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Abstract
We studied four AlGaN-based 265 nm LEDs with increasing QW thickness (1.4, 3, 6 and 9 nm)
during a constant current stress at 100 A cm−2. We focused our attention on the parasitic
components of the emission spectra at low current levels and on the optical power recovery
observed at high current levels. We associated every parasitic peak or band to a region in the
device where they can be generated, also demonstrating if they are related to band-to-band
emission or radiative emission through defects. At high current levels, we showed the
simultaneous effect of the decrease in injection efficiency in the active region and the increase in
non-radiative recombination, by fitting the EQE curves with a mathematical model. Moreover,
we associated the optical power recovery with a generation of negative charge near the active
region, which led to an increase in injection efficiency in the QW.

Keywords: parasitic emission, optical power recovery, UV-C LEDs

1. Introduction

AlGaN-based ultraviolet (UV) light emitting diodes (LEDs)
have gained an increasing interest in the last years for
their use in disinfection systems [1–4]. In particular, it was
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demonstrated that by UV light it is possible to inactivate
several viruses, including Sars-CoV-2 [5]. This pushed the
researchers to increase the external quantum efficiency (EQE),
which is still about an order of magnitude lower than the vis-
ible LEDs [6]. These devices still suffer from: difficulties in
the fabrication of p-contact [7, 8], since no metal can provide
a good alignment with the valence band of (Al)GaN; self-
heating [6], caused by the low fraction of electrical power con-
verted into optical power; low spectral purity [9], consequence
of the presence of defects within the structures and of the het-
erostructure properties. Equally or even more important for
real-life application is the stability of the output optical power,
which is often overlooked. Consequently, only few studies
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exist that investigate the degradation behavior of UV LEDs
and the related physical processes.

The goal of this paper is to study the optical properties
of single QW (SQW) LEDs, during an accelerated lifetime
test (ALT). The devices under test are simplified structures,
designed to ease the experimental evaluation of efficiency and
lifetime limiting processes of AlGaN-based UV-C emitters.
Hence lifetime and EQE are not comparable with the perform-
ance reached by commercially-available devices. Despite that,
these devices suffer from the same issues as their commercial
counterpart, making them suitable for our investigation. We
divided our study into two parts: a first part where we found
the origin of the parasitic spectral components and a second
where we investigated the mechanisms affecting the optical
power at the stress current density. From the spectral analysis,
we found two peaks related to band-to-band recombinations
located at the interface between the p-contact layer (p-CL) and
electron blocking layer (EBL) and at the interface between
the interlayer (IL) and last barrier (LB). Moreover, we iden-
tified three peaks caused by defect recombination, generated
in the p-CL, in the IL and in the QW or LB. Regarding the
optical power at high current levels, i.e. at measurement cur-
rents near the stress current level, through mathematical sim-
ulations we confirmed the decrease in injection efficiency and
the increase in non-radiative recombination as the main mech-
anisms of optical degradation. By means of TCAD simula-
tions, carried out with Synopsis® Sentaurus, we were able to
ascribe the optical recovery observed on the sample featuring
thicker QWs to the screening of the polarization (PE) charge at
the IL/LB interface, which led to an increase in carrier injec-
tion in the active region during the first 1000 min of ageing.
A detailed description of the simulation approach and frame-
work adopted for the same family of devices can be found
in [10].

2. Experimental details

The devices under analysis are four sets of AlGaN-based SQW
LEDs, with a nominal emission wavelength of 265 nm. Their
epitaxial structure, reported in figure 1, differs only in the
QW thickness, which is 1.4, 3, 6 and 9 nm and they were
named QW14, QW3, QW6 and QW9, respectively. The LEDs
were grown by metal-organic vapor phase epitaxy on high-
temperature annealed epitaxially laterally overgrown AlN on
sapphire. The threading dislocation density detected for this
template was 9 × 108 cm−2 [11, 12]; above this layer a series
of adaptations layers were grown. Following them, the 200 nm
Al0.65Ga0.35N n-contact layer was grown, with a Si doping of
4 × 1018 cm−3. The n-side of the device was concluded with a
40 nmAl0.65Ga0.35N First Barrier layer ([Si]: 5 × 1018 cm−3),
the Al0.48Ga0.52N SQW with different thickness and uninten-
tional doped (u.i.d.), the 10 nm Al0.63Ga0.38N LB u.i.d. layer
and the 10 nm Al0.82Ga0.18N u.i.d. IL. The p-side started with
a 25 nmAl0.75Ga0.25NEBL, doped with aMg concentration of
1 × 1019 cm−3 and followed by the p-Contact Layer (p-CL),
in GaN ([Mg]: 6 × 1019 cm−3).

