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A complete understanding of the statistics of the work done by quenching a parameter of a quantum many-
body system is still lacking in the presence of an initial quantum coherence in the energy basis. In this case,
the work can be represented by a class of quasiprobability distributions. Here, we try to clarify the genuinely
quantum features of the process by studying the work quasiprobability for an Ising model in a transverse field.
We consider both a global and a local quench, by focusing mainly on the thermodynamic limit. We find that,
while for a global quench there is a symmetric non-contextual representation with a Gaussian probability
distribution of work, for a local quench we can get quantum contextuality as signaled by a negative fourth
moment of the work. Furthermore, we examine the critical features related to a quantum phase transition and
the role of the initial quantum coherence as useful resource.

I. INTRODUCTION

In the last years out-of-equilibrium processes generated
by quenching a parameter of a closed quantum system have
been extensively investigated: Outstanding experiments of
this kind have been realized with ultra-cold atoms [1–3],
and theoretical problems concerning many-body systems
have been examined, such as thermalization and integrabil-
ity [2, 4], the universality of the dynamics across a critical
point [5] and the statistics of the work done [6]. In par-
ticular, the work statistics can be described in terms of the
two-projective measurement scheme [7] if the initial state is
incoherent, i.e., there is no initial quantum coherence in the
energy basis. In contrast, when the initial state is not incoher-
ent there may not be a probability distribution for the work
done as proven by a no-go theorem [8]. This is related to
the quantum contextuality as discussed in Ref. [9]. In sim-
ple terms, the problem is similar to looking for a probability
distribution in phase space for a quantum particle in a cer-
tain quantum state. Since position and momentum are not
compatible observables, in general we get a quasiprobability,
e.g., the well-known Wigner quasiprobability [10]. Concern-
ing the work, which in a thermally isolated quantum system
is equal to the energy change of the system, the role of posi-
tion and momentum is played by the initial and final Hamil-
tonian of the system. Several attempts have been made to
describe the work statistics, among these, quasiprobabilities
have been defined in terms of full-counting statistics [11] and
weak values [12], which can be viewed as particular cases of
a more general quasiprobability introduced in Ref. [13]. In
general, if some fundamental conditions need to be satisfied,
the work will be represented by a class of quasiprobability
distributions [14]. Determining the possible representations
of the work has a fundamental importance: If there is some
quasiprobability that is a non-negative probability, there can
be a non-contextual classical representation of the protocol,
i.e., the process can be not genuinely quantum.

Here, we focus on the statistics of the work done by
quenching a parameter of a many-body system starting from
a nonequilibrium state having coherence in the energy basis.
Although some investigations on the coherence effects have
already been carried out, e.g., in Refs. [15] and [16] the full-
counting statistics and weak values quasiprobabilities have

been examined, the work statistics still remains rather unin-
vestigated especially in many-body systems. Thus, after dis-
cussing the statistics of work and the quantum contextuality
in general in Sec. II, we focus on an Ising model, which we in-
troduce in Sec. III. Our aim is to derive some general features
of global and local quenches present in the thermodynamic
limit thanks to the initial coherence. Furthermore, we are in-
terested to clarify what are the critical features of the work
related to a quantum phase transition: Although several stud-
ies have been performed for initial incoherent states (e.g., on
the large-deviation of work [17–19] and the Ising model [20–
28], just to name a few), also the initial coherence plays a
role, as found in Ref. [15], which is not entirely clear. Thus,
we focus on a global quench starting from a coherent Gibbs
state in Sec. IV, where we show that, unlike a system of finite
size, in the thermodynamic limit the symmetric quasiproba-
bility representation of the work tends to be non-contextual,
in particular we get a Gaussian probability distribution, even
if there are also other quasiprobabilities that take negative
values. In contrast, for a local quench, since the work is not
extensive, there are initial states such that all the quasiprob-
abilities of the class can take negative values as signaled by a
negative fourth moment of the work (see Sec. V). Then, these
processes remain genuinely quantum also in the thermody-
namic limit. Furthermore, we also try to clarify the role of
initial quantum coherence as useful resource for the work
extraction in Sec. VI, showing that, even when the protocol
tends to be non-contextual, the initial coherence still plays
an active role. In the end, we summarize and discuss further
our results in Sec. VII.

II. WORK STATISTICS

We consider a quantum quench, so that the system is ini-
tially in the state 𝜌0 and the time evolution is described
by the unitary operator 𝑈𝑡,0 which is generated by the
time-dependent Hamiltonian 𝐻 (𝜆𝑡 ) where the control pa-
rameter 𝜆𝑡 is changed in the time interval [0, 𝜏]. In de-
tail, 𝑈𝑡,0 = T𝑒−𝑖

∫ 𝑡
0 𝐻 (𝜆𝑠 )𝑑𝑠 , where T is the time order op-

erator and the Hamiltonian can be expressed as 𝐻 (𝜆𝑡 ) =∑
𝑘 𝐸𝑘 (𝜆𝑡 ) |𝐸𝑘 (𝜆𝑡 )⟩⟨𝐸𝑘 (𝜆𝑡 ) | where |𝐸𝑘 (𝜆𝑡 )⟩ is the eigenstate
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with eigenvalue 𝐸𝑘 (𝜆𝑡 ) at the time 𝑡 . For brevity, we define
𝐸𝑖 = 𝐸𝑖 (𝜆0) and 𝐸′

𝑘
= 𝐸𝑘 (𝜆𝜏 ). The average work ⟨𝑤⟩ done on

the system in the time interval [0, 𝜏] can be identified with
the average energy change

⟨𝑤⟩ = Tr
{
(𝐻 (𝐻 ) (𝜆𝜏 ) − 𝐻 (𝜆0))𝜌0

}
, (1)

where, given an operator 𝐴(𝑡) we define the Heisenberg
time evolved operator 𝐴 (𝐻 ) (𝑡) = 𝑈

†
𝑡,0𝐴(𝑡)𝑈𝑡,0. In general,

the work performed in the quench can be represented by
a quasiprobability distribution of work. We recall that if
some Gleason-like axioms are satisfied (see Ref. [14] for
details), for the events 𝐸 ∧ 𝐹 we get the quasiprobability
𝑣 (𝐸, 𝐹 ) = ReTr {𝐸𝐹𝜌0}, but for more than two events, i.e., for
𝐸∧𝐹∧𝐺∧· · · , the quasiprobability is not fixed by the axioms.
However, we can associate a quasiprobability of the form
ReTr {𝐸𝐹𝐺 · · · 𝜌0} to each of all the possible decompositions
of the form 𝐸∧𝐹 , 𝐹 ∧𝐺 ,𝐺∧· · · . By considering this notion of
quasiprobability, if we require that (W1) the quasiprobability
distribution of work reproduces the two-projective measure-
ment scheme in the case of initial incoherent states (i.e., for
states 𝜌0 such that 𝜌0 = Δ(𝜌0), where we have defined the
dephasing map Δ(𝜌0) =

∑
𝑖 |𝐸𝑖⟩⟨𝐸𝑖 |𝜌0 |𝐸𝑖⟩⟨𝐸𝑖 |), (W2) the av-

erage calculated with respect to the quasiprobability is equal
to Eq. (1), and (W3) the second moment is equal to

⟨𝑤2⟩ = Tr
{
(𝐻 (𝐻 ) (𝜆𝜏 ) − 𝐻 (𝜆0))2𝜌0

}
, (2)

the quasiprobability distribution of work belongs to a defined
class [13, 14], i.e., it takes the form

𝑝𝑞 (𝑤) =
∑︁
𝑘,𝑗,𝑖

Re{⟨𝐸𝑖 |𝜌0 |𝐸 𝑗 ⟩⟨𝐸 𝑗 |𝑈 †
𝜏,0 |𝐸

′
𝑘
⟩⟨𝐸′

𝑘
|𝑈𝜏,0 |𝐸𝑖⟩}

×𝛿 (𝑤 − 𝐸′
𝑘
+ 𝑞𝐸𝑖 + (1 − 𝑞)𝐸 𝑗 ) , (3)

where 𝑞 is a real parameter. Our aim is to investigate this
quasiprobability for a many-body system. We can focus on
the characteristic function which is defined as 𝜒𝑞 (𝑢) = ⟨𝑒𝑖𝑢𝑤⟩
and reads

𝜒𝑞 (𝑢) =
1
2

(
𝑋𝑞 (𝑢) + 𝑋1−𝑞 (𝑢)

)
,

where we have defined

𝑋𝑞 (𝑢) = Tr
{
𝑒−𝑖𝑢𝑞𝐻 (𝜆0 )𝜌0𝑒

−𝑖𝑢 (1−𝑞)𝐻 (𝜆0 )𝑒𝑖𝑢𝐻
(𝐻 ) (𝜆𝜏 )

}
. (4)

The moments of work are ⟨𝑤𝑛⟩ = (−𝑖)𝑛𝜕𝑛𝑢 𝜒𝑞 (0), and the
higher moments for 𝑛 > 2 depend on the particular repre-
sentation. In particular we get

⟨𝑤𝑛⟩ = (−𝑖)𝑛𝜕𝑛𝑢 𝜒𝑞 (0) =
(−𝑖)𝑛𝜕𝑛𝑢𝑋𝑞 (0)

2
+
(−𝑖)𝑛𝜕𝑛𝑢𝑋1−𝑞 (0)

2
,

(5)
where (see Appendix A)

(−𝑖)𝑛𝜕𝑛𝑢𝑋𝑞 (0) =

𝑛∑︁
𝑘=0

(−1)𝑛−𝑘
(
𝑛

𝑘

) 𝑛−𝑘∑︁
𝑙=0

(
𝑛 − 𝑘
𝑙

)
𝑞𝑛−𝑘−𝑙 (1 − 𝑞)𝑙

×Tr
{
𝜌0𝐻 (𝜆0)𝑙 (𝐻 (𝐻 ) (𝜆𝜏 ))𝑘𝐻 (𝜆0)𝑛−𝑘−𝑙

}
.(6)

We can consider the problem if there is a classical repre-
sentation, i.e., if there is a non-contextual hidden variables
model which satisfies the conditions about the reproduction
of the two-projective-measurement scheme, the average and
the second moment. To introduce the concept of contextual-
ity at an operational level (see, e.g., Refs. [9, 29]), we consider
a set of preparations procedures 𝑃 and measurements pro-
cedures 𝑀 with outcomes 𝑘 , so that we will observe 𝑘 with
probability 𝑝 (𝑘 |𝑃,𝑀). We aim to reproduce the statistics by
using a set of states 𝜁 that are random distributed in the set
Z with probability 𝑝 (𝜁 |𝑃) every time the preparation 𝑃 is
performed. If, for a given 𝜁 , we get the outcome 𝑘 with the
probability 𝑝 (𝑘 |𝜁 ,𝑀), we are able to reproduce the statistics
if

𝑝 (𝑘 |𝑃,𝑀) =
∫
Z
𝑝 (𝜁 |𝑃)𝑝 (𝑘 |𝜁 ,𝑀)𝑑𝜁 , (7)

and the protocol is called universally non-contextual if
𝑝 (𝜁 |𝑃) is a function of the quantum state alone, i.e.,
𝑝 (𝜁 |𝑃) = 𝑝 (𝜁 |𝜌0), and 𝑝 (𝑘 |𝜁 ,𝑀) depends only on the pos-
itive operator-valued measurement element 𝑀𝑘 associated
to the corresponding outcome of the measurement 𝑀 , i.e.,
𝑝 (𝑘 |𝜁 ,𝑀) = 𝑝 (𝑘 |𝜁 ,𝑀𝑘 ). In our case, the outcome 𝑘 corre-
sponds to the work𝑤𝑘 , and if the protocol is non-contextual
the work distribution can be expressed as

𝑝 (𝑤) =
∑︁
𝑘

𝑝 (𝑘 |𝑃,𝑀)𝛿 (𝑤 −𝑤𝑘 ) , (8)

where 𝑝 (𝑘 |𝑃,𝑀) is given by Eq. (7) with 𝑝 (𝜁 |𝑃) = 𝑝 (𝜁 |𝜌0)
and 𝑝 (𝑘 |𝜁 ,𝑀) = 𝑝 (𝑘 |𝜁 ,𝑀𝑘 ), so that for a negative quasiprob-
ability of work we cannot have a non-contextual protocol.
Thus, a process that cannot be reproduced within any non-
contextual protocol will exhibit genuinely non-classical fea-
tures. If all the quasiprobabilities in the class take nega-
tive values, the protocol is contextual, whereas if there is a
quasiprobability which is non-negative, there can be a non-
contextual representation. We recall that for an initial in-
coherent state 𝜌0 = Δ(𝜌0), we get the two-projective mea-
surement scheme that is non-contextual [9]. In contrast, the
presence of initial quantum coherence in the energy basis can
lead to a contextual protocol. Let us investigate the effects of
the initial quantum coherence by considering a Ising model
in a transverse field.

III. MODEL

We consider a chain of 𝐿 spin 1/2 described by the Ising
model in a transverse field with Hamiltonian

𝐻 (𝜆) = −𝜆
𝐿∑︁
𝑖=1

𝜎𝑧𝑖 −
𝐿∑︁
𝑖=1

𝜎𝑥𝑖 𝜎
𝑥
𝑖+1 , (9)

where we have imposed periodic boundary conditions 𝜎𝛼
𝐿+1 =

𝜎𝛼1 , and 𝜎𝛼
𝑖

with 𝛼 = 𝑥,𝑦, 𝑧 are the Pauli matrices on the site
𝑖 . We note that the parity 𝑃 =

∏𝐿
𝑖=1 𝜎

𝑧
𝑖

is a symmetry of the
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model, i.e., it commutates with the Hamiltonian. The Hamil-
tonian can be diagonalized by performing the Jordan-Wigner
transformation

𝑎𝑖 =

(∏
𝑗<𝑖

𝜎𝑧𝑗

)
𝜎−
𝑖 , (10)

where the fermionic operators 𝑎𝑖 satisfy the anti-
commutation relations {𝑎𝑖 , 𝑎†𝑗 } = 𝛿𝑖, 𝑗 , {𝑎𝑖 , 𝑎 𝑗 } = 0. We
get the Hamiltonian of fermions

𝐻 (𝜆) = −𝜆
𝐿∑︁
𝑖=1

(2𝑎†
𝑖
𝑎𝑖 − 1) −

𝐿−1∑︁
𝑖=1

(𝑎†
𝑖
− 𝑎𝑖 ) (𝑎𝑖+1 + 𝑎†𝑖+1)

+𝑃 (𝑎†
𝐿
− 𝑎𝐿) (𝑎1 + 𝑎†1) , (11)

where the parity reads 𝑃 = 𝑒𝑖𝜋𝑁 and 𝑁 =
∑𝐿
𝑖=1 𝑎

†
𝑖
𝑎𝑖 is the

number operator. We consider the projector 𝑃± on the sector
with parity 𝑃 = ±1, then the Hamiltonian reads

𝐻 (𝜆) = 𝑃+𝐻+ (𝜆)𝑃+ + 𝑃−𝐻− (𝜆)𝑃− . (12)

For the sector with odd parity 𝑃 = −1, we get the Kitaev chain

𝐻− (𝜆) = −𝜆
𝐿∑︁
𝑖=1

(2𝑎†
𝑖
𝑎𝑖 − 1) −

𝐿∑︁
𝑖=1

(𝑎†
𝑖
− 𝑎𝑖 ) (𝑎𝑖+1 + 𝑎†𝑖+1) (13)

with periodic boundary conditions 𝑎𝐿+1 = 𝑎1. We perform a
Fourier transform 𝑎 𝑗 = 1/

√
𝐿
∑
𝑘 𝑒

−𝑖𝑘 𝑗𝑎𝑘 , where 𝑘 = 2𝜋𝑛/𝐿
with 𝑛 = −(𝐿 − 1)/2, . . . , (𝐿 − 1)/2 for 𝐿 odd and 𝑛 = −𝐿/2 +
1, . . . , 𝐿/2 for 𝐿 even. Thus, the Hamiltonian reads

