gene panel analysed. Moreover, the
sequencing coverage could significantly affect costs, turn-around
times and also the sensitivity of NGS assays [50]. Historically NGS-
based methods have been considered less sensitive than PCR-
based ones; however, recent studies using ultra-deep NGS have
described a similar sensitivity for the detection rate of certain
driver mutations [51]. High analytical specificity is the main feature
also of NGS-based genotyping assays, with a positive-predictive
value of over 99%. In this context, the phenomenon of clonal
hematopoiesis is noteworthy: some mutations detectable in the
ctDNA are attributable to the DNA of white blood cells, rather than
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Fig. 2 Pros and cons of tissue and liquid biopsy. A simplified summary of potential advantages and limits of liquid biopsy, when compared

to standard approach (tissue biopsy).

to tumour genetic material [52]. This issue might affect the
interpretation of the test, especially when the VAF of the genetic
variant called by the test is low; therefore, some assays have now
incorporated paired sequencing of ctDNA and white blood cell
DNA to overcome this hurdle [51].

Overall, NGS-based multi-target approaches have the advan-
tage of allowing the simultaneous analysis of multiple genetic
alterations, but they are more expensive and technically
demanding and they probably require centralisation of testing
for clinical use.

LIQUID BIOPSY AS THE CHALLENGE OF TODAY

To date, undoubtedly, tissue biopsy represents the gold standard
for lung cancer diagnosis and cannot be replaced by liquid biopsy.
However, scarcity of tumour tissue is common, with over 40% of
patients needing more than one procedure in order to achieve a
definitive diagnosis of lung cancer [53]. In tissue, the failure rate of
adequate molecular characterisation, essential for the proper
treatment of lung cancer, revolves around 30% of cases [5] (Fig. 2).
Over time, the number of molecular information needed is
increasing. ESMO guidelines currently recommend testing at least
EGFR mutations, BRAF mutations, ALK fusions, ROS-1 fusions, MET
exon 14 skipping mutations, RET rearrangements and PD-L1
expression levels in non-squamous advanced NSCLC [54]. This
panel could be further implemented considering KRAS mutations,
HER2 mutations, MET amplification and NTRK rearrangements [54].

The first application of liquid biopsy in clinical practice concerns
EGFR-mutated advanced NSCLC (Fig. 1). Testing EGFR mutation in
plasma at baseline when tissue analysis is not feasible has been
accepted in clinical practice to select patients for first-line
treatment with EGFR-TKIs [54].

The second clinical application of liquid biopsy in EGFR muta-
tion-positive NSCLC is the evaluation of the most common
acquired resistance mechanism to first and second-generation
EGFR-TKIs (erlotinib, gefitinib and afatinib): T790M mutation
[55, 56] (Fig. 3).

In AURA3 trial, demonstrating the effectiveness of osimertinib in
patients with acquired EGFR T790M mutation, tissue re-biopsy was
mandatory to assess T790M mutational status, but a pre-defined
subgroup analysis in patients with T790M positive in plasma
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confirmed the clear superiority of osimertinib over chemotherapy
in this subgroup of patients [15]. A pivotal retrospective analysis in
patients treated with osimertinib in phase | AURA study
demonstrated that the sensitivity of detecting EGFR mutation in
plasma by using BEAMing technology, a PCR-based method, was
82% for exon 19 deletion and 86% for L858R mutation and
confirmed the predictive role of T790M mutation detected in
plasma [57]. The sensitivity for EGFR T790M mutation detection in
plasma can vary according to the technology, but might reach
93% with ddPCR [58, 59].

In addition to technical issues, EGFR T790M detection rate might
be associated with different biological reasons, being tumour
heterogeneity and low tumour burden. Liquid biopsy in this
context could also provide additional information: if T790M ratio
to activating mutation in tumour may correlate with the response
to osimertinib [57, 60], the allele frequency of EGFR-activating
mutations and the ratio T790M/sensitising mutation in plasma
have been associated with response to osimertinib [61].

Recently, a relatively large real-world retrospective analysis has
confirmed the correlation between T790M status and tumour
burden. Probably, for this reason, patients with T790M positive in
plasma had a worse disease control rate (DCR) when compared to
negative ones [62].

