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Abstract

The production of biopeptides from food waste through microbial fermentation faces challenges arising 
from the diverse proteolytic abilities of microorganisms and substrate variability, impacting both the 
quality and yield of generated biopeptides. To address these challenges, preliminary in-silico 
bioinformatics analyses play a crucial role in evaluating suitable substrates and proteases for the 
fermentation process. However, existing tools lack comprehensive predictive capabilities for relevant 
proteases, substrate performance assessment, and final biopeptide family characterization. To overcome 
these limitations, we developed FEEDS (Food wastE biopEptiDe claSsifier), a novel biopeptide 
prediction and classification tool. FEEDS predicts biopeptide families based on microbial genome 
protease profiles and substrate composition during proteolysis. The tool also employs a machine 
learning approach for functional biopeptide classification. Results from testing on 1000 microbial 
genomes demonstrate the effectiveness of biopeptide classification, particularly in categorizing peptides 
derived from substrates like Hordeum vulgare and Vitis vinifera seed storage proteins. In addition to 
biopeptide classification, our study delves into the distinctive protease profiles of bacteria and yeast 
genomes. Bacterial genomes exhibited 60 to 100 proteases across 40 to 55 families. Contrastingly, yeast 
genomes displayed a more evenly distributed pattern with 150 to 160 protease-encoding genes across 
60 to 67 families, surpassing bacterial counts. Remarkably, a substantial portion of yeast proteases 
(~66%) was secreted. Moreover, our integration of a machine learning methodology within the FEEDS 
pipeline proved highly effective, achieving over 80% accuracy in predicting the function of peptides 
derived from seed storage proteins. Notably, longer peptide sequences exceeding 20 amino acids 
consistently displayed a higher probability of correct assignment compared to shorter counterparts.

Keywords: Bioactive peptides, proteases, digestion, food waste, bacteria, yeasts.

1. Introduction

Biopeptides are short chains of amino acids that occur naturally in living organisms or are 
generated through fermentation processes. These small molecules have many applications and are used 
in various fields [1]. They have been found to exhibit various pharmacological activities such as 
antimicrobial, anti-inflammatory, antioxidant, and antihypertensive effects [1,2]. Biopeptides have 
gained popularity due to their multiple functions, including flavor enhancement, food preservation, and 
due to their physiological effects, such as improving digestion and lowering cholesterol levels [2,3]. In 
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agriculture, biopeptides are used as plant growth promoters and biopesticides, which are safer 
alternatives to traditional compounds obtained through chemical synthesis [4]. Biopeptides have also 
been utilized in cosmetics as active ingredients in anti-aging creams and other skincare products due to 
their ability to stimulate collagen and elastin synthesis, reduce the appearance of wrinkles, and improve 
skin hydration [5]. Overall, the versatility of biopeptides makes them valuable in many different fields 
and their potential applications are still being explored.

Microbial fermentation has emerged as an innovative method for biopeptide production. This 
approach harnesses the metabolic capabilities of microorganisms to synthesize biopeptides efficiently. 
The significance of microbial fermentation lies in its scalability, cost-effectiveness, and the ability to 
tailor the production process for specific biopeptide sequences. This novel production method not only 
enhances the yield and purity of biopeptides, but also opens avenues for exploring new bioactive 
compounds with diverse applications [1,3,6]. Expanding beyond biopeptides, microbial fermentation 
of food waste and byproducts involves microorganisms like bacteria and yeasts. These microorganisms 
utilize byproducts as growth substrates, digesting organic matter and producing enzymes that break 
down complex molecules. This comprehensive process underscores the versatility of microbial 
fermentation in transforming various substrates into valuable end products such as biofuels, bioplastics, 
and enzymes [6]. The fermentation process can occur in a batch or in continuous mode and can be 
performed under various conditions, such as aerobic or anaerobic, and at different pH and temperature 
ranges [7]. The selection of fermentation conditions depends on the specific microorganisms used and 
on the target compounds to be produced. Some microbial species of the genera Lactobacillus, Bacillus, 
Streptococcus, Saccharomyces and Candida have been found to produce biopeptides with various 
bioactive properties, including antimicrobial, antifungal, antioxidant, and immunomodulatory activities 
[6,8]. 