Figure 1. Schematic representation of the device’s internal
structure.

The devices were submitted to a constant current stress
of 100Acm−2, which corresponded to the nominal current
of 100 mA, at room temperature 25 ◦C. Each test lasted
20 000 min, about 330 h and they were interrupted at logar-
ithmic time steps to provide an electrical, optical and spectral
characterization. The setup was composed of a source meter
unit, a photodiode to measure the optical power and a calib-
rated compact array spectrometer to provide the spectral char-
acterization at low current levels, i.e. for current levels below
10mA. All measurements were performed in continuous wave
mode. Before the ALTs, we also performed a detailed spec-
tral analysis by a calibrated Instrument System CAS140, to
evaluate the power spectral density (PSD) of the devices at all
current levels.

3. Discussion

We started by investigating the emission spectra of the devices,
as reported in figure 2(a) where is depicted the PSD of the
QW3 LED. In the spectrum are visible several parasitic com-
ponents, which are at least two orders of magnitude lower
than the main peak at high current levels. In other words,
at low current levels, parasitic emissions are comparable or
higher than the characteristic 265 nm peak, resulting in the
loss of the monochromaticity of the device. For these reas-
ons, in our ALTs we investigated the evolution of the PSD
at low current levels with time, as reported in the following
section.

From the constant current ALTs, done in the same condition
as our previous work [8], the optical power presented a degrad-
ation both at high and low current levels (figure 2(b)). First of
all, from this graph, we can observe that a narrow QW implies
a higher wavefunction overlap in it, leading to a higher emit-
ted optical power. We already demonstrated that the decrease
in optical power could be ascribed to an increase in non-
radiative recombination events, possibly SRH [13, 14] and a
decrease in injection efficiency [15, 16]. In particular, in this
work, we decided to investigate twomechanisms that affect the
optical power emission: (i) parasitic components at low cur-
rent levels and (ii) recovery in optical power at high current
levels.
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Figure 2. (a) Initial QW3 LED power spectral density
characterization at various current levels. (b) LEDs absolute optical
power before and after the stress.

3.1. PSD investigation at low current levels

Figure 3 reports the PSD of QW3 LED measured during the
ageing procedure at the current level of 1 mA. As already dis-
covered from the pre-stress characterizations, several parasitic
peaks and bands are present besides the main peak. In particu-
lar, we identified: (i) a parasitic left-shoulder peak at 249 nm,
(ii) a parasitic band at 308 nm, (iii) a parasitic peak at 337 nm,
(iv) a parasitic band centered at 380 nm and (v) a parasitic band
centered 506 nm. In table 1, we report the central wavelength
of each peak or band extracted with a multiple Gaussian fit,
the correspondent photon energy and the possible origin of the
parasitic component (band-to-band recombination, or recom-
bination through defects).

We aimed to identify the region in the device where each
parasitic emission happened, so we divided the band diagram

Figure 3. Power spectral density measured during the ageing
procedure for the LED with QW of 3 nm. The colored background
regions identify the wavelength ranges where each peak dominates.