𝐻− (𝜆) =
∑︁
𝑘

Ψ†
𝑘
[−(𝜆 + cos𝑘)𝜎𝑧 + sin𝑘𝜎𝑦] Ψ𝑘 , (14)

where 𝜎𝛼 with 𝛼 = 𝑥,𝑦, 𝑧 are the Pauli matrices and we have
defined the Nambu spinor Ψ𝑘 = (𝑎𝑘 , 𝑎†−𝑘 )

𝑇 . In particular the
Hamiltonian can be written as𝐻− (𝜆) =

∑
𝑘 Ψ

†
𝑘
®𝑑𝑘 · ®𝜎Ψ𝑘 , which,

in the diagonal form, reads

𝐻− (𝜆) =
∑︁
𝑘

𝜖𝑘

(
𝛼
†
𝑘
𝛼𝑘 −

1
2

)
=

∑︁
𝑘

𝜖𝑘𝛼
†
𝑘
𝛼𝑘 + 𝐸− , (15)

where 𝐸− = −∑
𝑘 𝜖𝑘/2. In detail we have performed a rota-

tion with respect to the 𝑥-axis with an angle 𝜃𝑘 between ®𝑑𝑘
and the 𝑧-axis, corresponding to the Bogoliubov transforma-
tion 𝛼𝑘 = cos(𝜃𝑘/2)𝑎𝑘 − 𝑖 sin(𝜃𝑘/2)𝑎†−𝑘 , where 𝜖𝑘 = 2| | ®𝑑𝑘 | |,
or more explicitly,

𝜖𝑘 = 2
√︃
(𝜆 + cos𝑘)2 + sin2 𝑘 . (16)

For the sector with even parity 𝑃 = 1, we get the Hamiltonian
𝐻+ (𝜆) which is equal to the one in Eq. (13) with antiperiodic
boundary conditions 𝑎𝐿+1 = −𝑎1, thus the only difference is
in the momenta 𝑘 which are 𝑘 = 2𝜋 (𝑛−1/2)/𝐿. Of course not
all eigenstates of the Hamiltonians 𝐻± are eigenstates of the
Hamiltonian 𝐻 , and their parity needs to be discussed. Let

us consider 𝐿 even. Thus, in the even parity sector, 𝑘 ∈ 𝐾+,
for each 𝑘 there is −𝑘 , and the eigenstates of the Hamiltonian
are the states

𝛼
†
𝑘1
· · ·𝛼†

𝑘2𝑚
|0̃+⟩ (17)

where𝑚 is an integer, 𝑘𝑖 ∈ 𝐾+ and |0̃+⟩ is the vacuum state of
𝛼𝑘 with 𝑘 ∈ 𝐾+. In contrast, in the odd parity sector, 𝑘 ∈ 𝐾− ,
for each 𝑘 there is −𝑘 except for 𝑘 = 0 and 𝜋 . For 𝜆 < −1
we get 𝛼0 = 𝑎0 and 𝛼𝜋 = 𝑎𝜋 , for 𝜆 > 1 we get 𝛼0 = 𝑎

†
0 and

𝛼𝜋 = 𝑎
†
𝜋 , and for |𝜆 | < 1 we get 𝛼0 = 𝑎

†
0 and 𝛼𝜋 = 𝑎𝜋 . Then,

for |𝜆 | > 1 the vacuum state |0̃−⟩ of 𝛼𝑘 with 𝑘 ∈ 𝐾− has even
parity, and the eigenstates of the Hamiltonian are the states

𝛼
†
𝑘1
· · ·𝛼†

𝑘2𝑚+1
|0̃−⟩ (18)

with 𝑘𝑖 ∈ 𝐾− . Conversely, for |𝜆 | < 1 the vacuum state |0̃−⟩
of 𝛼𝑘 with 𝑘 ∈ 𝐾− has odd parity since has the fermion 𝑎0 but
not 𝑎𝜋 , and the eigenstates of the Hamiltonian are the states

𝛼
†
𝑘1
· · ·𝛼†

𝑘2𝑚
|0̃−⟩ (19)

with 𝑘𝑖 ∈ 𝐾− . Then, for |𝜆 | < 1 both the states |0̃+⟩ and |0̃−⟩
are eigenstates of the Hamiltonian with energies 𝐸+ and 𝐸− ,
so that the ground-state is two-fold degenerate in the thermo-
dynamic limit. Thus, at the points 𝜆 = ±1 we get a second-
order quantum phase transition.

IV. GLOBAL QUENCH

We start to focus on a sudden global quench of the trans-
verse field 𝜆, i.e., 𝜆 is suddenly changed from the value 𝜆0 to
𝜆𝜏 , so that 𝜏 → 0 and𝑈𝜏,0 = 𝐼 . To investigate the role of initial
quantum coherence, we focus on a coherent Gibbs state

|Ψ𝐺 (𝛽)⟩ =
1
√
𝑍

∑︁
𝑗

𝑒−𝛽𝐸 𝑗 /2+𝑖𝜑 𝑗 |𝐸 𝑗 ⟩ , (20)

where 𝐸 𝑗 are the eigenenergies of 𝐻 (𝜆0), 𝜑 𝑗 is a phase,
𝑍 = 𝑍 (𝜆0) and 𝑍 (𝜆) is the partition function defined as
𝑍 (𝜆) = Tr

{
𝑒−𝛽𝐻 (𝜆)}. Of course, the incoherent part of the

state |Ψ𝐺 (𝛽)⟩ is Δ( |Ψ𝐺 (𝛽)⟩⟨Ψ𝐺 (𝛽) |) = 𝜌𝐺 (𝛽), where 𝜌𝐺 (𝛽)
is the Gibbs state 𝜌𝐺 (𝛽) = 𝑒−𝛽𝐻 (𝜆0 )/𝑍 . With the aim to
calculate the characteristic function for an arbitrary size 𝐿,
from Eq. (4) by using the relations

∑
𝑠 𝑃𝑠 = 𝐼 , 𝑃2

𝑠 = 𝑃𝑠 ,
[𝑃𝑠 , 𝐻 (𝜆)] = 0 and [𝑃𝑠 , 𝐻± (𝜆)] = 0, where 𝑠 = ±, it is easy to
see that

𝑋𝑞 (𝑢) =
∑︁
𝑠

Tr
{
𝑒−𝑖𝑢𝑞𝐻𝑠 (𝜆0 )𝑃𝑠𝜌0𝑃𝑠𝑒

−𝑖𝑢 (1−𝑞)𝐻𝑠 (𝜆0 )𝑒𝑖𝑢𝐻
(𝐻 )
𝑠 (𝜆𝜏 )} .

(21)
We get 𝑃𝑠𝜌0𝑃𝑠 = 𝑃𝑠𝜌

𝑠
0, where for the Gibbs state 𝜌𝑠0 =

𝑒−𝛽𝐻𝑠 (𝜆0 )/𝑍 and for the coherent Gibbs state 𝜌𝑠0 = |Ψ𝑠
𝐺
⟩⟨Ψ𝑠

𝐺
|.

In particular, we get

|Ψ𝑠𝐺 ⟩ =
1
√
𝑍

⊗𝑘∈𝐾𝑠
(
𝑒
𝛽𝜖𝑘

4 |0̃𝑘⟩ + 𝑒−
𝛽𝜖𝑘

4 +𝑖𝜙𝑘 |1̃𝑘⟩
)
, (22)
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where we consider a phase such that 𝜙−𝑘 = 𝜙𝑘 , with |�̃�𝑘⟩ =

(𝛼†
𝑘
)𝑛𝑘 |0̃𝑘⟩, where 𝜖𝑘 = 𝜖𝑘 (𝜆0), 𝛼𝑘 = 𝛼𝑘 (𝜆0) and |0̃𝑘⟩ is the

vacuum state for the fermion 𝛼𝑘 . As shown in Appendix B,
we get

𝑋𝑞 (𝑢) =
1
2

∑︁
𝑠

𝑋 𝑠𝑞 (𝑢) + 𝜂𝑠𝑋 ′𝑠
𝑞 (𝑢) , (23)

where we have defined 𝜂𝑠 = 𝑠 ⟨0̃𝑠 |𝑒𝑖𝜋𝑁 |0̃𝑠⟩ which is 𝜂+ = 1
and 𝜂− = −1 for |𝜆0 | > 1 and 𝜂− = 1 for |𝜆0 | < 1, and

𝑋 𝑠𝑞 (𝑢) =
1
𝑍

∏
𝑘∈𝐾𝑠 :𝑘≥0

𝑋
(𝑘 )
𝑞 (𝑢) . (24)

In detail, for 𝑘 > 0 and 𝑘 ≠ 𝜋 , we get

𝑋
(𝑘 )
𝑞 (𝑢) = 𝑋 (𝑘 ),𝑡ℎ

𝑞 (𝑢) + 𝑋 (𝑘 ),𝑐𝑜ℎ
𝑞 (𝑢) , (25)

where 𝑋 (𝑘 ),𝑡ℎ
𝑞 (𝑢) is the incoherent contribution, which reads

𝑋
(𝑘 ),𝑡ℎ
𝑞 (𝑢) = 2

(
cos((𝑢 − 𝑖𝛽)𝜖𝑘 ) cos(𝑢𝜖′

𝑘
) + sin((𝑢 − 𝑖𝛽)𝜖𝑘 )

× sin(𝑢𝜖′
𝑘
)𝑑𝑘 · 𝑑 ′𝑘 + 1

)
(26)

and 𝑋 (𝑘 ),𝑐𝑜ℎ
𝑞 (𝑢) is the coherent contribution, which reads

𝑋
(𝑘 ),𝑐𝑜ℎ
𝑞 (𝑢) = −2𝑖 sin(𝑢𝜖′

𝑘
) sin(𝑢 (2𝑞 − 1)𝜖𝑘 − 2𝜙𝑘 ) (𝑑𝑘 × 𝑑 ′𝑘 )𝑥 ,

(27)
where, for brevity we have defined 𝜖′

𝑘
= 𝜖𝑘 (𝜆𝜏 ), ®𝑑𝑘 = ®𝑑𝑘 (𝜆0)

and ®𝑑 ′
𝑘
= ®𝑑𝑘 (𝜆𝜏 ). Furthermore, we have

𝑋 ′𝑠
𝑞 (𝑢) = 1

𝑍

∏
𝑘∈𝐾𝑠 :𝑘≥0

𝑋
′(𝑘 )
𝑞 (𝑢) (28)

with

𝑋
′(𝑘 )
𝑞 (𝑢) = 𝑋 (𝑘 )

𝑞 (𝑢) − 4 . (29)

In contrast, for 𝑘 = 0 and 𝑘 = 𝜋 , we get

𝑋
(0,𝜋 )
𝑞 (𝑢) = 2 cosh

(
𝛽𝜖0,𝜋 − 𝑖𝑢 (𝑠0,𝜋𝜖

′
0,𝜋 − 𝜖0,𝜋 )

2

)
, (30)

𝑋
′(0,𝜋 )
𝑞 (𝑢) = 2 sinh

(
𝛽𝜖0,𝜋 − 𝑖𝑢 (𝑠0,𝜋𝜖

′
0,𝜋 − 𝜖0,𝜋 )

2

)
, (31)

where 𝑠𝜋 = −1 if |𝜆0 | < 1 and 𝜆𝜏 > 1 or |𝜆𝜏 | < 1 and 𝜆0 > 1,
otherwise 𝑠𝜋 = 1, and 𝑠0 = −1 if |𝜆0 | < 1 and 𝜆𝜏 < −1 or
|𝜆𝜏 | < 1 and 𝜆0 < −1, otherwise 𝑠0 = 1, while the partition
function is

𝑍 =
1
2

∑︁
𝑠

∏
𝑘∈𝐾𝑠

2 cosh(𝛽𝜖𝑘/2) + 𝜂𝑠
∏
𝑘∈𝐾𝑠

2 sinh(𝛽𝜖𝑘/2) . (32)

If the initial quantum coherence does not contribute, i.e.,
𝑋

(𝑘 ),𝑐𝑜ℎ
𝑞 (𝑢) = 0, we get 𝑋 (𝑘 )

𝑞 (𝑢) = 𝑋
(𝑘 ),𝑡ℎ
𝑞 (𝑢) and the char-

acteristic function is the one of the initial Gibbs state 𝜌𝐺 (𝛽).

We get 𝑋 (𝑘 ),𝑐𝑜ℎ
𝑞 (𝑢) = 0 for 𝑞 = 1/2 and 𝜙𝑘 = 𝑛𝜋/2, and in

this case the quasiprobability is non-negative, in particular
it is equivalent to the two-projective-measurement scheme
which is non-contextual. For 𝑞 = 1/2 the initial quantum co-
herence contributes only for𝜙𝑘 ≠ 𝑛𝜋/2 with𝑛 integer. In this
case the quasiprobability can take negative values. However,
in the thermodynamic limit the negativity of the quasiproba-
bility is always subdominant for 𝑞 = 1/2, and we get a Gaus-
sian probability distribution of work. To prove it, we note
that in the thermodynamic limit we get 𝑍 =

∏
𝑘∈𝐾+ 𝑍𝑘 with

𝑍𝑘 = 2 cosh(𝛽𝜖𝑘/2), then

𝑋𝑞 (𝑢) =
∏

𝑘∈𝐾+:𝑘>0

𝑋
(𝑘 )
𝑞 (𝑢)
𝑍 2
𝑘

. (33)

Basically, in the thermodynamic limit the model is equivalent
to the system of fermions with Hamiltonian𝐻+. Thus, we can
write

𝑋𝑞 (𝑢) = 𝑒𝐿𝑔𝑞 (𝑢 ) , (34)

where 𝑔𝑞 (𝑢) is intensive, so that the work is extensive, i.e.,
⟨𝑤𝑛⟩ ∼ 𝐿𝑛 . In particular, for the initial coherent Gibbs state
under consideration, 𝑔𝑞 (𝑢) explicitly reads

𝑔𝑞 (𝑢) =
1

2𝜋

∫ 𝜋

0
ln

(
𝑋

(𝑘 )
𝑞 (𝑢)
𝑍 2
𝑘

)
𝑑𝑘 . (35)

Then, if Eq. (34) holds, regardless of the explicit form of the
intensive function 𝑔𝑞 (𝑢), as 𝐿 → ∞ we can consider

𝑋𝑞 (𝑢) ∼ 𝑒𝐿(𝜕𝑢𝑔𝑞 (0)𝑢+
1
2 𝜕

2
𝑢𝑔𝑞 (0)𝑢2) (36)

since in the calculation of the Fourier transform of 𝑋𝑞 (𝑢)
the dominant contribution of the integral is near 𝑢 = 0,
so that we can expand 𝑔𝑞 (𝑢) in Taylor series about 𝑢 = 0,
and thus the neglected terms in Eq. (36) do not contribute
in the asymptotic formula of the quasiprobability 𝑝𝑞 (𝑤). We
note that, although the characteristic function 𝜒𝑞 (𝑢) depends
on 𝑞, the first two moments do not depend on 𝑞. In par-
ticular, we note that the relative fluctuations of work scale
as 𝜎𝑤/⟨𝑤⟩ ∼ 1/

√
𝐿, where we have defined the variance

𝜎2
𝑤 = ⟨𝑤2⟩ − ⟨𝑤⟩2. By noting that 𝜕𝑢𝑔𝑞 (0) does not depend

on 𝑞 and 𝜕2
𝑢𝑔1−𝑞 (0) = 𝜕2

𝑢𝑔
∗
𝑞 (0), we get the quasiprobability of

work

𝑝𝑞 (𝑤) ∼ 1
√

2𝜋
Re ©«𝑒

− (𝑤−�̄�)2
2𝑣𝑞

√
𝑣𝑞

ª®¬ , (37)

where �̄� = −𝑖𝜕𝑢𝑔𝑞 (0)𝐿 and 𝑣𝑞 = −𝜕2
𝑢𝑔𝑞 (0)𝐿. In particular

the average work is ⟨𝑤⟩ = �̄� and the variance 𝜎2
𝑤 is the real

part of 𝑣𝑞 , i.e., 𝑣𝑞 = 𝜎2
𝑤 + 𝑖𝑟𝑞 . As shown in Fig. 1, for 𝑞 ≠

1/2 the asymptotic formula of the quasiprobability can take
negative values due to the presence of the imaginary part 𝑟𝑞 .
In contrast, for𝑞 = 1/2, we get 𝜒1/2 (𝑢) = 𝑋1/2 (𝑢), from which
𝜎2
𝑤 = −𝜕2

𝑢𝑔1/2 (0)𝐿, i.e., 𝑟1/2 = 0 and thus we get the Gaussian
probability distribution

𝑝1/2 (𝑤) ∼ 𝑒
− (𝑤−�̄�)2

2𝜎2
𝑤

√
2𝜋𝜎𝑤

. (38)
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FIG. 1. The quasiprobability of work in Eq. (37) for different values
of 𝑞. We put 𝐿 = 50, 𝛽 = 1, 𝜆0 = 0.9, 𝜆𝜏 = 1.1 and 𝜙𝑘 = 0.

