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Abstract. The properties and possible triggering mechanisms of Alfvén waves in the reversed-field pinch
(RFP) and circular tokamak configurations are discussed in the framework of nonlinear 3D MHD modelling.
Numerical simulations are performed with the SpeCyl code (S. Cappello and D. Biskamp 1996 Nuclear Fusion)
that solves the equations of the viscoresistive MHD model in cylindrical geometry. Configurations with
increasing level of complexity are analyzed. First, single-wave numerical solutions have been compared with
analytical ones in the simplest case of a uniform axial magnetic field: an excellent agreement is obtained for
both the shear Alfvén wave (SAW) and the compressional Alfvén eigenmodes (CAEs). Then, tokamak and RFP
configurations have been studied. Phenomena such as phase mixing of SAW, resonant absorption of CAEs and
the appearance of the global Alfvén eigenmode (GAE) are described. Finally, the fully 3D RFP case with the
typical sawtoothing activity has been investigated, showing for the first time in nonlinear RFP simulations the
excitation of Alfvén waves by magnetic reconnection events. Modeling results appear to be consistent with the
experimental characterization of Alfvénic activity observed in RFX-mod.
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1. Introduction

Alfvén waves are ubiquitous in astrophysical and laboratory
plasmas [1]. In magnetically confined fusion plasmas,
alpha particles and energetic particles from neutral beam
injection (NBI) can destabilize Alfvén eigenmodes (AEs),
driven in the spectral gaps of the shear Alfvén continua
[2,3,4]. The presence of these modes in the plasma
leads to larger alpha particle losses before thermalization
if the drift, bounce or transit frequencies of the energetic
particles are resonant with the mode frequency [5]. This
increases the requirements for operations in self-sustained
ignited plasmas and can decrease NBI heating efficiency
[6]. On the other hand, if the mode frequency is small,
the interaction between background plasma and energetic
particles may lead to a stabilizing effect (nonresonant limit)
[7,8]. The fact that Alfvén modes are frequently observed in
tokamak, stellarator and reversed field pinch (RFP) plasmas
suggests that they could be used as a diagnostic of plasma
equilibrium parameters. This MHD spetroscopy has shown
how measurements of Alfvén waves mode structures can
provide information on plasma parameters at particular
points in the plasma [9]: in particular, the safety factor
can be determined locally in several regions of the plasma
using measurement of excited AEs. In principle, AEs
could also provide the basis for a plasma heating scheme
as supplementary heating of fusion plasmas [10,11,12].
Indeed, heating by Alfven waves excitation is one of the
common mechanisms envisaged for solar corona heating
[13,14,15]. Alfvén waves are also thought to play a possible
role during tokamak disruptions, as recently investigated
both theoretically [16] and experimentally [17]. The
scientific challenge in this context is to find the proper
balance between desired and detrimental effects of the
various MHD modes, to develop methods and tools for
active feedback control of Alfvén modes [18] and identify
new issues that may arise in approaching the ignition
margin.

Alfvén waves in fusion plasmas can appear in a vast
zoology of modes. Variations in the Alfvén speed produce
frequency gaps associated with different Alfvén eigenmode
families (n is the toroidal mode and m the poloidal mode),
including [2]: toroidicity induced Alfvén eigenmodes
(TAE) [19,20] that arise due to coupling of m with m +
1 modes, helicity induced Alfvén eigenmodes (HAE)
[21,22,23] arising from coupling combinations of n and
m modes, beta induced Alfvén eigenmodes (BAE) [24,25]
driven by compressibility effects, reversed-shear Alfvén
eigenmodes (RSAE) [26,27] due to local maxima/minima
in the rotational transform profile, island-induced Alfvén
eigenmodes (IAE) [28,2] arising from a helical coupling of
harmonics due to the magnetic island etc.. Most commonly,
these AEs have been observed in the presence of energetic
ions in the MeV energy range, with velocities comparable
with Alfvén velocity directed along the magnetic field lines,
which can satisfy conditions of effective resonance and

energy exchange between Alfvén waves [29]. However,
modes with Alfvénic frequency scaling have also been
detected during Ohmic discharges in a number of tokamak
experiments, like TFTR [30], ASDEX Upgrade [31] and
MAST [32]. The dominant toroidal mode number for
Alfvén eigenmodes in Ohmic plasmas was generally found
to be n = 0. Excitation and detection of Alfvén waves
in Ohmic plasmas is not much studied and understood as
currently the research on this subject is mostly centered
(as already mentioned) around the excitation of AE by
fast particles with velocities of the order of Alfvén speed,
produced by neutral-beam injection (NBI), ion cyclotron
resonance heating (ICRH), or even fusion born alpha
particles, through the inverse Landau damping mechanism.
Some possible mechanisms for the excitation of AEs in
tokamaks in Ohmic regime have been investigated in Ref.
[33], where a correlation between high-frequency mode
activity and relatively long-timescale MHD events in the
plasma, such as internal reconnection events (IREs) or edge
localized modes (ELMs), was proposed.

Similarly, a variety of Alfvénic eigenmodes have
been observed in the magnetic spectra of RFP plasmas in
the past years, in experimental devices such as Extrap-
T2R [34], RFX-mod [35] and MST [36,37,38]. Alfvénic
eigenmodes observed in MST are mainly found to be
induced by NBI. Therefore, several recent papers addressed
the MST observations by modeling and analytical study
of energetic particle driven AEs in RFPs [36,39,40].
On the other hand, AEs in Extrap-T2R and RFX-mod
have been observed in Ohmic discharges. In particular,
two distinct types of AEs with dominant toroidal mode
number n = 0 have been detected in RFX-mod Ohmic
discharges: Alfvén modes present during the whole
plasma discharge duration (and related with quasi-periodic
spontaneous magnetic reconnection processes) [35]; and
Alfvén modes observed only for plasma currents Ip >
1.5 MA and associated to helical states with improved
confinement [41] that spontaneously and intermittently
emerge through the nonlinear saturation of resistive-
kink/tearing modes in RFX-mod plasmas [42,43]. The
driving mechanism for AEs in RFX-mod was speculated
[35] to be provided by the supra-thermal ions tails
generated by the spontaneous magnetic reconnections
during sawtooth crashes [44,45,46], where large magnetic
energy is released [47] but a modeling study directly
addressing these findings in Ohmic-heated RFP plasmas
was lacking so far.

