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Abstract

A test on the numerical accuracy of the semiclassical approximation as a

function of the principal quantum number has been performed for the Pullen–

Edmonds model, a two–dimensional, non–integrable, scaling invariant per-

turbation of the resonant harmonic oscillator. A perturbative interpretation

is obtained of the recently observed phenomenon of the accuracy decrease on

the approximation of individual energy levels at the increase of the principal

quantum number. Moreover, the accuracy provided by the semiclassical ap-

proximation formula is on the average the same as that provided by quantum

perturbation theory.
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Recently, there has been considerable renewed interest in the various as-

pects of the Semi–Classical Approximation (SCA), a powerful motivation be-

hind that being the problem of the so–called quantum chaos (see for example

references [1,2,3,4,5]). An important aspect is represented by the quantum

energy levels, and in this connection one recent work [6] shows that the pre-

dictions of individual levels by SCA (by this we mean the Bohr–Sommerfeld

formula, or one of its generalizations to the non–integrable case, such as

EBK; see e.g. [3,4]), worsen as the quantum number increases, contrary to

the naive expectation. We argue that this result can be interpreted as follows:

if h̄, no matter how small, is kept fixed, the SCA on the individual levels has

the meaning of a perturbation theory (PT) in h̄. Therefore the accuracy of

the approximation decreases for higher levels (to get good agreement it is

necessary, as is well known, to implement the classical limit h̄ → 0, n → ∞,

nh̄ = I classical action; see e.g. [7]).

The aim of this paper is to clarify this point, from the theoretical stand-

point and from the computational one as well, considering a scaling invariant

potential, which makes ordinary quantum PT strictly equivalent to a power

expansion in h̄. We do actually observe that, for h̄ fixed, the perturbation

strength has to be decreased to keep the accuracy at a constant value as

the quantum number increases; however we also observe that the algorithm

provided by the appropriate SCA is always comparable to the algorithm pro-

vided by ordinary quantum PT. A very good agreement between the ”exact”

eigenvalues, obtained by numerical diagonalization of the Schroedinger op-

erator, and the semi–classical ones, is indeed observed in presence of high

unperturbed degeneracy.
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The most significant examples to carry out this comparison are repre-

sented by non–separable two dimensional systems exhibiting both regular

and irregular spectrum [8], i.e. in particular, non–uniform behaviour of the

level spacing, and among these the simplest one is the Pullen–Edmonds model

[9]. Its quantum hamiltonian is:

H = − h̄2

2
(
∂2

∂q21
− ∂2

∂q22
) +

1

2
(q21 + q22) + χq21q

2

2 , (1)

where m has been put equal to 1. For χ = 0 (1) reduces to a resonant two–

dimensional harmonic oscillator of levels (n1+n2+1)h̄ = m1h̄, m1 = 1, 2, ...,

of multiplicity m1.

The scaling transformation q1 →
√
h̄q1, q2 →

√
h̄q2 yields the unitary

equivalent operator:

H̃ = −h̄[
1

2
(
∂2

∂q21
− ∂2

∂q22
) +

1

2
(q21 + q22) + χh̄q21q

2

2]. (2)

The coupling constant has become χh̄, which clearly shows equivalence be-

tween expansions in powers of χ or of h̄ (an analogous result holds for any

other polynomial perturbation). Moreover, the symmetry of the potential

enables us to split the hamiltonian matrix, computed on the harmonic os-

cillator basis, into submatrices reducing the computer storage required. The

matrix elements of (1) can be written:

< n
′

1n
′

2|H|n1n2 >= h̄(n1 + n2 + 1)δ
n
′

1
n1
δn2n2

+ χ
h̄2

4
[
√

n1(n1 − 1)δ
n
′

1
n1−2

+

+
√

(n1 + 1)(n1 + 2)δ
n
′

1
n1+2

+ (2n1 + 1)δ
n
′

1
n1
]× (3)

×[
√

n2(n2 − 1)δn′

2
n2−2 +

√

(n2 + 1)(n2 + 2)δn′

2
n2+2 + (2n2 + 1)δn′

2
n2
]

and each submatrix can be labelled by the parity of the occupation numbers

n1, n2. We restrict from now on to the invariant subspace spanned by m1
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even, i.e. n1 and n2 of opposite parity. The eigenvalues of H in this subspace

have constant multiplicity 2 [9]. Therefore the level m1h̄ = 2sh̄ splits into s

levels for χ > 0.

