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Abstract

Human action anticipation holds fundamental importance across various domains
and applications. Anticipating human actions enables proactive decision-making,
enhancing efficiency, safety, and overall performance of many systems, including
robotic assistance systems, advanced surveillance systems, and autonomous driv-
ing, where self-driving cars should be able to anticipate pedestrians’ intentions
and actions to guarantee people’s safety. In this dissertation, our primary focus
centers on anticipating human actions within two important domains, represent-
ing the two main formulation of action anticipation: 1) Egocentric anticipation of
in-kitchen activities; 2) Third-person anticipation of pedestrian actions. However,
our research extends to cover the anticipation of the collective behavior patterns
in traffic flows, and we extended even further to tackle the domain of abnormal
behaviors decoding and recognition.

Firstly, we address the anticipation of in-kitchen activities in first-person inputs,
investigating the capability of the anticipation models in adapting to the variable
progressing time of the human actions. Some actions happen faster or slower than
others, depending on the actor or the surrounding context, which could vary each
time and lead to different predictions. Based on this idea, we build upon a well-
known action anticipation model, Rolling-Unrolling LSTM (RULSTM), which is
specifically designed for anticipating human actions, and propose a novel attention-
based technique to simultaneously evaluate the slow and fast features extracted
from three different modalities, namely RGB, optical flow, and extracted objects.
Two branches process information at different time scales, i.e., frame rates, and
several fusion schemes are considered to improve anticipation accuracy. In this
regard, we perform extensive experiments on EPIC-KITCHENS-55 and EGTEA
Gaze+ datasets and demonstrate that our technique systematically improves the
results of RULSTM architecture for Top-5 accuracy metric at different anticipation
times.

Then, we move to our second anticipation domain of pedestrian action antici-
pation in urban scenarios, using third-person input videos. Due to the complex

xxi
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urban environments with many human-human or human-vehicle interactions, an-
ticipating a pedestrian action relies on several clues. This challenging task is often
tackled using visual and non-visual features to anticipate future actions from 2 s to
1 s earlier to the event. Our work primarily aims to revise this standard evaluation
protocol to forecast crossing events as early as possible. To this end, we conceive
a solution upon RULSTM, proposing to envision future features or modalities,
that can better infer human intentions using a properly attention-based fusion
mechanism. We validate our model against JAAD and PIE datasets and demon-
strate that an intent prediction model can benefit from these additional clues for
anticipating pedestrian crossing events.

Continuing with pedestrians’ action anticipation, we propose a novel approach
based on a multi-modal transformer. Our model encodes past observations and
produces multiple predictions at different anticipation times. Moreover, we pro-
pose to learn the attention masks of our transformer-based model (TAMFORMER:
Temporal Adaptive Mask TransFORMER) in order to weigh differently present
and past temporal dependencies. We investigate our method on several public
benchmarks for early intention prediction, improving the prediction performances
at different anticipation times compared to the previous works.

Building upon TAMFORMER, we propose and investigate the effect of taking
advantage of a language modality in pedestrian action anticipation. We study var-
ious captioning techniques of the observed frames, integrating the generated text
into our TAMFORMER model. Additionally, we expand the binary crossing/not
crossing pedestrian action anticipation into multi-action anticipation. We validate
our techniques on a novel large-scale dataset (LOKI), proving the notable effective-
ness of including text in increasing the model comprehension and, consequently,
increasing the performance.

Transitioning to traffic flow anticipation, we aim to forecast collective behaviors
embodied in the traffic flow conditions on a city scale. We introduce a model for
anticipating traffic speed, utilizing attention-based spatiotemporal encoding and
a dual-graph road-network representation. The dual-graph framework combines
spatial and contextual sub-graphs, facilitating the exploration of non-Euclidean
spatial correlations and potential contextual similarities within road networks.
To dynamically capture spatiotemporal correlation, we employ multi-head self-
attention modules capable of discerning temporal and spatial correlations. Addi-
tionally, we present a fast conditional diffusion model for spatiotemporal traffic
data imputation, employing a high-order pseudo-numerical solver. Through ex-
perimentation on two publicly available real-world traffic datasets, our proposed
model achieves superior performance compared to existing baselines.
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Finally, our exploration extends to the detection of abnormal actions in surveil-
lance settings. Given the difficulty imposed in manually supervising and detecting
anomalous events in a vast amount of surveillance videos, the task mainly relies on
semi-supervised learning. We introduce a transformer-based temporal-hierarchical
model that weighs the impact of the observed actions in classifying a video as
anomalous. Implementing a divide-and-conquer approach over the temporal axis,
the video is hierarchically segmented into multiple instances, creating distinct tem-
poral patches. Obtaining sub-predictions from these diverse patches enhances the
model’s ability to estimate abnormality scores within video segments. The initial
evaluation of our methodology on a large-scale surveillance dataset gives promising
insights into the viability of the proposed approach.