The first goal of this paper is to provide, by means of
non-linear 3D MHD numerical simulations performed with
the cylindrical code SpeCyl [48], a possible explanation of
the experimental observation of AEs in RFX-mod Ohmic
plasmas. This has led, as a more general result, to the
identification of an excitation mechanism for the AEs
based on velocity perturbations self-consistently induced by
periodic magnetic reconnection events. With the support
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from theoretical dispersion relations we will suggest the
identification of AEs experimentally observed during the
whole discharge as a global shear and a compressional
eigenmode. This is achieved after a thorough discussion
of simpler cases, which provide renewed occasion for
numerical code benchmarking. The possible origin of the
second type of AEs (those observed only during helical
states and not reproduced in the present nonlinear MHD
modeling) is discussed in the final remarks.

The paper is organized as follows. In section 2 the
employed numerical model is described. The nonlinear 3D
MHD cylindrical code SpeCyl has been used to analyze
configurations with increasing level of complexity, and the
obtained numerical results are presented in sections 3 (2D
single wave cases) and 4 (fully 3D cases). First of all,
in section 3.1, numerical solutions have been compared
with analytical ones in the most simple case of a uniform
axial magnetic field: an excellent agreement is obtained for
both the shear Alfvén wave (SAW) and the compressional
Alfvén eigenmodes (CAEs). Then in sections 3.2 and 3.3,
circular tokamak and RFP configurations have been studied.
Phenomena such as phase mixing of SAW, resonant
absorption of CAEs and the appearance of the GAE are
reported. Finally, in section 4, the fully 3D RFP case
with realistic magnetic reconnection events [49] has been
investigated, showing for the first time in nonlinear RFP
simulations the excitation of Alfvén waves by magnetic
reconnection. Modelling results are in good qualitative
agreement with the experimental observation of Alfvénic
activity in RFX-mod, as discussed in section 5. A summary
and final remarks are given in section 6.

2. MHD model and numerical setup

The simulations reported in this paper are performed in
cylindrical geometry with the nonlinear visco-resistive 3D
MHD code SpeCyl [48]. The code runs in constant density
and zero-β approximation. SpeCyl solves the following set
of visco-resistive MHD equations in dimensionless form:

ρ
dv
dt

= J×B+ρν∇
2v (1)

∂B
∂ t

=−∇×E (2)

E = ηJ−v×B (3)
∇×B = J (4)
∇ ·B = 0. (5)

Where t is the time, ρ the constant fluid density, v the
plasma velocity, B the magnetic field, E the electric field
and J the current density. The resistivity η and kinematic
viscosity ν are assumed to be constant and uniform, unless
stated otherwise. Lenghts are normalized to the cylinder
minor radius a, density to the on-axis ion mass density
ρ0, magnetic field to the initial on-axis magnetic field B0,0,

velocity to the on-axis Alfvén velocity vA = B0,0/
√

µ0ρ0
and time to the Alfvén time τA = a/vA. Moreover, in these
units, η is the inverse Lundquist number, η = τA/τR ≡ S−1,
and ν corresponds to the inverse viscous Lundquist number,
ν = τA/τV ≡ M−1, where τR and τV are the resistive and
viscous time scales. The nonlinear verification benchmark
between SpeCyl and another MHD code, called PIXIE3D
[50], demonstrated an excellent agreement between the two
codes in their common limit of application, showing that
both codes solve the nonlinear MHD equations with high
accuracy and reliability [51]. Adding a finite pressure and
the possible presence of fast particles, and considering a
toroidal geometry would allow the modeling of additional
important effects active in Alfvén waves destabilization. In
particular, toroidal Alfvén eigenmodes (TAEs) and slow
compressional waves are allowed by inclusion of toroidal
geometry and finite beta, respectively. However, the
Alfvénic modes considered in this paper (in particular
the global and the fast compressional eigenmodes) do not
necessary require finite beta or toroidal effects to be present.
In addition, the MHD dynamics of the RFP configuration
is mostly current driven [49,52], and finite beta effects are
usually subdominant. Therefore the employed model, while
relatively simple, is qualitatively adequate to the scope of
this paper. On the other hand, the nonlinear approach of
the SpeCyl code makes possible to study not only the linear
stability properties of AEs (as mostly done in the literature,
with the notable exception of hybrid MHD-kinetic codes
such as M3D [53], XHMGC [54,55], HYMAGIC [56,57]
and MEGA [58], or kinetic extension of MHD codes
such as NIMROD [59] or JOREK [60,61]) but also to
consider the self-consistent nonlinear dynamics including
mode damping and nonlinear coupling between different
modes.

The numerical solution of the above equations
is solved adopting a spectral formulation in periodic
cylindrical coordinates (r,θ ,z) with r ∈ [0 : a], θ ∈ [0 : 2π]
and z ∈ [0 : 2πR0] where R0 is given by the aspect ratio
of the periodic cylinder. In this paper we use R0/a = 4
to mimic the aspect ratio of the RFX-mod experimental
device. A finite difference staggered mesh is used in the
radial coordinate.

The plasma boundary conditions at r = a are chosen
to represent an ideal, i.e. perfectly conducting, shell. The
magnetic field is tangent to the shell, while the electric field
is perpendicular to it. Plasma flow is taken to be vanishing
at r = a. This implies the conservation in time of the total
magnetic flux Φ0. The BCs can also be generalized to admit
a magnetic field not purely tangent, with an imposed radial
component, i.e. helical boundary conditions on Br(a) (as
described in Ref. [62]).