The appropriate SCA is here provided by the Bohr–Sommerfeld quanti-

zation of the resonant (or secular) canonical perturbation theory [10], also

known, in this particular case, as the Birkoff–Gustafson normal form [11,12],

which we now construct at first order. Starting from the classical Pullen–

Edmonds hamiltonian:

Hcl =
1

2
(p21 + p22) +

1

2
(q21 + q22) + χq21q

2

2, (4)

we introduce the standard action–angle variables (I, θ) by the canonical

transformation:










qi =
√
2Ii cos θi

pi =
√
2Ii sin θi.

i = 1, 2. (5)

Then (4) becomes:

Hcl = I1 + I2 + 4χI21I
2

2 cos
2 θ1 cos

2 θ2. (6)

The second canonical transformation into the well known ”slow” and ”fast”

variables:










A1 = I1 + I2

A2 = I1 − I2











θ1 = φ1 + φ2

θ2 = φ1 − φ2,
(7)

eliminates the dependence on the ”slow action” A2 in the unperturbed part,

so that the hamiltonian becomes:

Hcl = A1 + χ(A2

1 − A2

2) cos
2 (φ1 + φ2) cos

2 (φ1 − φ2). (8)
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We now eliminate the dependence on the angles up to order χ2 by resonant (or

secular) canonical perturbation theory [10]. To eliminate the dependence on

the ”fast angle” φ1 it is enough to average the perturbation on this variable.

This yields:

1

2π

∫

2π

0

dφ1 cos
2 (φ1 + φ2) cos

2 (φ1 − φ2) =
1

8
(2 + cos 4φ2), (9)

and thus:

H̄cl = A1 +
χ

8
(A2

1 −A2

2)(2 + cos 4φ2). (10)

The dependence of φ2 on the perturbation part can now eliminated by a

further canonical transformation. The Hamilton–Jacobi equation for the

perturbation part is in fact:

[A2

1 − (
∂S

∂φ2

)2](2 + cos 4φ2) = K, (11)

∂S

∂φ2

= ±
√

√

√

√

A2
1(2 + cos 4φ2)−K

2 + cos 4φ2

, (12)

and thus the Hamiltonian (9) becomes:

H̄cl = B1 +
χ

8
K(B1, B2), (13)

where:

B1 = A1, B2 =
1

2π

∮

dφ2

∂S

∂φ2

. (14)

It appears from the structure of equation (12) that the motions generated by

the perturbation part of our system have the following qualitative behaviour:

0 < K < B2
1 rotational motion

K = B2
1 separatrix

B2
1 < K < 3B2

1 librational motion.

(15)
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The appearance of a separatrix (which is not immediately obvious in the

(p, q) coordinates) accounts as is well known (see e.g. [3]) for the stochastic

layers originating near it. This corresponds to local irregular behaviour of

the quantum spectrum; one of its manifestations is (see D. Delande in [4])

the local shrinking of the level spacing and the tendency to avoided crossing.

The shrinking of the level spacing is best accounted by the SCA, as we will

discuss below.

On the separatrix we have:

B2

1(2 + cos 4φ2) = K, (16)

while in general:

B2 = ±2

π

∫ b

a
dx

√

B2
1(2 + cos 4x)−K

2 + cos 4x
, (17)

where:

a = 0, b = π
2

rotational motion

a = φ−(K,B1), b = φ+(K,B1) librational motion
(18)

with:

φ±(K,B1) = ±1

4
arccos(

K

B2
1

− 2). (19)

Now the approximate hamiltonian (13) depends only on the actions so that

a semiclassical quantization formula for the (m1 even part) of spectrum of

the operator (1) can be obtained by a straightforward application of the

Bohr–Sommerfeld quantization rules [10]. Set therefore:










I1 = (n1 + 1/2)h̄

I2 = (n2 + 1/2)h̄,
(20)
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whence, from (6):










A1 = (n1 + n2 + 1)h̄

A2 = (n1 − n2)h̄.
(21)

Set:










A1 = m1h̄

A2 = m2h̄,
(22)

by comparison of (19) and (20) we obtain:










m1 = n1 + n2 + 1

m2 = n1 − n2,
(23)

where m1 = 2, 4, ... and m2 = ±(m1 − 1),±(m1 − 3),±(m1 − 5), ... .