The presence of a high-prevalence resistance mechanism to
first- and second-generation EGFR-TKI led to the optimisation of
liquid biopsy in order to detect EGFR T790M in cfDNA.
International guidelines include liquid biopsy as the initial test
for detection of T790M mutation in patients with evidence of TKI
resistance. However, owing to the limited sensitivity of liquid
biopsy [63], when a negative result is obtained, tissue biopsy is
necessary, whenever feasible [54].

NGS assays are also approved as companion diagnostics to
identify EGFR mutations and ALK rearrangements that predict
benefits from EGFR-TKIs and ALK-TKIs, respectively. However, the
most appealing application of NGS in liquid biopsy is the study of
additional druggable alterations (Fig. 3). The first study on 93
consecutive patients with advanced NSCLC with insufficient or
inadequate tumour samples for standard molecular characterisa-
tion showed how NGS ctDNA genotyping with Guardant360 CDx
was able to detect potentially actionable genomic alterations in 53
cases [64]. Twelve patients received matched therapies, deriving
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significant clinical benefits [64]. Another large experience reported
the use of Guardant360 CDx to genotype over 8000 advanced
NSCLC patients on ctDNA and 879 were considered as “under-
genotyped” after tissue-based analyses, i.e. not evaluable for all
guideline-recommended genetic alterations [65]. We also recently
described a real-life experience with the prospective evaluation of
liquid biopsy genetic screening using Guardant360 CDx in over
200 advanced NSCLC patients, already tested in tissue with
standard molecular techniques, and 42 cases were tested positive
for previously undetected druggable alterations. The administra-
tion of matched targeted agents was associated with improved
outcomes [22].

All these experiences underline how the application of
targeted-gene NGS panels to analyse ctDNA could actually
improve clinical practice, allowing the detection of actionable
genomic alterations and the consequent administration of a
tailored systemic anti-cancer treatment. However, one of the most
relevant issues to address is the assessment of gene fusions in
liquid biopsy. Their detection by the NGS-based cfDNA analysis is
challenging and the sensitivity of detecting in cfDNA is currently
debated [66, 67]. Moreover, recent reports describe an incidence
of detection of gene fusions in plasma samples lower than
expected in NSCLC [68, 69]. To this date, the largest, prospective,
real-world study evaluating the clinical relevance of liquid biopsy
in ALK and ROS-1 rearranged advanced NSCLC patients, showed a
sensitivity rate of 67% for the detection of such fusions by
amplicon-based NGS [70]. Gene fusions arise from the inter-
chromosomal or intra-chromosomal conjunction of different
introns. For this reason, they are difficult to detect by DNA-
based NGS, especially when the introns are large, or contain
repetitive sequences, and genes present several fusion partners
[71, 72]. In this context, analysis of the circulating cell-free
(tumour) RNA (cfRNA/ctRNA) is not influenced by the previously
described limitations and could complement ctDNA for the
investigation of fusion gene abnormalities. In fact, analysis of
cfRNA in circulation or embedded in vesicles or tumour-educated

platelets (TEPs) has shown widely applicability in the detection of
several cancer-associated aberrations [73, 74]. The sensitivity of
cfRNA-based assays could reach over 77% [67]; however, its
clinical implementation is to be improved and needs standardisa-
tion of liquid biopsy workflow and optimisation of pre-analytical
conditions.

Overall, the availability of liquid biopsy and NGS techniques for
ctDNA analysis are already affecting our clinical approach to
advanced NSCLC management. In particular, the great amount of
information obtained by using NGS in clinical practice and the
integration of off-label treatments in therapeutic pathways are
one of the main challenges for modern oncology and should be
managed by a specifically organised multidisciplinary team,
termed molecular tumour board [75]. In the next future, the
optimisation of standardised techniques could also let us face
other questions about the possibility of treating patients
according to liquid biopsy analysis in the absence of tissue-
based genetic characterisation and even in the absence of a sure
pathological diagnosis. Anyway, genetic information obtained
from liquid biopsy analysis does not provide a complete molecular
characterisation. In this context, the tissue biopsy is the optimal
and not replaceable source for analysing the expression of PD-L1
for routine use in clinical practice and permit to investigate the
role of tumour immune microenvironment. Consequently, in our
opinion, the integration of tissue and plasma characterisation
represents the preferred approach for advanced NSCLC manage-
ment in the next future.