While some studies have explored the use of food-derived proteins as a source of biopeptides 
[9–11], few have focused the attention on the production of biopeptides specifically from food waste 
and byproducts [12]. One of the main advantages of using this matrix as a biopeptide source is that it 
represents a sustainable and low-cost alternative to traditional protein sources. According to a report by 
the United Nations Food and Agriculture Organization (FAO), the disposal of vegetable waste can 
substantially impact the environment since it has a substantial carbon footprint [13]. Furthermore, FAO 
has estimated that approximately one-third of all food produced worldwide is wasted or lost, with a 
significant proportion occurring in the fruit, vegetable, and seafood industries. Additionally, 
contaminants such as heavy metals and pesticides in some food waste streams can pose potential risks 
to human health and the environment [14]. This highlights the need for greater efforts to reduce food 
waste and increase global sustainability in food production and consumption practices. The recovery of 
food waste through the extraction of valuable compounds is an attractive approach, however, the 
generation of some products including biopeptides from food waste presents several challenges. For 
example, the composition of food waste can vary widely depending on the source, which can affect the 
quality and yield of the biopeptides produced.

To help encounter these challenges, preliminary in-silico analyses can help the evaluation of 
what substrates and protease enzymes should be used in the fermentation process. These tools use 
bioinformatics techniques to screen protein databases and identify potential biopeptide candidates based 
on specific criteria such as sequence length, physicochemical properties, and known bioactive regions 
[15]. One commonly used tool for biopeptide prediction is PeptideRanker, which uses machine learning 
techniques to predict the binding affinity of peptides to major histocompatibility complex (MHC) 
molecules [16]. Another tool is the food-derived bioactive peptides database (DFBP), which contains a 
comprehensive collection of experimentally validated bioactive peptides for peptidomics research [17]. 
In addition to these tools, there are also several software and databases available for predicting and 
designing biopeptides with specific functions, such as antimicrobial or antitumor activity [18–20]. 
However, none of these tools is able to combine a range of functions including prediction of proteases 
in microbial genomes, identification of their targets in the proteins of the substrate, and identification 
of the biopeptide families generated. Furthermore, all the available tools are online platforms with 
restrictions regarding the number of sequences for annotations. To address these limitations, we 
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introduce FEEDS, a food biopeptide classifier tool capable of efficiently predicting the biopeptide 
families generated through the cleavage site profiles of proteases derived from microorganism genome 
annotations and the substrate proteins from food sources.

2. Material and Methods

This section provides a detailed description of all the steps involved, while a summary of the 
FEEDS tool's process is presented in the flowchart depicted in Figure 1. The tool was developed using 
Python, and installation instructions, as well as all the features of the tool, can be accessed at the 
following link: https://github.com/vborincenturion/feeds.

Figure 1. Flowchart of FEEDS tool pipeline. Colors are used to highlight the three main functions of the tool: 
proteases characterization (purple), simulation of proteases activity (blue) and biopeptides classification (beige). 
The dashed chart step is optional. Output files are represented by arrows coming out of the chart. External tools 
implemented in FEEDS are reported on the left and represented by bullet points. 

2.1 Step1: Proteases annotation

The first step involves annotation of protein files obtained from bacterial genomes and yeasts 
for proteases prediction. To achieve this, the protease sequences from the MEROPS database, which 
employs a hierarchical and structure-based classification system, were used to generate a database using 
the “makedb” function of Diamond v2.1.4 [21]. For bacteria, the protein-encoding sequences were 
recovered from genomes using Prodigal v2.6.3 [22]. In the case of yeasts, users must provide the open 
reading frames (ORFs) prediction file since Prodigal is only applicable to prokaryotic genomes, and 
other tools like GeneMark [23] can provide reliable predictions only for some yeast species. Moreover, 
ORF prediction for yeast requires a specific frame rule for each genus and lacks a comprehensive gene-
finding tool [24], however FEEDS can flexibly incorporate predictions from new tools. Next, the 
"blastp" function of the Diamond tool was used with the parameters "--more-sensitive -k 1 -f 6 qseqid 
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sseqid pident --id 90 --query-cover 85 --subject-cover 85" to align the query sequences to the database 
previously generated using the sequences collected from MEROPS. The strict identity used in the 
alignment, and the coverage criteria, ensured that only those proteases with highly significant similarity 
levels were annotated. Starting from the alignment results obtained, the main proteases information, 
including function, family, and also the ID number of the cleavage site for the secreted enzymes 
obtained from the RapidPeptideGenerator (RPG) v2.0.0 (Maillet, 2020) were recovered using Pandas 
library.

Starting from the entire list of proteases identified, only those potentially secreted were 
considered for the next step, as they are those with the highest probability to act on the substrates and, 
for this reason, those having the highest biotechnological relevance [26,27]. To identify the secreted 
proteases, all the proteins annotated as proteases from the Diamond output were clustered with CD-HIT 
v4.8.1 [28] with a 90% identity threshold. A single representative sequence from each cluster was 
analyzed with the BUSCA web server (http://busca.biocomp.unibo.it) [29], using the taxonomic 
selection of "Prokarya - Gram-positive" or "Eukarya - Fungi". Only protease families including in their 
annotation the term “extracellular space” compartments were considered as secreted proteases and this 
result was associated to all the proteases in the cluster. Further details on protease families can be found 
in Supplementary material 1.