In Figure 1 are shown, in order of increasing
complexity, all the equilibrium configurations that are
considered in nonlinear MHD simulations. For each
configuration the equilibrium (mean-field) magnetic field,
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density profiles and the expected Alfvén wave solutions
for selected (m,n) modes (according to the ideal MHD
theoretical model), are shown. The expected Alfvén waves
spectra were obtained from their dispersion relations in
cylindrical geometry derived from linearized ideal MHD
model (η = ν = 0) in the cold plasma approximation
(pressure p = 0) and perfectly conducting shell conditions.
The ideal MHD model is well suited for the analysis of
SpeCyl simulations, despite SpeCyl being a visco-resistive
code. In fact, according to the theory [1], dissipative
terms related to resistivity and viscosity only introduce
a damping effect that cause the waves to decay in time,
without actually affecting their frequency spectrum, which
is what we are mainly focused on in this paper.

3. Single wave benchmark cases

For each simulation, we will test the presence of Alfvén
waves and characterize their properties (such as frequency
spectra and nonlinear dynamics) by computing the Fast
Fourier Transform (FFT) or Continuous Wavelet Transfrom
(CWT) of simulation data, depending on whether the
analysis is done on signals that vary their frequency slowly
or quickly in time, respectively. In particular, FFTs are
performed over time windows spanning 500τA. This value
is chosen as it is short enough for the field components
not to change significantly and it allows to obtain FFTs
with good frequency resolution. The computed spectra are
compared with the expected ones shown in Figure 1.

Except for the time-evolving RFP configuration, for
which the simulation parameters will be specified later,
we used ideal boundary conditions, a radial resolution
of 256 points and a single Fourier harmonic in the
angular directions, with periodicity (m,n) specified for each
simulation case. The dissipation parameters are S= 106 and
M = 106 respectively. The simulation time step is 10−4 τA,
and fields were saved every 0.1τA. Moreover, Alfvén waves
are excited starting from a stable equilibrium configuration
by applying a small initial perturbation to the velocity field.

3.1. Equilibrium configurations with uniform axial
magnetic field: uniform and hollow density cases

Uniform density case. In the case of a uniform magnetic
field, the shear and compressional Alfvén waves are
decoupled and hence can be excited separately depending
on the initially perturbed component of the velocity field.
We consider the mode (m,n) = (0,1), with initial v0,1

θ

perturbation, or with initial v0,1
r perturbation. We choose

this mode as this is the simplest case that presents both SAW
and CAE solutions.

We start with initial velocity perturbation on the
azimuthal component v0,1

θ
, with radial profile given by

v0,1
θ
(r) = εr(1− r), (6)

where ε = 10−6. We can see from Figure 2a that in this case
only the B0,1

θ
and the v0,1

θ
components are finite. Which

component is excited by the initial perturbation depends
on the MHD coupling between B0,1 and v0,1 components.
The time traces of B0,1

θ
and v0,1

θ
at mid radius appear as

sinusoids with a period ∆T such that about 10 cycles are
observed in a range of 250τA. It is therefore expected that
by doing the FFT of these time signals a single frequency
ωτA = 2πτA/∆T ' 2π/25 ' 0.25 would be obtained. In
fact, doing the FFT in the interval t ∈ [0,500τA] as shown
in Figure 2b, we obtain a spectrum with a well defined
frequency centered on the expected value. This is the SAW
expected from ideal MHD model in cylindrical geometry,
given by the following dispersion relation

ω
2− v2

Ak2
z = 0, (7)

where k2
z = n2/R2

0. As we can see in the verification
benchmark reported in Figure 3a, we have an excellent
agreement regarding both the frequency spectrum of the
mode and its radial shape.

Let us see now what we obtain from a simulation
in which the radial component of velocity is perturbed
instead of the azimuthal one. As we can see from Figure
2c in this case we obtain three non-zero components, B0,1

r ,
B0,1

z and v0,1
r . We again recognize a wave pattern but

this time it does not correspond to a simple sinusoidal
wave. This is confirmed by Figure 2d, in which multiple
harmonics are observed. The frequency spectrum shows
the CAEs with their nodes, where the Alfvénic oscillations
have zero amplitude. The expected spectrum of CAEs from
ideal MHD model in cylindrical geometry is given by the
following dispersion relation

ω
2
m j = v2

A

(
k2

z +
χm j

2

a2

)
, (8)

with j = 1,2,3 . . . and where χm j is the j−th root of the
first derivative of the Bessel function of order m (namely
m = 0 in this case). Note that in this paper we are
considering only the fast compressional mode, as SpeCyl
runs in zero-β approximation, that is no plasma pressure
(p = 0⇒ c2

s = γ p0/ρ0 = 0). Indeed by assuming c2
s = 0 the

slow compressional mode frequency is always zero. Again
we have an excellent agreement between the simulation
spectrum and the analytical solution as can be seen from
Figure 3b. A slow decay of the waves amplitude, due to the
finite resistivity and viscosity in the SpeCyl code, would be
observed by looking at the fields evolution during a longer
time window. However, resistivy and viscosity do not alter
the frequencies of Alfvén waves with respect to the ideal
MHD solutions, as discussed for instance in [1].

The above analysis is applied to similar single-mode
simulations with various mode numbers m = 0 and n
chosen between n = 0 and n = 6 for both v0,1

r and v0,1
θ

initial perturbations in order to further verify the analytical
dispersion relations for CAEs and SAW. As can be seen
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Figure 1: Different equilibrium configurations considered in this study and corresponding Alfvén spectra. Normalized
magnetic field profiles, normalized density profiles and the resulting analytical solutions of the Alfvén waves spectra are
shown in the first, second and third column, respectively. Each row represents a class of equilibrium configurations. The
equilibrium with uniform axial magnetic field is shown in the first row (with analysed Fourier mode (m,n) = (0,1)), with
uniform equilibrium density and corresponding analytical SAW and CAE spectra depicted in blue, and RFX-mod hollow
density profile and corresponding spectra in red. The tokamak equilibrium and the RFP-like equilibrium are shown in the
second and third row, respectively. In the last two cases, the analysed Fourier mode is (m,n) = (1,0). For the latter, the
five density profiles considered in this study, together with the corresponding spectra for two selected density profiles, are
reported with different colors.

from Figure 4 the values of the CAEs and SAW frequencies
(solid dots) from simulations are in complete agreement
with the theoretical model (solid lines).