Chapter 1

Introduction

We live in an envisioned future where artificial intelligence is integrated into our
daily lives, undertaking many tasks, from trivial to very complicated ones, working
and performing side-to-side with humans (Figure 1.1). Robotic assistance systems
have become increasingly available, offering physical support in diverse settings,
including personalized aid at homes [1], cooking assistance in kitchens [2, 3], or
even specialized aids to technicians [4]. As we stroll the roads, we can see an
autonomous vehicle with a self-driving system effortlessly navigate the streets [5].
Given this evolving reality, advancing AI models that can decode and anticipate
human behavior and actions is a must. Consequently, human action recogni-
tion and anticipation emerge as a crucial topic in computer vision research. An
assistive robotic platform needs to recognize and anticipate human movements
to perform its tasks correctly and safely; similarly, advanced video-surveillance
systems [6] require anticipating/decoding human actions and motion to provide
timely assistance promptly; and indeed, a self-driving car must be able to antic-
ipate pedestrians’ and human drivers’ actions to make proper and safe driving
decisions [7, 8].

(a) At home assis-
tance [1]

(b) In kitchen as-
sistance [9]

(c) Technical assis-
tance [4]

Figure 1.1: Collaboration between AI and humans in various applications
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Human behavior decoding and foreseeing take many forms and shapes, including
action recognition [10], early action recognition [11], movement and trajectory
prediction [12], and, most recently, action anticipation [13]. Our research primar-
ily focuses on action anticipation. The subsequent section outlines the specifics
of our task, ascribing its distinctions from other human actions decoding tasks.
Following that, we provide insights into the targeted applications of our work.

1.1 Action Recognition and Anticipation Tasks

An action is a sequence of dynamic events and steps that unfold over time, leading
to doing or achieving a task or a goal. Time is the central axis in defining an
action; therefore, attempting to distinguish an action from a single frame is almost
impossible. As illustrated in Figure 1.2, the two frames are from two different
activities, yet both are practically identical. Consequently, tasks related to action
recognition and anticipation necessitate the analysis of multiple frames, forming a
coherent video sequence, catching the temporal relationships, and leading to the
identification of the underlying activity.

(a) Walking (b) Jogging

Figure 1.2: Similar instantaneous activities, yet different actions [14]

In action recognition (depicted in Figure 1.3) [15,16,16–18,18–23], the model
analyzes a sequence of frames, aiming to identify and categorize the action being
performed within the observed frames. The model is not required to make pre-
dictions; rather, it should proficiently decode and interpret the observed action.
The same applies to the branched task of anomaly/abnormal actions recogni-
tion [24–28], where the task is generalized to predict the type of behavior instead
of the specific activity (refer to Chapter 8).

Shifting to early action recognition (as shown in Figure 1.4) [29–40], the
objective transforms to distinguishing the unfolding action by analyzing only the
early frames of the overall activity, presenting an additional layer of complexity.
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Figure 1.3: Action Recognition: Recognize actions within a given sequence
of frames.

Figure 1.4: Early Action Recognition: Distinguish actions from the initial
frames.

On the Other hand, Action prediction/anticipation introduces a future pre-
diction. After observing a historical sequence of frames, the model attempts to
forecast future events. The predicted event could be as early as the subsequent
event immediately following the conclusion of the observation [41], as depicted in
Figure 1.5, or advancing further to our task, where the model is challenged not to
predict the immediate subsequent action but rather to anticipate the action that
will happen after a specified duration in the future, denoted as the anticipation
time ta [42] (refer to Figure 1.6). Throughout the rest of the dissertation, we will
refer to this task as action anticipation.

Figure 1.5: Action Prediction: Forecast the next event following the ob-
servation.

Specifically, the model observes a set of historical frames fobs, extracts diverse
features and modalities representing both the human subject and the contextual
environment, and then predicts the event occurring after ta seconds in the future.
It is noteworthy that the choice of ta varies depending on the specific application
under consideration.
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Figure 1.6: Action Anticipation: Anticipate actions occurring after a de-
termined time in the future.

Figure 1.7 illustrates our anticipation protocol, where the model starts with a
warm-up encoding sequence of frames Senc, followed by the anticipation sequence
Sant representing the decoding stage, and producing predictions at different antic-
ipation times. The decoding starts with the earliest anticipation at ta = ts −α×T

seconds, where ts is the time at which the future action occurs, T is the number of
anticipation steps, and α is the timestep between subsequent anticipations. Con-
sequently, the latest anticipation is at ta = ts − α seconds. Again, the choice of ta,
represented by ts and α, depends on the considered application.

Figure 1.7: Our anticipation protocol

1.2 Selected Research Domains

As highlighted earlier, action recognition and anticipation play vital roles in di-
verse applications, requiring the establishment of many benchmarks for evaluation.
Our research focuses on two main anticipation domains, representing the two main
formulation of the action anticipation task: In-Kitchen activities anticipation in
egocentric settings, and urban-scenarios pedestrian actions anticipation in third-
person settings. However, we also expand the anticipation task to the domain
of traffic flow forecasting within city-scale networks. As an additional domain,
our research shifts focus from anticipation to action recognition, specifically in
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the context of detecting anomaly actions in surveillance environments. To com-
prehensively address our chosen research domains, we will now elaborate on the
benchmarks employed within each domain.