It is worth noting that the protocol tends to be non-
contextual. To prove it, we consider the operator Δ𝐻 =

𝐻 (𝐻 ) (𝜆𝜏 ) − 𝐻 (𝜆0), and the probability distribution

𝑝 (Δ𝐸) =
∑︁
𝜇

⟨Δ𝐸𝜇 |𝜌0 |Δ𝐸𝜇⟩𝛿 (Δ𝐸 − Δ𝐸𝜇) , (39)

where |Δ𝐸𝜇⟩ is the eigenstate of Δ𝐻 with eigenvalue Δ𝐸𝜇 .
Of course 𝑝 (Δ𝐸) is non-contextual, and it is easy to see that
𝑝1/2 (𝑤) ∼ 𝑝 (𝑤) as 𝐿 → ∞. Thus, the work tends to be
an observable with respect to the non-contextual symmet-
ric representation, differently from finite sizes, where it is
not, as was originally noted for incoherent initial states in
Ref. [7]. In particular for the quench considered, we have
Δ𝐻 = (𝜆𝜏 − 𝜆0)𝑆𝑧 , where 𝑆𝑧 =

∑𝐿
𝑗=1 𝜎

𝑧
𝑗
, so that the symmet-

ric representation for 𝑞 = 1/2 tends to be equivalent to the
distribution probability of the transverse magnetization 𝑆𝑧 .
We emphasize that for small sizes 𝐿 the quasiprobability at
𝑞 = 1/2 can take negative values, but for large 𝐿 it is well
described by the Gaussian probability distribution in Eq. (38)
(see Fig. 2). We note that for an arbitrary initial state the
representation for 𝑞 = 1/2 is still non-contextual (see Ap-
pendix C). In general, the negativity of the quasiprobability
𝑝𝑞 (𝑤) can be characterized by the integral

N ≡
∫

|𝑝𝑞 (𝑤) |𝑑𝑤 , (40)

which is equal to one if 𝑝𝑞 (𝑤) ≥ 0. In our case, N ∼ (𝜎4
𝑤+𝑟 2

𝑞 )
1
4

𝜎𝑤
,

so that N = 1 implies that 𝑟𝑞 = 0 and thus 𝑝𝑞 (𝑤) ≥ 0.
We note that N = 1 implies in general that 𝑝𝑞 (𝑤) ≥ 0
(see Appendix D). In the end we note that the effects re-
lated to the negativity of the quasiprobability start to affect
the statistics from the fourth moment, which reads ⟨𝑤4⟩ ∼
�̄�4 + 6�̄�2𝜎2

𝑤 + 3𝜎4
𝑤 − 3𝑟 2

𝑞 . In contrast the first three mo-
ments do not depend on 𝑟𝑞 , explicitly they read ⟨𝑤⟩ = �̄� ,
⟨𝑤2⟩ = �̄�2+𝜎2

𝑤 and ⟨𝑤3⟩ ∼ �̄�3+3�̄�𝜎2
𝑤 . In particular, the kur-

tosis is Kurt ≡ ⟨(𝑤−⟨𝑤⟩)4⟩/𝜎4
𝑤 ∼ 3−3𝑟 2

𝑞/𝜎4
𝑤 which is always

smaller than 3 if 𝑟𝑞 ≠ 0, i.e., the distribution is more ‘flat’
than the normal one. We note that if �̄� ≠ 0, since �̄� ∼ 𝐿 and
𝜎2
𝑤 ∼ 𝐿, the fourth moment is always positive. On the other

hand, for �̄� = 0, the fourth moment reads ⟨𝑤4⟩ ∼ 3𝜎4
𝑤 − 3𝑟 2

𝑞

and becomes negative for 𝑟𝑞 > 𝜎2
𝑤 , so that in this regime the

-8 -6 -4 -2 0 2
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FIG. 2. The histogram of the work distribution. We put 𝐿 = 10 in
the top panel, 𝐿 = 50 in the bottom panel, 𝑞 = 1/2, 𝛽 = 1, 𝜆𝜏 = 1.5,
𝜆0 = 0.5 and 𝜙𝑘 = 𝜋/4. The red line corresponds to the Gaussian
distribution probability in Eq. (38). We note that for 𝐿 = 50 there
is still some skewness. The histograms are calculated by using the
characteristic function of Eq. (23).

negativity for 𝑞 ≠ 1/2 will be strong. To conclude our in-
vestigation concerning the global quench, we note that the
average work reads

�̄� =
(𝜆0 − 𝜆𝜏 )𝐿

𝜋

∫ 𝜋

0

(𝜆0 + cos𝑘) sinh(𝛽𝜖𝑘 ) + sin𝑘 sin(2𝜙𝑘 )
𝜖𝑘 cosh2 (𝛽𝜖𝑘/2)

𝑑𝑘

(41)
and the variance reads

𝜎2
𝑤 =

(𝜆0 − 𝜆𝜏 )2𝐿

𝜋

∫ 𝜋

0

1
cosh4 (𝛽𝜖𝑘/2)

(
cosh2 (𝛽𝜖𝑘/2)

× cosh(𝛽𝜖𝑘 ) −
2
𝜖2
𝑘

(
sin𝑘 sin(2𝜙𝑘 ) + (𝜆0 + cos𝑘)

× sinh(𝛽𝜖𝑘 )
)2

)
𝑑𝑘 . (42)

Both �̄� and 𝜎2
𝑤 are not regular at |𝜆0 | = 1 for 𝜙𝑘 = 𝜙 ≠ 𝑛𝜋/2

due to the presence of a quantum phase transition (see Fig. 3).
Furthermore, concerning the negativity of the quasiprobabil-
ity of work, we have

𝑟𝑞 =
2(1 − 2𝑞) (𝜆𝜏 − 𝜆0)𝐿

𝜋

∫ 𝜋

0

sin𝑘 cos(2𝜙𝑘 )
cosh2 (𝛽𝜖𝑘/2)

𝑑𝑘 , (43)

which is regular. We deduce that the protocol admits a non-
contextual description, i.e., 𝑟𝑞 = 0, for any 𝑞 and 𝜙𝑘 = (2𝑛 +



6

L=4

L=10

L=50

L→∞

0.90 0.95 1.00 1.05 1.10

-0.72

-0.70

-0.68

-0.66

-0.64

-0.62

λ0

〈w
〉/
(δ
λ
L
)

0.90 0.95 1.00 1.05 1.10

0.55

0.60

0.65

0.70

λ0

σ
w2
/(
δ
λ
2 L

)

FIG. 3. The average work �̄� and the variance 𝜎2
𝑤 in the function of

𝜆0 for different values of 𝐿. We put 𝛽 = 1, 𝛿𝜆 = 𝜆𝜏 − 𝜆0 = 0.1, and
𝜙𝑘 = 𝜋/4. The values for finite sizes 𝐿 are calculated by using the
characteristic function of Eq. (23).

1)𝜋/4 or for 𝑞 = 1/2. In the end, to investigate the critical
features of the work which can be related to the presence of
the quantum phase transition, we introduce the energy scale
𝐽 such the Hamiltonian reads

𝐻 𝐽 (𝜆) = −𝐽𝜆
𝐿∑︁
𝑖=1

𝜎𝑧𝑖 − 𝐽
𝐿∑︁
𝑖=1

𝜎𝑥𝑖 𝜎
𝑥
𝑖+1 . (44)

We focus on 𝜆0 ≈ 1 and we start to consider the average work
given by Eq. (41) multiplied by 𝐽 . Then, we change variable
𝑘 ′ = 𝜋 − 𝑘 in the integral and we define 𝜅 = 𝑘 ′/𝑎, and the
renormalized couplings 𝐽 = 𝑐/(2𝑎) and 𝜆0 = 1 −𝑚𝑐𝑎. In the
scaling limit 𝑎 → 0, we get

�̄� ∼ 𝐽 (𝜆0 − 𝜆𝜏 )𝑎𝐿
2𝜋

∫ 𝜋
𝑎

0

𝜅 sin(2𝜙𝜋 ) − 𝑐𝑚 sinh(𝛽𝑐𝜔𝜅)
𝜔𝜅 cosh2 (𝛽𝑐𝜔𝜅/2)

𝑑𝜅 ,

(45)
where 𝜔𝜅 =

√
𝜅2 + 𝑐2𝑚2. We note that the integral extended

to the interval [0,∞) does not converge. Thus the integral
is not determined only by small 𝜅, and the behavior is not
universal. Similarly, concerning the variance 𝜎2

𝑤 , the integral
extended to the interval [0,∞) does not converge, so that it is
not universal. The coherent contribution to the average work
is defined as

�̄�𝑐𝑜ℎ = �̄� − �̄�𝑡ℎ , (46)

where �̄�𝑡ℎ is the average work corresponding to the initial
state 𝜌0 = 𝜌𝐺 (𝛽). Then, the coherent contribution is given
by the term proportional to sin(2𝜙𝜋 ) in Eq. (45), i.e.,

�̄�𝑐𝑜ℎ ∼ 𝐽 (𝜆0 − 𝜆𝜏 )𝑎𝐿
2𝜋

∫ 𝜋
𝑎

0

𝜅 sin(2𝜙𝜋 )
𝜔𝜅 cosh2 (𝛽𝑐𝜔𝜅/2)

𝑑𝜅 . (47)

In this case we can extend the integral to the interval [0,∞),
so that the coherent contribution �̄�𝑐𝑜ℎ is described by the
continuum model, in this sense it is a universal feature. From
Eq. (47), by noting that∫ ∞

0

𝑦√︁
1 + 𝑦2 cosh2 (𝑥

√︁
1 + 𝑦2/2)

𝑑𝑦 =
4

(1 + 𝑒 |𝑥 | ) |𝑥 |
, (48)

the coherent contribution to the average work can be ex-
pressed as

�̄�𝑐𝑜ℎ ∼ (𝜆0 − 𝜆𝜏 ) sin(2𝜙𝜋 )𝐿
𝜋𝛽

𝑔𝐹𝐷 (𝛽𝑚𝑐2) , (49)

where we have defined the Fermi-Dirac distribution
𝑔𝐹𝐷 (𝑥) = 1/(1 + 𝑒 |𝑥 | ) and 𝑚𝑐2 = 2𝐽 (1 − 𝜆0). In the end, let
us consider the limit of high temperatures 𝛽 → 0, so that we
get

𝑔𝑞 (𝑢) =
1

2𝜋

∫ 𝜋

0
ln

1
2

(
cos(𝑢𝜖𝑘 ) cos(𝑢𝜖′

𝑘
) + sin(𝑢𝜖𝑘 ) sin(𝑢𝜖′

𝑘
)

×𝑑𝑘 · 𝑑 ′𝑘 + 1 − 𝑖 sin(𝑢𝜖′
𝑘
) sin(𝑢 (2𝑞 − 1)𝜖𝑘 − 2𝜙𝑘 )

×(𝑑𝑘 × 𝑑 ′𝑘 )𝑥
)
𝑑𝑘 . (50)

For 𝜙𝑘 = 𝜙 , we get the closed form of the derivatives

𝜕𝑢𝑔𝑞 (0) = −𝑖 (𝜆𝜏 − 𝜆0)
2𝜋 |𝜆0 |

sin(2𝜙) (1 + |𝜆0 | − |1 − |𝜆0 | |) , (51)

𝜕2
𝑢𝑔𝑞 (0) = −(𝜆𝜏 − 𝜆0)2

(
1 − 1

8𝜆2
0

(
1 + 𝜆2

0 − (1 + |𝜆0 |) |1 − |𝜆0 | |
)

× sin2 (2𝜙)
)
− 4𝑖
𝜋
(𝜆𝜏 − 𝜆0) (1 − 2𝑞) cos(2𝜙) , (52)

from which it is evident that the work statistics is not regular
at |𝜆0 | = 1 for𝜙 ≠ 𝑛𝜋/2. Of course in this limit we can extract
the work𝑊𝑒𝑥 = −⟨𝑤⟩, equals to

𝑊𝑒𝑥 =
(𝜆𝜏 − 𝜆0)𝐿

2𝜋 |𝜆0 |
sin(2𝜙) (1 + |𝜆0 | − |1 − |𝜆0 | |) , (53)

only because of the presence of the initial coherence, other-
wise for an initial Gibbs state we will get ⟨𝑤⟩ = 0.

V. LOCAL QUENCH

Things change drastically when the work is non-extensive,
e.g., for a local quench. We focus on the case of a sudden
quench in the transverse field, i.e., the initial Hamiltonian is
𝐻 = 𝐻 (𝜆0) and we perform a sudden quench of the transverse
field in a site 𝑙 , so that the final Hamiltonian is 𝐻 ′ = 𝐻 (𝜆0) −
𝜖𝜎𝑧
𝑙
. Since we are interested only to large sizes 𝐿, we describe

the model with the corresponding fermionic Hamiltonian𝐻+.
Here we are interested to investigate how contextuality can
emerge in a local quench, thus we focus on the states |Ψ1 (𝛽)⟩
and |Ψ2 (𝛽)⟩, which are defined as

|Ψ1 (𝛽)⟩ =
𝑒
𝛽

4
∑
𝑘 𝜖𝑘

√
𝑍1

exp

(∑︁
𝑘

𝑒−
𝛽𝜖𝑘

2 +𝑖𝜙𝑘𝛼†
𝑘

)
|0̃+⟩ (54)
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FIG. 4. The fourth moment of work ⟨𝑤4⟩ in the function of the local
field 𝜖 for 𝑞 = 1/2 for the states |Ψ1 (𝛽)⟩ (top panel) and |Ψ2 (𝛽)⟩
(bottom panel). The curves for other values of 𝑞 ∈ [0, 1/2] are not
distinguishable by eye from the one for 𝑞 = 1/2. We put 𝐿 = 50,
𝜆0 = 1, 𝜙𝑘 = 𝜙−𝑘 = 𝜋 and 𝜙𝑘 = 𝜙−𝑘 = 0 for 𝑛 odd and even, where
𝑘 = 2𝜋 (𝑛 − 1/2)/𝐿.

and

|Ψ2 (𝛽)⟩ =
𝑒
𝛽

4
∑
𝑘 𝜖𝑘

√
𝑍2

(
1 +

∑︁
𝑘

𝑒−
𝛽𝜖𝑘

2 +𝑖𝜙𝑘𝛼†
𝑘

+1
2

∑︁
𝑘,𝑘 ′

𝑠𝑘,𝑘 ′𝑒
− 𝛽 (𝜖𝑘 +𝜖𝑘′ )

2 +𝑖 (𝜙𝑘+𝜙𝑘′ )𝛼†
𝑘
𝛼
†
𝑘 ′

)
|0̃+⟩ ,(55)

where 𝑠𝑘,𝑘 ′ = 1 if 𝑘 > 𝑘 ′, 𝑠𝑘,𝑘 ′ = −1 if 𝑘 < 𝑘 ′ and 𝑠𝑘,𝑘 = 0, and
𝑍1 and 𝑍2 are normalization factors such that 𝑍 ∼ 𝑍2 ∼ 𝑍1 as
𝛽 → ∞. Indeed, |Ψ𝐺 (𝛽)⟩ ∼ |Ψ2 (𝛽)⟩ ∼ |Ψ1 (𝛽)⟩ as 𝛽 → ∞.
In general, for these initial states, the function 𝑋𝑞 (𝑢) can
be calculated with the help of Grassmann variables (see Ap-
pendix E). While for the initial state |Ψ1 (𝛽)⟩, we find that
the fourth moment of work is positive, for the initial state
|Ψ2 (𝛽)⟩, we find that the fourth moment of work can be neg-
ative for 𝛽 small enough (see Fig. 4). This suggests that to
get a contextual protocol with a negative fourth moment we
need to start from an initial state which involves at least
couples of quasiparticles, e.g., such as |Ψ2 (𝛽)⟩. This result
is corroborated by considering states like |Ψ1 (𝛽)⟩ but with
random coefficients instead of 𝑒−

𝛽𝜖𝑘
2 +𝑖𝜙𝑘 , for which we get a

non-negative fourth moment for the local quench.