Hollow density case. Let us now consider the
previous simulations with (m,n) = (0,1) perturbed mode
but in the presence of an RFX-mod-like hollow density
profile. By analysing the simulation with initial velocity
perturbation on the radial component, the resulting
frequency spectrum (not shown here) is qualitatively very
similar to the one with the uniform density in Figure 2d,
with the CAEs frequencies just slightly shifted downward.
An additional basic phenomenon of Alfvén waves physics
is observed, on the other hand, in the simulation with the
perturbation on the azimuthal velocity component. We can
see from Figure 5b that the frequency spectrum is much
different from the one with uniform density shown in Figure
2b. Now we have a SAW characterized by a continuous

spectrum with a frequency that depends on the radius, with
a profile resembling the inverse of the density profile (red
solid line in Figure 1b). This is expected of course, as
the Alfvén frequency is inversely proportional to the square
root of the density, which can be seen from SAW dispersion
relation in non-uniform plasmas, called also continuous
shear Alfvén wave spectrum or the Alfvén continuum

ω(r) = |k ·vA|=
|kθ B0,0

θ
+ kzB

0,0
z |√

µ0ρ0
, (9)

where kθ = m/r and kz = n/R0.
We can now look at the time evolution of the SAW

spectrum during the nonlinear MHD simulation. To do
this, we perform the FFT of simulation data on a moving
time window, with same duration of 500τA but increasing
initial time, as marked with square brackets in Figure 5a.
By looking at the temporal evolution of the SAW spectrum
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Figure 2: Results of numerical simulations with uniform axial magnetic field and density, and perturbation of the
(m,n) = (0,1) mode. In the first column, the simulazion with initial v0,1

θ
is reported. a) Time traces of v0,1 and B1,0

normalized fields components are shown at a fixed radius r/a = 0.5. b) The corresponding frequency spectra of v0,1 and
B0,1 normalized components are shown as a function of radius, computed for the time window t ∈ [0,500τA]. The color
scale, used for the contours in this paper, is not linear but follows a power law, which is necessary to detect higher order
harmonics, and it refers to the absolute value of the spectral amplitude. In the second column, the same quantities are
shown for the simulation with initial v0,1

r perturbation.

in Figure 5b, one can observe that the amplitude of the
wave is damped very quickly at the radial positions with
stronger radial gradient of the Alfvén frequency, while
it remains almost constant close to the extremes of the
ω(r) profile, i.e. the regions around r/a = 0.25 and 0.75.
This is consistent with the phase mixing phenomenon,
due to which the Alfvén wave tends to be more rapidly
damped in the regions with spatially variable Alfvén
frequency [1,2]. This damping mechanism acts on top of
the damping due to the visco-resistive dissipation, which
instead occurs uniformly throughout the plasma volume
since the dissipation coefficients (resistivity and viscosity)
are assigned to be uniform in these SpeCyl simulations.

3.2. Tokamak equilibrium configuration

Now we consider the first case with a non-uniform magnetic
field. This configuration is a numerical solution of
the 1D zero-β paramagnetic pinch equilibrium equations,
discussed for instance in [51]. An azimuthal field (net
plasma current) is added to the weakly non-uniform
axial field, giving rise to a tokamak-like equilibrium

configuration as shown in Figure 1d. It corresponds to a
paramagnetic pinch equilibrium with aspect ratio R0/a = 4,
uniform resistivity and an applied axial electric field given
by α0 = 0.625 (the parameter α0 is defined in [51] and
corresponds to the ratio between the applied electric field
and the central resistivity). This is an intermediate case that
we consider before moving on to the RFP configuration.
For this tokamak configuration, with safety factor value
in the center q(0) = 0.8 and at the edge q(a) = 4.0, we
consider the case with a non-uniform bell-shaped density
profile shown in Fig. 1e. From now on we consider the
(m,n) = (1,0) mode (instead of the (0,1) mode considered
in previous cases), as in RFX-mod it is one of the modes
with the strongest Alfvénic activity [35], and also because
this mode is the most excited by Alfvén waves in the more
realistic time-evolving RFP configuration as we will see in
the next sections.

By perturbing v1,0
r we can see in Figure 6 that now

the CAEs spectrum is present also in the B1,0
θ

, v1,0
θ

and
v1,0

z components, compared with the analogous Figure 2d of
the uniform field case, in which these components are not
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Figure 3: Verification benchmark between numerical simulations with uniform axial magnetic field and corresponding
analytical spectra. a) Simulation with uniform axial magnetic field and uniform density. (m,n) = (0,1) mode with initial
v0,1

θ
perturbation. On the top panel the agreement of simulation’s frequency spectrum of the v0,1

θ
component and the

expected theoretical one given by Eq.(7) (solid black line), are shown. On the bottom panel the analytical perturbation
given by Eq.(6) (solid line) is displayed together with the corresponding values from the simulation spectrum (solid dots).
b) Same equilibrium configuration and analised mode as in (a) but with initial v0,1

r perturbation. On the top panel, the
simulation frequency spectrum of the B0,1

z component and the corresponding analytical spectrum given by Eq.(8) (solid
black lines) are shown. On the bottom panel the analytical solution (Bessel function of order m = 0) for the frequencies of
the first three CAEs (solid lines) are displayed together with the corresponding values from the simulation spectrum (solid
dots). Note that on the top panel the oscillations are shown with their absolute values, while in the bottom panel they are
not.
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Figure 4: Verification benchmark between numerical
results (solid dots) with uniform axial magnetic field
and corresponding analytical spectra (solid lines). Same
equilibrium configuration, and m = 0 analysed Fourier
mode, as in Figures 2 and 3, but with different toroidal
periodicities from n = 0 to n = 6. The frequency
dependence on kz wavevector component for the SAW and
the first five CAEs from numerical simulations match very
well the analytical solutions.

excited at all. On the other hand, the SAW is also present in
all field components with similar amplitudes to the CAEs.
In other words, we have a coupling of the shear and the
compressional modes. This coupling is due to the fact that
the wavevector k of the perturbation is now oblique to the
magnetic field B0,0. Therefore only the perturbation in v1,0

r
will be discussed in the following analysis. In addition,
in this configuration it can be clearly seen in Figure 6b
the occurrence of the global Alfvén eigenmode, which is
a global mode right below the Alfvén continuum minimum
(see Ref. [63]). The properties of the observed GAE will be
discussed again in the context of RFP simulations in Section
3.3.