as reported in figure 4(a). From these TCAD simulations, by
analyzing the radiative recombination plot Bn2, we found an
e−/h+ peak in correspondence to the QW, clearly associated
to themain peak emission. Other carrier accumulation regions,
which could give radiative recombination, are located at the
interface between p-CL and EBL and between IL and LB. To
validate our hypothesis, we also extracted the band diagram,
by solving the Schrödinger equation, as reported in figure 4(b).
This allowed us to identify four possible regions where we
could have band-to-band recombination, in particular: (i) in
the QW, with an emission energy of 4.6 eV, similar to the main
emission peak; (ii) at the interface between IL and LB, with an
emission energy of 4.90 eV, similar to component A; (iii) at
the interface between EBL and IL, with an emission energy
of 5.38 eV, for which we did not find any correspondence in
figure 3; and (iv) at the interface between p-CL and EBL, with
emission energy of 3.6 eV, similar to component D. It is worth
noticing that the possible recombination at 5.38 eV has sim-
ilar energy to the small peak present in the initial character-
ization at around 225 nm, visible only at high current levels.
In fact, only at these current densities, we could accumulate a
sufficient number of carriers to have band-to-band recombin-
ation. Moreover, to support the interpretation on the origin of
peak A, photoluminescence analysis performed on similar UV
LEDs confirmed the presence of a parasitic peak at 4.97 eV
due to band-to-band recombination at the very same interface
between IL and LB [17].

Continuing our investigation with the parasitic bands
related to the recombination through defects, component F
could be associated with the well-known GaN yellow lumin-
escence band [18–21]. This allowed us to identify the p-CL
in GaN (light-red background in figure 4(a)) as the candidate
layer where this recombination happened.

Component E, with a peak energy of 3.26 eV, could be
associated with a recombination through defects in the IL. In
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Table 1. Summary of components identified in the power spectral density of device QW3.

Component Wavelength (nm) Energy (eV) Physical origin Location

A 249 4.97 Band-to-band Interface between IL and LB
B 265 4.67 QW recomb. Active region
C 308 4.03 Defects recomb. Defects in QW or Mg back-diffusion in LB
D 337 3.68 Band-to-band Interface between p-CL and EBL
E 380 3.26 Defects recomb. Defects in LB or DAP in p-CL
F 506 2.45 Defects recomb. GaN yellow luminescence in p-CL

Figure 4. (a) TCAD simulation of the band diagram, carrier
concentration and radiative recombination of QW3 LED at the
current level of 1 mA. (b) Solution of the Schrödinger equation in
the same conditions.

our previous work on the same samples [10], we provided
a defect characterization with the DLOS technique, which
allowed us to identify three deep levels at EC− 0.94eV, EC−
3.06eV and EC− 3.52eV. The second level had an activation
energy similar to component E and it was also placed in the
IL region to simulate the trap-assisted tunneling mechanism.
By combining it with the high amount of carriers present at
that interface, we could relate this parasitic band to the inter-
face IL/LB, i.e. the region with a light-yellow background in
figure 4(a). Another possible origin for the parasitic band E at
3.26 eV could be found in [22, 23], where the authors asso-
ciated this band with recombination through a donor-acceptor

pair in a GaN layer, possibly driven by absorption and remis-
sion of higher energy light or electron overshoot. In this case,
the peak could be generated on the p-side of the device, in the
contact layer.

Concluding our investigation with component C, it could
be related to recombination through defects present in the
QW, as already reported in the literature [24]. Otherwise,
another hypothesis could be a recombination in the LB through
Mg defects back-diffused from the p-side during the growth.
A similar behavior was already observed in [25], where the
authors identified this level with a parasitic peak emission of
about 280 nm.

In figure 5(a) we showed an important mechanism that
appeared during the ageing procedure. After 1000 min of
stress, the LED emission at low current levels is composed
only of parasitic components, in particular by components
D, E and partially F. These components are generated on the
p-side of the device, in particular at the interface p-CL/EBL, in
the IL and in the p-CL, respectively. This suggested the form-
ation during the stress of a potential barrier at the interface
LB/QW, possibly caused by a generation of positive charge,
which locally bent the bands and reduced the injection effi-
ciency in the active region. A similar behavior was already pro-
posed in [8], where the authors modeled it to justify a decrease
in injection efficiency observed during the ALT. In figure 5(b),
we reported the normalized area of the PSD components in
function of the stress time, to show how the peaks related
to the n-side (A, B and C) went to zero after 500 min. As
above mentioned, D, E and F keep appearing until 2000 min,
when the non-radiative recombination prevailed zeroing the
radiative emission.