1.2.1 In-Kitchen Activities Anticipation

As illustrated in Figure 1.1b, robotic assistance has made significant strides in-
side modern kitchens for cooking and cleaning activities. However, the kitchen
environment is tremendously complicated, incurring a massive number of possible
actions and activities. Accordingly, the research community works on provid-
ing reliable benchmarks for evaluating action recognition and anticipation in the
kitchen environment. We work with two popular datasets of kitchen activities:
EpicKitchens-55 [43] and EGTEA Gaze+ [44], where Table 1.1 reports the de-
tails of the two datasets. Both datasets are egocentric videos where participants
capture their daily activities in the kitchen with a mounted camera on their heads
(Figure 1.8).

Figure 1.8: Egocentric EPIC-KITCHENS dataset [45]

1.2.2 Pedestrians Action Anticipation

The anticipation of pedestrian actions presents a more subtle challenge. While
the range of possible pedestrian actions in street scenarios is limited, the context
is notably complex, encompassing a wide range of external influences and more
critical actions (e.g., crossing or not crossing the street). Additionally, it is harder
to interpret and comprehend the behaviors and the goals of humans enter and exit
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EPIC-KITCHENS-55 [43] EGTEA Gaze+ [44]

Dataset Length 55 hours 28 hours

Number of Participants 32 32

Actions Verbs 125 verb 19 verb

Objects Nouns 352 noun 51 noun

Unique (verb, noun) Action Pairs 2, 513 actions 106 actions

Table 1.1: EPIC-KITCHENS-55 VS EGTEA Gaze+

the view in third-person videos, compared to the focused egocentric videos, due to
the absence of a unified thread of actions and objects interactions. Consequently,
considerable interest is in anticipating human actions in urban scenarios, paired
with the generation of datasets that capture urban scenes, enabling the evaluation
of street-related tasks, including pedestrian action prediction and anticipation.
We work with three well-known urban-scenes datasets, captured with a camera
mounted on an ego-vehicle (Figure 1.9): JAAD [7], PIE [8], and LOKI [46].
Table 1.2 presents an overview of these datasets.

Figure 1.9: Urban scenarios datasets [47]

1.2.3 Traffic Flow Anticipation

In the same context of urban-environment anticipations, forecasting traffic flow
conditions on road maps represents another aspect of intelligent systems related
to urban environments. This has prompted the research community to establish
evaluation benchmarks for this particular problem. Differing from the standard
action anticipation task, which analyzes video frames to provide short-term per-
second anticipations, traffic conditions anticipation analyzes traffic signals, such as
traffic speed, within road maps to offer hourly predictions. In our approach to this
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JAAD [7] PIE [8] LOKI [46]

Annotation Frame rate 30 FPS 30 FPS 5 FPS

Number of Pedestrians 2793 1842 9226

Behavioural Annotations 686 1842 9226

Actions
Crossing

Not Crossing

Crossing

Not Crossing

Moving

Stopping

Waiting to Cross

Crossing

Other

Ego-Vehicle Information -
Speed

GPS coordinates

Heading direction

GPS coordinates

Heading direction

Pedestrian Attributes - Age - Gender Age - Gender

Table 1.2: Urban scenarios datasets

task, we rely on two real-world traffic flow datasets: METR-LA and PEMS-BAY
[48]. Figures 1.10a and 1.10b illustrate the sensor networks, capturing the traffic
flow signals, and road maps of the two datasets, while Table 1.3 provides a brief
description of both datasets.

(a) METR-LA (b) PEMS-BAY

Figure 1.10: Road map and sensor network of traffic flow datasets

1.2.4 Anomaly Actions Recognition

Deviating to the domain of anomaly recognition in surveillance videos, advanced
surveillance systems are now integral to nearly all security setups, where the iden-
tification and detection of abnormal behaviors that may pose security threats is a
central task. Consequently, there is a growing focus on security-related tasks and
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METR-LA PEMS-BAY

Traffic Flow Sensors 207 325

Map Edges (Road Connections) 1515 2369

Timestamps 34272 52116

Time Span 01/03/2012 - 27/06/2012 01/01/2017 - 30/06/2017

Time Interval 5 minutes

Daily Hours 00:00 - 24:00

Table 1.3: Statistics of Traffic flow datasets

benchmarks specifically tailored for surveillance videos. Extensive benchmarks
have been established based on the vast publicly available surveillance videos. In
this context, we use a large-scale benchmark dataset of anomaly actions, namely
UCF-Crime [49] (Figure 1.11), containing 13 different anomaly actions within
1900 videos, summing-up to 128 hours. The dataset provides per-video action
labels but not per-frame action labels, where the exact location of the anomalous
behavior in the video is unknown. Therefore, it is considered to be a semi-labeled
dataset.