Recent studies of CAEs in tokamak plasmas were
carried out in ASDEX Upgrade [64], where the modes were
excited by energetic particles (NBI), and DIII-D [17], with
modes excited by runaway electrons. GAEs in tokamak
plasmas have been studied for instance in Refs. [65,66].

In the last panel of Fig. 6 we overplot the
numerical frequency spectrum with the expected theoretical
one (Figure 1f) to identify the various frequencies. A
good qualitative agreement between the numerical and
theoretical spectra is observed. The small discrepancy is
due to the fact that now the expected CAEs frequencies
are obtained in the local or Wentzel-Kramers-Brillouin
(WKB) approximation as the MHD equations are no longer
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Figure 5: Temporal evolution of the continuous SAW spectrum during the simulation with uniform axial magnetic field
and RFX-mod-like hollow density profile. (m,n) = (0,1) mode with initial v0,1

θ
perturbation. a) The time traces of the

normalized magnetic field component B0,1
θ

are shown at a fixed radius r/a = 0.25,0.50,0.75. The three time windows
indicated (I, II, III), each of 500τA, are those used for the FFT in figures below. b) Time evolution of the frequency spectrum
of B0,1

θ
at the beginning of the simulation (panels I and II) and the end of the simulation (panel III). The frequency spectrum

is also superimposed with the analytical solution of the Alfvén continuum given by Eq. 9. The color coded arrows mark the
radial positions considered in the above time traces of B0,1

θ
field component. For the corresponding movie, see supplemental

material S1.

analytically solvable for CAEs in case of non-uniform
plasmas [1]. The approximate analytical solution for CAEs
in non-uniform plasmas is given by the following condition

∫ a

0

(
ω2

m j

v2
A(r)
− n2

R2
0

)1/2

dr = χm j, (10)

with j = 1,2,3 . . . and the following constraint on ω2
m j

values

ω
2
m j ≥

n2

R2
0

v2
A(r) ∀r ∈ [0,a]. (11)

The GAE solution can be obtained in WKB approxi-
mation (as derived in Refs. [63]) from the following con-
dition and it is in good agreement with the corresponding
numerical spectrum ∫ a

0
krdr = jπ, (12)

with j = 1,2,3 . . . and

kr =

−(B0,0
z

B0,0

)2
1
r

1
4

(
d
dr

ln(ω2
A)+

d
dr

lnρ0

)1/2

,

(13)
where

4≡
ω2

A−ω2
j

ω2
A

(14)

is the frequency separation between the GAEs and the
continuum, with the following constraint on ω2

j values

ω
2
j < ω

2
A(r) ∀r ∈ [0,a]. (15)

3.3. Paramagnetic pinch, RFP-like equilibrium
configurations

We now consider the RFP-like configuration. As in the
previous tokamak-like case this configuration is a numerical
solution of the 1D zero-β paramagnetic pinch equilibrium
equations. The lack of the axial field reversal at the edge
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Figure 6: Results of numerical simulation with Tokamak magnetic field and bell-shaped density. (m,n) = (1,0) mode with
initial v1,0

r perturbation. a) The frequency spectra of v1,0 and B1,0 normalized fields components are shown as a function
of radius, as computed for the time window t ∈ [0,500τA]. b) Magnification in the frequency of the spectrum in (a) to
emphasize the SAW and GAE spectra.

is just a mathematical consequence of the 1D equilibrium
assumption, also known as Cowling’s theorem (see also
Ref. [67]). The specific RFP-like equilibrium used in
this paper is shown in Figure 1g. It corresponds to a
paramagnetic pinch equilibrium with aspect ratio R0/a =
4, uniform resistivity and α0 = 3.25 . Similarly to
the tokamak-like case shown in the previous section, the
components of v1,0 and B1,0 fields are affected by both
continuous SAW and discrete CAEs, with comparable
amplitudes, so in the following simulations we will analyse
only one field component, typically either the B1,0

z or the
v1,0

r component.
In Figure 7, we look at the time evolution of the

B1,0
z component with an RFX-mod like density profile.

Compared to the tokamak configuration now the SAW
frequency range increases while the CAE frequencies are
shifted down, so that a very peculiar condition occurs
due to the RFP-like magnetic field profiles: the 1st CAE
crosses the shear Alfvén continuum. In the first panel
we overplot the numerical frequency spectrum with the
expected theoretical one (Figure 1i) to identify the various
frequencies. From the spectrum temporal evolution we
can observe again the phase mixing of the SAW, which
disappears in the first ∼ 300τA (although it survives longer
at the radial location of the frequency minimum due
to the negligible local gradient). We also observe the
resonance absorption of the 1st CAE, which completely
vanishes by the end of the simulation. The resonance
absorption phenomenon occurs when a wave propagates
in a smooth non-uniform plasma and couples with the
continuous spectrum of the shear Alfvén wave, getting
absorbed (and localy heating the plasma) [1,68].

In order to try to excite the GAE mode, which we
expect to see as in the tokamak case, we investigate the
five equilibrium density profiles shown in Figure 1h. In
particular we consider density profiles with different radial

positions of their peak density, going from the wall to the
plasma center. Here we only examine the profile that is
most efficient to excite the GAE mode, namely the density
profile peaked in the center (profile (I) in Figure 1h). The
temporal evolution of the frequency spectrum resulting
from the SpeCyl simulation with perturbed (m,n) = (1,0)
mode and bell-shaped density profile is shown in Figure 8,
where in the first panel we overplot the numerical spectrum
with the expected theoretical one (Figure 1i) in order to
identify the various frequencies. As we can see in the
Figure, we observe a new global mode just below the
Alfvén continuum minimum, that is the GAE. We can also
see, as in the previous case, the phase mixing of the SAW
and the resonance absorption of the 1st CAE. Both waves
disappear as before, while the GAE mode survives along
the whole simulation duration. This analysis points out that
the GAE mode is more easily excited with density profiles
peaked near the plasma center.