2.2 Step2: Peptide sequence prediction

For each family of secreted proteases the cleavage sites were recovered from MEROPS 
database (https://www.ebi.ac.uk/merops/cgi-bin/protsearch.pl). After recovering all the cleavage sites, 
this information was added (if not already present) to the RPG tool using the "rpg -a" function. Peptide 
predictions can be generated by using either the “sequential” or “concurrent” digestion mode of RPG. 
“Concurrent” mode simulates the substrate hydrolysis using all enzymes at once, while “sequential” 
mode performs the simulation utilizing all the enzymes one by one in a sequential order. The mode 
setting can be defined by setting the "-d" option in FEEDS. The protein substrate files used for RPG 
digestion are provided by the user as a file in the  "substrate" folder. FEEDS has two filtering functions 
that enable the selection of the predicted peptide sequences generated based on their length or according 
to their molecular weight (-f_length and -f_mol, respectively). In the final part of this step, a table with 
the peptide length or molecular weight information is generated. Furthermore, Supplementary material 
2 includes a list of all the secreted proteases potentially used by FEEDS in the simulated substrate 
proteolysis, the cleavage site counts, and the corresponding IDs to be imputed during the processing 
with the "-e" function of RPG.

2.3 Step3: Functional Biopeptide Classification

The peptide sequences obtained in the previous step are classified using the CICERON tool 
[30], a novel machine learning method to identify functions of biopeptides  obtained from hydrolysis 
of food protein substrates. This tool employs various methods for the classification of biopeptides 
including similarity and motif search against a database focused on microbial peptides, and several 
machine learning methods such as Logistic Regression, Random Forest, K-Nearest Neighbour and 
Neural Networks. CICERON automatically selects the most accurate method for each of nine functional 
classes based on prior systematic benchmark evaluations, including peptides with positive effects on 
vascular circulation, antidiabetic, antihypertensive, antimicrobial, antioxidant, celiac-disease-
associated, and immunomodulatory peptides, neuropeptides, and opioids [30]. The underlying models 
were trained on peptides having a maximum length of 100 amino acids (AA), hence, for optimal results 
it is highly advisable to utilize this value as maximum length. The different possible functional 
classification of biopeptides are reported in the Supplementary material 3
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2.4 In vitro experiments for validation of FEEDS.

FEEDS was validated comparing the results with those obtained in a “real” fermentation 
process performed using brewer spent grains (Hordeum vulgare) as substrate. In this experiment 
peptides were identified using mass spectrometry. Prior to inoculation and fermentation, the substrates 
underwent UV treatment to reduce the contaminating microbial load. This approach was preferred over 
thermal treatments to avoid damage and denaturation of the proteins. The selected microorganisms for 
the test were Enterococcus faecalis AVEL13, Lactococcus lactis WSL2, Schizosaccharomyces pombe 
J13151G1 and Saccharomyces cerevisiae KFAY3 and the fermentation time was set to 72 hours. 
Peptides with a molecular weight lower than less than 90 kilodaltons (∼ 90 AA) and containing more 
than 6 AA were selected for UHPLC/HR-MS2 (UHPLC Ultimate 3000, Thermo Scientific, San Jose, 
CA, USA; Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer, Thermo Scientific, San Jose, 
CA, USA) equipped with a C18 column (Acquity UPLC-C18 Reversed-phase, 2.1 × 100 mm, 1.8 µm 
particle size, Waters Corporation, Milford, MA, USA) mass spectrometry (MS) analysis conducted after 
72 hours apart from fermentation using the label-free quantification method. Peptides with fewer than 
6 amino acids were excluded from this analysis due to limitations of software and a high-confidence 
peptide threshold from Proteome Discover 2.3 (Thermo Fisher Scientific, Dreieich, Germany). Based 
on the ion intensity, in-vitro peptides sequences were predicted using Proteome Discoverer 2.3 coupled 
with Matrix software (Matrix Science, Boston, MA, USA) for peptide sequencing and identification. 
The main parameters used for the identification process were:  enzyme, no-enzyme; peptide mass 
tolerance, ±5 ppm; fragment mass tolerance, ±0.1 Da; variable modification, Demetilation (NQ), 
oxidation (M) and phosphorylation (ST). Peptide and protein identification results were exported after 
filtering with the Peptide and Protein Validator to achieve a false discovery rate (FDR) below 0.01.  The 
obtained in-vitro proteins were subjected to in-silico digestion using sequential mode of RPG tool and 
the following microorganisms: Enterococcus faecalis strain AT22, Lactococcus lactis subsp. lactis 
LEY7, Saccharomyces cerevisiae YJM984, and Schizosaccharomyces pombe 972h-. The comparison 
between the peptides obtained and those predicted using FEEDS was performed using Diamond, with 
the in-vitro peptide sequences serving as the database and the predicted in-silico peptide sequences as 
the queries. A minimum threshold of 90% identity (± 4 mismatches) was applied, and the aligned 
sequences were considered as true matches. The in-silico and in-vitro peptides match sequences can be 
checked in the Supplementary material 7.

