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1 Motivations

Among the various approaches to the Strong CP Problem, scenarios that assume an exact
CP symmetry in the UV have a notable advantage over solutions relying on an anoma-
lous Peccei-Quinn symmetry: this assumption can be argued to be robust against quan-
tum gravitational effects. In particular, CP can be embedded into a gauge symmetry in
extra-dimensional theories of gravity, including string theory, and remain unbroken after
compactification down to 4-dimensions [1, 2]. The issue of the quality of the underlying
symmetry is therefore obliterated once and for all.1

Yet, CP must eventually be spontaneously broken in order to reproduce the Standard
Model (SM) at low energies. This necessary step may introduce a sensitivity to unknown
physics at high scales that can potentially jeopardize the solution of the Strong CP Problem.
To avoid this the breaking must be sufficiently soft. That is, it is necessary to make sure
that the CP-odd scalars Σ responsible for the spontaneous breaking of CP have vacuum
expectation values much smaller compared to the UV cutoff:

|〈Σ〉| � fUV. (1.1)
1The authors of [3, 4] argued that the possibility that CP remains unbroken down to 4-dimensions

might be quite unlikely, from a multiverse perspective, at least in the context of flux compactifications.
Because no general conclusion can be reached in the absence of a complete understanding of string theory
compactifications, for us the important point is that the premise of this work is a perfectly defendable
one: the existence of an exact CP symmetry is motivated by compelling theories of gravity and CP can
generically remain unbroken down to 4-dimensions.
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SU(3)c SU(2)w U(1)Y U(1)A
ψ 3 1 −1

3 zψ

ψc 3 1 +1
3 zψc

mψ 1 1 0 −zψ − zψc

ξ,Σ 1 1 0 −zψ

Table 1. Field content beyond the SM in the minimal Nelson-Barr model. All fields are Weyl
fermions. The U(1)A symmetry is global.

Very explicitly, this is necessary to prevent uncontrollable higher-dimensional operators
suppressed by the cutoff fUV, e.g. cabΣ†aΣbε

µναβGµνGαβg
2
s/(16π2f2

UV), to spoil the solution.
The existence of such a hierarchy of scales (1.1) has to be explained, otherwise no solution of
the Strong CP Problem is offered. Indeed, if no justification of the hierarchy is provided the
QCD theta angle would be incalculable, because susceptible of corrections from unknown
corrections from the UV, and its smallness would merely be the consequence of a hidden
assumption. The requirement (1.1) may be successfully addressed by Supersymmetry [5]
or a strong dynamics [6]. In this paper we will analyze a class of solutions of the latter
type, in which CP is dynamical broken at naturally low scales.

Once (1.1) is explained, scenarios relying on an exact CP have to address another
important challenge. Spontaneous CP breaking should be properly communicated to the
SM so as to guarantee that a sizable CKM phase is generated and a tiny topological angle
is predicted. One way to approach this challenge was proposed in [7] and [8]. Within
ordinary 4-dimensional theories Nelson-Barr scenarios in fact represent a virtually unique
option [6]. From an effective field theory perspective these models are characterized by a
non-generic structure resulting from the selection rules associated to a global U(1)A. The
light degrees of freedom include the SM fields and colored fermionic messengers ψ,ψc with
the same (though vector-like) representation of the d-quarks under the SM gauge symmetry
SU(3)c×SU(2)w×U(1)Y . These couple to the CP-odd scalars via the operator L ⊃ yΣψd.
Models with up-quark type mediation can also be constructed but will not be considered
here because they necessitate of some additional assumption about the flavor structure of
the Yukawa couplings.

Below the scale of spontaneous breaking CP violation the scalars decouple and their
effect is parametrized solely by a CP-odd mass matrix ξ ≡ y〈Σ〉. The global U(1)A is
realized as a spurionic symmetry under which the SM is neutral whereas the messengers,
their CP-even mass mψ, and ξ transform as in table 1.

The U(1)A restricts the couplings of the messengers and the CP-odd spurion in the
effective theory. In particular, it forbids CP-odd couplings between the messengers and
the quark doublets which would otherwise lead to large radiative corrections to the theta
angle [6]. The unique renormalizable couplings allowed by U(1)A and involving ξ and/or
the messengers, besides the standard kinetic terms, are a CP-odd mass mixing with the d-
quarks and a CP-even Dirac mass: L ⊃ ξψd+mψψψ

c+hc. The basic observation of [7, 8] is
that within such a framework the QCD topological angle θ̄ is radiatively generated whereas
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the CP-violating mass mixing generates a sizable CKM phase already at tree-level as long
as |ξ| & mψ. The radiative corrections to θ̄ are well below the current bounds if the
couplings to the CP-violating sector are sufficiently small, i.e.

|y| � 1. (1.2)

However these requirements are not enough. In fact, it turns out that in the limit |ξ| � mψ

the low energy theory contains a light d-quark with suppressed Yukawa couplings. The
SM can thus be reproduced within a perturbative framework only if [6, 9]

1 .
|ξ|
mψ
� 103. (1.3)

This coincidence of scales cannot be explained by the effective field theory of table 1. It
must be the consequence of some property of the UV completion. The coincidence (1.3)
is especially remarkable because ξ is CP-odd whereas mψ must be CP-even. How is it
possible that quantities with an a priori qualitatively different UV origin, like the CP-even
mψ, y and the vacuum expectation value of a separate sector, turn out to be comparable to
each other in size? “Explaining” (1.3) is tantamount to finding a class of UV completions
for the effective field theory described above that naturally accommodates it. This is as key
as (1.1) if one wishes to truly solve the Strong CP Problem via spontaneous CP violation.
In the case no such UV completions can be found one would have to conclude that Nelson-
Barr scenarios are just a very elaborated way to trade the smallness of θ̄ with a subtle
fine-tuning of the parameters.