Figure 1.11: UCF-Crime dataset [47]

1.3 Research Objectives

As highlighted in the preceding sections, human action decoding and anticipa-
tion hold significant importance within the field of computer vision, given its
broad applications. In our research, we pick two recent and vital domains of
human action anticipation: Firstly, the anticipation of in-kitchen activities, a
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field gaining widespread attention, especially with recent advancements in the
EPIC-KITCHENS [43] benchmark. Secondly, our exploration extends to predict-
ing pedestrians’ actions and intentions, which is particularly crucial in the context
of self-driving vehicles, denoting a turning point in combining safety and efficiency
in autonomous driving. Our primary research objective is to explore these two
anticipation domains. Expanding our research scope further, we aim to enrich our
anticipation and action decoding investigations by incorporating additional tasks.
One such task involves the anticipation of traffic flow conditions, encompassing
the analysis of traffic patterns and holding significance in intelligent transporta-
tion systems. Another additional task focuses on decoding normal and abnormal
behaviors in surveillance videos, a critical aspect in advanced security systems.

Our research objectives revolve around designing, developing, and implementing
deep learning and computer vision approaches within our chosen action decod-
ing and anticipation domains. We seek to investigate the capabilities of these
approaches in interpreting and understanding human actions, ultimately aiming
to advance the research field in the selected domains. This advancement is real-
ized through improved task performance and the provision of novel insights into
addressing the challenges, exploring various methodologies and techniques.

To outline the primary objectives of our research, we aim to:

1. Explore and understand the capabilities of deep learning and computer vision
models in decoding and recognizing human behavior, ultimately leading to
the modeling of action anticipation across diverse environments.

2. Develop innovative methodologies and techniques to enhance the perfor-
mance of human action decoding and anticipation in various applications
and settings.

3. Investigate the efficacy of different feature extraction and modeling tech-
niques in extracting valuable behavioral and contextual information from
observed data, videos, frames, or signals.

4. Examine the influence of time, observation/anticipation time, and interval
time on the interpretative abilities of the models and the performance of
applied techniques.

5. Evaluate and demonstrate the effectiveness of the proposed models and tech-
niques on well-known and relevant benchmarks.
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1.4 Main Contributions

Diverse methodologies and techniques have been emerged throughout the course
of our research. We highlight our main contributions as follows:

1. Develop the SlowFast-RULSTM, a multi-time-scale learning technique that
benefits from slow and fast time branches to augment the performance of
the state-of-the-art RULSTM model in action anticipation (Chapter 3).

2. Introduce early pedestrian intent anticipation, extending the standard pre-
diction protocol of the intent prediction task (Chapter 4).

3. Develop G-RULSMT that benefits from a goal module to envision future
motion in multiple feature spaces, integrating it into the observed motion,
and providing more accurate action anticipations (Chapter 4).

4. Develop TAMFORMER, a multimodal transformer model for early action
anticipation, that benefits from our novel adaptive temporal masking tech-
nique (Chapter 5).

5. Introduce an auxiliary loss function that allows for transfer learning between
late action anticipations and early anticipations, targeting our early action
anticipation task (Chapter 5).

6. Develop a novel data augmentation technique that aims to increase the
amount of training data in smaller urban-scenarios datasets (Chapter 5).

7. Extend the pedestrian action prediction task to a multi-action anticipation,
in contrast to the binary-prediction of crossing/not crossing (Chapter 6).

8. Introduce a text modality for anticipating the pedestrian actions, allowing
for increased understanding of the observed scenes and better anticipations
(Chapter 6).

9. Investigate diverse techniques for extracting and creating textual descrip-
tions of the observed scenes (Chapter 6).

10. Contribute to the development of a dual-graph road-network anticipation ap-
proach that benefits from both the physical network graph and a contextual-
correlation graph for traffic flow anticipation (Chapter 7).

11. Contribute to the study of a fast diffusion model applied to traffic data
imputation (Chapter 7).
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12. Investigate and develop a new semi-supervised transformer-based approach
for anomaly actions recognition and localization, based on estimating the im-
pact of anomalous events on a classified video within a temporal hierarchical
patching scheme (Chpater 8).

13. Perform extensive ablation experiments to select the most appropriate con-
struction of our models.

14. Conduct multiple evaluation experiments on popular benchmarks, compar-
ing the proposed models with the state-of-the-art works in the target domain.

1.5 List of Publications

Most of our research has been published or is currently under review in interna-
tional scientific journals or conferences, in addition to the work in-preparation for
submission. Here, we list our published and under-review papers:

1.5.1 Published Papers

• SlowFast-RULSTM (Chapter 3)
N. Osman, G. Camporese, P. Coscia, and L. Ballan, “SlowFast Rolling-
Unrolling LSTMs for action anticipation in egocentric videos,” in Proc. of
the IEEE/CVF International Conference on Computer Vision (ICCV Work-
shop). 2021, pp. 3437-3445 [50].