3. Results and Discussion

To gain insights into the most common protease families involved in biopeptide production, we 
selected 1,182 complete genomes of gram-positive bacteria from the RefSeq database [31]. For yeasts, 
157 genomes having associated protein sequence files in the GenBank database were included [32]. 
The bacterial genera selected were Enterococcus, Fructobacillus, Lactobacillus, Lactococcus, 
Leuconostoc, Pediococcus, and Streptococcus, all belonging to the Firmicutes phylum. The yeasts 
genera included were Candida, Debaryomyces, Hanseniaspora, Kazachstania, Metschnikowia, Pichia, 
Saccharomyces, Schizosaccharomyces, and Zygosaccharomyces, all belonging to the Ascomycota 
phylum, with Rhodotorula being the only genus from the Basidiomycota phylum. In the next sections 
these fungal genera will be reported simply as “yeasts”. To test FEEDS, the seed storage glutelin, 
legumin, vicilin, cruciferin, globulin and albumin proteins of Vitis vinifera, and the seed storage avenin, 
B-D-Y hordein, and glutelin proteins of Hordeum vulgare were used as substrates. Additional 
information on all the species, strains and protein substrates can be found in Supplementary material 3.

3.1 Bacteria and yeasts proteases profiles
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Most of the selected bacterial genomes encoded from 60 to 100 different proteases, while the 
number of protease families ranged from 40 to 55 (Figure 2). Regarding the secreted proteases, most 
genomes encoded from 30 to 60 genes, which were included into 15 to 25 families. The genera with the 
higher number of proteases were Lactobacillus and Enterococcus, which are extensively used in the 
production of biopeptides [33,34]. In yeasts, the number of proteases-encoding genes was more evenly 
distributed and ranging from 150 to 160, while the protease families ranged from 60 to 67 (Figure 2). 
The number of protease-encoding genes in yeasts was higher than in bacteria, and ranged between 100 
to 110 proteases and 60 to 67 protease families, with ∼66% of them being secreted. According to these 
findings, despite the yeasts genera considered in the analysis were more distantly related than those of 
bacteria, some have a similar number of proteases. As asserted by Mirzaei et al. (2022), few studies 
have reported the use of yeasts as pure culture or in co-culture with bacteria to produce biopeptides. 
The high number of proteases, most of them secreted, makes yeast a more suitable candidate for 
biopeptides production than bacteria, however, other relevant aspects should be considered during the 
selection of the microbial species, including the range of biologically active peptides generated and the 
intra-species variability of the proteolytic activities. The number of proteases is directly correlated with 
the number of proteases families, and the results obtained for bacteria and yeasts were similar (R2 
between 0.93 and 0.97), while considering the secreted proteases the correlation was slightly lower (R2 
between 0.85 and 0.96) (Figure 2). Secreted proteases often play specific roles in extracellular 
environments, including nutrient acquisition and cell communication [26]. The slightly lower 
correlation may be reflective among secreted proteases compared to the broader spectrum of 
intracellular and membrane-associated proteases.

Figure 2. Proteases distribution in bacteria and yeasts. Scatterplots showing the Pearson correlation between 
the number of proteases and protease families in bacteria (blue) and yeasts (green). A and C show the trends for 
the total number of proteases, while in B and D the analysis was focused only on secreted proteases.
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The most widely distributed bacterial secreted protease was gamma-glutamyl transferase (C26), 
which is a conserved enzyme found in bacteria, yeasts, plants, and animals (Figure 3 A, B). In Bacillus, 
it is involved in the degradation of poly γ-glutamic acid (PGA) into glutamate during nutrient starvation 
[35]. For yeasts, the most widely distributed protease was represented by the eukaryotic ubiquitin 
proteasome system (UPS; T01A) which is related to the Archaeal proteasome (Figure 3C) [36]. T01A 
is a highly conserved peptidase that regulates protein homeostasis [37]. Pepsin A (A01A) emerges as 
one of the most common secreted proteases in the examined yeasts (Figure 3 D); this family of proteins 
plays a crucial role in numerous physiological processes of S. cerevisiae, including the response to 
nutritional stress, regulation of the sporulation process, and growth under vegetative conditions [38].