From a model-building viewpoint, the real challenge in constructing realistic Nelson-
Barr scenarios is therefore making sure that (1.3) is realized within a framework that also
explains (1.1) and (1.2). Despite its fundamental importance, however, we know of no
previous attempts to explain (1.3) within familiar 4-dimensional field theories.2 One might
naively argue that (1.3) would be easily accommodated in a theory where all couplings
are of order unity and all scales beyond the SM of comparable size. A more careful look,
however, reveals that this cannot be the case. In non-SUSY versions additional corrections
to θ̄ always arise from loops involving excitations of the CP-violating sector and would be
unacceptably large for generic couplings of order unity, see (1.2). But, if y is taken to be
small, why is the potential of the CP-violating sector minimized at a scale 〈Σ〉 ∼ mψ/y that
“knows” about the couplings of the mediators to the SM? In SUSY versions of Nelson-Barr
one can avoid the corrections controlled by y if CP violation takes place at scales much
larger than SUSY-breaking [5]. Yet, then there are necessarily several scales involved and
the question remains: why would (1.3) be satisfied? One may alternatively justify (1.3)
postulating that mψ itself arises from the vacuum expectation value of a new scalar field,
mψ = yS〈S〉. This would be an interesting approach in both non-SUSY as well as SUSY
realizations. Now, granting the reasonable assumption y ∼ yS , the coincidence would be
explained by making sure that both scalars acquire comparable vacuum expectation values,

2This coincidence is explained by the extra-dimensional scenarios of ref. [6], which would correspond to
(conjectured) strongly-coupled 4-dimensional theories.
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i.e. for 〈S〉 ∼ 〈Σ〉. The conceptual hurdle then is achieving this in such a way that mψ be
a CP-even parameter, which is mandatory if the strong CP is to be solved. Is there a way
to guarantee this? Overall, we believe that the model-building implications of (1.3) have
not been fully appreciated so far. The present work will fill this gap.

In this paper we show that it is possible to find elegant UV completions of the Nelson-
Barr scenarios that simultaneously address the key requirements (1.1), (1.2), and (1.3).
In section 2 we demonstrate that (1.1), (1.2), (1.3) are naturally explained in scenarios
in which CP-violation is dynamical and responsible for generating both ξ and mψ, the
messengers are chiral (that is they have zψc 6= −zψ in table 1), and the global U(1)A is
gauged. In section 3 we analyze in detail an explicit realization. At low energy our UV
completions reproduce the scenarios of d-mediation analyzed in [9]. This guarantees the
Strong CP Problem is robustly solved. In addition, though, our constructions add new
constraints and phenomenological signatures which we discuss in section 3.2. Overall, our
main message is that realistic scenarios of spontaneous CP violation are very predictive
and compelling solutions of the Strong CP Problem.

2 Mediation of super-soft CP breaking

In this section we present an elegant way to build scenarios that satisfy all the requirements
reviewed in section 1. An explicit realization will be discussed in the subsequent section.
We are interested in constructing non-Supersymmetric models, continuing and completing
the ideas initiated in the appendix of [6].

2.1 The basic setup

We begin our analysis with a preliminary discussion of the key ingredients. Throughout
the paper we will assume that CP is an exact symmetry in the UV. This means that there
exists a field basis in which all couplings are real and the topological angles vanish. CP is
then spontaneously broken in the effective field theory, as described below. We will focus
on scenarios with d-mediation.

As anticipated, we tackle the hierarchy problem (1.1) within non-Supersymmetric mod-
els. This is achieved replacing the vacuum expectation value of the fundamental scalars Σ
by the condensate of a set of SM-neutral fermion bilinears

〈χαχcβ〉 ∼ 4πf3δαβ . (2.1)

Here χα, χcα are two or more families of fermions charged under, say, the fundamental and
anti-fundamental of an exotic strong SU(n) (α, β are the flavor indices, and to save typing
we will often omit them).3 The latter dynamics undergoes dynamical chiral symmetry
breaking at a mass scale ∼ 4πf , roughly the equivalent of ΛQCD ∼ 1GeV in real-world
QCD. The powers of 4π in (2.1) are borrowed from naive-dimensional analysis arguments
analogous to those adopted in QCD.

In the chiral limit the condensate does not violate CP. To see this observe that the
results of [10] imply that in our scenarios the vector-like symmetries as well as parity remain

3Later on we will choose n = 3, so in this section we do not keep track of the large n counting.
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unbroken, and hence 〈χαχcβ〉 = Cδαβ with C† = C a real number by P-invariance. Because
CP acts as C → C∗ it follows that the condensate is also CP invariant. The situation
is completely different when the chiral symmetry is explicitly broken by tiny effects, such
as higher-dimensional operators like (χχc)2, since in that case some of the approximate
Nambu-Goldstone bosons emerging from chiral symmetry breaking may acquire a vacuum
expectation value ∼ f and break CP (and/or P) spontaneously. We will later show that
in our models 〈χχc〉 generically has large CP-odd entries, with magnitude (2.1), even if all
the parameters of the Lagrangian are CP-even by hypothesis. This elegant mechanism of
spontaneous CP violation of course requires at least two families of χ, χc, since there would
be no Nambu-Goldstones otherwise. The identification Σ → χχc obviously implies that
the Yukawa couplings y of section 1 should be replaced by non-renormalizable interactions:

yψΣd→ ψdχχc

f2
UV

, (2.2)

for some high UV cutoff scale fUV.
The above basic setup accomplishes two goals at once. First, it ensures that the

hierarchy f � fUV is naturally explained via dimensional transmutation. In other words,
our constraint (1.1) is satisfied. If we are careful enough, this means we do not have to
worry about possible UV effects spoiling our solution of the Strong CP Problem. Second,
in a picture where (2.2) controls the main interaction between the SM quarks and the
CP-violating sector, the non-renormalizable nature of (2.2) automatically guarantees that
the excitations of the CP-violating sector, the hadrons of the χ, χc dynamics, have very
tiny couplings of order

y ∼ 4π f2

f2
UV
� 1 (2.3)

with d and ψ. Hence, potentially sizable loop corrections to the theta parameter due to the
CP-violating sector are completely negligible. We have thus automatically satisfied (1.2) as
well. So far, so good. The first serious model-building challenge is, as anticipated, making
sure that the coincidence (1.3) is explained. We proceed as in the second alternative
mentioned in the introduction. That is, we look for a model in which the mass of ψ,ψc

is given by a new coupling yS ∼ y times the vacuum expectation value of a (composite)
scalar 〈S〉, of the same order as 〈Σ〉.