VI. INITIAL QUANTUM COHERENCE

To conclude we investigate further the role of initial co-
herence by focusing on an initial state 𝜌0 with a thermal in-

coherent part, i.e., Δ(𝜌0) = 𝜌𝐺 (𝛽). In general, we have the
equality (see Ref. [13])

⟨𝑒−𝛽𝑤−𝐶⟩ = 𝑒−𝛽Δ𝐹 , (56)

where Δ𝐹 = 𝐹 (𝜆𝜏 ) − 𝐹 (𝜆0) is the change in the equilibrium
free energy, where 𝐹 (𝜆) = −𝛽−1 ln𝑍 (𝜆), and𝐶 is the random
quantum coherence that has the probability distribution

𝑝𝑐 (𝐶) =
∑︁
𝑖,𝑛

𝑅𝑛 |⟨𝐸𝑖 |𝑅𝑛⟩|2 𝛿 (𝐶 + ln⟨𝐸𝑖 |𝜌0 |𝐸𝑖⟩ − ln𝑅𝑛) , (57)

where we have considered the decomposition 𝜌0 =∑
𝑛 𝑅𝑛 |𝑅𝑛⟩⟨𝑅𝑛 |. In detail, the average of 𝐶 is the relative en-

tropy of coherence ⟨𝐶⟩ = 𝑆 (Δ(𝜌0)) −𝑆 (𝜌0), where 𝑆 (𝜌) is the
von Neumann entropy defined as 𝑆 (𝜌) = −Tr {𝜌 ln 𝜌}, and
we have the equality ⟨𝑒−𝐶⟩ = 1. In particular, from Eq. (56),
we get the inequality ⟨𝑤⟩ ≥ Δ𝐹 − 𝛽−1⟨𝐶⟩, and we note that
Eq. (56) reduces to the Jarzynski equality [30] ⟨𝑒−𝛽𝑤⟩ = 𝑒−𝛽Δ𝐹
when 𝜌0 = 𝜌𝐺 (𝛽). From Eq. (56) we get

Δ𝐹 = 𝛽−1
∞∑︁
𝑛=1

(−1)𝑛+1

𝑛!
𝜅𝑛 (𝑠) , (58)

where𝜅𝑛 (𝑠) is the nth cumulant of 𝑠 = 𝛽𝑤+𝐶 which of course
it can be expressed in terms of expectation values of work and
coherence: The cumulants𝜅𝑛 (𝐶) of𝐶 cancel in the sum due to
the equality ⟨𝑒−𝐶⟩ = 1, and only work cumulants 𝜅𝑛 (𝑤) (e.g.,
the variance 𝜎2

𝑤) and correlation terms (e.g., the covariance
𝜎𝑤,𝐶 = ⟨𝑤𝐶⟩ − ⟨𝑤⟩⟨𝐶⟩) are present. For instance, if work and
coherence are uncorrelated, we get 𝜅𝑛 (𝑠) = 𝛽𝑛𝜅𝑛 (𝑤) +𝜅𝑛 (𝐶)
and so Δ𝐹 =

∑∞
𝑛=1 (−1)𝑛+1𝛽𝑛−1𝜅𝑛 (𝑤)/𝑛! and the coherence

does not appear. If we consider a Gaussian probability distri-
bution for the random variable 𝑠 , we get

Δ𝐹 = ⟨𝑤⟩ −
𝛽𝜎2

𝑤

2
− 𝜎𝑤,𝐶 . (59)

For a given free energy change Δ𝐹 , from Eq. (59) we see
that the average work extracted 𝑊𝑒𝑥 = −⟨𝑤⟩ in the pro-
cess increases as the fluctuation of work becomes weak, i.e.,
the variance 𝜎2

𝑤 decreases, and the work and coherence be-
come strongly negative correlated, i.e., 𝜎𝑤,𝐶 < 0, which clar-
ifies the role of initial quantum coherence as useful resource.
However, we note that Eq. (59) cannot be exactly satisfied
for a global quench because we have to take into account
also higher work cumulants and correlations which will con-
tribute to the series in Eq. (58) due to large deviations. In
particular, if we focus on the high temperature limit 𝛽 → 0,
Eq. (58) reduces to

⟨𝑤⟩ = Δ𝐹 +
∞∑︁
𝑘=1

𝑖𝑘+1

𝑘!
𝜕𝑘𝑡 𝜕𝑢𝐺 (0, 0) , (60)

where we have defined the function 𝐺 (𝑢, 𝑡) = ln⟨𝑒𝑖𝑢𝑤+𝑖𝑡𝐶⟩.
The derivatives are correlation terms, e.g., 𝜕𝑡 𝜕𝑢𝐺 (0, 0) =

−𝜎𝑤,𝐶 , 𝜕2
𝑡 𝜕𝑢𝐺 (0, 0) = 2𝑖⟨𝐶⟩𝜎𝑤,𝐶 − 𝑖𝜎𝑤,𝐶2 and 𝜕3

𝑡 𝜕𝑢𝐺 (0, 0) =

3(2⟨𝐶⟩2 − ⟨𝐶2⟩)𝜎𝑤,𝐶 − 3⟨𝐶⟩𝜎𝑤,𝐶2 + 𝜎𝑤,𝐶3 . For the initial state



8

𝜌0 = 𝜂 |Ψ𝐺 (0)⟩⟨Ψ𝐺 (0) |+(1−𝜂)𝜌𝐺 (0), we get the characteristic
function of the coherence (see Appendix F)

⟨𝑒𝑖𝑡𝐶⟩ = 𝐷𝑖𝑡
((
𝜂 + 1 − 𝜂

𝐷

)𝑖𝑡+1
+ (𝐷 − 1)

(
1 − 𝜂
𝐷

)𝑖𝑡+1
)
, (61)

where 𝐷 is the dimension of the Hilbert space. Furthermore,
by considering

⟨𝑒𝑖𝑢𝑤+𝑖𝑡𝐶⟩ = Tr{𝜌0𝑒
𝑖𝑡 ln 𝜌0𝑒−𝑖𝑢𝐻/2−𝑖𝑡 lnΔ(𝜌0 )/2𝑒𝑖𝑢𝐻

′

×𝑒−𝑖𝑢𝐻/2−𝑖𝑡 lnΔ(𝜌0 )/2} , (62)

where for brevity we have defined 𝐻 = 𝐻 (𝜆0) and 𝐻 ′ =

𝐻 (𝐻 ) (𝜆𝜏 ), we get

−𝑖𝜕𝑢𝐺 (0, 𝑡) =

(
𝜂 + 1−𝜂

𝐷

)𝑖𝑡+1
𝑤1 + (𝐷 − 1)

(
1−𝜂
𝐷

)𝑖𝑡+1
𝑤2(

𝜂 + 1−𝜂
𝐷

)𝑖𝑡+1
+ (𝐷 − 1)

(
1−𝜂
𝐷

)𝑖𝑡+1 ,

(63)
where 𝑤1 = ⟨Ψ𝐺 (0) | (𝐻 ′ − 𝐻 ) |Ψ𝐺 (0)⟩ is the average work
done starting from the coherent Gibbs state, which can be ex-
pressed as 𝑤1 = (⟨𝑤⟩ − (1 − 𝜂)Δ𝐹 ) /𝜂, and 𝑤2 = 𝐷Δ𝐹 −𝑤1,
where Δ𝐹 = Tr {𝐻 (𝜆𝜏 ) − 𝐻 (𝜆0)} /𝐷 . Thus, the terms in
Eq. (60) can be obtained by calculating the derivatives of
Eq. (63) with respect to 𝑡 . We note that for the Ising model
we get Δ𝐹 = 0, so that in this limit the work extracted, i.e.,
Eq. (53) multiplied by 𝜂, completely comes from the corre-
lations between work and coherence. Of course, the same
situation occurs for a cyclic change of any Hamiltonian, i.e.,
such that 𝐻 (𝜆𝜏 ) = 𝐻 (𝜆0).

VII. CONCLUSIONS

We investigated the effects of the initial quantum coher-
ence in the energy basis to the work done by quenching a
transverse field of a one-dimensional Ising model. The work
can be represented by considering a class of quasiprobabil-
ity distributions. To study how the work statistics changes
with the increasing of the system size, we calculated the ex-
act formula of the characteristic function of work for an arbi-
trary size by imposing periodic boundary conditions. Then,
we focused on the thermodynamic limit, and we showed that,
for an initial coherent Gibbs state, by neglecting subdomi-
nant terms for the symmetric value 𝑞 = 1/2 we get a Gaus-
sian probability distribution of work, and so a non-contextual
protocol. However, for 𝑞 ≠ 1/2, the quasiprobability of
work can take negative values depending on the initial state.
In contrast, for a local quench there are initial states such
that any quasiprobability representation in the class is con-
textual as signaled by a negative fourth moment. We note
that the quasiprobability distribution can be measured exper-
imentally in different ways [13, 14], also by using a qubit (see
Appendix G). In the end, beyond the fundamental purposes
of the paper, it is interesting to understand if the contextual-
ity can be related to some advantages from a thermodynamic
point of view, however further investigations are needed to

going in this direction. In particular, although the protocol
tends to be non-contextual in the thermodynamic limit for a
global quench, the initial quantum coherence can be still a
useful resource for the work extraction in the protocol when
it is correlated with the work.
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Appendix A: Work moments

Let us derive a closed formula for the work moments. We
define𝐻 = 𝐻 (𝜆0) and𝐻 ′ = 𝐻 (𝐻 ) (𝜆𝜏 ). The nth work moment
can be calculated as

⟨𝑤𝑛⟩ = (−𝑖)𝑛𝜕𝑛𝑢 𝜒𝑞 (0) =
(−𝑖)𝑛𝜕𝑛𝑢𝑋𝑞 (0)

2
+
(−𝑖)𝑛𝜕𝑛𝑢𝑋1−𝑞 (0)

2
(A1)

To calculate (−𝑖)𝑛𝜕𝑛𝑢𝑋𝑞 (0), we note that

𝑋𝑞 (𝑢) = Tr
{
𝜌0 (𝑢)𝑒𝑖𝑢𝐻

′
}

(A2)

where we have defined

𝜌0 (𝑢) = 𝑒−𝑖𝑢𝑞𝐻𝜌0𝑒
−𝑖𝑢 (1−𝑞)𝐻 (A3)

Then

(−𝑖)𝑛𝜕𝑛𝑢𝑋𝑞 (𝑢) =
𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
Tr

{
((−𝑖)𝑛−𝑘 𝜕𝑛−𝑘𝑢 𝜌0 (𝑢))𝐻 ′𝑘𝑒𝑖𝑢𝐻

′
}

(A4)
where we have noted that (−𝑖)𝑘 𝜕𝑘𝑢𝑒𝑖𝑢𝐻

′
= 𝐻 ′𝑘𝑒𝑖𝑢𝐻

′ . It is easy
to see that

(−𝑖)𝑛𝜕𝑛𝑢𝜌0 (𝑢) = (−1)𝑛
𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
(𝑞𝐻 )𝑛−𝑘𝜌0 (𝑢) ((1 − 𝑞)𝐻 )𝑘

(A5)
from which

(−𝑖)𝑛𝜕𝑛𝑢𝑋𝑞 (0) =

𝑛∑︁
𝑘=0

(−1)𝑛−𝑘
(
𝑛

𝑘

) 𝑛−𝑘∑︁
𝑙=0

(
𝑛 − 𝑘
𝑙

)
𝑞𝑛−𝑘−𝑙 (1 − 𝑞)𝑙

×Tr
{
𝐻𝑛−𝑘−𝑙𝜌0𝐻

𝑙𝐻 ′𝑘
}

(A6)

Appendix B:Quasiprobability of work

We consider two different initial states, a Gibbs state 𝜌𝐺 =

𝑒−𝛽𝐻 (𝜆0 )/𝑍 , and a coherent Gibbs state |Ψ𝐺 ⟩. In particular,
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for 𝜙 𝑗 = 0, the state |Ψ𝑠
𝐺
⟩ in Eq. (22) reads

|Ψ𝑠𝐺 ⟩ =
1
√
𝑍

⊗𝑘∈𝐾𝑠
(
𝑒
𝛽𝜖𝑘

4 |0̃𝑘⟩ + 𝑒−
𝛽𝜖𝑘

4 |1̃𝑘⟩
)

(B1)

It can be expressed as

|Ψ+
𝐺 ⟩ =

1
√
𝑍

(⊗𝑘>0 |Ψ𝑘⟩) (B2)

|Ψ−
𝐺 ⟩ =

1
√
𝑍

(⊗𝑘>0 |Ψ𝑘⟩) ⊗ |Ψ0⟩ ⊗ |Ψ𝜋 ⟩ (B3)

where |Ψ𝑘⟩ =

(
|0̃𝑘⟩ + 𝑒−

𝛽𝜖𝑘
2 |1̃𝑘⟩

)
⊗

(
𝑒
𝛽𝜖𝑘

2 |0̃−𝑘⟩ + |1̃−𝑘⟩
)
.