Figure 3. Number of intracellular and secreted proteases in the genomes. The barplot illustrates the number 
of intracellular and secreted protease families identified in all the bacterial (A, B) and yeast species (C, D) under 
investigation.  Family names are derived from the MEROPS database and can be verified in Supplementary 
material 1.
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3.2 In-silico generation of peptides

Functional foods offer additional health benefits beyond their basic nutritional value and their 
additional health benefits are often attributed to specific bioactive compounds, including biopeptides, 
or they can be fermented to reduce the allergenicity level [39]. Due to the great relevance for human 
health of the products obtained from the fermentation, highly abundant proteins present in seeds were 
used to test the FEEDS peptide prediction tool in an attempt to characterize the presence of bioactive 
peptides in the final product. The test was performed with five different genera of bacteria and yeasts 
taking into account the number, families and frequency of secreted proteases identified in the previous 
section. The two modes of the RPG tool (concurrent and sequential) were used to determine differences 
in the peptide length distribution, and all the results were reported in Supplementary material 5. The 
results obtained evidenced that most of the peptides generated by Enterococcus faecalis AT22 using the 
“concurrent mode” were shorter than 20 amino acids and were matching the expected length of 
functional biopeptides [40] (Figure 4 A, B), suggesting that this species has a higher potential in 
generating bioactive peptides. In literature, Enterococcus faecalis strains were previously reported to 
produce ACE-inhibitory peptides from bovine skim milk [41]. Enterococcus faecalis AT22 is distinct 
from the other species under investigation due to the presence of enzymes similar to thermolysin 
metallopeptidase M04 family (Supplementary material 5).  One example of thermolysin M04 enzyme 
is the gelatinase, a protease responsible for biofilm formations [42]. According to the MEROPS 
database, thermolysin M04 family has a larger number of cleavage sites in comparison to other families, 
and this likely explains the higher number of peptides produced during the simulation performed with 
Enterococcus faecalis AT22. All the other bacterial species tested generated similar profiles, more 
specifically the number of peptides generated was lower and, as a consequence, length distribution was 
ranging from 21 to 100 amino acids (Figure 4).

Figure 4. Length distribution of peptides generated from simulated hydrolysis. Number of peptides and 
length distribution obtained from in-silico tests performed with bacteria (A, B) and yeast strains (C, D) in 
concurrent (A, C) and sequential (B, D) mode. Two different protein substrates were used in the tests, one from 
Hordeum vulgare and one from Vitis vinifera. The first mix of proteins used as protein substrate included avenin, 
B1 hordein, B3 hordein, D hordein, type 1 glutelin, type 2 glutelin, Y1 hordein, and Y3 hordein from Hordeum 
vulgare. The second mix included 2S albumin, Cruciferin, 11S globulin, D1 glutelin, A3 glutelin, A legumin and 
Vicilin from Vitis vinifera.
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The simulations performed revealed that the peptides generated from different yeast species 
were more closely related than those obtained from different bacteria (Supplementary material 5); as a 
confirmation, the comparison of the length profiles of the peptides obtained using different yeast species 
did not reveal significant differences (Figure 4). However, Debaryomyces hansenii CBS767 analyzed 
in the concurrent mode showed a slightly higher number of short peptides with length between 1 and 4 
AA. The shorter average length obtained is related to the presence of a glutamyl transpeptidase S01 
serine family protease in Debaryomyces hansenii CBS767. This enzyme, similarly to the bacterial 
thermolysin, and according to the MEROPS database, can recognize a high number of cleavage sites. 
According to the literature, Debaryomyces hansenii is one of the most prevalent yeast species in dairy 
foods and, as previously reported, it can produce antihypertensive biopeptides from casein [43].  

The lack of detailed information regarding the proteases cleavage sites in some species can 
result in a high similarity of the peptides pattern identified from different yeast species and this can 
limit the quality of the results obtained from FEEDS. Since the tool is strongly influenced by the quality 
of the information recovered from MEROPS, it should be used with caution when analysis data from 
poorly characterized species, but it can still provide a first glimpse on the digestion peptide predictions 
for each enzyme family and help to select among a range of different microorganism species. The 
quality of the predictions will certainly increase with the addition of new details regarding the proteases 
cleavage sites in yeasts.