LIQUID BIOPSY IN THE CLINICAL PRACTICE OF TOMORROW
Based on available evidence, liquid biopsy applications that we
feel almost ready for prime-time are the detection of acquired
resistance mechanisms to EGFR- and ALK-TKI (Fig. 3). On the other
hand, growing evidence is available about the potentiality of
blood-based TMB (bTMB), even though its clinical applications
have not been clearly defined yet.
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While the detection of T790M resistance mutation in plasma has
led to the spread of liquid biopsy in clinical practice, the phase I
FLAURA trial assessed the superiority of osimertinib over gefitinib
or erlotinib in first-line setting [76, 77] and established osimertinib
as standard treatment for first-line therapy in EGFR-mutated
advanced NSCLC, thus opening new perspectives for liquid biopsy
applications.

Acquired resistance mechanisms to osimertinib are more
heterogeneous, than those to first- and second-generation
EGFR-TKIs.

Most information stemmed from studies in patients treated
with osimertinib in second- or third-line settings. The revision of
these studies shows the increased role of liquid biopsy in this
setting. Acquired resistance mechanisms to osimertinib can be
classified as on- or off-target. Multiple EGFR acquired mutations
have been identified, but the most frequent is EGFR C797S
mutation, occurring at osimertinib binding site [78-80]. Off-target
alterations are more frequent than in acquired resistance to first-
and second-generation TKls. The most frequent one is MET
amplification, concerning about 20% of cases [78, 81, 82]. In
patients progressing to osimertinib, the persistence of T790M
mutation has also been associated with improved outcomes
[83, 84]. Among patients enrolled in AURA3 trial, 83 had paired
plasma samples for comparing NGS analyses by using Guar-
dant360 at baseline and at the time of progression to osimertinib:
15% of patients acquired an EGFR mutation, mainly C797S, while
MET amplification was detected in 19% of patients [85]. Smaller
studies were based on tissue samples and they confirmed the
persistence of EGFR founder mutation at the time of progression
to osimertinib and main resistance mechanisms found through
liquid biopsy, but they underlined the role of histological
transformation [83, 86]. In two studies analyzing tissue re-biopsies,
three out of 32 and six out 41 patients developed histological
transformations [83, 86].

Acquired resistance mechanisms to first-line osimertinib are less
investigated and they might be different from those to second-
line osimertinib. To this extent, among patients enrolled in
FLAURA trial, 91 were evaluated by liquid biopsy (NGS
Guardant360 73 gene panel or Omni 500 gene panel) and the
most common described mechanism was MET amplification
(15%), followed by EGFR C797S mutation (7%); acquired HER2
amplification, PIK3CA and RAS mutations were also described [87].
The first tissue-based series describing first-line osimertinib
resistance mechanisms included 27 patients and highlighted
15% of histological transformation [88]. The study of acquired
resistance mechanism to first-line osimertinib is one of the key
issues in the way to further improve the outcome of EGFR-
mutated patients.

No targeted treatments are currently approved for osimertinib
acquired resistance, although several clinical trials are ongoing,
especially in the setting of MET-amplified patients. Different
strategies are being tested in the context: amivantamab and
lazertinib combination (Chrysalis-2, NCT04077463) [89], osimerti-
nib plus savolitinib association (TATTON, NCT02143466) [90, 91]
and tepotinib plus osimertinib combination (INSIGHT 2,
NCT03940703). These ongoing trials require mandatory tissue re-
biopsy, but include also systematic plasma collection, which could
validate liquid biopsy for MET-positive acquired resistance
detection. Interestingly, INSIGHT 2 also include a cohort of
patients treated with positive liquid biopsy and negative/not
evaluable tissue biopsy [92]. In this context, small experiences
evaluating liquid biopsy-based strategy to assess MET amplifica-
tion showed a high level of concordance with tissue (91.67%), with
a sensitivity rate of over 85% [93].