Since in the present framework y arises from a non-renormalizable operator, also the
mass of ψ,ψc has to arise from a dimension-6 operator similar to (2.2). We therefore intro-
duce another composite scalar made up of new SM-neutral fermions with SU(n) charges, i.e.
S → λλ, and look for models in which the explicit mass term of table 1 is UV-completed by

mψψψ
c → ψψcλλ

f2
UV

. (2.4)

As long as the UV dynamics is sufficiently generic (but of course CP-invariant), the coeffi-
cients in front of (2.2) and (2.4) should be comparable in size, implying y ∼ yS as needed.
In addition, |〈λλ〉| ∼ |〈χχc〉| would be generically satisfied because the λ’s are charged
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under the very same confining SU(n) carried by ψ,ψc. With these assumptions we get

mψ ∼
〈λλ〉
f2

UV
∼ |〈χχ

c〉|
f2

UV
∼ |y〈Σ〉|. (2.5)

This is the desired result (1.3). We are making progress, but the main hurdle comes next:
why does Arg[mψ] vanish, that is why is 〈λλ〉 real while 〈χχc〉 is complex?

Since ψ,ψc are colored, an hypothetical phase in their mass would immediately trans-
late into a correction to θ̄. If no further assumption is made, 〈λλ〉 is expected to carry its
own broken chiral symmetries and be complex, as we argued for 〈χχc〉. Fortunately this
can be avoided. We identified four sufficient conditions that guarantee that the complex
phases in 〈λλ〉 are sufficiently small to be compatible with |θ̄| . 10−10. These are:

(a) λ must appear in a single family.

(b) There must be a gauge U(1) under which the SU(n) sector is chiral.

(c) The gauge U(1) must commute with the non-abelian flavor symmetry of the χ, χc’s.

(d) The scale of spontaneous CP violation has to satisfy

f

fUV
. 10−5. (2.6)

We will see in the next subsection how our conditions can be implemented in concrete
models. Here we explain why 〈λλ〉 is approximately CP-even when they are satisfied.

To start, (a) implies λ does not carry non-abelian global symmetries which would oth-
erwise generically imply large complex phases arise from the vacuum expectation value of
the associated Nambu-Goldstone fields. The unique spontaneously broken global symme-
try λ is allowed to carry is an axial abelian one, if present. In fact, in section 1 we argued
that such a symmetry must be there in order to reproduce the desired structure. It should
not be a surprise to find then that the global charge carried by λ must be precisely the
U(1)A of table 1. To see this assume that such a U(1)A exists. It follows that the new
strong sector has to be charged under it if we want to allow (2.2). In particular, χχc has
to be chiral under the U(1)A. From this observation one might directly conclude that λ
must also be charged. Indeed an accurate U(1)A can only survive in the IR if such a sym-
metry has no U(1)A×SU(n)×SU(n) anomaly. This of course requires the fermion λ to be
charged. There is an alternative argument that forces λ to be chiral under the very same
U(1)A. Because mψ is to be given by (2.4) we better make sure that ψ,ψc are themselves
chiral under U(1)A, otherwise a Dirac mass term for ψ,ψc would be allowed and we would
not be able to convincingly explain (1.3). The bilinear λλ has thus to be charged as well.
However we want to put it, the necessary low-energy structure of these models combined
with (2.2) and (2.4) lead us to conclude that the SU(n) sector must be chiral under the
global U(1)A.

Under the hypothesis (a) we see that the only Nambu-Goldstone mode that can poten-
tially induce a sizable complex phase in 〈λλ〉 is the one associated to the U(1)A. However,
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condition (b) renders the latter unphysical: the phase in 〈λλ〉 due to the vacuum expecta-
tion value of the (would-be) U(1)A Nambu-Goldstone boson is eaten by the abelian gauge
field. Importantly, for this to fully hold (c) must be satisfied. According to (c), the gauge
charges of χα, χcα must be the same for each flavor α. This ensures that the gauge U(1)
acts on the SU(n) sector exactly as the global U(1)A. As a consequence, the longitudinal
component of the gauge boson exactly coincides with the U(1)A Nambu-Goldstone. In the
unitary gauge this is removed and cannot show up in 〈λλ〉.

Whenever (a), (b), (c) are satisfied the only Nambu-Goldstone bosons that can con-
tribute to the phase of 〈λλ〉 are those of the non-abelian flavor symmetry acting on χα, χcα.
But because λ is neutral under such a symmetry, their effect is proportional to the small
chiral symmetry-breaking couplings that are responsible for triggering spontaneous CP vi-
olation, see below (2.1). These come from operators of at least dimension-6 in our scenarios
(see next section) and therefore lead to

Arg(mψ) ∼ f2

f2
UV

. (2.7)

The experimental constraint |θ̄| . 10−10 becomes an interesting upper bound (2.6) on the
scale of CP-breaking. The vacuum expectation values of the Nambu-Goldstone modes have
a completely negligible impact on mψ if (d) is assumed.

Interestingly, (2.6) also guarantees that the contamination of other CP-odd phases does
not spoil our solution of the Strong CP Problem. In particular, one may fear uncontrollable
complex contributions to 〈λλ〉 (and, less relevantly, to 〈χχc〉) arising from the vacuum
expectation value of any of the CP-odd massive hadrons η of the exotic dynamics. In
general the potential of the composite scalars is the sum of a zeroth order term from the
renormalizable part of the λ, χ, χc interactions, plus a small perturbation: V = V0 +V1. In
our models all perturbations are due to higher-dimensional operators of at least dimension
six because of the chiral nature of the U(1) (see next section for details), and therefore
V1/V0 ∼ f2/f2

UV. We have seen above that an hypothetical complex phase in 〈λλ〉 must
come at next to leading order, and therefore be controlled entirely by the small perturbation
V1. This leads us again to (2.7). The condition (d) prevents these effects from appreciably
affecting the θ̄ parameter. We stress that the results of [10] are central to our conclusions.
In a theory with fundamental scalars Σ, S we would not have at our disposal such powerful
theorems and it would be difficult to find general conditions guaranteeing mψ = yS〈S〉 be
CP-even.