3.3 Machine Learning Functional Prediction of Biopeptides 

Biopeptides generated by the hydrolytic activity of fungal and bacterial species described in the 
previous section were examined with machine learning approaches in order to predict their potential 
function. Since the machine learning models were trained using 100 AA as maximum peptide length, 
this was also set as the maximum threshold for the next analyses. According to the probability of correct 
functional prediction probability, the peptides were assigned to three classes: biopeptides with a low 
probability of functional classification (lower than 50%), those with medium probability (between 50 
and 70%), and those with a high probability (>70%). The peptides with low probability of classification 
were discarded. Only the biopeptides with medium and high were considered for further analyses 
(Supplementary material 6).

The results showed that the five bacterial species considered produced a panel of biopeptides 
characteristic for each microbial species, with only a fraction of identical sequences among species 
ranging from 0.3 (concurrent mode) to 1.6% (sequential mode) (Supplementary material 4 - Figure S1). 
The low percentage of identical peptides obtained in the comparison among the species is primarily 
attributed to Enterococcus faecalis AT22, which exhibited more than 80% specific biopeptides. Since 
the bioactive peptides tend to be highly different among bacterial species, the possibility to apply a 
preliminary bioinformatic screening can facilitate the species selection and provide a prediction of the 
process potentially related to the production of biopeptides with characteristic functions. As previously 
mentioned, some enzymes may contain additional information from the cleavage site, leading to 
redundant results. According to the simulations, the use of unicellular fungi for the simulated proteolysis 
lead to a higher fraction of identical peptides among species (ranging from ∼54 to 61%). This is 
obviously due to the similarity in protease profiles among the fungal species investigated. Despite the 
high fraction of identical peptides, when setting the “sequential mode” Debaryomyces hansenii CBS767 
exhibits ∼17% of specific sequences compared to the other strains.

The machine learning approach implemented in the FEEDS pipeline was able to predict the 
function of over 80% of the peptides derived from seed storage proteins with a probability of correct 
assignment higher than 50% (Table 1). It was observed peptide sequences longer than 20 AA frequently 
had a higher probability of correct assignment in comparison to the short ones. This trend is evident in 
analyzing the results obtained from Enterococcus faecalis AT22, which tends to produce short peptides 
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(Figure 4) compared to the other species (Table 1). On contrary, many peptides produced by 
Lactobacillus sp. D1501, Leuconostoc mesenteroides FDAARGOS_1033, and Streptococcus 
thermophilus SMQ-301 were longer than 21 AA and were classified with high confidence as 
antimicrobials, a class of biopeptides frequently composed by long sequences [30].

Table 1. Functional annotation of biopeptides. Functional annotation of biopeptides produced from bacteria 
and fungi and shorter than 100 AA. Results were obtained using the “concurrent” and “sequential” modes and 
were separated according to the “medium (medium pr.)” or “high (high pr.)” probability of functional assignment.

Bacteria  Yeast

Streptococcus thermophilus strain SMQ-301 Schizosaccharomyces pombe 972h-

Digestion Mode  Digestion Mode

Concurrent Sequential Concurrent SequentialBiopeptide Family

Medium 
pr.

High 
pr.

Medium 
pr.

High 
pr.  

Biopeptide 
Function

Medium 
pr.

High 
pr.

Medium 
pr.

High 
pr.

Antimicrobial 6 31 6 28 Antimicrobial 8 3 36 99

Opioid 0 0 0 0 Opioid 0 0 0 0

Antidiabetic 1 0 1 0 Antidiabetic 2 0 5 0

Antihypertensive 9 1 9 1 Antihypertensive 144 15 154 17

Antioxidant 9 2 8 1 Antioxidant 248 20 251 19

Cardiovascular 2 0 1 0 Cardiovascular 2 1 13 2

Celiac 2 10 1 10 Celiac 31 6 11 60

Immunomodulatory 0 0 0 0 Immunomodulatory 0 1 0 1

Neuropeptides 0 0 0 0 Neuropeptides 0 1 0 1

Total 29 44 26 40 Total 435 47 470 199
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% 37.18 56.41 39.39 60.61 % 77.26 8.35 59.12 25.03