Thus, by noting that 𝑃𝑠 = (𝐼 + 𝑠𝑒𝑖𝜋𝑁 )/2, and 𝑒𝑖𝜋𝑁 =

⟨0̃𝑠 |𝑒𝑖𝜋𝑁 |0̃𝑠⟩𝑒𝑖𝜋
∑
𝑘∈𝐾𝑠 𝛼

†
𝑘
𝛼𝑘 , we get

𝑋𝑞 (𝑢) =
1
2

∑︁
𝑠

Tr
{
𝑒−𝑖𝑢𝑞𝐻𝑠 (𝜆0 )𝜌𝑠0𝑒

−𝑖𝑢 (1−𝑞)𝐻𝑠 (𝜆0 )𝑒𝑖𝑢𝐻
(𝐻 )
𝑠 (𝜆𝜏 )}

+𝜂𝑠Tr
{
𝑒−𝑖𝑢𝑞𝐻𝑠 (𝜆0 )𝑒𝑖𝜋

∑
𝑘∈𝐾𝑠 𝛼

†
𝑘
𝛼𝑘 𝜌𝑠0𝑒

−𝑖𝑢 (1−𝑞)𝐻𝑠 (𝜆0 )

×𝑒𝑖𝑢𝐻
(𝐻 )
𝑠 (𝜆𝜏 )} (B4)

where we have defined 𝜂𝑠 = 𝑠 ⟨0̃𝑠 |𝑒𝑖𝜋𝑁 |0̃𝑠⟩. Let us focus on
the first term in the sum over 𝑠 , which is

𝑋 𝑠𝑞 (𝑢) = Tr
{
𝑒−𝑖𝑢𝑞𝐻𝑠 (𝜆0 )𝜌𝑠0𝑒

−𝑖𝑢 (1−𝑞)𝐻𝑠 (𝜆0 )𝑒𝑖𝑢𝐻
(𝐻 )
𝑠 (𝜆𝜏 )} (B5)

Then, e.g., for 𝑠 = −, to evaluate the trace we can consider the
basis formed by the vectors |{𝑛𝑘 }⟩ = (⊗𝑘>0 |𝑛𝑘𝑛−𝑘⟩) ⊗ |𝑛0⟩ ⊗
|𝑛𝜋 ⟩, with 𝑛𝑘 = 0, 1, where |𝑛𝑘𝑛−𝑘⟩ = (𝑎†

𝑘
)𝑛𝑘 (𝑎†−𝑘 )

𝑛−𝑘 |0𝑘0−𝑘⟩,
where |0𝑘⟩ is the vacuum state for the fermion 𝑎𝑘 . Of course
{|𝑛𝑘𝑛−𝑘⟩} generates an invariant dynamically subspace, and
in this subspace the Hamiltonian 𝐻𝑠 (𝜆) is the matrix 𝐻𝑘 (𝜆)
such that

𝐻𝑘 (𝜆) |0𝑘0−𝑘⟩ = 2(𝜆 + cos𝑘) |0𝑘0−𝑘⟩ − 2𝑖 sin𝑘 |1𝑘1−𝑘⟩(B6)
𝐻𝑘 (𝜆) |1𝑘1−𝑘⟩ = −2(𝜆 + cos𝑘) |1𝑘1−𝑘⟩ + 2𝑖 sin𝑘 |0𝑘0−𝑘⟩(B7)
𝐻𝑘 (𝜆) |0𝑘1−𝑘⟩ = 0 (B8)
𝐻𝑘 (𝜆) |1𝑘0−𝑘⟩ = 0 (B9)

However, it is convenient to consider the initial eigenstates
|�̃�𝑘�̃�−𝑘⟩ such that

𝐻𝑘 (𝜆0) |�̃�𝑘�̃�−𝑘⟩ = (𝜖𝑘𝑛𝑘 + 𝜖𝑘 (𝑛−𝑘 − 1)) |�̃�𝑘�̃�−𝑘⟩ (B10)

For our two initial states it is equal to

𝑋 𝑠𝑞 (𝑢) =
1
𝑍

∏
𝑘∈𝐾𝑠 :𝑘≥0

𝑋
(𝑘 )
𝑞 (𝑢) (B11)

For the Gibbs state, for 𝑘 > 0 and 𝑘 ≠ 𝜋 , we have

𝑋
(𝑘 )
𝑞 (𝑢) =

∑︁
𝑛𝑘 ,𝑛−𝑘

𝑒 (−𝑖𝑢−𝛽 ) (𝜖𝑘𝑛𝑘+𝜖𝑘 (𝑛−𝑘−1) )

×⟨�̃�𝑘�̃�−𝑘 |𝑈 †
𝜏,0𝑒

𝑖𝑢𝐻𝑘 (𝜆𝜏 )𝑈𝜏,0 |�̃�𝑘�̃�−𝑘⟩ (B12)

To evaluate 𝑋 (𝑘 )
𝑞 (𝑢), we note that

𝑒𝑖𝑢𝐻𝑘 (𝜆𝜏 ) = 𝑒−𝑖𝑢𝜖
′
𝑘
𝑑 ′
𝑘
· ®𝜏 = (cos(𝑢𝜖′

𝑘
)𝐼 − 𝑖 sin(𝑢𝜖′

𝑘
)𝑑 ′
𝑘
· ®𝜏) ⊕ 𝐼

(B13)

where 𝑑 ′
𝑘
= 𝑑𝑘 (𝜆𝜏 ), 𝜖′𝑘 = 𝜖𝑘 (𝜆𝜏 ), ®𝜏 = (𝜏1, 𝜏2, 𝜏3)𝑇 , where 𝜏𝑖 are

the Pauli matrices, i.e., 𝜏3 = |0𝑘0−𝑘⟩⟨0𝑘0−𝑘 | − |1𝑘1−𝑘⟩⟨1𝑘1−𝑘 |,
and so on. We have to calculate

⟨�̃�𝑘�̃�−𝑘 |𝑈 †
𝜏,0𝑒

𝑖𝑢𝐻𝑘 (𝜆𝜏 )𝑈𝜏,0 |�̃�𝑘�̃�−𝑘⟩ = cos(𝑢𝜖′
𝑘
)

−𝑖 sin(𝑢𝜖′
𝑘
)⟨�̃�𝑘�̃�−𝑘 |𝑈 †

𝜏,0𝑑
′
𝑘
· ®𝜏𝑈𝜏,0 |�̃�𝑘�̃�−𝑘⟩ (B14)

with (𝑛𝑘 , 𝑛−𝑘 ) = (0, 0) and (𝑛𝑘 , 𝑛−𝑘 ) =

(1, 1), while ⟨0̃𝑘 1̃−𝑘 |𝑈 †
𝜏,0𝑒

𝑖𝑢𝐻𝑘 (𝜆𝜏 )𝑈𝜏,0 |0̃𝑘 1̃−𝑘⟩ =

⟨1̃𝑘 0̃−𝑘 |𝑈 †
𝜏,0𝑒

𝑖𝑢𝐻𝑘 (𝜆𝜏 )𝑈𝜏,0 |1̃𝑘 0̃−𝑘⟩ = 1. In particular, since
𝑑 ′
𝑘
· ®𝜏 is traceless, we get ⟨0̃𝑘 0̃−𝑘 |𝑈 †

𝜏,0𝑑
′
𝑘
· ®𝜏𝑈𝜏,0 |0̃𝑘 0̃−𝑘⟩ +

⟨1̃𝑘 1̃−𝑘 |𝑈 †
𝜏,0𝑑

′
𝑘

· ®𝜏𝑈𝜏,0 |1̃𝑘 1̃−𝑘⟩ = 0, from which we get
𝑋

(𝑘 )
𝑞 (𝑢) = 𝑋 (𝑘 ),𝑡ℎ

𝑞 (𝑢) with

𝑋
(𝑘 ),𝑡ℎ
𝑞 (𝑢) = 2

(
cos((𝑢 − 𝑖𝛽)𝜖𝑘 ) cos(𝑢𝜖′

𝑘
) + sin((𝑢 − 𝑖𝛽)𝜖𝑘 )

× sin(𝑢𝜖′
𝑘
)⟨0̃𝑘 0̃−𝑘 |𝑈 †

𝜏,0𝑑
′
𝑘
· ®𝜏𝑈𝜏,0 |0̃𝑘 0̃−𝑘⟩) + 1

)
(B15)

In contrast, for the coherent Gibbs state, for 𝑘 > 0 and 𝑘 ≠ 𝜋

we get

𝑋
(𝑘 )
𝑞 (𝑢) = ⟨Ψ𝑘 (𝑞 − 1) |𝑈 †

𝜏,0𝑒
𝑖𝑢𝐻𝑘 (𝜆𝜏 )𝑈𝜏,0 |Ψ𝑘 (𝑞)⟩ (B16)

where

|Ψ𝑘 (𝑞)⟩ =
(
|0̃𝑘⟩ + 𝑒−𝑖𝑢𝑞𝜖𝑘−

𝛽𝜖𝑘
2 |1̃𝑘⟩

)
⊗
(
𝑒𝑖𝑢𝑞𝜖𝑘+

𝛽𝜖𝑘
2 |0̃−𝑘⟩ + |1̃−𝑘⟩

)
(B17)

Thus, we get

𝑋
(𝑘 )
𝑞 (𝑢) = 2

(
cos((𝑢 − 𝑖𝛽)𝜖𝑘 ) cos(𝑢𝜖′

𝑘
) − 𝑖

2
sin(𝑢𝜖′

𝑘
)

×⟨Ψ̃𝑘 (𝑞 − 1) |𝑈 †
𝜏,0𝑑

′
𝑘
· ®𝜏𝑈𝜏,0 |Ψ̃𝑘 (𝑞)⟩ + 1

)
(B18)

where |Ψ̃𝑘 (𝑞)⟩ = 𝑒𝑖𝑢𝑞𝜖𝑘+𝛽𝜖𝑘/2 |0̃𝑘 0̃−𝑘⟩ + 𝑒−𝑖𝑢𝑞𝜖𝑘−𝛽𝜖𝑘/2 |1̃𝑘 1̃−𝑘⟩.
We get

𝑋
(𝑘 )
𝑞 (𝑢) = 𝑋 (𝑘 ),𝑡ℎ

𝑞 (𝑢) + 𝑋 (𝑘 ),𝑐𝑜ℎ
𝑞 (𝑢) (B19)

where the coherent contribution is

𝑋
(𝑘 ),𝑐𝑜ℎ
𝑞 (𝑢) = −2𝑖 sin(𝑢𝜖′

𝑘
)Re

(
𝑒−𝑖𝑢 (2𝑞−1)𝜖𝑘

×⟨0̃𝑘 0̃−𝑘 |𝑈 †
𝜏,0𝑑

′
𝑘
· ®𝜏𝑈𝜏,0 |1̃𝑘 1̃−𝑘⟩

)
(B20)

To calculate the second term in the sum over 𝑠 in Eq. (B4), we
note that

𝑒𝑖𝜋
∑
𝑘∈𝐾𝑠 𝛼

†
𝑘
𝛼𝑘 = (−1) 𝐿2 𝑒𝑖𝜋

∑
𝑘∈𝐾𝑠

(
𝛼
†
𝑘
𝛼𝑘− 1

2

)
(B21)

= (−1) 𝐿2 𝑒𝑖𝑞𝜋
∑
𝑘∈𝐾𝑠

(
𝛼
†
𝑘
𝛼𝑘− 1

2

)
×𝑒𝑖 (1−𝑞)𝜋

∑
𝑘∈𝐾𝑠

(
𝛼
†
𝑘
𝛼𝑘− 1

2

)
(B22)

then the second term is 𝜂𝑠𝑋 ′𝑠
𝑞 (𝑢), where 𝑋 ′𝑠

𝑞 (𝑢) is obtained
by multiplying 𝑋 𝑠𝑞 (𝑢) by (−1) 𝐿2 and by performing the sub-
stitution 𝑢𝜖𝑘 ↦→ 𝑢𝜖𝑘 − 𝜋 so that

𝑋 ′𝑠
𝑞 (𝑢) = 1

𝑍

∏
𝑘∈𝐾𝑠 :𝑘≥0

𝑋
′(𝑘 )
𝑞 (𝑢) (B23)
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with

𝑋
′(𝑘 )
𝑞 (𝑢) = 𝑋 (𝑘 )

𝑞 (𝑢) − 4 (B24)

for 𝑘 > 0 and 𝑘 ≠ 𝜋 . Then, we get

𝑋𝑞 (𝑢) =
1
2

∑︁
𝑠

𝑋 𝑠𝑞 (𝑢) + 𝜂𝑠𝑋 ′𝑠
𝑞 (𝑢) (B25)

The partition function can be calculated as

𝑍 = Tr
{
𝑒−𝛽𝐻 (𝜆0 )

}
=

∑︁
𝑠

Tr
{
𝑃𝑠𝑒

−𝛽𝐻𝑠 (𝜆0 )
}

(B26)

=
1
2

∑︁
𝑠

Tr
{
𝑒−𝛽𝐻𝑠 (𝜆0 )

}
+𝜂𝑠Tr

{
𝑒−𝛽𝐻𝑠 (𝜆0 )+𝑖𝜋

∑
𝑘∈𝐾𝑠 𝛼

†
𝑘
𝛼𝑘

}
(B27)

=
1
2

∑︁
𝑠

∏
𝑘∈𝐾𝑠

2 cosh(𝛽𝜖𝑘/2)

+𝜂𝑠
∏
𝑘∈𝐾𝑠

2 sinh(𝛽𝜖𝑘/2) (B28)

Concerning the quasiprobability distribution of work
𝑝𝑞 (𝑤), it can be calculated from the characteristic function
as

𝑝𝑞 (𝑤) =

∫
𝑒−𝑖𝑢𝑤

2𝜋
𝜒𝑞 (𝑢)𝑑𝑢 (B29)

=
1
2

∫
𝑒−𝑖𝑢𝑤

2𝜋
(
𝑋𝑞 (𝑢) + 𝑋1−𝑞 (𝑢)

)
𝑑𝑢 (B30)

Let us focus on the thermodynamic limit. For |𝜆0 | > 1, we get
𝑍 ∼ ∏

𝑘∈𝐾+ 𝑍𝑘 with 𝑍𝑘 = 2 cosh(𝛽𝜖𝑘/2), and 𝑋𝑞 (𝑢) ∼ 𝑋 +
𝑞 (𝑢).

Then𝑋𝑞 (𝑢) is the product of the characteristic functions hav-
ing quasiprobability distributions

𝑝
(𝑘 )
𝑞 (𝑤) = 1

𝑍 2
𝑘

∫
𝑒−𝑖𝑢𝑤

2𝜋
𝑋

(𝑘 )
𝑞 (𝑢)𝑑𝑢 (B31)

thus the quasiprobability distribution of work reads

𝑝𝑞 (𝑤) =
1
2

∫ (∏
𝑘>0

𝑝
(𝑘 )
𝑞 (𝑤𝑘 ) +

∏
𝑘>0

𝑝
(𝑘 )
1−𝑞 (𝑤𝑘 )

)
×𝛿

(
𝑤 −

∑︁
𝑘>0

𝑤𝑘

) ∏
𝑘>0

𝑑𝑤𝑘 (B32)

We note that the average work can be calculated as

⟨𝑤⟩ = −𝑖𝜕𝑢 𝜒𝑞 (0) = −𝑖
∑︁
𝑘>0

1
𝑍 2
𝑘

𝜕𝑢𝑋
(𝑘 )
𝑞 (0) (B33)

On the other hand, for |𝜆0 | < 1, we get 𝑍 ∼ ∏
𝑘∈𝐾+ 𝑍𝑘 +∏

𝑘∈𝐾+ 𝑍
′
𝑘

with 𝑍 ′
𝑘
= 2 sinh(𝛽𝜖𝑘/2), and 𝑋𝑞 (𝑢) ∼ 𝑋 +

𝑞 (𝑢) +
𝑋 ′+
𝑞 (𝑢) from which

𝑋𝑞 (𝑢) = 𝛾
∏
𝑘>0

𝑋
(𝑘 )
𝑞 (𝑢)
𝑍 2
𝑘

+ (1 − 𝛾)
∏
𝑘>0

𝑋
′(𝑘 )
𝑞 (𝑢)
𝑍 ′2
𝑘

(B34)

where 𝛾 = (∏𝑘>0 𝑍
2
𝑘
)/𝑍 . In the thermodynamic limit, we get

𝛾 =
𝑒

2𝐿
𝜋

∫ 𝜋
0 cosh2 (𝛽𝜖𝑘/2)𝑑𝑘

𝑒
2𝐿
𝜋

∫ 𝜋
0 cosh2 (𝛽𝜖𝑘/2)𝑑𝑘 + 𝑒 2𝐿

𝜋

∫ 𝜋
0 sinh2 (𝛽𝜖𝑘/2)𝑑𝑘

→ 1 (B35)

for a non-zero temperature, since
∫ 𝜋

0 cosh2 (𝛽𝜖𝑘/2)𝑑𝑘 >∫ 𝜋

0 sinh2 (𝛽𝜖𝑘/2)𝑑𝑘 . In contrast, for 𝛽 → ∞, we get 𝑍 ′
𝑘
∼ 𝑍𝑘

so that 𝛾 = 1/2, and 𝑋 ′(𝑘 )
𝑞 (𝑢) ∼ 𝑋

(𝑘 )
𝑞 (𝑢). Then we get the

same expression of the quasiprobability of work of Eq. (B32).