We thus have found a picture in which the key requirements (1.1), (1.2), and (1.3)
discussed in section 1 are structurally realized and the Strong CP Problem can be ro-
bustly addressed. Remarkably, this basic set up has very important phenomenological
consequences. Together with (2.5) and (2.1), eq. (2.6) implies an upper bound on the
messengers’ mass:

mψ ∼ 4πf f2

f2
UV

. 10−14fUV. (2.8)

The scale at which CP violation is communicated to the SM, which is set by the messengers’
mass, satisfies mψ � 4πf � 4πfUV and is therefore super-soft. We will emphasize in
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section 4 that this feature has important theoretical implications. There are also interesting
phenomenological consequences, however. Since our effective field theory arguments are at
most reliable up to the Planck scale we expect fUV . 2.4× 1018 GeV. It follows that

mψ . few 10′s TeV. (2.9)

This constraint must be interpreted at an order of magnitude level, given it depends on
an unknown UV scale and the coefficients of dimension-6 interactions, as well as the in-
calculable value of the condensates 〈χαχcβ〉, 〈λλ〉. Yet, the implication is clear: our so-
lutions predict new colored fermions not far from the TeV. This important constraint
makes these scenarios testable and very predictive.4 We may also reverse the argument
and observe that, since the messengers are colored fermions, the lack of experimental evi-
dence of such particles says that mψ & 103 GeV (see section 3.2.3). Via (2.8) this implies
fUV & 1017 GeV. Assuming order one coefficients in (2.5), we see the UV cutoff must lie
close to the Planck scale.

The main ingredients of the model have now been identified. In the next section
we will construct a concrete realization and discuss some of the main phenomenological
implications.

3 An explicit model

We now build an UV completion for the model of table 1 following the ideas introduced in
section 2.1.

3.1 The model

An anomaly-free realization of the ideas in section 2.1 requires more fields than the minimal
ones necessary to address the Strong CP Problem, namely more than just ψ,ψc, χα, χcα, λ.
Some of the extra states may lead to interesting phenomenological signatures, which will
be analyzed later on.

The particle content beyond the SM involves only fermionic (Weyl) fields and is
summarized in table 2. The non-abelian gauge groups are all asymptotically free and
the Landau poles of the abelian sector are many orders of magnitude above the Planck
scale. The embedding of the fields charged under the SM in complete grand-unified
SU(5) ⊃ SU(3)c × SU(2)w × U(1)Y multiplets is straightforward (see the caption of ta-
ble 2). Let us discuss the role of the various fields in turn.

3.1.1 Field content

The CP-violating Sector. The minimal CP-violating sector realizing the program
spelled out in section 2.1 is composed of two families of χ, χc in the fundamental rep-
resentation of a new confining SU(3) gauge group and a single Weyl fermion λ in the
adjoint representation. These fermions are all charged under the axial gauge U(1), with
charges chosen such that the anomaly SU(3)× SU(3)×U(1) is absent.

4An analogous connection with the TeV was made in the context of mirror-world models in [11].
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SU(3)c SU(2)w U(1)Y SU(3) U(1)
ψ1 3 1 −1

3 1 +1
ψ2 3 1 −1

3 1 −1
ψc1 3 1 +1

3 1 −1
3

ψc2 3 1 +1
3 1 +1

3

ψ′1 1 2 +1
2 1 +1

ψ′2 1 2 +1
2 1 −1

ψ′c1 1 2 −1
2 1 −1

3

ψ′c2 1 2 −1
2 1 +1

3

χα=1,2 1 1 0 3 +1
2

χcα=1,2 1 1 0 3 +1
2

λ 1 1 0 8 −1
3

NI=1,2,3,4 1 1 0 1 −2
3

N ′I=1,2,3,4 1 1 0 1 −1
6

Table 2. Field content beyond the SM. All fields are Weyl fermions. Note that the messengers
(ψa, ψ

′
a) ⊕ (ψc

a, ψ
′c
a ) form complete 5a ⊕ 5a multiplets of a grand-unified SU(5) SM gauge group,

but are chiral under U(1).

This theory, when supplemented with small (CP-conserving by hypothesis) pertur-
bations of the type (χχc)(χχc)†/f2

UV, breaks CP spontaneously. To assess the qualita-
tive behavior of the non-perturbative dynamics let us first neglect all couplings except
for the SU(3) gauge interaction. Then χ, χc, λ enjoy a global anomaly-free symmetry
SU(2)χ×SU(2)χc ×U(1)V ×U(1)A, where U(1)V is just the χ, χc baryon number, whereas
the global U(1)A acts on χ, χc, λ precisely as the U(1) of table 2. While there is no
definite proof, there are good reasons to expect that in the IR this theory develops two
condensates 〈χχc〉 ∼ 〈λλ〉. Indeed, according to the arguments of [10] the vectorial sub-
group SU(2)χ+χc × U(1)V must remain intact. Hence the only allowed condensates are
〈λλ〉, 〈χχc〉. An heuristic argument based on the most attractive channel [12] suggests
that 〈λλ〉 is likely to form “first”, immediately followed by 〈χχc〉. In the following we will
therefore assume that both condensates form, and that they have comparable sizes.

After chiral symmetry breaking the U(1)A Goldstone mode is eaten by the U(1) gauge
via the Higgs mechanism. The remaining 3 Nambu-Goldstone bosons πq are described by
the SU(2) matrix U = eiπ

qσq/f , with σq the Pauli matrices. Below the chiral symmetry
breaking scale, the condensates may be parametrized as

〈χαχcβ〉 = cχ4πf3Uαβ (3.1)
〈λλ〉 = cλ4πf3

for some unknown parameters cχ, cλ expected to be of order unity. The latter are guar-
anteed to be CP-even, as demonstrated in section 2.1. The renormalizable theory we just
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described conserves CP and has a degenerate vacuum parametrized by any value of the πq’s.
However, additional small interactions can break explicitly the accidental SU(2)χ×SU(2)χc

symmetry and generate a potential for U . For example, a set of unavoidable dimension-6
interactions of the type

cαβ;γδ
f2

UV
(χαχcβ)(χγχcδ)† (3.2)

breaks SU(2)χ×SU(2)χc completely if the (real) coefficients cαβ;γδ are generic. This opera-
tor in fact describes the dominant source of explicit chiral symmetry breaking in the model
of table 2. Once (3.2) is included in the picture, the Nambu-Goldstone bosons acquire a
small potential (see (3.1)) VNGB(π) ∼ 16π2f4(f/fUV)2 cαβ;γδUαβU

∗
γδ, and the vacuum de-

generacy is lifted. The actual vacuum configuration of the U field depends on the unknown
CP-even parameters cαβ;γδ. What matters to us here is not the exact expression of the
vacuum state, however, but simply that CP is generically broken by complex entries of or-
der (2.1). To prove this one has to observe that CP is spontaneously broken if 〈U〉∗ 6= 〈U〉,
i.e. if 〈π1〉 6= 0 or 〈π3〉 6= 0. It is then easy to see that, for generic CP-even coefficients
cαβ;γδ, VNGB is indeed minimized at5

Im(〈U〉) ∼ 1. (3.3)

A numerical scan of the coefficients cαβ;γδ in the range [−10, 10] confirms that this holds in
more than 50% of the parameters space: spontaneous CP-violation is generic in our model.