Lactobacillus sp. D1501 Debaryomyces hansenii CBS767

Antimicrobial 7 48 7 49 Antimicrobial 2 2 63 180

Opioid 0 0 0 0 Opioid 0 0 0 0

Antidiabetic 1 0 1 0 Antidiabetic 0 2 5 0

Antihypertensive 10 1 10 1 Antihypertensive 157 19 178 20

Antioxidant 10 2 8 2 Antioxidant 293 19 309 31

Cardiovascular 2 0 1 0 Cardiovascular 2 1 20 2

Celiac 4 18 2 15 Celiac 7 31 13 86

Immunomodulatory 0 0 0 0 Immunomodulatory 0 1 1 1

Neuropeptides 0 0 0 0 Neuropeptides 0 1 1 1

Total 34 69 29 67 Total 461 76 590 321

% 30.91 62.73 32.95 76.14 % 74.60 12.30 52.91 28.79

Leuconostoc mesenteroides FDAARGOS_1033 Rhodotorula toruloides NP11

Antimicrobial 4 30 4 23 Antimicrobial 3 2 47 170

Opioid 0 0 0 0 Opioid 0 0 0 0

Antidiabetic 0 0 0 0 Antidiabetic 2 0 4 0

Antihypertensive 6 0 7 0 Antihypertensive 157 19 173 22

Antioxidant 6 1 3 1 Antioxidant 289 19 273 19

Cardiovascular 3 0 1 0 Cardiovascular 2 1 20 2



Celiac 0 3 1 2 Celiac 7 31 17 108

Immunomodulatory 0 0 0 0 Immunomodulatory 0 1 0 1

Neuropeptides 0 0 0 0 Neuropeptides 0 1 1 1

Total 19 34 16 26 Total 460 74 535 323

% 34.55 61.82 39.02 63.41 % 74.92 12.05 53.93 32.56

Lactococcus lactis subsp. lactis LEY7 Zygosaccharomyces rouxii 110957

Antimicrobial 5 42 7 47 Antimicrobial 8 3 33 129

Opioid 0 0 0 0 Opioid 0 0 0 0

Antidiabetic 1 0 1 0 Antidiabetic 2 0 5 0

Antihypertensive 12 1 12 1 Antihypertensive 147 16 150 17

Antioxidant 13 3 8 2 Antioxidant 252 19 247 18

Cardiovascular 2 0 1 0 Cardiovascular 2 1 16 2

Celiac 2 15 2 12 Celiac 6 31 12 66

Immunomodulatory 0 0 0 0 Immunomodulatory 0 1 0 1

Neuropeptides 0 0 0 0 Neuropeptides 0 1 1 1

Total 35 61 31 62 Total 417 72 464 234

% 31.82 55.45 34.83 69.66 % 73.81 12.74 56.24 28.36

Enterococcus faecalis strain AT22 Saccharomyces pastorianus CBS_1483

Antimicrobial 3 4 37 83 Antimicrobial 8 3 36 138

Opioid 0 0 0 0 Opioid 0 0 0 0



Antidiabetic 1 0 1 0 Antidiabetic 2 0 5 0

Antihypertensive 182 33 187 30 Antihypertensive 145 16 160 19

Antioxidant 358 30 327 44 Antioxidant 252 18 265 19

Cardiovascular 3 4 10 5 Cardiovascular 2 1 15 1

Celiac 11 36 9 60 Celiac 6 31 13 66

Immunomodulatory 1 1 2 1 Immunomodulatory 0 1 0 1

Neuropeptides 0 0 0 0 Neuropeptides 0 1 1 1

Total 559 108 573 223 Total 415 71 495 245

% 84.57 16.34 65.26 25.40  % 73.84 12.63 56.00 27.71

In addition to antimicrobial peptides, antihypertensive, antioxidant, and celiac peptides were 
frequently predicted (table 1). Previous analyses performed using trypsin hydrolysis on Hordeum 
vulgare B-C-D hordein and globulin proteins (Tok et al., 2021) revealed also the presence of biopeptides 
having antihypertensive and antioxidant functions. Opioid, immunomodulatory and neuropeptides 
presented only one or any sequence, however, it should be noted that these peptide families were found 
to be associated with precursor proteins families not included in the present analysis, such as gliadin, 
and cliotide [45], as well as proteins from Zea mays, Glycine max [45], and insect proteins [46].

3.4 In-silico peptide sequence prediction validation

To validate the in-silico step of protein digestion, an in-vitro fermentation of brewer spent 
grains (Hordeum vulgare) was conducted in batch reactors and performing four independent tests using 
Enterococcus faecalis AVEL13, Lactococcus lactis WSL2, Schizosaccharomyces pombe J13151G1 
and Saccharomyces cerevisiae KFAY3. 