1. Sudden quench

Let us consider a sudden quench, i.e., the limit 𝜏 → 0, so
that𝑈𝜏,0 = 𝐼 . For the Gibbs state we get 𝑋 (𝑘 )

𝑞 (𝑢) = 𝑋 (𝑘 ),𝑡ℎ
𝑞 (𝑢)

with

𝑋
(𝑘 ),𝑡ℎ
𝑞 (𝑢) = 2

(
cos((𝑢 − 𝑖𝛽)𝜖𝑘 ) cos(𝑢𝜖′

𝑘
) + sin((𝑢 − 𝑖𝛽)𝜖𝑘 )

× sin(𝑢𝜖′
𝑘
)𝑑𝑘 · 𝑑 ′𝑘 + 1

)
(B36)

by noting that

⟨0̃𝑘 0̃−𝑘 |𝑑 ′𝑘 · ®𝜏 |0̃𝑘 0̃−𝑘⟩ = Tr
{
𝑑 ′
𝑘
· ®𝜏 |0̃𝑘 0̃−𝑘⟩⟨0̃𝑘 0̃−𝑘 |

}
=

1
2

Tr
{
𝑑 ′
𝑘
· ®𝜏𝑑𝑘 · ®𝜏

}
= 𝑑𝑘 · 𝑑 ′𝑘 (B37)

since 𝑑𝑘 · ®𝜏 = |0̃𝑘 0̃−𝑘⟩⟨0̃𝑘 0̃−𝑘 | − |1̃𝑘 1̃−𝑘⟩⟨1̃𝑘 1̃−𝑘 |. On the other
hand, for the coherent Gibbs state we get

𝑋
(𝑘 )
𝑞 (𝑢) = 𝑋 (𝑘 ),𝑡ℎ

𝑞 (𝑢) + 𝑋 (𝑘 ),𝑐𝑜ℎ
𝑞 (𝑢) (B38)

To evaluate the coherent contribution 𝑋
(𝑘 ),𝑐𝑜ℎ
𝑞 (𝑢), we note

that

⟨0̃𝑘 0̃−𝑘 |𝑑 ′𝑘 · ®𝜏 |1̃𝑘 1̃−𝑘⟩ = Tr
{
𝑑𝑘 · ®𝜏𝑑 ′𝑘 · ®𝜏 |1̃𝑘 1̃−𝑘⟩⟨0̃𝑘 0̃−𝑘 |

}
= 𝑖Tr

{
(𝑑𝑘 × 𝑑 ′𝑘 ) · ®𝜏 |1̃𝑘 1̃−𝑘⟩⟨0̃𝑘 0̃−𝑘 |

}
(B39)

then

⟨0̃𝑘 0̃−𝑘 |𝑑 ′𝑘 · ®𝜏 |1̃𝑘 1̃−𝑘⟩ = 𝑖 (𝑑𝑘 × 𝑑 ′𝑘 )𝑥 ⟨0̃𝑘 0̃−𝑘 |𝜏1 |1̃𝑘 1̃−𝑘⟩ (B40)

since𝑑𝑘×𝑑 ′𝑘 has only x-component. Since ⟨0̃𝑘 0̃−𝑘 |𝜏1 |1̃𝑘 1̃−𝑘⟩ =
1, we get

⟨0̃𝑘 0̃−𝑘 |𝑑 ′𝑘 · ®𝜏 |1̃𝑘 1̃−𝑘⟩ = 𝑖 (𝑑𝑘 × 𝑑 ′𝑘 )𝑥 (B41)

Thus we get

𝑋
(𝑘 ),𝑐𝑜ℎ
𝑞 (𝑢) = −2𝑖 sin(𝑢𝜖′

𝑘
) sin(𝑢 (2𝑞 − 1)𝜖𝑘 ) (𝑑𝑘 ×𝑑 ′𝑘 )𝑥 (B42)

For 𝜙 𝑗 ≠ 0, we have |Ψ𝑘⟩ =

(
|0̃𝑘⟩ + 𝑒𝑖𝜙𝑘−

𝛽𝜖𝑘
2 |1̃𝑘⟩

)
⊗(

𝑒
𝛽𝜖𝑘

2 |0̃−𝑘⟩ + 𝑒𝑖𝜙−𝑘 |1̃−𝑘⟩
)
, with 𝜙−𝑘 = 𝜙𝑘 . Thus, by consid-

ering the corresponding state |Ψ𝑘 (𝑞)⟩, the only effect of the
phase 𝜙𝑘 is the shift 𝑢𝑞𝜖𝑘 → 𝑢𝑞𝜖𝑘 − 𝜙𝑘 , then we get

𝑋
(𝑘 ),𝑐𝑜ℎ
𝑞 (𝑢) = −2𝑖 sin(𝑢𝜖′

𝑘
) sin(𝑢 (2𝑞 − 1)𝜖𝑘 − 2𝜙𝑘 ) (𝑑𝑘 × 𝑑 ′𝑘 )𝑥

(B43)
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2. Arbitrary quench

In the end, let us consider an arbitrary quench. The time
evolution acts as a rotation of the vector ®𝑑𝑘 (𝜆𝜏 ), so that
𝑈

†
𝜏,0𝑑𝑘 (𝜆𝜏 ) · ®𝜏𝑈𝜏,0 = 𝑑 ′𝑘 (𝜆𝜏 ) · ®𝜏 , where for brevity 𝑑 ′

𝑘
= 𝑑 ′

𝑘
(𝜆𝜏 ).

Then,𝑋 (𝑘 ),𝑡ℎ
𝑞 (𝑢) is still given by Eq. (B36) with the new vector

𝑑 ′
𝑘
, and if 𝑑𝑘 × 𝑑 ′𝑘 has also a non-zero y-component, then

⟨0̃𝑘 0̃−𝑘 |𝑑 ′𝑘 · ®𝜏 |1̃𝑘 1̃−𝑘⟩ = 𝑖 (𝑑𝑘 × 𝑑 ′𝑘 )𝑥 + (𝑑𝑘 × 𝑑 ′𝑘 )𝑦 (B44)

from which the coherence contribution has a further term
and reads

𝑋
(𝑘 ),𝑐𝑜ℎ
𝑞 (𝑢) = −2𝑖 sin(𝑢𝜖′

𝑘
)
(
sin(𝑢 (2𝑞 − 1)𝜖𝑘 − 2𝜙𝑘 ) (𝑑𝑘 × 𝑑 ′𝑘 )𝑥

+ cos(𝑢 (2𝑞 − 1)𝜖𝑘 − 2𝜙𝑘 ) (𝑑𝑘 × 𝑑 ′𝑘 )𝑦
)

(B45)

3. Histogram

To determinate the quasiprobability distribution of work
from the characteristic function 𝜒𝑞 (𝑢) we consider the inter-
vals 𝐼𝑛 = [𝑤𝑛 − Δ𝑤/2,𝑤𝑛 + Δ𝑤/2], where 𝑤𝑛 = 𝑛Δ𝑤 with 𝑛
integer. Then, we can determinate the histogram by calculat-
ing the probability

𝑝𝑛 =

∫
𝐼𝑛

𝑝𝑞 (𝑤)𝑑𝑤 =
Δ𝑤

2𝜋

∫
𝜒𝑞 (𝑢)sinc

(
𝑢Δ𝑤

2

)
𝑒−𝑖𝑢𝑤𝑛𝑑𝑢

(B46)
where sinc(𝑥) = sin(𝑥)/𝑥 . To calculate the integral we
can focus on the interval [−2𝜋𝐾/Δ𝑤, 2𝜋𝐾/Δ𝑤] with 𝐾 large
enough. Of course 𝑝𝑞 (𝑤𝑛) ≈ 𝑝𝑛/Δ𝑤 for Δ𝑤 small enough.

Appendix C: Superposition of two coherent Gibbs states

For simplicity we consider the fermionic Hamiltonian 𝐻+.
We focus on the initial state

|Ψ⟩ = 𝑎 |Ψ+
𝐺,1⟩ + 𝑏 |Ψ+

𝐺,2⟩ (C1)

where |Ψ+
𝐺,𝑖

⟩ is the coherent Gibbs state

|Ψ+
𝐺,𝑖⟩ = ⊗𝑘>0

|Ψ𝑖,𝑘⟩
𝑍𝑖,𝑘

(C2)

where

|Ψ𝑖,𝑘⟩ =
(
|0̃𝑘⟩ + 𝑒𝑖𝜙𝑖,𝑘−

𝛽𝑖𝜖𝑘
2 |1̃𝑘⟩

)
⊗

(
𝑒
𝛽𝑖𝜖𝑘

2 |0̃−𝑘⟩ + 𝑒𝑖𝜙𝑖,−𝑘 |1̃−𝑘⟩
)

(C3)
We will get

𝑋 +
𝑞 (𝑢) = |𝑎 |2

∏
𝑘>0

𝑋
(𝑘 )
𝑞,1 (𝑢)
𝑍 2

1,𝑘
+ |𝑏 |2

∏
𝑘>0

𝑋
(𝑘 )
𝑞,2 (𝑢)
𝑍 2

2,𝑘

+𝑎𝑏∗
∏
𝑘>0

𝑌
(𝑘 )
𝑞,1 (𝑢)
𝑍1,𝑘𝑍2,𝑘

+ 𝑎∗𝑏
∏
𝑘>0

𝑌
(𝑘 )
𝑞,2 (𝑢)
𝑍1,𝑘𝑍2,𝑘

(C4)

where

𝑋
(𝑘 )
𝑞,𝑖

(𝑢) = ⟨Ψ𝑖,𝑘 (𝑞 − 1) |𝑈 †
𝜏,0𝑒

𝑖𝑢𝐻𝑘 (𝜆𝜏 )𝑈𝜏,0 |Ψ𝑖,𝑘 (𝑞)⟩ (C5)

𝑌
(𝑘 )
𝑞,1 (𝑢) = ⟨Ψ2,𝑘 (𝑞 − 1) |𝑈 †

𝜏,0𝑒
𝑖𝑢𝐻𝑘 (𝜆𝜏 )𝑈𝜏,0 |Ψ1,𝑘 (𝑞)⟩ (C6)

𝑌
(𝑘 )
𝑞,2 (𝑢) = ⟨Ψ1,𝑘 (𝑞 − 1) |𝑈 †

𝜏,0𝑒
𝑖𝑢𝐻𝑘 (𝜆𝜏 )𝑈𝜏,0 |Ψ2,𝑘 (𝑞)⟩ (C7)

with

|Ψ𝑖,𝑘⟩ =
(
|0̃𝑘⟩ + 𝑒−𝑖𝑢𝑞𝜖𝑘+𝑖𝜙𝑖,𝑘−

𝛽𝑖𝜖𝑘
2 |1̃𝑘⟩

)
⊗
(
𝑒𝑖𝑢𝑞𝜖𝑘+

𝛽𝑖𝜖𝑘
2 |0̃−𝑘⟩ + 𝑒𝑖𝜙𝑖,−𝑘 |1̃−𝑘⟩

)
(C8)

Then we can write

𝑋 +
𝑞 (𝑢) = |𝑎 |2𝑒𝐿𝑔1,𝑞 (𝑢 ) + |𝑏 |2𝑒𝐿𝑔2,𝑞 (𝑢 ) +𝑎𝑏∗𝑒𝐿𝑦1,𝑞 (𝑢 ) +𝑎∗𝑏𝑒𝐿𝑦2,𝑞 (𝑢 )

(C9)
where

𝑔𝑖,𝑞 (𝑢) =
1

2𝜋

∫ 𝜋

0
ln ©«

𝑋
(𝑘 )
𝑞,𝑖

(𝑢)
𝑍 2
𝑖,𝑘

ª®¬𝑑𝑘 (C10)

𝑦𝑖,𝑞 (𝑢) =
1

2𝜋

∫ 𝜋

0
ln ©«

𝑌
(𝑘 )
𝑞,𝑖

(𝑢)
𝑍1,𝑘𝑍2,𝑘

ª®¬𝑑𝑘 (C11)

As 𝐿 → ∞, the Fourier transform of 𝑒𝐿𝑦𝑖,𝑞 (𝑢 ) gives

𝑝′𝑖,𝑞 (𝑤) ∼ 𝑒𝐿𝑦𝑖,𝑞 (0)√︃
2𝜋𝑥 (2)

𝑖,𝑞

𝑒
−

(
𝑤−𝑥 (1)

𝑖,𝑞

)2

2𝑥 (2)
𝑖,𝑞 (C12)

where 𝑥 (1)
𝑖,𝑞

= −𝑖𝜕𝑢𝑦𝑖,𝑞 (0)𝐿 and 𝑥
(2)
𝑖,𝑞

= −𝜕2
𝑢𝑦𝑖,𝑞 (0)𝐿. For

𝑞 = 1/2, we get 𝑥 (𝑖 )
2,1/2 =

(
𝑥
(𝑖 )
1,1/2

)∗
, then the quasiprobability

distribution of work reads

𝑝1/2 (𝑤) ∼ |𝑎 |2 𝑒
− (𝑤−�̄�1 )2

2𝑣1,𝑞√︁
2𝜋𝑣1,𝑞

+ |𝑏 |2 𝑒
− (𝑤−�̄�2 )2

2𝑣2,𝑞√︁
2𝜋𝑣2,𝑞

+2Re
(
𝑎𝑏∗𝑝′1,1/2 (𝑤)

)
(C13)

where �̄�𝑖 = −𝑖𝜕𝑢𝑔𝑖,𝑞 (0)𝐿 and 𝑣𝑖,𝑞 = −𝜕2
𝑢𝑔𝑖,𝑞 (0)𝐿, so that

𝑝1/2 (𝑤) can take negative values. However, since the real
part of 𝑦𝑖,𝑞 (0) is negative, 𝑝′𝑖,𝑞 (𝑤) tends exponentially to zero
in the thermodynamic limit and 𝑝1/2 (𝑤) is the convex com-
bination of two Gaussian probability distributions, which is
positive.

1. Generalized coherent Gibbs state

For an arbitrary quench from the initial coherent Gibbs
state, from Eq. (B45), we get

𝑟𝑞 =
(2𝑞 − 1)𝐿

2𝜋

∫ 𝜋

0

𝜖𝑘𝜖
′
𝑘

cosh2 (𝛽𝜖𝑘/2)
(cos(2𝜙𝑘 ) (𝑑𝑘 × 𝑑 ′𝑘 )𝑥

+ sin(2𝜙𝑘 ) (𝑑𝑘 × 𝑑 ′𝑘 )𝑦)𝑑𝑘 (C14)
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which is zero for 𝑞 = 1/2. Let us focus on an initial state of
the form

|Ψ+⟩ = ⊗𝑘>0 |Ψ𝑘⟩ (C15)

which generalizes the coherent Gibbs state |Ψ+
𝐺
⟩, where we

have defined the states

|Ψ𝑘⟩ =
∑︁
𝑛𝑘 ,𝑛−𝑘

𝑐𝑛𝑘𝑛−𝑘 |�̃�𝑘�̃�−𝑘⟩ (C16)

This implies that 𝑋𝑞 (𝑢) has the form in Eq. (33) with 𝑍𝑘 = 1,
where 𝑋 (𝑘 )

𝑞 (𝑢) can be calculated from Eq. (B16) with

|Ψ𝑘 (𝑞)⟩ = 𝑐00𝑒
𝑖𝑢𝑞𝜖𝑘 |0̃𝑘 0̃−𝑘⟩ + 𝑐11𝑒

−𝑖𝑢𝑞𝜖𝑘 |1̃𝑘 1̃−𝑘⟩
+𝑐01 |0̃𝑘 1̃−𝑘⟩ + 𝑐10 |1̃𝑘 0̃−𝑘⟩ (C17)

Then, the representation for 𝑞 = 1/2 will be non-contextual.
Let us show explicitly that 𝑟1/2 = 0. 𝑋 (𝑘 )

𝑞 (𝑢) reads

𝑋
(𝑘 )
𝑞 (𝑢) = 𝑋 (𝑘 )

𝑛𝑜 (𝑢) + 𝛿𝑋 (𝑘 )
𝑞 (𝑢) (C18)

where 𝑋 (𝑘 )
𝑛𝑜 (𝑢) does not depend on 𝑞, and

𝛿𝑋
(𝑘 )
𝑞 (𝑢) = −2𝑖 sin(𝑢𝜖′

𝑘
)Re

(
𝑐∗00𝑐11𝑒

−𝑖𝑢 (2𝑞−1)𝜖𝑘 (𝑖 (𝑑𝑘 × 𝑑 ′𝑘 )𝑥
+(𝑑𝑘 × 𝑑 ′𝑘 )𝑦

) )
(C19)

Then, 𝜕2
𝑢𝛿𝑋

(𝑘 )
𝑞 (0) is imaginary and 𝜕2

𝑢𝛿𝑋
(𝑘 )
𝑞 (0) ∝ (1 − 2𝑞).