Finally:

B1 = m1h̄, B2 = m2h̄; (24)

then the semiclassical approximation to the quantum spectrum is:

Em1,m2
= m1h̄ +

χ

8
K(m1h̄, m2h̄), (25)

where K is implicitly defined by the relation:

m2h̄ = ±2

π

∫ b

a
dx

√

(m1h̄)2(2 + cos 4x)−K

2 + cos 4x
, (26)

and:

a = 0, b = π
2

0 < K < (m1h̄)
2

a = φ−(K,B1), b = φ+(K,B1) (m1h̄)
2 < K < 3(m1h̄)

2.
(27)

Remark that for |m2| < [αm1] we obtain the quantization of the rota-

tional motions, while for |m2| > [αm1] ([x]=integer part of x) we have the

quantization of the librational ones. Here, by (17):

α =
2

π

∫ π

2

0

dx

√

1 + cos 4x

2 + cos 4x
≃ 0.602. (28)
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Moreover, it immediate to see that form1 fixed the function K, and hence

the semiclassical energy Em1,m2
, is a decreasing function of the secondary

quantum number m2. It is furthermore proved in [13] that (25) coincides

with the exact quantum spectrum up to terms of order h̄ and χ2. The

numerical computations (see Fig. 4 below) show that at order 1 in χ the

corrections of order h̄ affect at most the eight decimal figure.

The ”exact” levels have been computed, and compared with the semi-

classical ones as well as with the levels computed by degenerate first order

quantum perturbation theory [14], for m1 = 1, ..., 60 at h̄ = 0.1 and for dif-

ferent values of χ (given the degeneracy, this is equivalent to compute 1800

different levels). The results obtained for m1 = 30, h̄ = 0.1, χ = 10−3 and

m1 = 60, h̄ = 0.1, χ = 10−5 are shown in Figure 1 and Figure 2, respec-

tively. The local shrinking of the spacing, reproduced by both methods, can

be immediately noticed; remark that the corresponding semiclassical levels

are those near the separatrix (by (28), m2 ∼ 18 and m2 ∼ 36, respectively).

In Figure 3 the function:

∆ = |EEx − ESc| (29)

vs m1 is plotted for m1χ = 1; this shows that, if the coupling constant is de-

creased in inverse proportion to the principal quantum number the accuracy

of SCA not only remains constant but actually improves, as anticipated be-

cause the scaling invariance makes the limit m1 → ∞, χ → 0, m1χ → const

equivalent to the classical limit m1 → ∞, h̄ → 0, m1h̄ → const.

In Figure 4 the accuracies obtained thorough semiclassical and quantum

first order perturbation theories are compared for m1 = 60, χ = 10−5, h̄ =
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0.1, and in Fig. 5 the difference between the two perturbation theories is

plotted (remark that the energy decreases as m2 increases). As can be seen

the agreement with the ”exact” levels is very good and the accuracy is on the

average the same. Remark however that, as it should be expected (the Bohr–

Sommerfeld rules take no account of tunneling [15]), the lowest accuracy of

the SCA is reached near m2 = 36 which corresponds to the levels near the

separatrix: for those levels the quantum PT is therefore better than SCA.

*****

The authors are greatly indebted to Dr. Stefano Isola for many useful

discussions and to Mr. G. Salmaso for his valuable computational assistance.
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Figure Captions

Figure 1: Comparison between the ”exact” levels (a), the semi–classical ones

(b), and the levels obtained by first order perturbation theory (c), for χ =

10−3, h̄ = 0.1, m1 = 30.

Figure 2: Comparison between the ”exact” levels (a), the semi–classical ones

(b), and the levels obtained by first order perturbation theory (c), for m1 =

60, χ = 10−5.

Figure 3: The difference ∆ between the ”exact” levels and the semi–classical

ones vs m1, with m2 = m1 − 1 and m1h̄ = 1.

Figure 4: (a) The difference between the ”exact” levels and the semi–classical

ones; (b) the difference between the ”exact” levels and the first order quan-

tum PT ones; (m1 = 60, h̄ = 0.1, χ = 10−5).

Figure 5: The difference between the semi–classical levels and the first order

quantum PT ones; (m1 = 60, h̄ = 0.1, χ = 10−5).
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