Peptides obtained from the fermentation were analyzed using mass spectrometry as described 
in the materials and methods and the results were compared with those obtained in-silico with FEEDS. 
The in-vitro analysis performed using the same four species yielded from 441 to 494 peptide sequences. 
In contrast to the in-silico analysis of protein sequence digestion, the in-vitro peptide sequences 
exhibited remarkable consistency among microorganism species, with approximately 20% of the 
peptide sequences being unique to each species (Supplementary material 4 - Figure S2). Furthermore, 
the number of peptides generated for each species remained consistent, on average 466 distinct peptides 
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produced by each microorganism. In-vitro studies involving the fermentation of goat milks utilizing 
Lactiplantibacillus, Lactobacillus, and Streptococcus and quantified by ultra-high performance liquid 
chromatography-quadrupole-time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) and 
high performance liquid chromatography-ion trap (HPLC-IT-MS/MS) provided similar results and 
evidenced similar profiles of peptide production between different genera of bacteria [47].

Comparative analysis between in-silico and in-vitro protein digestion revealed that 2.9% of in-
silico sequences matched with those obtained in-vitro (Table 2). The low percentage can be due to the 
fact that in-vitro protein fermentation experiments are conducted under specific laboratory conditions, 
which may vary from study to study. Factors such as pH, temperature, microbial strains, and 
fermentation time can all influence the outcomes of the experiment. Certain peptide bonds could be 
resistant to cleavage due to their specific amino acid sequence or structural context, leading to missed 
cleavage events [48]. In contrast, FEEDS in-silico simulations use fixed parameters or assumptions, 
which may not align with the specific conditions of a particular in-vitro study. 

To investigate the missed cleavage sites, we performed an in-silico digestion using eight 
enzymes and a variable percentage of miss cleavage events was set (Supplementary material 7). The 
findings demonstrated that when the in-silico analysis incorporated a 30% miss cleavage rate, there was 
an increased number of matches (3.7%) with the in-vitro digestion results (Table 2) suggesting that this 
can be an important parameter to consider in the future development of the tool. 

Table 2. In-Silico peptide sequences matches with In-Vitro analysis.  Number of peptide sequences of in-silico 
analysis that matches with in-vitro analysis considering identity of  >90%.

Number of Peptide Prediction MatchesMicroorganism NCBI 
ID

Taxonomy

Brewer Spent Grains (no 
miscleavage)

Brewer Spent Grains 
(miscleavage 30%)

GCA_000002945.2 Schizosaccharomyces pombe 
972h-

29 30

GCA_000976545.2 Saccharomyces cerevisiae 
YJM984

36 36

GCF_018195835.1 Lactococcus lactis subsp. lactis 
LEY7

3 2

GCF_023299685.1 Enterococcus faecalis AT22 20 19

Cumulative count of distinct sequence matches 55 69
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% 2.9 3.7

4. Conclusions

It was demonstrated here the possibility to develop a tool for the prediction of biopeptides 
composition and function by means of a simulated proteolytic digestion performed on protein sequences 
provided by the user. The results demonstrated that the predicted biopeptides show distinctive 
characteristics depending on the microbial species, while some proteases have the potential of providing 
more specificity to the generated profile. It was also demonstrated the capability of classifying the 
majority of peptides derived from seed storage proteins of Hordeum vulgare and Vitis vinifera. 
However, the authors envisage that further studies on bacterial and yeast protease cleavage sites will 
provide valuable information to enhance the reliability of the in-silico protein digestion step. The 
FEEDS tool is user-friendly, fast, and not only categorizes the formed peptides, but can also be utilized 
for the classification of proteases within the genomes of bacteria and yeasts. Furthermore, users can 
easily add new cleavage rules through the rapid peptide generator integrated into the tool. The tool has 
the potential to be developed to reinforce its capabilities, for example by incorporating a learning 
mechanism to refine its predictions based on user-generated data and false predictions. This adaptive 
approach holds promise for enhancing FEEDS' accuracy, particularly in scenarios involving complex 
food waste compositions with varied protein sources and non-protein materials. The possibility of 
performing bioinformatics pre-screening could pave the way to a faster and cheaper analysis of the most 
promising microbial candidates and protein substrates to be used for biopeptides production. Moreover, 
the FEEDS tool will allow a prediction of the potential bioactive compounds, leading to new approaches 
for mining valuable compounds in food waste.
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MEROPS proteases database, diamond MEROPS database (.dmnd file), RPG id 
characterization and CICERON models are available on 
https://doi.org/10.6084/m9.figshare.22194535.v7. Installation instructions and usage information are 
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Supplementary material 6: CICERON sequential and concurrent of selected Bacteria and Yeast 
results information

Supplementary material 7: In-silico and In-vitro biopeptides sequences matches

Highlights

● FEEDS is a novel biopeptide prediction and classification tool

● Bioinformatics pre-screening will allow a faster and cheaper biopeptide production

● Biopeptide profiles show distinctive characteristics depending on the microbial species

● FEEDS performs functional classification for most peptides from seed storage proteins
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