4. Fully-3D time-evolving reversed-field pinch case

As the final goal of this study, we consider the case
of time-evolving fully-3D RFP simulation, with quasi-
periodic magnetic reconnection events associated with the
typical RFP sawthooting activity, as described in the
modeling studies of Refs. [49,52,69]. This is close
to the experimental conditions and this analysis will
make possible a direct comparison with the experimental
observations in the RFX-mod device.

The nonlinear MHD simulation that is analyzed here
is a continuation of the original simulation reported in
Ref. [49], with same MHD spectrum but with a non-
uniform RFX-mod-like hollow density profile instead of
the standard uniform density profile typically used in
SpeCyl. As in the previous section, fields are saved each
0.1τA (a high sampling frequency suitable for the analysis
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Figure 7: Temporal evolution of the spectrum of the numerical simulation with RFP-like magnetic field and hollow density
profile. (m,n) = (1,0) mode with initial v1,0

r perturbation. Time evolution of the frequency spectrum of the normalized
magnetic field component B1,0

z at the begining of the simulation (first three panels) and the end of the simulation (last
panel). In the first panel the frequency spectrum is superimposed with the expected analytical solutions for SAW, CAEs
and GAE. For the corresponding movie, see supplemental material S2.
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Figure 8: Temporal evolution of the spectrum of the simulation with RFP-like magnetic field and density profile peaked in
the center. (m,n) = (1,0) mode with initial v1,0

r perturbation. Time evolution of the frequency spectrum of the normalized
magnetic field component B1,0

z at the begining of the simulation (first three panels) and the end of the simulation (last
panel). In the first panel the frequency spectrum is superimposed with the expected analytical solutions for SAW, CAE and
GAE. For the corresponding movie, see supplemental material S3.

of Alfvén waves) instead of each 10τA as done in the
original simulation. The time step is also reduced from
t = 5× 10−2 τA to t = 10−3 τA to obtain a more accurate
characterization of Alfvén modes. These differences
slightly change the dynamics with respect to the original
simulation, but only quantitatively and not qualitatively.
As in the original simulation, a spectrum of 225 Fourier
harmonics with 0 ≤ m ≤ 4 is used, the on-axis Lundquist
and viscous Lundquist numbers are set to S = 106 and
M = 104, respectively, and a seed helical perturbation
with m = 1, n = −7 periodicity is applied to the edge Br
to stimulate quasi-helical states in between reconnection
events as discussed in Ref. [49].

The temporal evolution of the edge safety factor q(a)
and the normalized edge Bz amplitudes of the most active
m = 1 modes are shown in Figure 9, for the original
simulation on the left column, and for the modified one
on the right. The original simulation starts from a
non-reversed 1D paramagnetic pinch equilibrium. The
initially positive edge safety factor q(a) suddenly reverses
due to the nonlinear 3D MHD activity associated to
resistive-kink tearing modes (see Ref. [69]), providing

the so-called dynamo mechanism (i.e. magnetic flux
pumping provided by toroidal current density partially
converted into poloidal one, due to kink effect). The
system, then, undergoes sawtoothing oscillations exhibiting
periodic magnetic reconnection events as highlighted by
bursts in the MHD mode amplitudes. The new simulation
starts from time t = 3.0×104 τA of the original simulation.
We focus on two subsequent sawtoothing cycles.

We consider in particular the (m,n) = (1,0) mode as
in previous RFP-like cases, but a fundamental difference
is that now the simulation includes many nonlinearly
interacting MHD modes as shown in Fig. 9. It
is also important to note that Alfvén modes in this
simulation do not depend on specific details of the initial
velocity perturbation. Now, each reconnection event
self-consistently excites, through the associated velocity
perturbation, Alfvén modes in a quasi-periodic fashion.
Although in this new simulation the mean magnetic field
is time evolving, such mean field is still changing much
slower compared to the evolution of Alfvén waves, and
therefore it can be used as before for theoretical predictions
of the Alfvén modes frequency spectrum.
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We now analyze for the new simulation the time
evolution at fixed radius r/a = 0.6 of the v1,0

r spectrum
using both the FFT and CWT techniques, as shown in
Figure 10, where we also plot the time traces of the
edge B0,0

z normalized magnetic field component and the
corresponding trend of kinetic and magnetic energies.
As expected, during the magnetic reconnection events,
starting around t = 3.45× 104 τA and t = 3.90× 104 τA, a
rapid decrease of magnetic energy is observed while the
kinetic energy has a peak. At the same time, we can
observe an excitation of the frequency spectrum following
the two magnetic reconnection events which lasts for
some time. In particular, the frequency spectrum in
time shows intense low-frequency fluctuations and also
weaker discrete signals at higher frequencies (horizontal
lines in the spectogram) which are particularly noticeable
after the second reconnection event resulting in a much
stronger velocity perturbation than the first one. It is
worth mentioning that in this case with time evolving
fields, the CWT technique provides better results than the
FFT. In particular, the discrete frequency peaks are much
more definite with the CWT analysis, and their triggering
time agrees more precisely with the time of the kinetic
energy peak. On the other hand, the FFT analysis provides
less sharp results mainly because it is applied on a finite
time window (500 τA in this case). The low-frequency
fluctuations are due to tearing modes which dominates the
dynamics of the system in this configuration. The discrete
signals, on the other hand, can be identified as Alfvén
modes as we will now discuss.