Other acquired resistance mechanisms detectable through
liquid biopsy have potential clinical application in the next future
and wide NGS analysis in plasma at the time of progression is able
to identify additional druggable alterations, such as ALK and RET
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rearrangements and BRAF V600E mutations, and strategies with a
combination of targeted agents have been reported [94, 95].

Another potentially druggable acquired resistance mechanism
concerns resistance to second-line osimertinib through the
development of EGFR C797S is in trans with the T790M mutation
cells. A combination of first- and third-generation EGFR-TKIs might
be effective, while fourth generation EGFR inhibitors are under
development. Since cis mutations are found to be resistant to
EGFR inhibition [96], the potential of plasma NGS to detect if
C797S tertiary mutations are in cis or trans might of potential
clinical usefulness [96, 97].

Small-cell lung cancer (SCLC) transformation has been
described as another resistance mechanism, accounting for 3 to
10% of all the EGFR-TKI-resistant cases [98]. However, this might
be underestimated, due to the absence of re-biopsy at the time of
progression. The most common mutations associated with SCLC
transformation included TP53, RB1 and PIK3CA. Small experiences,
applying complementary testing of tumour tissue and liquid
biopsy, showed how ctDNA analysis could suggest neuroendo-
crine evolution, when typical SCLC-associated genetic alterations
become detectable [99, 100]. Squamous cell carcinoma transfor-
mation has also been described in different case reports after
EGFR-TKI treatment [101]. Such phenomenon seemed to be linked
to the emergence of PTEN alterations and with considerable
genomic complexity, including co-occurring gene mutations,
amplification and chromosomal rearrangements [88]. In this
context, tissue re-biopsy appears to be irreplaceable for detecting
histologic transformation [102].

Overall, acquired resistance mechanisms to osimertinib are
heterogeneous and require screening with methods able to detect
multiple genetic alterations. NGS appear to be the best approach
in this setting, but requires a relatively high amount of DNA, not
always easy to obtain by tissue re-biopsy. Nevertheless, the
relatively high fraction of histological transformation underlines
the importance of paired tissue re-biopsy to get as much
information as possible in prospective trials on acquired resistance
to osimertinib.

One of the challenges for the future of our patients is to validate
in clinical practice NGS panels including the most frequent genetic
alterations related to acquired resistance to osimertinib, consider-
ing their potential therapeutic impact. This panel could then be
routinely used and associated with tumour re-biopsy when
feasible.

Prospective systematic analyses of resistance mechanisms to
osimertinib are ongoing: MELROSE (NCT03865511) and ELIOS
study (NCT03239340) are assessing genetic tumour profile in
tissue and plasma at the time of disease progression to first-line
osimertinib. On the other side, ORCHARD trial (NCT03944772) is an
open-label, biomarker-directed phase Il platform study, including
targeted treatment options for patients progressing on first-line
osimertinib according to molecular characterisation performed in
tissue re-biopsy.

One of the most important settings displaying the huge
potentiality of liquid biopsy is ALK-rearranged disease. Several
ALK-TKIs have been approved for advanced NSCLCs harboring ALK
translocations. Crizotinib, a first-generation ALK-TKI, was the first
approved ALK inhibitor, while second-generation TKis, ceritinib,
alectinib, brigatinib and ensartinib, were initially evaluated for
patients progressing to crizotinib and subsequently moved to
first-line following phase Il trials [103]. Lorlatinib, a third-
generation ALK-TKI, demonstrated to be active in patients
progressing to first- and second-generation ALK-TKI and later to
be superior over crizotinib in first-line [104, 105].

While the ALK-rearranged treatment scenario is enriching,
several points still need to be improved to optimise ALK-
rearranged treatment options: no selection criteria are currently
available to choose among the different ALK-TKIs available in the
first-line setting. Different variants of ALK rearrangements,
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potentially affecting the response to ALK-inhibitors, are not
routinely tested in clinical practice and, above all, molecular
analysis of acquired resistance mechanisms are not routinely
evaluated and are not currently leading treatment choice at the
time of progression.