The Mediator Sector. The messengers ψ,ψc of table 2 are vector-like under the SM
subgroup SU(3)c × U(1)Y , but chiral under the new gauge U(1). They appear in four
different representations in order to avoid an anomaly in SU(3)c×SU(3)c×U(1) and U(1)Y×
U(1)Y ×U(1). This implies the existence of a non-minimal number of mediators’ families.
Of course other constructions are possible, but we will stick to this one in the following.

The particles ψ′, ψ′c are introduced in table 2 with the sole scope of removing the
U(1)Y × U(1) × U(1) anomaly left by the ψ,ψc system. The ψ′, ψ′c mix with the SM
lepton doublets similarly to how ψ,ψc mix with quarks. In this sense they can be seen
as mediators for CP-violation in the leptonic sector. Their presence does not spoil the
solution of the Strong CP Problem, as will be argued below. If preferred, it is possible to
find alternative scenarios where the leptonic messengers are replaced by other fields with
SM charges. In order for such alternatives to be phenomenological viable, though, the new
states must have sufficiently large decay rates into SM particles. This is certainly the case
with the field content of table 2.

Extra States. The last degrees of freedom that need to be discussed are the N,N ′ parti-
cles. This SM neutral sector removes the remaining U(1)×U(1)×U(1) and U(1)×grav×grav
anomalies. One may find many different ways to cancel these anomalies, and the field con-
tent of table 2 is just an arbitrary choice. A different choice will be discussed in section 3.2.4.
It is worth to make a few comments, though. First, one cannot replace the spectator sector

5As usual, all these expressions are to be interpreted as holding in the field basis in which all couplings
are CP-even, according to the hypothesis of exact CP invariance of the UV (see section 1).
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by increasing the number of χ, χc, λ families. If this avenue is pursued, the SU(3) sector
would contain flavors with different U(1) charges; as a consequence the spontaneously bro-
ken abelian global symmetry and the gauged U(1) would no more coincide. This would
be a disaster because it would imply that the phase from λλ could not be removed by
the Higgs mechanism and the Strong CP Problem would not be solved. Second, we were
unable to replace the SM-neutral N,N ′ with a slightly more involved (but still unstable)
messenger sector of SM-charged states. This does not mean it is not possible, of course.
Overall, our opinion is that a separate SM- and SU(3)-neutral spectator sector is a rather
generic feature of our models.

3.1.2 Interactions

There is a very limited set of new couplings at the renormalizable level: the obvious kinetic
terms (including those of the exotic gauge fields) and, since our model contains an abelian
group, a kinetic mixing between hypercharge and the U(1) gauge. The latter is however
not relevant phenomenologically because the exotic vector acquires a large mass, as we
will see below. On the other hand, there are no renormalizable couplings among the
exotic fermions of table 2 and the SM fermions, and the former are all chiral. Non-gauge
interactions involving the exotic fermions all arise from operators of dimension six or higher
suppressed by powers of the UV cutoff fUV ∼ 1017−18 GeV, see the discussion around (2.6).
Operators of dimension larger than 6 lead to effects suppressed by at least v/fUV . 10−15

or (f/fUV)3 . 10−15 and have no phenomenological impact. (There is a single exception
to this conclusion, i.e. the mass of N ′, which we discuss around (3.12).) In this subsection
we therefore limit ourselves to a discussion of the leading dimension-6 interactions.

We are interested in 4-fermion operators O involving the fermions of table 2. These
appear in the effective Lagrangian as cO/f2

UV. Our working hypothesis of exact CP invari-
ance at the Planck scale implies that all Wilson coefficients c are real in a suitable field
basis, which we assume throughout the paper. For definiteness we will take them to be of
order unity. No particular flavor structure is favored by our models.

Operators involving only the fermions ψ,ψc, ψ′, ψ′c, N,N ′ and SM fields are strongly
irrelevant. In particular they do not bring CP-violating phases and do not contribute
appreciably to θ̄. On the other hand, operators containing χ, χc, λ can become important at
low energies because after symmetry breaking they can be turned into relevant interactions.
Let us thus focus on interactions with χ, χc, λ. The charge assignments of table 2 imply
these belong to five distinct classes. First we find the operators that, after symmetry
breaking, generate CP-violating mass terms as in (2.2):

(χαχcβ)†ψ1d, χαχ
c
βψ2d, (χαχcβ)†ψ′1`, χαχ

c
βψ
′
2`. (3.4)

Note that the charge assignments do not allow analogous (and dangerous) dim-6 inter-
actions among χχc, ψ,ψc and the quark doublet q. In particular, the U(1) charges are
carefully chosen to forbid ψψcχχc, which would generate a complex mass for the quark
mediators and re-introduce a Strong CP problem. In the second class we have operators
inducing CP-even masses of the type (2.5) after symmetry breaking. These are

ψ1ψ
c
1λλ, ψ2ψ

c
2(λλ)†, ψ′1ψ

′c
1 λλ, ψ′2ψ

′c
2 (λλ)†. (3.5)
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Figure 1. Schematic representation of the mass scales involved. See the text for details.