In Figure 11 we superimpose the frequency spectrum
of the v1r component, after the stronger magnetic recon-
nection event at t = 3.90×104 τA, with the theoreticaly ex-
pected one in order to identify the various Alfvénic frequen-
cies. We recognize the first three CAE frequencies, the first
one being the most excited while the third being barely visi-
ble, and the GAE mode, which indirectly confirms the pres-
ence of the continuous SAW, being damped by phase mix-
ing and hidden by noise from low-frequency MHD fluctua-
tions. Note that in this case the GAE is seen with the RFX-
mod-like hollow density profile, while in the RFP simula-
tions with initial velocity perturbation (discussed in Section
3.3) it was seen only with the density profile peaked in the
center. As mentioned above, we have chosen to analyse
the (m,n) = (1,0) harmonic as in RFX-mod it is one of
the modes with the strongest Alfvénic activity [35]. This
is also the case for the fully 3D simulation, as an analysis
of the frequency spectra of a wide range of (m,n) modes
(0≤m≤ 2 and −9≤ n≤ 9) right after the magnetic recon-
nection events showed the strongest excitation of AEs in
the (m,n) = (1,0) mode. The numerical result we have ob-
tained, showing that Alfvén waves can be excited by mag-
netic reconnection events, provides a theoretical confirma-
tion of experimental observations in the RFX-mod device,
where the same qualitative phenomenology (with Alfvénic

fluctuations excited after reconnection events) is found.

5. Comparison with experimental observations in
RFX-mod

We conclude this analysis with a comparison of numerical
RFP results with experimental observations on the RFX-
mod device. Experimentally five distinct peaks have been
observed in the power spectrum of the magnetic fluctuations
measured at the plasma edge of RFX-mod device. For
convenience we name these peaks a, b, c, d and e following
the increase of their frequency, from ∼ 130 kHz to ∼ 1
MHz. While the first three peaks (a,b,c) are present only
during the Single-Helical-Axis (SHAx) states, in which the
plasma is in an almost stationary quasi helical equilibrium
with a single magnetic axis, the two highest frequency
peaks, d and e, do not seem to be associated to any
particular behavior of the dominant mode, being present
during almost the full discharge duration. All of these peaks
were interpreted as Alfvén waves because their frequencies
scale linearly with the Alfvén velocity of the plasma,
as shown in Figure 12. The RFX-mod discharges from
which these data were taken are characterized by periodic
magnetic reconnection events similar to the simulation case
(see Ref. [41]).

We give now an interpretation of the above experimen-
tal observations, based on the results of the analysis carried
out in this paper. We start by comparing the frequencies of
the experimentally observed Alfvén waves (the five peaks)
with the frequency spectrum of the dynamic time-evolving
RFP simulation from Figure 10b. In order to do so we first
need to plot the numerical frequency spectrum in physical
units, as until now we have always considered dimension-
less units. By taking the RFX-mod minor radius a = 0.459
m and a reference Alfvén speed of vA = 2500 km/s (cor-
responding in RFX-mod to the high plasma current where
all the five coherent peaks are observed), we obtain the fol-
lowing Alfvén time τA = a/vA ' 0.2 µs. The resulting fre-
quency spectrum in physical units is shown in Figure 13,
where we indicate the Alfvénic nature of the discrete sig-
nals, identified above. On the other hand, in Figure 12 we
mark the frequencies of d and e peaks corresponding to the
reference Alfvén speed.

Comparing the two previous plots, we notice that the
GAE and the 1st CAE frequencies values appear in the
same frequency range of d and e peaks, with comparable
frequency separation between them. This brings us to
formulate the following hypothesis on the Alfvénic nature
of those peaks, namely that d corresponds to a GAE mode,
while e corresponds to the 1st CAE.

We can therefore speculate about the physical mech-
anism triggering these Alfvén waves (d and e peaks), that
is they are excited by self-consistent velocity perturbation
triggered by the magnetic reconnection events taking place
in the plasma. This is indeed consistent with the exper-
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Figure 9: Time-evolving RFP configuration. In the top panels it is shown the temporal evolution of the edge q(a), while
in the bottom panels the edge amplitudes of the most active m = 1 modes (color coded) are shown as a function of time.
The original simulation reported in Ref. [49] is shown in the left column, while on the right the new simulation with
RFX-mod-like hollow density profile analysed in this paper is shown, starting from time t = 3.0× 104τA of the original
simulation and showing two subsequent magnetic reconnection events.

imental observation that the amplitude of such high fre-
quency fluctuations nearly double during magnetic recon-
nection events [35].

6. Summary and final remarks

In this paper, a systematic theoretical investigation of the
physics of Alfvén waves in pinch configurations, by means
of analytical theory and numerical simulations based on
the nonlinear 3D MHD model, has been discussed. High-
frequency magnetic activity was previously reported by
edge measurements in the RFX-mod device, and associated
analysis showed several coherent modes clearly depending
on the Alfven velocity [35]. The specific aim of this paper
was to provide a theoretical description of experimental
observations of AEs and their drive mechanism in RFP
devices, where only ohmic heating is present.

Numerical simulations were performed with the
SpeCyl code [48] that solves the equations of the
viscoresistive MHD model in cylindrical geometry. The
analysis started with an equilibrium configuration with
uniform axial magnetic field and uniform density profile.
This was the only case for which an exact analytical
solution for Alfvénic modes SAW and CAE can be
obtained from the theoretical models. The verification
of the numerical frequency spectra with the theoretical
ones showed complete agreement, thus demonstrating the
applicability of the SpeCyl code as a well suited simulation
tool for the study of Alfvén waves. As a second step,
more complex configurations were analysed, first with

non-uniform density profile and then with non-uniform
magnetic fields (Tokamak-like configuration). In these
cases the comparison with the theoretical models was done
employing the WKB approximation for the CAEs, as these
modes do not possess an analytic solution for non uniform
plasmas. The good agreement between numerical and
theoretical spectra in this cases allowed us to be confident
on the interpretation of numerical spectra for non-uniform
cases. Furthermore the theoretically predicted phenomena
for those cases, namely the damping mechanism of the
continuous SAW, phase mixing, and the coupling between
the SAW and CAEs, were observed. As a further step we
analysed a simplified RFP-like equilibrium configuration
of the magnetic fields, first with uniform and then with
different variable density profiles. This case proved
useful to show that in the RFP configuration a peculiar
condition occurs, that is the direct coupling between the
SAW continuum and the 1st CAE, unlike in the tokamak
configuration in which the compressional modes are usually
neglected, as they are much higher in frequency than the
shear mode. Besides modes coupling and phase mixing,
an additional phenomenon was observed in this case, the
resonance absorption, which damps any compressional
mode directly coupled to the continuous spectrum of the
shear Alfvén wave.