Liquid biopsy has the potential to provide tools to fill these gaps
and its role might be even more relevant than in EGFR-mutated
disease, due to the heterogeneity of resistance mechanisms.

NGS technique permits the detection of ALK status at baseline
and might be useful when tissue biopsy is not adequate for
immunohistochemistry (IHC) and fluorescent in situ hybridisation
(FISH) analysis, but also to detect different kinds of ALK
rearrangements, including those not detectable by using FISH
method. This approach has been investigated by the BFAST trial, a
phase I/Il study screening 2,219 patients with FoundationOne
Liquid CDx assay and 87 out of 119 ALK-positive patients received
alectinib and the radiological response rate was 87.4% [106]. This
was the formal confirmation of the predictive role of ALK
rearrangements detected in plasma through NGS, while a
concordance of 91% between tissue and plasma evaluation was
shown in patients enrolled in eXalt2 phase I/Il trial investigating
safety and efficacy of ensartinib [107].

Anyway, the most important applications of liquid biopsy in
ALK-positive advanced NSCLC are likely to concern the study of
acquired resistance to ALK inhibition.

Acquired resistance mechanisms to ALK-TKIs are both on-target
and off-target, but on-target mechanisms are highly heteroge-
neous, thus including different ALK mutations and ALK amplifica-
tions. First analyses were retrospective and performed in tissue
small series at progression to crizotinib using targeted
approaches; they showed on-target alterations in less than one-
third of cases and described different ALK acquired mutations. Off-
targets alterations included EGFR mutation/amplification, KIT
overexpression, KRAS mutation and MET amplification [108-110].
Later, a pivotal study performed wide NGS on re-biopsies from 51
patients progressing on crizotinib and second-generation TKIs.
Interestingly, the study enhanced different patterns of acquired
resistance mechanisms following first- or second-generation TKI.
Notably, a higher fraction of patients progressing to second-
generation TKIs developed G1202R resistance mutation, asso-
ciated with sensitivity to lorlatinib [111].

More recent studies on acquired resistance mechanisms to ALK-
TKIs were performed mainly by using liquid biopsy and wider use
of NGS analysis increased the level of information obtained. In
particular, these studies showed heterogeneity of ALK mutations
detected, increased number of mutations acquired after second-
and third-generation TKls, potential underestimation of resistance
mutations in tissue and potential predictive role of ALK mutations
in patients treated with lorlatinib after at least one second-
generation TKIs [112-114]. Among off-target mechanisms, MET
amplification has been demonstrated to be more likely when
patients are treated with new-generation TKIs in first-line setting,
potentially opening new treatment perspectives for the next
future [110].

Finally, the aim of evaluating resistance mechanisms to ALK-TKIs
is to apply a tailored approach to further-line therapies. In this
context, a systematic approach is under evaluation in the NCI-NRG
ALK study (NCT03737994), a phase Il study including tissue and
plasma genotyping by NGS after progression on a second-
generation TKI (ceritinib, alectinib, ensartinib and brigatinib).
Treatment options at the time of progression are designed
according to molecular characterisation: type of acquired single or
compound resistance mutations, MET amplification, absence of
resistance mutations.

In parallel with the discovery of activity and efficacy of new
targeted agents against other driver genetic alterations [115-123],

translational research focuses on the study of acquired resistance
mechanisms. In this context, liquid biopsy seems the preferred
approach associated with tissue re-biopsy, whenever feasible. In
particular, the first reports are available concerning acquired
resistance alterations developed after treatment with KRAS [124],
MET [125] and RET inhibitors [126, 127]. Both on-target and off-
target alterations were described, thus opening further therapeu-
tic perspectives to be developed in the next future.