Third, we have operators involving only χ, χc, λ, like the ones in eq. (3.2). These are
especially important because they represent the dominant source of explicit breaking of
the chiral SU(2)χ × SU(2)χc symmetry group of the strong SU(3) sector. Since we have
already argued that CP gets spontaneously broken we do not need to analyze them in
detail here. The fourth class of operators containing χ, χc, λ consists of

χ†ασ̄
µχβ Jµ, λ†σ̄µλ Jµ, (3.6)

with Jµ indicating any gauge singlet vector current (of dimension 3) constructed out of
the other fields, SM fields included. After chiral symmetry breaking this class of operators
generate tiny (in general CP-violating) interactions between the SU(3) hadrons and the
rest of the world. Fortunately, they also do not affect θ̄ appreciably because they induce
corrections suppressed by powers of (f/fUV)2 . 10−10. Finally, the last class of oper-
ators involving the CP-violating sector parametrize flavor-violating interactions with the
spectator sector:

χαχ
c
βλNI . (3.7)

This generates, after SU(3) confinement, a mass for NI , as we will discuss below. On
the other hand, N ′I remains massless at dimension-6. We will estimate its mass in the
next subsection.

3.2 Phenomenology

In this subsection we analyze in some detail the phenomenology of our model. Yet, before
embarking in this journey, it proves useful to summarize the different mass scales in the
theory. These are pictorially shown in figure 1.

The highest scale is the UV cutoff, parameterized by fUV ∼ 1017−18 GeV. One may
identify it with the Planck scale, but we decided to keep our discussion more general. All
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masses of the particles beyond the SM masses arise from the dynamically generated scale

mCP ∼ 4πf ∼ 1013−14 GeV (3.8)

of the confining SU(3) sector. The natural hierarchy f/fUV appears in many of the following
expressions, so it is convenient to introduce the more compact notation

ε ≡ f

fUV
. (3.9)

As we argued around eq. (2.6), ε . 10−5 ensures there are no large contributions to the
QCD θ̄ parameter due to the vacuum expectation value of CP-odd resonances.

Let us now see what masses arise from chiral symmetry breaking. First, heavy SU(3)
hadrons all have masses of order mCP. The SU(3) dynamics also generates pseudo Nambu-
Goldstone bosons, the key players in the spontaneous breaking of CP (see (3.3)). Their
masses are induced dominantly by the interactions in (3.2) and are expected to be of order
(see the corresponding potential VNGB)

mπ ∼ mCPε . 108−9 GeV. (3.10)

Furthermore, chiral symmetry breaking generates a mass for the U(1) vector, mA ∼ gAf ∼
(gA/4π)mCP, with gA the U(1) gauge coupling. For definiteness we will assume that gA is
not far from order unity, so that mA � mπ. This assumption does not have any significant
impact on our analysis, though.

Similarly, the fermions ψ,ψc and separately ψ′, ψ′c form, after chiral symmetry break-
ing, two families of Dirac pairs with CP-even masses generated by the interactions (3.5)
and CP-odd mixings (3.4) with the SM d, ` representations. Overall, these are of order
mψ,mψ′ ∼ mCPε

2 . 1− 10 TeV (see also (2.5)).
The spectator sector of table 2 lives at scales parametrically smaller than the TeV. N

gets a mass after a seesaw-like mixing with heavy fermionic hadrons ∼ χχcλ via (3.7). A
rough estimate says that

mN ∼ ε4mCP . 102 − 103 eV. (3.11)

Finally, the dominant contribution to the mass of N ′ arises from dimension-9 interactions
like N ′N ′χχcλλ. After chiral symmetry breaking we get

mN ′ ∼ mCPε
5 . 10−3 − 10−2 eV. (3.12)

Note that the larger powers of ε in (3.11), (3.12) compared to the other beyond the SM
particles make mN,N ′ more sensitive to the actual O(1) couplings involved in our estimates.
The cosmological signatures of this sector will be discussed in section 3.2.2.

We next turn to a study of how the Strong CP is solved, and then cosmological and
collider signatures of our scenarios.
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3.2.1 The CKM phase and the Strong CP Problem

It is easy to see why the model introduced in section 3 solves the Strong CP Problem.
CP is spontaneously violated by the vacuum expectation value 〈χχc〉. The excitations of
the CP-violating sector (heavy hadrons and Nambu-Goldstone bosons) couple to the SM
via small Planck-suppressed couplings (2.3) and can be ignored, as anticipated in (1.2).
For all practical purposes the CP-violating sector is frozen and parametrized by the two
condensates 〈χχc〉 and 〈λλ〉. Within the effective field theory at scales � mπ � 4πf
the relevant degrees of freedom are the SM particles and ψ,ψc, ψ′, ψ′c, N,N ′. There is a
unique CP-odd spurion, namely 〈χχc〉, which couples to the colored sector solely via (3.4).
The CP-violating theory we are describing is essentially that of table 1 with ξ replaced by
〈χχc〉/f2

UV and mediators’ masses satisfying |mψ| ∼ |ξ| (see (2.5)). This theory reproduce
the SM at scales � mψ, including the CKM phase, and a θ̄ very comfortably below the
current bounds [9].

Yet, our UV completion adds new ingredients to the effective field theory of table 1.
It predicts the constraint (2.9) and additional (SM-charged) unstable particles ψ′, ψ′c,
neutral states N,N ′, and Planck-suppressed CP-conserving interactions. The additional
states cannot play any role in transferring CP-violation to QCD. In particular, the lep-
tonic CP-violating coupling in (3.4) is completely irrelevant for the Strong CP Problem,
since the additional CP-odd flavor-invariants felt by the colored particles are the same
quark invariants found in the absence of ψ′, ψ′c with additional suppressing factors con-
trolled by the tiny lepton Yukawa couplings. Furthermore N,N ′ are also not important
for what concerns the Strong CP Problem because they only interact with the SM via
(CP-conserving) gauge-interactions and (CP-conserving) irrelevant couplings. In general,
non-renormalizable operators cannot affect θ̄ appreciably because CP-violation is super-soft
and their contributions are therefore suppressed by powers of m2

ψ/(4πfUV)2.
We conclude that our picture satisfies all the low energy requirements spelled out in the

introduction, including (1.1), (1.2), and (1.3), and robustly solves the Strong CP Problem.

3.2.2 Cosmology

We next study the cosmology of our models. Referring back to figure 1, we begin with a
discussion of the heavy states beyond the SM, and then proceed to lower masses.