Similarly, it is easy to see that 𝜕2
𝑢𝑋

(𝑘 )
𝑛𝑜 (0) is real. Furthermore,

𝜕𝑢𝑋
(𝑘 )
𝑞 (0) is imaginary, then 𝑟𝑞 is obtained by calculating an

integral with respect to 𝑘 of 𝜕2
𝑢𝛿𝑋

(𝑘 )
𝑞 (0), so that we get 𝑟𝑞 ∝

(1− 2𝑞), which is zero for 𝑞 = 1/2. In the end, we note that a
linear combination of states of the form in Eq. (C15) will give
for 𝑞 = 1/2 a convex combination of Gaussian probability
distributions, which is positive.

Appendix D: Negativity

To prove that N = 1 implies in general that 𝑝𝑞 (𝑤) ≥ 0, we
can proceed ad absurdum. We write 𝑝𝑞 (𝑤) = 𝑝 (𝑤) + 𝛿𝑝 (𝑤)
where 𝑝 (𝑤) ≥ 0,

∫
𝑝 (𝑤)𝑑𝑤 = 1 and

∫
𝛿𝑝 (𝑤)𝑑𝑤 = 0. If

𝑝𝑞 (𝑤) ≥ 0 for𝑤 ∈ 𝐼 and 𝑝𝑞 (𝑤) < 0 for𝑤 ∈ 𝐼 ′, then 𝛿𝑝 (𝑤) <
0 for 𝑤 ∈ 𝐼 ′ and 𝐼 = 𝐼+ ∪ 𝐼− such that 𝛿𝑝 (𝑤) ≥ 0 for 𝑤 ∈ 𝐼+
and 𝛿𝑝 (𝑤) < 0 for 𝑤 ∈ 𝐼− . Then, from N = 1, we get the
condition 𝑝 (𝐼 ) − 𝑝 (𝐼 ′) + 𝛿𝑝 (𝐼+) + 𝛿𝑝 (𝐼−) − 𝛿𝑝 (𝐼 ′) = 1, where
𝑝 (𝐼 ) =

∫
𝐼
𝑝 (𝑤)𝑑𝑤 and so on, thus we get the system

𝑝 (𝐼 ) + 𝑝 (𝐼 ′) = 1
𝑝 (𝐼 ) ≥ 0
𝑝 (𝐼 ′) ≥ 0
𝛿𝑝 (𝐼+) + 𝛿𝑝 (𝐼−) + 𝛿𝑝 (𝐼 ′) = 0
𝛿𝑝 (𝐼+) ≥ 0
𝛿𝑝 (𝐼−) < 0
𝛿𝑝 (𝐼 ′) < 0
𝑝 (𝐼 ) − 𝑝 (𝐼 ′) + 𝛿𝑝 (𝐼+) + 𝛿𝑝 (𝐼−) − 𝛿𝑝 (𝐼 ′) = 1

(D1)

which admits as solution 𝑝 (𝑤) such that 0 ≤ 𝑝 (𝐼 ) < 1 and
𝑝 (𝐼 ′) = 1 − 𝑝 (𝐼 ) and 𝛿𝑝 (𝑤) such that 𝛿𝑝 (𝐼+) > (1 − 𝑝 (𝐼 ) +
𝑝 (𝐼 ′))/2, 𝛿𝑝 (𝐼−) = (1−2𝛿𝑝 (𝐼+) −𝑝 (𝐼 ) +𝑝 (𝐼 ′))/2 and 𝛿𝑝 (𝐼 ′) =
−𝛿𝑝 (𝐼−) − 𝛿𝑝 (𝐼+). Then 𝛿𝑝 (𝐼 ′) = −𝑝 (𝐼 ′), so that 𝑝𝑞 (𝐼 ′) = 0,
which implies that 𝑝𝑞 (𝑤) is non-negative.

Appendix E: General quadratic form in Fermi operators

We consider the initial Hamiltonian

𝐻 =
∑︁
𝑖, 𝑗

(
𝑎
†
𝑖
𝐴𝑖 𝑗𝑎 𝑗 +

1
2

(
𝑎
†
𝑖
𝐵𝑖 𝑗𝑎

†
𝑗
+ 𝐻.𝑐.

))
− 1

2

∑︁
𝑖

𝐴𝑖𝑖 (E1)

where 𝐴 and 𝐵 are real matrices such that 𝐴𝑇 = 𝐴 and 𝐵𝑇 =

−𝐵. The Hamiltonian can be diagonalized by performing the
transformation

𝛼𝑘 =
∑︁
𝑖

𝑔𝑘𝑖𝑎𝑖 + ℎ𝑘𝑖𝑎†𝑖 (E2)

so that

𝐻 =
∑︁
𝑘

𝜖𝑘

(
𝛼
†
𝑘
𝛼𝑘 −

1
2

)
(E3)

In detail the matrices 𝑔 and ℎ are such that 𝜙 = 𝑔 +ℎ and𝜓 =

𝑔−ℎ, where𝜙 and𝜓 are orthogonal matrices such that𝜓𝑇𝜖𝜙 =

𝐴+𝐵, where 𝜖 is the diagonal matrix with entries 𝜖𝑘 . The final
time-evolved Hamiltonian is𝐻 ′ with matrices𝐴′ and 𝐵′, and
will be diagonalized by performing the transformation

𝛼 ′
𝑘
=

∑︁
𝑖

𝑔′
𝑘𝑖
𝑎𝑖 + ℎ′𝑘𝑖𝑎

†
𝑖

(E4)

so that

𝐻 ′ =
∑︁
𝑘

𝜖′
𝑘

(
𝛼
′†
𝑘
𝛼 ′
𝑘
− 1

2

)
(E5)

Let us proceed with our investigation by considering the
initial state

|Ψ1⟩ =
𝑒
𝛽

4
∑
𝑘 𝜖𝑘

√
𝑍1

exp

(∑︁
𝑘

𝑒−
𝛽𝜖𝑘

2 𝛼
†
𝑘

)
|0̃⟩ (E6)

We note that for 𝛽 → ∞ we get 𝑍1 ∼ 𝑍 =
∏
𝑘 2 cosh(𝛽𝜖𝑘/2)

and |Ψ1⟩ ∼ |Ψ𝐺 ⟩. We aim to calculate

𝑋𝑞 (𝑢) = ⟨Ψ1 |𝑒−𝑖𝑢 (1−𝑞)𝐻𝑒𝑖𝑢𝐻
′
𝑒−𝑖𝑢𝑞𝐻 |Ψ1⟩ (E7)

We consider the vacuum state |0̃′⟩ of the fermions 𝛼 ′
𝑘
, we get

the relation

|0̃⟩ = 𝐾𝑒
1
2
∑
𝑘,𝑘′ 𝐺𝑘𝑘′𝛼

′†
𝑘
𝛼
′†
𝑘′ |0̃′⟩ (E8)

where 𝐺 is solution of the equation 𝑔𝐺 + ℎ̃ = 0, where 𝑔 =

𝑔𝑔′𝑇 + ℎℎ′𝑇 and ℎ̃ = 𝑔ℎ′𝑇 + ℎ𝑔′𝑇 . In particular,

𝛼𝑘 =
∑︁
𝑘 ′

𝑔𝑘𝑘 ′𝛼
′
𝑘 ′ + ℎ̃𝑘𝑘 ′𝛼

′†
𝑘 ′ (E9)
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We get

𝑋𝑞 (𝑢) = |𝐾 |2 𝑒
(𝛽+𝑖𝑢 ) ∑𝑘 𝜖𝑘/2−𝑖𝑢∑

𝑘 𝜖
′
𝑘
/2

𝑍1
⟨0̃′ | exp

(
− 1

2

∑︁
𝑘,𝑘 ′

𝐺𝑘𝑘 ′

×𝛼 ′
𝑘
𝛼 ′
𝑘 ′

)
exp

(∑︁
𝑘

𝑢𝑘𝛼
′
𝑘
+ 𝑣𝑘𝛼 ′†𝑘

)
exp

(∑︁
𝑘

𝑢′
𝑘
𝛼
′†
𝑘
+ 𝑣 ′

𝑘
𝛼 ′
𝑘

)
× exp

(
1
2

∑︁
𝑘,𝑘 ′

�̃�𝑘𝑘 ′𝛼
′†
𝑘
𝛼
′†
𝑘 ′

)
|0̃′⟩ (E10)

where �̃�𝑘𝑘 ′ = 𝐺𝑘𝑘 ′𝑒𝑖𝑢 (𝜖
′
𝑘
+𝜖 ′
𝑘′ ) and

𝑢𝑘 =
∑︁
𝑘 ′

𝑒−(𝛽/2+𝑖𝑢 (1−𝑞) )𝜖𝑘′𝑔𝑘 ′𝑘 (E11)

𝑣𝑘 =
∑︁
𝑘 ′

𝑒−(𝛽/2+𝑖𝑢 (1−𝑞) )𝜖𝑘′ ℎ̃𝑘 ′𝑘 (E12)

𝑢′
𝑘

=
∑︁
𝑘 ′

𝑒−(𝛽/2+𝑖𝑢𝑞)𝜖𝑘′+𝑖𝑢𝜖 ′𝑘𝑔𝑘 ′𝑘 (E13)

𝑣 ′
𝑘

=
∑︁
𝑘 ′

𝑒−(𝛽/2+𝑖𝑢𝑞)𝜖𝑘′−𝑖𝑢𝜖 ′𝑘 ℎ̃𝑘 ′𝑘 (E14)

We note that

exp
(∑︁
𝑘

𝑢𝑘𝛼
′
𝑘
+ 𝑣𝑘𝛼 ′†𝑘

)
exp

(∑︁
𝑘

𝑢′
𝑘
𝛼
′†
𝑘
+ 𝑣 ′

𝑘
𝛼 ′
𝑘

)
= 1

+
∑︁
𝑘,𝑘 ′

𝑢𝑘𝑢
′
𝑘 ′𝛼

′
𝑘
𝛼
′†
𝑘 ′ + 𝑢𝑘𝑣

′
𝑘 ′𝛼

′
𝑘
𝛼 ′
𝑘 ′ + 𝑣𝑘𝑢

′
𝑘 ′𝛼

′†
𝑘
𝛼
′†
𝑘 ′ − 𝑣

′
𝑘
𝑣𝑘 ′𝛼

′
𝑘
𝛼
′†
𝑘 ′

+
∑︁
𝑘

𝑣𝑘𝑣
′
𝑘
+ · · · (E15)

where we have omitted terms linear in the Fermi operators.
Then, the overlap in Eq. (E10) can be easily calculated by us-
ing the coherent states |𝜉⟩ such that 𝛼 ′

𝑘
|𝜉⟩ = 𝜉𝑘 |𝜉⟩. By using

the identity
∫
𝑑𝜉∗𝑑𝜉𝑒−

∑
𝑘 𝜉

∗
𝑘
𝜉𝑘 |𝜉⟩⟨𝜉 | = 1, we get

𝑋𝑞 (𝑢) ∼ |𝐾 |2 𝑒
(𝛽+𝑖𝑢 ) ∑𝑘 𝜖𝑘/2−𝑖𝑢∑

𝑘 𝜖
′
𝑘
/2

𝑍1

[ ∫
𝑑𝜉∗𝑑𝜉

× exp
(
− 1

2

∑︁
𝑘,𝑘 ′

𝐺𝑘𝑘 ′𝜉𝑘𝜉𝑘 ′ +
∑︁
𝑘,𝑘 ′

(𝑢𝑘𝑢′𝑘 ′𝜉𝑘𝜉
∗
𝑘 ′ + 𝑢𝑘𝑣

′
𝑘 ′𝜉𝑘𝜉𝑘 ′

+𝑣𝑘𝑢′𝑘 ′𝜉
∗
𝑘
𝜉∗
𝑘 ′ − 𝑣

′
𝑘
𝑣𝑘 ′𝜉𝑘𝜉

∗
𝑘 ′ ) −

∑︁
𝑘

𝜉∗
𝑘
𝜉𝑘 +

1
2

∑︁
𝑘,𝑘 ′

�̃�𝑘𝑘 ′𝜉
∗
𝑘
𝜉∗
𝑘 ′

)
+
∑︁
𝑘

𝑣𝑘𝑣
′
𝑘

∫
𝑑𝜉∗𝑑𝜉 exp

(
− 1

2

∑︁
𝑘,𝑘 ′

𝐺𝑘𝑘 ′ −
∑︁
𝑘

𝜉∗
𝑘
𝜉𝑘

+1
2

∑︁
𝑘,𝑘 ′

�̃�𝑘𝑘 ′𝜉
∗
𝑘
𝜉∗
𝑘 ′

)]
(E16)

By performing the integral, we get

𝑋𝑞 (𝑢) ∼ 𝐶𝑒𝑖𝑢
∑
𝑘 (𝜖𝑘−𝜖 ′𝑘 )/2

(√︁
det(Γ(𝑢)) +

√︁
det(Γ0 (𝑢))

∑︁
𝑘

𝑣𝑘𝑣
′
𝑘

)
(E17)

where

Γ0 (𝑢) =
(
𝐺 −𝐼
𝐼 −�̃�

)
(E18)

and

Γ(𝑢) =
(
𝐺 −𝑀1 −𝐼 −𝑀2
𝐼 +𝑀𝑇

2 −�̃� −𝑀3

)
= Γ0 (𝑢) +𝑀 (𝑢) (E19)

where 𝑀1,𝑘𝑘 ′ = 𝑢𝑘𝑣
′
𝑘 ′ − 𝑢𝑘 ′𝑣

′
𝑘
, 𝑀2,𝑘𝑘 ′ = 𝑢𝑘𝑢

′
𝑘 ′ − 𝑣 ′

𝑘
𝑣𝑘 ′ and

𝑀3,𝑘𝑘 ′ = 𝑣𝑘𝑢
′
𝑘 ′ − 𝑣𝑘 ′𝑢

′
𝑘
. The constant 𝐶 can be determined

by requiring that 𝑋𝑞 (0) = 1. The exact expression of 𝑋𝑞 (𝑢)
can be obtained by expanding

√︁
det(Γ(𝑢)) at the first order

in 𝑀 (𝑢), i.e.,

𝑋𝑞 (𝑢) = 𝐶𝑒𝑖𝑢
∑
𝑘 (𝜖𝑘−𝜖 ′𝑘 )/2

√︁
det(Γ0 (𝑢))

(
1 + 1

2
Tr

{
Γ−1

0 (𝑢)𝑀 (𝑢)
}

+
∑︁
𝑘

𝑣𝑘𝑣
′
𝑘

)
(E20)

Concerning the coherent Gibbs state, for low temperatures
𝛽 → ∞ we get

|Ψ𝐺 ⟩ ∼
𝑒
𝛽

4
∑
𝑘 𝜖𝑘

√
𝑍

(
1 +

∑︁
𝑘

𝑒−
𝛽𝜖𝑘

2 𝛼
†
𝑘
+

∑︁
𝑘>𝑘 ′

𝑒−
𝛽 (𝜖𝑘 +𝜖𝑘′ )

2 𝛼
†
𝑘
𝛼
†
𝑘 ′

)
|0̃⟩

(E21)
We define

𝑢𝑘𝑞 = 𝑒−(𝛽/2+𝑖𝑢 (1−𝑞) )𝜖𝑘𝑔𝑘𝑞 (E22)