Another application of liquid biopsy investigated in advanced
NSCLC and potentially not so far from clinical practice is bTMB
evaluation. Several phase Il trials demonstrated the role of ICls,
alone or in combination strategies, in the management of the vast
majority of advanced NSCLC [54, 128], but response and duration
of clinical benefit following ICls are highly heterogeneous and
even potential detrimental effects have been depicted [129].
Treatment selection is needed in order to improve the treatment
approach and minimise the cost of cancer therapy and useless
toxicity. TMB is defined as the total number of non-synonymous
somatic mutations per Mb in the coding region of the cancer
genome and it is associated with the neoplastic production of
neoantigens to be recognised by T immune cells [130]. For this
reason, TMB has the potential to mirror the capacity of tumour
cells to elicit an immune response and it has been correlated to
response to ICls [131]. TMB is optimally determined by using NGS
to sequence all the protein-coding regions of the genes in the
genome, a technique called whole-exome sequencing (WES).
However, WES is highly expensive, requires a high amount of
good quality DNA and high specific expertise for results analysis.
Estimates of TMB can be given by sequencing a more limited
number of genes and selected gene panels have been validated
for this purpose [131]. The predictive role of tissue TMB (tTMB) was
assessed in several retrospective studies, by using it both as a
continuous variable and as a categorical one, by defining different
cut-off points [132-135]. Efficacy by tTMB was also prospectively
evaluated among patients treated with nivolumab plus ipilimu-
mab in Checkmate 568 phase Il trial as a secondary endpoint
[136]. Promising results of this trial were not confirmed in larger
trials. In the Checkmate 227 phase Il trial, tTMB was tested by
using the same method and cut-off value but its predictive value
was not confirmed when considering overall survival as outcome
endpoint; [137, 138] on the other hand, no predictive role has
been observed among patients treated with chemo-
immunotherapy [139].

Smaller evidence is provided concerning the potential clinical
value of bTMB. Pivotal retrospective analysis indicated the
predictive role of bTMB by using three different cut-off values
and evaluating two independent groups of patients treated with
second-line atezolizumab versus docetaxel [31]. Prospective data
on the potential predictive role of bTMB are available in patients
treated with ICls in first-line setting atezolizumab or combination
treatments including durvalumab plus tremelimumab or che-
motherapy [29, 140-143].

Overall, even though data about the potential predictive role of
tTMB are still considered controversial and far from clinical
applicability; technical limits to perform tTMB in small biopsies
suggest that bTMB could be more promising and deserves further
validation in clinical practice. Standardisation of technologies, cut-
off definition and significance of cases with no genetic alterations
detected in plasma need to be pursued, in order not to lose the
opportunity to exploit biological knowledge and the potential role
of TMB in this setting [131, 144].

The potential relevance of TMB is also mirrored by the
performance of harmonisation studies comparing several assays
in order to face over-mentioned technical issues [131, 145-147].

In addition to bTMB, NGS analysis in plasma permits
individuate genetic alterations associated with resistance to
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ICls, such as LKB1/KRAS, LKB1/KEAP1 or LKB1/KEAP1/SMARCA4 co-
mutations [23, 148, 149].

THE DAY AFTER TOMORROW: WHAT WE ARE LOOKING FOR
Despite the increasing amount of evidence available, what we
currently know is likely only the tip of the iceberg of future
applications of liquid biopsy in advanced NSCLC.

What we are looking for is to have as much information as
possible at diagnosis, in order to optimise treatment options and
get predictive information, but also to monitor biological changes
of the disease during treatment.

To this extent, technical improvements are under evaluation, to
permit adequate static and dynamic analysis of multiple genetic
alterations such as CNVs and genomic rearrangements [150].

In the setting of oncogene-addicted disease, the presence of co-
mutations found in plasma at baseline and the persistence of EGFR
mutations in plasma after a short course of treatment could
address the choice of combination treatment, being potentially
associated with shorter benefit from targeted agents
[62, 151, 152]. For example, the presence of TP53 mutations, or
PIK3CA mutations, RBT alterations, FAT tumour suppressor
homolog 1 (FATT), or ATP-binding cassette sub-family B member
1 (ABCBT) mutations in EGFR-mutated patients, potential negative
predictive and prognostic biomarkers, could lead to choose to
administer EGFR-TKIs combined with chemotherapy (and/or
antiangiogenic agents) [151-153]. In this context, future applica-
tions of liquid biopsy are likely to concern the study of primary
resistance to treatment in order to optimise treatment persona-
lisation, also taking into account upcoming treatment options.