Most of the heavy hadrons are unstable and decay into pions or into SM particles
and ψ,ψ′, N,N ′ via (3.4), (3.5), (3.6). Similar considerations apply to the heavy U(1)
vector. Due to the axial U(1), however, the baryons χχχ are practically stable. Hence, if
thermalized, the exotic baryons would have decoupled at T ∼ mCP/25 and subsequently
dominated the expansion rate until very recently. To avoid conflict with the physics of
BBN, we assume that the temperature of our Universe has never exceeded

TRH �
mCP
25 ∼ 1011−13 GeV. (3.13)

This guarantees that baryons were never thermalized and their abundance was always
safely within acceptable values. The constraint (3.13) also serves another purpose. If the
Universe was hot enough to go through the CP-violating phase transition we may have
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ended up generating topological defects via the Kibble-Zurek mechanism. These may then
have come to dominate the expansion of the Universe, which is also phenomenologically
unacceptable. Thanks to the condition (3.13), though, the transition to the CP-violating
vacuum occurred before or during inflation, so that any abundance of topological defects
would have been diluted to an acceptable amount.

Pions, on the other hand, represent no cosmological hazard. They decay via (3.4) into
messengers and SM fermions with lifetimes τπ ∼ 4π/(y2mπ), where y ∼ 10−9 was intro-
duced in (2.3). Even if produced abundantly at re-heating, they would have disappeared
from the plasma when the early Universe was at T ∼ few TeV.

Going further down in mass we encounter the states ψ,ψc, ψ′, ψ′c, N,N ′. Obviously,
since ψ,ψc, ψ′, ψ′c mix with the SM quarks and leptons, they are unstable and decayed
very quickly as soon as they decoupled.

The situation is a bit more complicated for N,N ′. These particles are cosmologically
stable and couple to the plasma only via higher-dimensional operators suppressed by the
UV cutoff as well as gauge U(1) interactions. For temperatures satisfying (3.13) they never
thermalized. Under the reasonable assumption that they were not directly produced by
the inflaton, a tiny population of N,N ′ was nevertheless generated at, and soon after,
re-heating by the annihilation of nearly thermalized ψ,ψc, ψ′, ψ′c. The latter processes are
mediated by the effective 4-fermion interaction

Leff ⊃ −
1
f2J

A
µ

[
qNN

†σ̄µN + qN ′N ′†σ̄µN ′
]

(3.14)

where JAµ =
∑
i qi Ψ†i σ̄µΨi is the U(1) current of the thermalized charged fermions

Ψi = ψ,ψc, ψ′, ψ′c and qi their U(1) charges. We would like to provide a quantitative
estimate of the energy density carried by the spectators. In order to do so it is enough
to focus on the N ’s because N ′ have a much smaller mass and their energy density is
suppressed by a factor mN ′/mN ∼ ε . 10−5 compared to that of N .

An approximate estimate of the yield YN = nN/s is obtained via the Boltzmann
equation dYN/dt = Γcoll/s. If the Ψi’s are taken to have had a thermal distribution, for
simplicity, the collision term is given by

Γcoll = q2
N

(∑
i

giq
2
i

)
1

18π5f4

(
7π4T 4

120

)2

(3.15)

where gi is the multiplicity of each Ψi (helicity excluded). From table 2 we have q2
N

∑
i giq

2
i =

400/81. Finally, the present-day energy in units of the entropy, ρN/s =
∑4
I=1mNI

YN (there
is a family of 4 N ’s in table 2), is approximately

ρN
s
∼

4∑
I=1

mNI

Γcoll
Hs

∣∣∣∣∣
TRH

(3.16)

∼ ρDM
s

(∑4
I=1mNI

4 keV

)(
1013 GeV

f

)4 (
TRH

1011 GeV

)3
.
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Since this expression is dominated by the large-T regime, where details of re-heating can be
important, our computation should be viewed as a qualitative estimate of the actual density.
Nevertheless, the message is clear: in the small TRH regime (3.13), where eq. (3.16) was
consistently derived, our spectator sector represents generically a subleading component
of dark matter. Yet, with some luck it could be a portion of the missing matter of the
Universe, with N a good cold dark matter candidate and N ′ a negligible component of
dark radiation.

3.2.3 Collider signatures

The particles ψ,ψc, ψ′, ψ′c are subject to collider, electroweak, and flavor constraints. A
detailed analysis of the quark mediators can be found in [9], see also [13, 14]. The bottom
line is that most of parameter space is allowed for masses above the TeV.

The physics of the lepton mediators has not been discussed before in this context, but
it is easy to show that these states lead to weaker constraints on the parameters of our
scenarios compared to the quark mediators. As for the quark mediators, the ψ′-` mixing
can be removed via a rotation of (`, ψ′c). The massive eigenstate couples to the Higgs
and the lepton singlets with coupling that up to a unitary rotation is oriented along the
direction of the SM lepton Yukawa coupling Ye, i.e. Y ′ ∝ Ye.

The ψ′, ψ′c are produced in pairs via Drell-Yan, and then decay into leptons and vector
bosons or the Higgs. Current constraints are looser than for quark mediators and are not
relevant to our models, where mψ′ ∼ mψ is the natural expectation. Deviations of the Z0

couplings to leptons are constrained at the permille level. The corresponding bounds are
not much stronger than those of the quark mediators, however, because the new coupling
Y ′ is proportional to the SM lepton Yukawa and therefore highly hierarchical. The most
significant constraint from flavor-violation comes from the non-observation of µ→ eγ and
is well under control for |Y −1

e Y ′| . 300 mψ′/TeV. CP-violation, including the electric
dipole moment of the electron, is strongly suppressed. Overall, we conclude that lepton
mediators are allowed to live at the TeV scale.

3.2.4 Baryogenesis

Explaining the observed baryon asymmetry may at first sight appear difficult in our sce-
narios, as baryogenesis necessitates of both new sizable CP-violating phases and new inter-
actions with the SM. Yet, successfull baryogenesis above the weak scale does not require
new couplings to the colored sector , and therefore does not immediately jeopardize our
solution of the Strong CP Problem. In fact, it may be realized simply adding new physics
with CP-violating couplings to the leptons. Low-energy leptogenesis thus appears to be
the most natural and safe option in these models.