• Early Action Anicipation with G-RULSTM (Chapter 4)
N. Osman, E. Cancelli, G. Camporese, P. Coscia, and L. Ballan, “Early
pedestrian intent prediction via features estimation,” in IEEE ICIP, 2022,
pp. 3446–3450. [51].

• TAMFORMER (Chapter 5)
N. Osman, G. Camporese, and L. Ballan, “Tamformer: Multi-modal trans-
former with learned attention mask for early intent prediction,” in ICASSP
2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2023, pp. 1–5. [52].
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1.5.2 Under-Review Papers

• Traffic Flow Anticipation (Chapter 7)
Cheng, Shaokang, Nada Osman, Qu Shiro and Lamberto Ballan. “DSP-
ST: Dynamic Structural Prior Spatio-Temporal Graph Attention Networks
for Traffic Speed Prediction”. Submitted to IEEE Intelligent Transportation
Systems Magazine.

• Traffic Data Imputation (Chapter 7)
Cheng, Shaokang, Nada Osman, Qu Shiro and Lamberto Ballan. “FastSTI:
A Fast Conditional Pseudo Numerical Diffusion Model for Spatio-Temporal
Data Imputation”. Submitted to IEEE Transactions on Intelligent Trans-
portation Systems.

1.6 Dissertation outline

To illustrate our research comprehensively, we started in this first chapter with
a brief research background, introducing the addressed tasks and problems, out-
lining the main objectives and contributions of our research, and listing our pro-
duced publications. Chapter 2 digs into the existing literature, reviewing the
most influential works on human action decoding and anticipation in our target
domains. Subsequent chapters, beginning with Chapter 3, systematically address
specific parts of our contributions: Chapter 3 outlines the design of the SlowFast-
RULSTM model, the ablation experiments related to constructing the model, and
its experimental evaluation. Chapter 4 addresses the task of early pedestrian in-
tent prediction with an explanation of the G-RULSTM model and its ablation and
evaluation. Chapter 5 focuses on the TAMFORMER model, again with ablation
and evaluation. Chapter 6 explains the language-aided action anticipation part
of our work. Chapter 7 explains the work conducted in traffic flow anticipation
and data imputation. Finally, Chapter 8 discusses our approach in the anomaly
action recognition task, with its preliminary outcomes. The concluding chapter,
Chapter 9, summarizes the findings and suggests directions for future research.



Chapter 2

Literature Review

Chapter Abstract

This chapter navigates through the literature of action decoding and
prediction tasks, from recognition to anticipation. It starts with related
works on action recognition. Then, it proceeds to the anticipation task,
moving to the literature of the specific traffic anticipation task. Fi-
nally, we survey the different modeling techniques applied throughout
our work, including the related vision-language integration works.

2.1 Action Recognition

Recognizing an observed action is the first step for solving more complex tasks,
such as early action recognition or action prediction and anticipation. Herein, we
review the literature on both fully-observed action recognition and early action
recognition.

2.1.1 Fully-Observed Action Recognition

Action recognition aims to predict a labeled action category assigned to an in-
put video. Learning from videos requires capturing both spatial and temporal
information, and several approaches have been proposed to solve this task. A sim-
ple modeling strategy is based on extracting spatial features from observed video
frames with a 2D Convolutional Neural Network (CNN), and their aggregation
at temporal level [15, 16], or with Long-Short Term Memory (LSTM) networks

13
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[16, 17]. Another popular approach exploits 3D CNNs where spatio-temporal in-
formation is gradually fused, leading to a better video representation and more
accurate results [18–21]. Another successful idea uses two-stream networks where
RGB frames and optical flow features are processed, providing more detailed mo-
tion information in input videos [16,18,22,23].

A branched task from action recognition is anomaly action recognition, where it
aims to classify the normality/abnormality of the observed actions. Many works
tackled the task, especially in semi-supervised learning approach [24–28]. The
standard methodology for the task in literature employs multiple instance learning
techniques [49]. More details is provided in Chapter 8.

2.1.2 Early Action Recognition

Early action recognition is a closer step on the way of action anticipation, where
it aims to classify the action of unfinished video, observing only the early frames.
Some works tackled the problem using the same action recognition techniques
[29], which is not the best approach for solving the problem. An early attempt
for early event detection was proposed in [30], where a monotonically increasing
scoring function score is presented to distinguish the start and the end of the
event in order to separate the action from surrounding activities, allowing for
better recognition of the action from an early stage. Most early action recognition
works split the action video into a set of segments, where each segment represents
a visual word, and the target is to complete the visual sentence [31–34]. The most
popular technique of modeling the observed actions and their temporal relations is
by utilizing LSTM networks [35–38]. Another interesting idea is the hierarchical
modeling of visual segments, from coarse to fine, for a better understanding of the
event and sounder prediction [39]. Another one is the integration of memory for
hard-to-remember actions [40].