On the other side, the systematic evaluation of genetic
alterations in plasma at baseline and at the time of progression
has the potential to provide information concerning predictive
markers and acquired resistance mechanisms in a shorter period
compared to what has happened before by using retrospective
evaluation in tissue. This approach should be encouraged early in
the development of new targeted agents and pursued through
prospective studies in patients treated according to clinical
practice.

In the field of immunotherapy also the liquid microenvironment
deserves further study as a potential predictive marker. As a
matter of fact, pre-treatment T-cell receptor repertoire metrics
could predict response to pembrolizumab and immune-related
toxicity [154].

By the way, the role of liquid biopsy could not be limited to
baseline evaluation. Recent experiences demonstrated a potential
role for quantitative changes in tumour-associated mutations
during treatment as able to mirror changes induced by ICls and
therefore anticipate outcomes to ICls [26, 155]. Our first
experience has been obtained by tracking KRAS mutations by
ddPCR, but confirmation by using NGS is ongoing and, interest-
ingly, early evaluation in plasma could be able to anticipate
potential detrimental effects of ICls [26].

On the other hand, the interest in liquid biopsy in lung cancer
surely goes towards early-stage disease. For surgically resected
patients, a reliable risk assessment evaluation is one of the major
needs, also taking into account the new upcoming treatment
options in the adjuvant settings. Minimal residual disease (MRD)
refers to the persistence of residual cancer cells after treatment, in
the absence of evidence detectable through conventional
investigation, such as medical imaging [156]. The detection of
tumour genetic material in plasma is a promising tool to assess
MRD and information stemming from different sources of genetic
material could optimise the model. Several trials are currently
evaluating MRD assessment in NSCLC patients treated with
curative intent, including the phase Il MERMAID-1
(NCT04385368) [157] and MERMAID-2 trial (NCT04642469) [158].
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Besides, liquid biopsy has potential applications even in the
field of lung cancer screening. If low-dose computerised
tomography (LDCT) has demonstrated a role in lung cancer
screening for heavy-smoker patients [159, 160], the detection of
false-positive cases is one of the major concerns [161]. To
overcome this aspect, a recent study proposed a cfDNA-based
machine-learning method, termed lung cancer likelihood in
plasma (Lung-CLiP) to discriminate early-stage lung cancer
patients from risk-matched controls [162]. Liquid biopsy
approaches tested for application in the field of lung cancer
screening include the analysis of cfDNA methylation to distinguish
between non-tumour and tumour cfDNA [163], the study of
plasma microRNA [164] or the analysis of plasma metabolites
through mass spectrometry [165].

Future directions for liquid biopsy in lung cancer are also
related to the study of other analytes in plasma beyond ctDNA,
which could open new perspectives in the next future. CTCs are
not routinely used in clinical practice and in main translational
studies planned for large clinical trials, due to the low number of
CTCs usually detected in NSCLC. In addition, the detection and
analysis of CTC, although biologically extremely fascinating, has
major technical challenges and require high specific expertise and
more expensive approaches, when compared to ctDNA, and
standardised pre-analytical procedures are not available yet
[166, 167]. CTCs might have negative prognostic value in early-
stage disease; moreover, they could be potentially useful for the
study of PD-L1 expression. Their heterogeneous phenotype and
genotype yield CTCs analysis advantageous to investigate genetic
heterogeneity through a dynamic approach. Finally, the develop-
ment of CTC-cultures and CTC-derived xenograft could be of help
in the research field and even in personalisation of the treatment
approaches [166, 167]. As mentioned above, other analytes with
potentially interesting applications are TEPs, being a potential
source of abundant high-quality RNA. Extracellular vescicles are
also a source of more abundant genetic information when
compared with ctDNA and they are characterised by high stability,
even though DNA extraction procedures are technically more
complex. Finally, microRNA are small non-coding RNA, frequently
deregulated in tumours and they can be detected and analysed in
plasma, even though several technical issues have to be faced
before validation for clinical practice [168-170].

In conclusion, liquid biopsy has huge potentialities in advanced
NSCLC treatment and systematic prospective evaluation of its role,
in parallel to validation of techniques specifically designed for
clinical needs, are one of the main challenges to improve
advanced NSCLC management in the next future.
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