The last step was the analysis of a fully-3D time-
dependent realistic RFP simulations. These simulations
are modeled after real RFX-mod discharges and display a
self-consistent MHD dynamics characterised by periodic
magnetic reconnection events. This part was crucial
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Figure 10: Results of the numerical simulation with time-
evolving RFP magnetic filed and RFX-mod-like hollow
density profile. (m,n) = (1,0) mode. a) The time trace of
the normalized kinetic energy Ek and normalized magnetic
energy Em. b) The time trace of the normalized magnetic
field component B0,0

z at a fixed radius r/a = 1.0. c)-d)
Respectively FFT and CWT showing the time evolution
of the frequency spectrum of the normalized velocity field
component v1,0

r at a fixed radius r/a = 0.6. For the
corresponding movie of the second magnetic reconnection
event, see supplemental material S4.

for the determination of the triggering mechanism of
Alfvén waves in RFP plasmas. Indeed we demonstrated
that the Alfvén waves are excited by periodic magnetic
reconnection events. In fact the Alfvén activity, composed
of SAW, CAEs and GAE, show clear bursts during these
events. The GAE, in particular, is observed even with RFX-
mod-like hollow density profile.

Finally we used the time-evolving RFP simulation
case for the qualitative comparison and theoretical interpre-
tation of the experimentally observed Alfvén waves during
the full discharge duration in the RFX-mod device. We
compared the numerical spectrum from the fully-3D RFP
simulation with hollow density profile, with the RFX-mod
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Figure 11: Time-evolving RFP magnetic filed and RFX-
mod-like hollow density profile. Verification of frequency
spectrum, obtained with FFT, right after the stronger
magnetic reconnection event (∆t = (3.90− 3.95)× 104τA
with respect to Fig. (10)) with the theoretical model for
the v1,0

r velocity field component. The color scale has been
adjusted, compared to Fig. (10), to better highlight the
presence of the GAE.

Figure 12: Relation between modes frequency and Alfvén
velocity for a large database of H and He plasmas (as also
discussed in Ref. [41]). The frequencies for peaks d and
e corresponding to the Alfvén velocity vA = 2500 km/s are
marked in red.

one, and we showed a good qualitative agreement between
the two. This allowed us to propose the identification of the
experimental coherent Alfvén modes (namely the d and e
peaks in the experimental spectrum) as a GAE and the 1st

CAE, respectively.
Early theoretical work on GAEs was prompted largely

by the possibility that they could provide an alternative
radio requency heating scheme [70,71]. Appert et al [71]
concluded that the most efficient such scheme would be
one involving antenna excitation of GAEs with n = 0. The
results of this paper indicate that this is also the GAE most
likely to be generated spontaneously in RFP ohmic plasmas.

As mentioned in section 5, the experimental Alfvén
waves that are present during the full discharge duration
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Figure 13: Same frequency spectrum as in Fig.(11), but in
physical units by taking vA = 2500 km/s and a minor radius
of RFX-mod a = 0.459 m.

(d and e peaks) do not show a significant damping in
time, while the numerical one are excited only during
the reconnection events, after which they decay more or
less quickly in time, especially in case of the hollow-like
density profile because of resonance absorption. It is worth
noting that we used higher resistivity and viscosity values
compared to those estimated experimentally [72] and this
contributes to a stronger damping of the Alfvénic modes in
between the magnetic reconnection events in our simulation
than in the experiment.

In our study we could not reproduce the three lower
frequency experimental peaks (a, b and c) observed only
during the improved confinement quasi-helical states. This
can be due to approximations of the employed numerical
model, which neglects toroidal, finite beta and kinetic
effects. A toroidal geometry and finite beta would allow for
the TAE and the BAE gaps to be excited, with frequencies
below the GAE one [63,73], by either energetic particle
tails (observed in past studies in RFX-mod plasmas, for
which a wave-particle interaction model was proposed [44])
or other mechanisms. Maraschek et al [74] proposed the
role of the inverse energy cascades on the coupled drift
Alfvén small-scalle turbulence to explain the observation
of TAEs in ohmically heated tokamak plasmas. Such a
coupling has also been identified in the edge region of
the RFX-mod plasmas in the form of drift Alfvén vortex
structures [75], so that the role of TAEs excitation played
by the inverse cascade also for RFX-mod plasmas cannot
be excluded. Similarly BAEs destabilization by resonant
magnetic perturbations in Ohmic discharges in J-TEXT
tokamak have also been observed [73]. Furthermore it was
shown [76,77] that the coupling of pressure gradient and the
averaged magnetic curvature is important and favorable to
the existence of the RSAE, more so in RFP configuration
due to the low q value [39] and the possible identification
of experimental peaks a, b and c as RSAEs has been
speculated [41].

The inclusion of the above-mentioned physical effects
presently not taken into account (e.g., finite beta, toroidal

geometry and the coupling with fast particles) needs to
be addressed in the future. However, in this paper we
have shown how rich and articulated is the physics already
supported by the ”minimum” visco-resistive MHD model
presently used. In particular, the excitation mechanism of
AEs based on magnetic reconnection events, investigated in
this paper, looks like a fundamental phenomenon expected
to remain present in a more complete modeling, as well.
To this respect, we are currently investigating an analogous
mechanism of excitation of Alfvén waves in tokamak
plasmas by the sawtooth instability and we plan to address
this topic in a future paper.
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Alfvénic modes with the SpeCyl code) and M. V.. M. Z.
provided data from RFX-mod experiments and support for
the experimental comparison of modelling results.



REFERENCES 15

References

[1] N.F. Cramer. The physics of Alfvén waves. Wiley-
VCH, 2001.

[2] Liu Chen and Fulvio Zonca. “Physics of Alfvén
waves and energetic particles in burning plasmas”.
In: Rev. Mod. Phys. 88 (1 2016), p. 015008.

[3] D. A. Dippolito and J. P. Goedbloed. “Mode coupling
in a toroidal sharp-boundary plasma. I. Weak-
coupling limit”. In: Plasma Physics 22.12 (Dec.
1980), pp. 1091–1107.

[4] B. van der Holst, A. J. C. Beliën, and J. P. Goedbloed.
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