2.2 Action Anticipation

Different from action recognition, action anticipation aims to predict future actions
_did not occur or start yet_ relying only on past video frames [41]. Previous
works proposed different models for activity anticipation in third-person videos
(Figure 1.9) and first-person videos (Figure 1.8).
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2.2.1 Action Anticipation in Third-Person Videos

Human action anticipation started in third-person videos, where the activity of
the person is captured through an external viewpoint [41,53–56]. Again, LSTM is
essential in modeling the temporal dimension [41,53]. Additionally, the encoder-
decoder idea is introduced for action anticipation [41]. A recent important appli-
cation of third-person action anticipation is found in urban scenario predictions
and anticipation, either driver action prediction [57] or pedestrian action predic-
tion [58].

2.2.2 Action Anticipation in First-Person Videos

In first-person, the activity is captured through an egocentric camera mounted on
the head of the person performing the action. Such a perspective is important in
human-robot interaction applications. Many previous works address action antic-
ipation in first-person videos [59–63]. Our SlowFast-RULSTM and G-RULSTM
models (see Chapters 3 and 4) adopt the baseline presented in [42] (Figure 2.1),
where the predicted action is computed at fixed anticipation times before it starts.
This task is challenging since it involves learning spatial and temporal relation-
ships among past and future frames. To this end, [42] proposes an encoder-decoder
LSTM-based architecture where past information is firstly summarized and future
actions are computed leveraging features extracted from past information.

Figure 2.1: Rolling Unrolling LSTM [42]

2.2.3 Pedestrians Action Anticipation

One critical sub-problem in action anticipation is pedestrian action prediction.
A self-driving car is required to predict future action, specifically, the crossing
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action of the pedestrians in urban scenarios, based on the observed motions of the
pedestrians and the visual context of the scene. Early work in crossing prediction
observed only 0.3-0.5 seconds before the crossing event to extract context features
using CNN and then applying an SVM classifier to predict the crossing action in
the proceeding frame [7]. More recent works extended the anticipation time to
different values with different observation lengths, in addition to applying more
advanced models using different types of features [64–66]. In [58], an evaluation
benchmark is proposed for the crossing prediction problem, which is followed by
many works, including [67–70]. This benchmark aims to predict the crossing
action in a time range between 1.0 and 2.0 seconds before the event and uses an
overlapped 0.5 seconds of observation. In contrast, our work aims to extend the
anticipation time to 4.0 seconds, use an adaptive, not fixed, observation length, and
dispense the overlapping to have an explicit performance at different anticipation
times (see Chapter 4).

Another recent pedestrian motion prediction work [46] provides a broader range
of pedestrian actions, such as walking, standing, crossing, etc.. However, the final
target was not action prediction or anticipation but trajectory prediction of the
observed agents. In our work, we adopt this wider range of actions for extending
the action anticipation task in urban scenarios (see Chapter 6).

2.3 Traffic Flow Anticipation

Traffic flow and traffic conditions anticipation plays vital role in smart cities and
intelligent transportation systems. Such importance resulting in a rich research
field of interesting works.

2.3.1 Classical Approaches

Classical approaches are mainly statistical or classic machine learning methods. A
set of statistical studies such as Kalman Filter [71] and Autoregressive Integrated
Moving Average (ARIMA) [72] have been used to forecast traffic conditions based
on the assumption of a stationary time series. In [73], an SVM model is applied for
short-term traffic flow prediction, while [74] extended the SVM model to combine
Bayesian classifier and SVR modeling. However, such methods require much hu-
man intervention in feature engineering; they are generally suitable for scenarios
with limited road area and less training sample size.
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2.3.2 Deep Learning Approaches

In recent years, deep learning-based methods have shown promising traffic predic-
tion results due to their ability to capture and model spatial relations within the
road network and temporal relations within the observation time. Convolutional
neural networks (CNN) are commonly employed to extract spatial correlations in
road networks [75–78]. However, the road network is a structure of discrete and
irregular tomography (non-Euclidean space). Nowadays, graph convolutional net-
works (GCN) have drawn widespread attention because of their ability to handle
arbitrary graph-structured data [48,79–82]. This way, traffic features (e.g., traffic
speed) can be propagated among graph nodes through their adjacency matrix.

For temporal modeling, recurrent neural networks (RNN) and their variants
(e.g., LSTM and GRU) are typical temporal relation analysis methods for traffic
prediction. A sequence of historical temporal features (e.g., traffic speed values)
are fed into RNN-based models to extract the temporal correlations and produce
the anticipations [48, 77,79,83–85].

In our work, we build upon a state-of-the-art model for traffic flow anticipation
[86], a graph-based architecture with a temporal convolution network, in which we
adapt our dual-graph approach (see Chapter 7).