3.2. Optical power recovery at high current levels

In figure 6(a), we report the optical power trends measured
during the ALTs for the four LEDs in quasi-pulsed mode at the
bias level adopted for the stress. We can observe the competi-
tion of two mechanisms: (i) a continuous optical power decay
affecting the whole stress test, more evident in the device
QW14 and (ii) a recovery in the optical power in the first
1000 min, which is higher for thicker QWs.

As mentioned at the beginning of section 3, the optical
power reduction is supposed to be caused by a combination
of two different processes: a decrease in injection efficiency
and an increase in the non-radiative SRH recombination rate.
To support this hypothesis, we mathematically reproduced the
EQE curves of the QW14 device from the L-I characterization
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Figure 5. (a) Emission spectrum of QW3 LED at the beginning of
the stress and after 1000 min. (b) Normalized area of the emission
bands, calculated from the PSDs, during the stress test.

data. To this aim, we leveraged the conventional rate equation
dn
dt = ηinj · I

qV −An−Bn2 −Cn3, where q was the elementary
charge, V the volume in the active region and I the current
in the device. We chose the non-radiative (A), bimolecular
(B) and Auger–Meitner (C) coefficients and the injection effi-
ciency ηinj by starting from typical values reported in the liter-
ature for similar devices [26–28] and by reasonably adjusting
them to fit the curves. The fitted curves reported in figure 6(b)
were obtained by fixing theB andC coefficient, finding the val-
ues of A and ηinj that best fit the experimental curves at 0 min
and by changing these latter two parameters to also fit the curve
at 20 000 min. The plot showed that the sole increase in the A
coefficient, i.e. an increase in defects-assisted SRH recombin-
ation, is not sufficient to reproduce the experimental curves,
which also requires to take into consideration a decrease in
injection efficiency. These results confirmed our hypotheses
of a combination of an increase in non-radiative recombination

Figure 6. (a) Optical power trends normalized to the initial value at
0 min, at the stress current of 100 mA during the ageing. (b) Model
of the EQE curve at the beginning and at the end of the stress for
device QW14.

and a decrease in injection efficiency as the main mechanisms
for the optical power degradation during ageing.

Regarding the optical power recovery, it was found to be
more prominent for thicker QWs, reaching 15% for the 6 nm
variant. To explain this mechanism, we hypothesized the form-
ation of a negative charge at the interface between the IL and
the LB (IL/LB), with the effect of screening the (positive) PE
charge present there.We estimated the initial value of this fixed
interface charge (IC) density in about 1× 1011 cm−2. Through
our simulations, we demonstrated that this process can induce
a rise of the valence band (see the inset of figure 7(b)), which
led to a higher hole injection probability and consequently an
increase in the main radiative recombination peak, as shown
in figure 7(a). This increase could easily reach 15% of the ini-
tial value (figure 7(b)), supporting our hypothesis about the
generation of negative charge at the interface during the first
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Figure 7. (a) Simulations of carrier density and radiative
recombination in device QW6, with a decreasing PE charge at the
IL/LB interface. (b) Normalized radiative recombination peak into
the QW in function of the fixed IC charge; in the inset a zoom of the
valence band at the interface IL/LB.

1000min of stress. Defects acting as charged centers can there-
fore impact the optical characteristics of UV-C LEDs inducing
a local band bending, which leads to an increase in hole injec-
tion efficiency and then an increase in radiative recombina-
tion in the QW. To confirm this preliminary hypothesis, further
experiments, simulations and analyses are required.

4. Conclusions

In this paper, we presented an extensive study of the spectral
impurities and the optical power degradation mechanisms of
a series of AlGaN-based SQW LEDs. We correlated the pres-
ence of two parasitic peaks to a band-to-band recombination
that occurs at the interfaces IL/LB and p-CL/EBL, with emis-
sion wavelengths of about 249 and 337 nm, respectively. We
also identified three parasitic bands, generated by recombin-
ation through defects, at 308, 380 and 506 nm, which took
place in the active region, IL or p-CL and p-CL, respect-
ively. Regarding the degradation mechanisms that reduced
the optical power during ageing, we confirmed the simultan-
eous effect of an increase in non-radiative recombination and
a decrease in injection efficiency. Meanwhile, we explained
the optical recovery with a generation of negative charge at

the IL/LB interface, which increased the injection efficiency
in the active region.
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