A slight modification of our model has all the necessary ingredients. Suppose we
replace the spectator sector of table 2 with this more complicated set of fermions neutral
under the SM and the new SU(3) but chiral under the U(1):

The main difference compared to the spectator sector of table 2 is that with this
modified field content one finds a renormalizable coupling ψ′c2 HN as well as dimension-6
interactions that generate complex Majorana masses of order the TeV for N,N ′, X (note
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U(1)
N1,2 −1

3

N ′1,··· ,5 −2
3

X1,2,3 +1
2

X ′1,··· ,5 −1
6

that N ′ mixes with N). The state X ′ instead obtains a mass from dimension-9 interactions
and is expected to be of order (3.12). In an appropriate portion of the parameter space
the modified model may thus generate the observed baryon asymmetry via resonant decays
N,N ′ → ψ′c

†
H†, ψ′cH → `†H†, `H as studied in [15]. The other fields of the spectator

sector would behave qualitatively as in the scenario discussed in section 3; X would be a
cold dark matter candidate and X ′ a negligible part of radiation. The crucial difference
compared to our earlier model is that here X is much heavier and for this reason has an
abundance that is roughly a factor 109 larger compared to (3.16). This implies that the re-
heating temperature is allowed to be three orders of magnitude smaller, TRH ∼ 108 GeV. We
can thus have a viable dark matter candidate comfortably within the allowed regime (3.13).
The phenomenology of this modified version of our scenario is quite rich and would deserve
further scrutiny. Our purpose here is merely to demonstrate that there is no structural
obstruction to incorporating a mechanism for baryogenesis in our scenarios.

4 Discussion

Spontaneous CP breaking provides a possible avenue to tackle the Strong CP Problem.
Within such a framework CP is postulated to be an exact property of the UV and a
non-generic mechanism of mediation between the sector responsible for CP breaking and
the SM must be in place. These constructions must be able to explain why CP-violation
occurs at parametrically low scales, see (1.1), and why the couplings to the CP-violating
sector are small, see (1.2). Most importantly they should account for a remarkable “co-
incidence” (1.3): the (CP-conserving) mass mψ of the mediators and their (CP-violating)
mass-mixing ξ with the SM quarks must be of comparable size. In this paper we demon-
strated that it is possible to obtain a class of fully realistic models with all the required
properties. We discussed in detail a specific class of models, but our constructions are by
no means unique.

In our scenarios the non-generic structure required to successfully mediate CP-violation
follows from gauge invariance, in particular from the gauging of the global U(1) introduced
in section 1. Physics at the UV cutoff must be CP-invariant but can be otherwise generic.
The Lagrangian we analyzed is consistently the most general one compatible with gauge
invariance and the assumed field content. We imposed no internal global symmetry by
hand and no structure in the couplings beyond the SM (of course the SM Yukawas are
hierarchical, as usual). In our framework CP is spontaneously broken by the vacuum
condensate 〈Σ〉 ∼ f of an exotic strong dynamics such that the order parameter can be
naturally small compared to the cutoff, as required by (1.1). In addition, no fundamental
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scalar is introduced beyond the SM Higgs doublet. These features ensure that the smallness
of |θ̄| is achieved truly as the result of a robust dynamical mechanism and not of a hidden
fine-tuning of the UV parameters.

The “coincidence” (1.3) is explained because both the mass (mψ) and the mixing (ξ)
with the SM arise from interactions involving the mediators and the CP-violating sector.
As long as the UV is sufficiently generic, the two couplings are comparable and eq. (1.3)
follows. This picture requires the U(1) to be chiral, namely zψc 6= −zψ in table 1, with both
mψ, ξ order parameters (zψ 6= 0,−zψc). Crucially, very general theorems guarantee thatmψ

be CP-even while ξ is CP-odd, despite both scales originate from condensates of the CP-
violating sector. We argued that this essential feature is a consequence of the breaking of
CP being dynamical and of the gauging of the axial U(1). Whether analogous arguments
can be put forward in (Supersymmetric) models with fundamental scalars remains an
open question.

Besides providing UV completions of the scenarios of table 1 with the fundamental
properties (1.1), (1.2), and (1.3), our models also lead to important low energy predictions.
For example, the non-observation of the neutron electric dipole moment translates into an
upper bound on the masses of the exotic colored mediators ψ,ψc:

mψ ∼ 4πf3/f2
UV . few O(10) TeV. (4.1)

The fermionic messengers, a defining feature of Nelson-Barr models, must therefore
be accessible directly at present and future hadronic colliders and indirectly in CP- and
flavor-violating observables. Moreover, the generic presence of exotic states carrying acci-
dental global symmetries induces a few interesting cosmological signatures. This demon-
strates that solutions of the Strong CP Problem via spontaneous CP violation can be
very predictive.

There are more lessons we can learn from our UV completions. In our scenarios the
interactions between the sector responsible for the spontaneous breaking of CP and the
SM are all non-renormalizable and suppressed by a high scale fUV of order the Planck
scale. This property, forced upon us by gauge invariance, has two important implications.
First, it ensures that the corrections to θ̄ from the excitations of the CP-breaking sector
are negligible. In particular, contributions proportional to the couplings y of section 1 are
automatically killed, so (1.2) follows from the non-renormalizability of the corresponding
interaction. Second, it implies the scale of spontaneous CP breaking (here 4πf) and the
scale mψ at which CP-violation is actually communicated to the SM are decoupled. This
hierarchy

mψ � 4πf � 4πfUV (4.2)

makes CP-violation within the SM super-soft. With a super-soft CP-violating scale the
effect of possible additional heavy physics decouples from θ̄. That is, because of (4.2)
the existence of new physics unrelated to the Strong CP Problem, characterized by masses
m� mψ and sizable couplings to the SM but not to the CP-violating sector, is not severely
constrained in our scenarios. Precisely, the impact of heavy particles on θ̄ decouples as
powers of m2

ψ/m
2 � 1. New physics above the TeV may thus safely be invoked to address
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other puzzles in physics beyond the SM, like the origin of the SM flavor hierarchy, or to
partially stabilize the Weak-Planck scale hierarchy without spoiling our solution of the
Strong CP Problem. Said differently, there need not be a desert between 4πf and the
TeV scale in figure 1! Moreover, there is no structural obstruction to realize low-scale
leptogenesis either. Specifically, in section 3.2.4 we have shown that such a possibility finds
a natural implementation in our models.

A large portion of parameter space of our models remains currently compatible with
messengers at the TeV scale. Yet, (4.1) makes us confident that, eventually, experiments
will be able to discover or completely exclude this approach to the Strong CP Problem.
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