2.4 Multi-Modal Multi-Scale Modeling

Multi-modal and Multi-scale modeling are powerful design paradigms that em-
power a hidden input representation to maximize the valuable information and
to be more robust to scale changes with respect to a single-modality or a single-
scale modeling approach. The multi-modal technique allows the beneficiation of
different types of extracted information as long as the proper technique is used
to fuse modalities. On the other hand, multi-scale modeling is another approach
for maximizing the understanding of the hidden input, and it can be adopted in
both spatial and temporal domains. In our work, we employ both of the modeling
techniques.

2.4.1 Multi-Modal Modeling

Multi-modal modeling is becoming very popular due to its effectiveness in en-
riching the exacted information by merging multiple views about the observation.
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Each modality catches distinctive details on the observed input. Often, different
modalities are complementary to each other, where fusing the multi-modal feature
spaces would comprehensively describe the observed scene [87,88]. Many previous
works adopted a multi-modal design and proved an improved performance in the
action anticipation and detection task [42, 58, 89]. Many techniques have been
proposed for the fusion of multiple modalities; for example, in [42], an attention-
based approach is used for fusing the different modalities. Another interesting
and popular technique targeting transformer-based models is proposed in [90].
In our work, we adopt the attention-based fusion strategy [42] in the SlowFast-
RULSTM and the G-RULSTM model (Chapter 3 and Chapter 4 respectively),
while adopting the transformer-based fusion technique [90] in our TAMFORMER
model (Chapter 5 and Chapter 6).

2.4.2 Spatial Scale Modeling

A well-known concept in computer vision is how spatial scale affects the infor-
mation extracted from an image. Larger scales allow for more details but could
incorporate more noise. On the other hand, smaller spatial scales could miss the
key-hidden input in the image. Consequently, many works adopted multi-spatial-
scale design to create a more robust model to scale changes, especially in image
classification and object detection problems [91–96]. In the context of our hu-
man action anticipation task, the spatial scale controls the amount of information
extracted from the surrounding environment, affecting how the model interprets
the scene and predicts the future. Therefore, works addressing action prediction,
mainly in urban environments, studied the effect of the spatial scale on the predic-
tion performance [8, 66]. In our work, we consider multi-spatial-scale in Chapter
6 to allow the generation of more robust textual descriptions of the images.

2.4.3 Temporal Scale Modeling

Like spatial scale, temporal scale represents another aspect of interpreting and
understanding videos. On the time dimension, not all the actions have the same
progressing scale. Some activities could show fast changes; other activities could
be slower. Consequently, the temporal scale affects the robustness of the model
to different actions. Based on that, recent recognition and anticipation models
adopt multi-time-scale modeling [97,98]. Slow-Fast networks [97] for video recog-
nition builds benefit from processing video sequences at slow and fast frame rates
with two separate branches that capture patterns at different time resolutions. In
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our SlowFast-RULSTM (Chapter 3), we take advantage of this idea, aiming at
capturing slow and fast features for anticipating future actions. Additionally, in
our TAMFORMER model (Chapter 5), we address the multi-time-scale modeling
with our temporal adaptive masking technique.

2.5 Language in Vision Tasks

Language provides a rich and contextual way to describe visual content, where it
can provide additional context and details that may not be immediately apparent
by visual feature extraction. Therefore, coupling language features and visual fea-
tures has gained massive attention in computer vision, where Numerous studies
have proposed innovative techniques for such coupling and for extracting suitable
language features for visual tasks. For example, in [99], a study is conducted
to measure the effectiveness of different language models and text embedding ap-
proaches on different visual tasks. While in [100], VilBERT presents a co-attention
transformer model that couples text and images into a multi-modal transformer to
solve different vision tasks, including visual question answering and caption-based
image retrieval.

The significant interest in this field has led to the production of breakthrough
models, such as CLIP [101], a transformer-based model aiming at coupling textual
inputs with images for zero-shot text/image retrieval. In addition to the impressive
advances in natural language processing (NLP), with the witnessed improvements
of the GPT models [102], and the image captioning models, such as BLIP [103,104],
that applies a two-stage of training: representation learning stage of the image,
and a generative stage of the textual caption to the image.

Given such advances in the language-visual models, visual tasks have started
integrating language and textual input to enhance their performance. Specifically,
for the task of action anticipation, recent models proposed the generation of textual
labels and their integration in the anticipation model [105–109]. VLMAH [105]
anticipates first-person actions, integrating images and textual descriptions of the
observed actions and applying bidirectional LSTM encoders for visual and textual
inputs. While in [106], a large language model is utilized to predict future actions
based on extracted textual descriptions of the input images, where the visual task
is fully transformed into a lingual task. A similar idea is applied in [107], proposing
knowledge distillation from the lingual anticipation model to the visual anticipa-
tion model. Again, a large language model is used for anticipation in [108] using
image captions generated for the input images. Another interesting technique is
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proposed in [109], where CLIP encodes images and textual labels of the observed
actions, followed by a transformer aggregation anticipation model.