𝑣𝑘𝑞 = 𝑒−(𝛽/2+𝑖𝑢 (1−𝑞) )𝜖𝑘 ℎ̃𝑘𝑞 (E23)

𝑢′
𝑘𝑞

= 𝑒−(𝛽/2+𝑖𝑢𝑞)𝜖𝑘+𝑖𝑢𝜖 ′𝑞𝑔𝑘𝑞 (E24)

𝑣 ′
𝑘𝑞

= 𝑒−(𝛽/2+𝑖𝑢𝑞)𝜖𝑘−𝑖𝑢𝜖 ′𝑞 ℎ̃𝑘𝑞 (E25)

so that 𝑢𝑘 =
∑
𝑘 ′ 𝑢𝑘 ′𝑘 and so on, then the matrices 𝑉1, 𝑉2,

𝑉3, 𝑉 ′
1 , 𝑉 ′

2 and 𝑉 ′
3 with elements 𝑉1,𝑞𝑞′ =

∑
𝑘,𝑘 ′ 𝑠𝑘,𝑘 ′𝑢𝑘𝑞𝑢𝑘 ′𝑞′ ,

𝑉2,𝑞𝑞′ =
∑
𝑘,𝑘 ′ 𝑠𝑘,𝑘 ′𝑢𝑘𝑞𝑣𝑘 ′𝑞′ , 𝑉3,𝑞𝑞′ =

∑
𝑘,𝑘 ′ 𝑠𝑘,𝑘 ′𝑣𝑘𝑞𝑣𝑘 ′𝑞′ ,

𝑉 ′
1,𝑞𝑞′ =

∑
𝑘,𝑘 ′ 𝑠𝑘,𝑘 ′𝑣

′
𝑘𝑞
𝑣 ′
𝑘 ′𝑞′ , 𝑉

′
2,𝑞𝑞′ =

∑
𝑘,𝑘 ′ 𝑠𝑘,𝑘 ′𝑣

′
𝑘𝑞
𝑢′
𝑘 ′𝑞′ , 𝑉

′
3,𝑞𝑞′ =∑

𝑘,𝑘 ′ 𝑠𝑘,𝑘 ′𝑢
′
𝑘𝑞
𝑢′
𝑘 ′𝑞′ , where 𝑠𝑘,𝑘 ′ = 1 if 𝑘 > 𝑘 ′, 𝑠𝑘,𝑘 ′ = −1 if

𝑘 < 𝑘 ′ and 𝑠𝑘,𝑘 = 0. Thus, by proceeding similarly, we get at
the second order

𝑋𝑞 (𝑢) ∼ 𝐶𝑒𝑖𝑢
∑
𝑘 (𝜖𝑘−𝜖 ′𝑘 )/2

√︁
det(Γ0 (𝑢))

(
1 + 1

2
Tr

{
Γ−1

0 (𝑢)𝑀 (𝑢)
}

+
∑︁
𝑘

𝑣𝑘𝑣
′
𝑘
+ 1

2
Tr

{
Γ−1

0 (𝑢) (𝑉 (𝑢) −𝑉 ′ (𝑢))
}

+1
2

Tr
{
𝑉2 −𝑉 ′

2
} )

(E26)

where we have defined the matrices

𝑉 (𝑢) =
(
𝑉1 𝑉2
−𝑉𝑇2 𝑉3

)
, 𝑉 ′ (𝑢) =

(
𝑉 ′

1 𝑉 ′
2

−𝑉 ′𝑇
2 𝑉 ′

3

)
(E27)

We note that for an initial state that is the ground-state of 𝐻 ,
we get the characteristic function

𝜒 (0) (𝑢) = 𝑒𝑖𝑢
∑
𝑘 (𝜖𝑘−𝜖 ′𝑘 )/2

√︄
det(Γ0 (𝑢))
det(Γ0 (0))

(E28)
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which is obtained from 𝑋𝑞 (𝑢) in the limit 𝛽 → ∞. Alterna-
tively, by considering 𝜃𝑇 = (𝜉𝑇 , 𝜉∗𝑇 ), Eq. (E20) can be derived
with the help of the identity∫

𝑑𝜃𝜃𝑖𝜃 𝑗𝑒
− 1

2𝜃
𝑇 Γ0𝜃 = −1

2
Tr

{
Γ−1

0 𝑋𝑖 𝑗
} √︁

det(Γ0) (E29)

where𝑋𝑖 𝑗 = |𝑖⟩⟨ 𝑗 | − | 𝑗⟩⟨𝑖 |, and |𝑖⟩ is the unit vector with only
the i-th component which is nonzero. Actually

√︁
det(Γ0) is

the Pfaffian of Γ0. To prove it, we note that∫
𝑑𝜃𝜃𝑖𝜃 𝑗𝑒

− 1
2𝜃
𝑇 Γ0𝜃 =

1
𝜖

( ∫
𝑑𝜃 (1 + 𝜖𝜃𝑖𝜃 𝑗 )𝑒−

1
2𝜃
𝑇 Γ0𝜃

−
∫

𝑑𝜃𝑒−
1
2𝜃
𝑇 Γ0𝜃

)
(E30)

The second integral is
∫
𝑑𝜃𝑒−

1
2𝜃
𝑇 Γ0𝜃 =

√︁
det(Γ0). By consid-

ering the limit 𝜖 → 0, we get∫
𝑑𝜃𝜃𝑖𝜃 𝑗𝑒

− 1
2𝜃
𝑇 Γ0𝜃 ∼ 1

𝜖

(∫
𝑑𝜃𝑒

𝜖
2 (𝜃𝑖𝜃 𝑗−𝜃 𝑗𝜃𝑖 )𝑒−

1
2𝜃
𝑇 Γ0𝜃 −

√︁
det(Γ0)

)
(E31)

then∫
𝑑𝜃𝜃𝑖𝜃 𝑗𝑒

− 1
2𝜃
𝑇 Γ0𝜃 ∼ 1

𝜖

(√︃
det(Γ0 − 𝜖𝑋𝑖 𝑗 ) −

√︁
det(Γ0)

)
(E32)

by evaluating the limit 𝜖 → 0, we get Eq. (E29). Similarly, we
have the identity∫

𝑑𝜃𝜃𝑖𝜃 𝑗𝜃𝑘𝜃𝑙𝑒
− 1

2𝜃
𝑇 Γ0𝜃 = −1

2
Tr

{
Γ−1

0 𝑋𝑖 𝑗Γ
−1
0 𝑋𝑘𝑙

} √︁
det(Γ0)

+1
4

Tr
{
Γ−1

0 𝑋𝑖 𝑗
}

Tr
{
Γ−1

0 𝑋𝑘𝑙
} √︁

det(Γ0) (E33)

To prove it, we consider that∫
𝑑𝜃𝜃𝑖𝜃 𝑗𝜃𝑘𝜃𝑙𝑒

− 1
2𝜃
𝑇 Γ0𝜃 =

1
𝜖

( ∫
𝑑𝜃𝜃𝑖𝜃 𝑗 (1 + 𝜖𝜃𝑘𝜃𝑙 )𝑒−

1
2𝜃
𝑇 Γ0𝜃

−
∫

𝑑𝜃𝜃𝑖𝜃 𝑗𝑒
− 1

2𝜃
𝑇 Γ0𝜃

)
(E34)

which, in the limit 𝜖 → 0 can be evaluated with the help of
the identity in Eq. (E29). We get∫

𝑑𝜃𝜃𝑖𝜃 𝑗𝜃𝑘𝜃𝑙𝑒
− 1

2𝜃
𝑇 Γ0𝜃 ∼ 1

2𝜖

(
Tr

{
Γ−1

0 𝑋𝑖 𝑗
} √︁

det(Γ0)

−Tr
{
(Γ0 − 𝜖𝑋𝑘𝑙 )−1𝑋𝑖 𝑗

} √︁
det(Γ0 − 𝜖𝑋𝑘𝑙 )

)
(E35)

by evaluating the limit 𝜖 → 0, we get Eq. (E33). In the end,
we consider the initial state in Eq. (E21), which is

|Ψ2⟩ =
𝑒
𝛽

4
∑
𝑘 𝜖𝑘

√
𝑍2

(
1 +

∑︁
𝑘

𝑒−
𝛽𝜖𝑘

2 𝛼
†
𝑘
+ 1

2

∑︁
𝑘,𝑘 ′

𝑠𝑘,𝑘 ′𝑒
− 𝛽 (𝜖𝑘 +𝜖𝑘′ )

2 𝛼
†
𝑘
𝛼
†
𝑘 ′

)
|0̃⟩

(E36)

By using the identities in Eqs. (E29) and (E33), we get

𝑋𝑞 (𝑢) = 𝐶𝑒𝑖𝑢
∑
𝑘 (𝜖𝑘−𝜖 ′𝑘 )/2

√︁
det(Γ0 (𝑢))

(
1 + 1

2
Tr

{
Γ−1

0 (𝑢)𝑀 (𝑢)
}

+
∑︁
𝑘

𝑣𝑘𝑣
′
𝑘
+ 1

2
Tr

{
Γ−1

0 (𝑢) (𝑉 (𝑢) −𝑉 ′ (𝑢))
}

+1
2

Tr
{
𝑉2 −𝑉 ′

2
}
− 1

4
Tr {𝑉2} Tr

{
𝑉 ′

2
}

−1
4

Tr {𝑉2} Tr
{
Γ−1

0 (𝑢)𝑉 ′ (𝑢)
}

−1
4

Tr
{
𝑉 ′

2
}

Tr
{
Γ−1

0 (𝑢)𝑉 (𝑢)
}
− 1

2
Tr

{
𝑉3𝑉

′
1
}

+1
2

Tr
{
Γ−1

0 (𝑢)𝑉 ′′ (𝑢)
}
+ 1

2
Tr

{
Γ−1

0 (𝑢)𝑉 (𝑢)Γ−1
0 (𝑢)𝑉 ′ (𝑢)

}
−1

4
Tr

{
Γ−1

0 (𝑢)𝑉 (𝑢)
}

Tr
{
Γ−1

0 (𝑢)𝑉 ′ (𝑢)
} )

(E37)

where we have defined

𝑉 ′′ (𝑢) =
(
𝑉2𝑉

′
1 +𝑉 ′

1𝑉
𝑇
2 𝑉2𝑉

′
2 −𝑉 ′

1𝑉3
𝑉3𝑉

′
1 −𝑉 ′𝑇

2 𝑉𝑇2 𝑉3𝑉
′

2 +𝑉 ′𝑇
2 𝑉3

)
(E38)

If we introduce a relative phase 𝜙𝑘 , we have to multiply 𝑢𝑘𝑞
and 𝑣𝑘𝑞 by 𝑒−𝑖𝜙𝑘 and 𝑢′

𝑘𝑞
and 𝑣 ′

𝑘𝑞
by 𝑒𝑖𝜙𝑘 .

If 𝐴 and 𝐵 are complex matrices, we get 𝑔 and ℎ complex.
In this case we have same formulas, with 𝑔 = 𝑔𝑔′† +ℎℎ′𝑇 and
ℎ̃ = 𝑔ℎ′𝑇 + ℎ𝑔′†, and in Γ0 in Eq. (E18), we have 𝐺∗ instead of
𝐺 , and in 𝑢𝑘 , 𝑣𝑘 , 𝑢𝑘𝑞 and 𝑣𝑘𝑞 we have 𝑔∗ and ℎ̃∗ instead of 𝑔
and ℎ̃.

Appendix F: Initial quantum coherence

We consider the initial state 𝜌0 = 𝜂 |Ψ𝐺 (0)⟩⟨Ψ𝐺 (0) | + (1 −
𝜂)𝜌𝐺 (0), we get

⟨𝑒𝑖𝑡𝐶⟩ = Tr
{
𝜌0𝑒

𝑖 ln 𝜌0𝑒𝑖 ln 𝜌𝐺 (0)𝑡
}
= Tr

{
𝜌1+𝑖𝑡

0
}
𝐷𝑖𝑡 (F1)

since 𝜌𝐺 (0) = 𝐼/𝐷 is the completely mixed state. Then, since
the eigenvalues of 𝜌0 are 𝜂 + (1 − 𝜂)/𝐷 and (1 − 𝜂)/𝐷 which
is 𝐷 − 1 fold degenerate, by evaluating the trace we get

⟨𝑒𝑖𝑡𝐶⟩ = 𝐷𝑖𝑡
(
(𝜂 + (1 − 𝜂)/𝐷)1+𝑖𝑡 + (𝐷 − 1) ((1 − 𝜂)/𝐷)1+𝑖𝑡 )

(F2)
which is Eq. (61). Concerning ⟨𝑒𝑖𝑢𝑤+𝑖𝑡𝐶⟩ can be easily derived
from the joint quasiprobability distribution of the work and
coherence given in Ref. [13]. By doing a symmetric choice of
the parameters 𝑞 = 𝑞′ = 1/2 we get Eq. (62), from which

−𝑖𝜕𝑢𝐺 (0, 𝑡) = −𝑖𝜕𝑢 ln⟨𝑒𝑖𝑡𝐶+𝑖𝑢𝑤⟩|𝑢=0 =
Tr

{
𝜌0𝑒

𝑖 ln 𝜌0𝑡 (𝐻 ′ − 𝐻 )
}

Tr
{
𝜌0𝑒𝑖 ln 𝜌0𝑡

}
(F3)

and by proceeding similarly we get Eq. (63).

Appendix G: Measuring the characteristic function

The characteristic function can be measured as observed
in Ref. [13]. Here we note the detector can be a qubit in
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the initial state 𝜌𝐷 (𝑡𝑖 ) with Hamiltonian 𝐻𝐷 = 𝜔 |𝑒⟩⟨𝑒 |. We
consider the interactions with the system described by 𝐻𝐼 =
−𝛿𝑒 |𝑒⟩⟨𝑒 | − 𝛿𝑔 |𝑔⟩⟨𝑔| and 𝐻 ′

𝐼
= −𝛿 ′𝑒 |𝑒⟩⟨𝑒 | − 𝛿 ′𝑔 |𝑔⟩⟨𝑔|, where |𝑔⟩

is the ground-state of the qubit and |𝑒⟩ is the excited state.
The total system is in the initial state 𝜌𝐷 (𝑡𝑖 ) ⊗ 𝜌0 at the initial
time 𝑡𝑖 = −𝑡𝐷 , in the time interval (−𝑡𝐷 , 0) the time-evolution
is generated by the total Hamiltonian𝐻𝑡𝑜𝑡 = 𝐻 (𝜆0) +𝐻𝐷 +𝐻𝐼 .
Then, in the time interval (0, 𝜏) the qubit and the system do
not interact and the quench is performed. Finally, in the time

interval (𝜏, 𝜏+𝑡 ′
𝐷
) the time-evolution is generated by the total

Hamiltonian 𝐻 ′
𝑡𝑜𝑡 = 𝐻 (𝜆𝜏 ) + 𝐻𝐷 + 𝐻 ′

𝐼
. The coherence of the

qubit at the final time 𝑡𝑓 = 𝜏 + 𝑡 ′𝐷 reads

⟨𝑒 |𝜌𝐷 (𝑡𝑓 ) |𝑔⟩ = ⟨𝑒 |𝜌𝐷 (𝑡𝑖 ) |𝑔⟩𝑒−𝑖𝜔 (𝑡𝑓 −𝑡𝑖 )Tr
{
𝑒−𝑖 (1−𝛿𝑒 )𝑡𝐷𝐻 (𝜆0 )𝜌0

×𝑒𝑖 (1−𝛿𝑔 )𝑡𝐷𝐻 (𝜆0 )𝑈 †
𝜏,0𝑒

𝑖 (𝛿 ′𝑒−𝛿 ′𝑔 )𝑡 ′𝐷𝐻 (𝜆𝜏 )𝑈𝜏,0

}
(G1)

from which we can determine 𝑋𝑞 (𝑢).
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