Currently, the integration of language into the action anticipation task targets
mainly the anticipation of first-person actions, where the observed contexts in-
cur many similarities between the taken actions, and language descriptions could
provide more into-the-point representation in this case. In our work, we aim to
integrate language into the third-person pedestrian action anticipation task, where
the decisions of pedestrians are affected by many factors, such as the current action
of the person, her/his demographic state, the collective behavior of surrounding
people, and the state of the overall scene. Therefore, the accurate application
of language can better catch such various factors compared to the sole visually
extracted representations. However, this direction faces the challenge of providing
the textual ground truth, especially in the complex environment of urban scenes,
where we address this in our work in Chapter 6.



Chapter 3

SlowFast Rolling-Unrolling
LSTMs for Action Anticipation

Chapter Abstract

This chapter explains the design of our SlowFast-RULSTM model, as
we propose a novel attention-based technique to simultaneously evalu-
ate the slow and fast features extracted from three different modalities,
namely RGB, optical flow, and extracted objects. Two branches process
information at different time scales, and several fusion schemes are
considered to improve the anticipation accuracy. Extensive experiments
are provided on in-kitchen activities datasets, EPIC-KITCHENS-55
and EGTEA Gaze+, to demonstrate the effectiveness of our technique.
In addition to a detailed ablation study. The work in this chapter has
been published in [50]. ∗

3.1 Introduction

Human action anticipation in egocentric videos [110–112] is a popular computer-
vision research topic due to a wide range of involved domains, where we focus in
this chapter on the kitchen environment anticipation. In this context, egocentric
videos have provided a considerable amount of information to be used for training

∗This chapter has been published as “SlowFast Rolling-Unrolling LSTMs for Action Antic-
ipation in Egocentric Videos” in Proc. of IEEE/CVF International Conference on Computer
Vision (ICCV Workshop), 2021

21
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action anticipation models thanks to low-cost wearable devices that offer different
streams to be used [113,114], e.g., RGB videos, audio or depth data.

State-of-the-art action anticipation approaches [98, 115] are mainly based on
attention mechanisms to efficiently extract relationships across the frames at a
specific frame rate. Nevertheless, action speed may differ based on the actor,
surrounding environment, and the action itself. To anticipate future actions, two
main factors should be taken into account: window size (i.e., the number of current
and past actions to be considered) and processing frame rate (i.e., the quantity
of information to be extracted from each action). While the former is typically
fixed for a fair results comparison, the latter can be arbitrarily selected. In this
case, a different choice of this parameter may lead to completely different results.
We demonstrate that if multiple streams of the same modality are provided to an
action anticipation model, it is able to appropriately select which stream to focus
on and improve its predictive capabilities, leading to a better generalization.

Based on this idea, we propose to consider multiple branches for each input
modality, which process the corresponding stream at different frame rates. Herein,
we focus on two popular egocentric datasets, EPIC-Kitchens-55 and EGTEA
GAZE+. Based on RU-LSTM [42] model, we propose a slow-fast architecture
that learns from input videos at two different scales, as shown in Figure 3.1. A slow
branch processes input videos with a low frame rate, while another branch uses
a higher frame rate. In this way, redundant information is discarded for actions
that evolve slowly, while retained for faster actions. In order to combine these two
branches efficiently, we use an attentive-based mechanism that efficiently weights
their output scores and provides only one result, which is subsequently decoded

Figure 3.1: Human actions happen at different speeds, requiring a multi-scale
approach for better predicting future behaviors. We propose a Slow-Fast RU-
LSTM model containing two branches, namely slow and fast branches, which
learn independently from input video features at different time scales.
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to extract future actions. We show that our model systematically outperforms
state-of-the-art models at different anticipation times.

The main contributions of this chapter can be summarized as follows:

1. We propose a multi-time-scale learning technique that benefits from a slow
and fast branch to augment the performance of the RU-LSTM model;

2. We perform extensive ablation experiments in order to select the most ap-
propriate frame rates and window sizes;

3. We conduct multiple evaluation experiments on popular action anticipation
benchmarks and also compare different model architectures and slow-fast
fusion mechanisms.

3.2 Rolling-Unrolling LSTM

Our technique is built upon the RU-LSTM [42] model, which processes sequences
of feature vectors computed from input video frames. This model defines an en-
coding stage of Senc steps and an anticipation stage of Sant steps for a total of
α · (Senc + Sant) seconds, where α is the time interval between two subsequent
frames. This model is based on an LSTM-based encoder, named rolling LSTM
(R-LSTM), and an LSTM-based decoder, called unrolling LSTM (U-LSTM). The
former summarizes, during the encoding and anticipation stages, past information
extracted from input videos and provides the latter a valuable context for predict-
ing future action. In the anticipation stage, the decoder receives the representation
from the encoder and, using the last observation computes a plausible distribu-
tion over future action classes. The encoding-decoding process is performed for
each time step in the anticipation stage, and the network is trained to predict the
actual action label using a cross-entropy loss. RU-LSTM processes multi-modal
features combined using a mixture-of-experts-based method named Modality At-
tention (MATT) to exploit more context and create a more informative hidden
representation. Since this model shows remarkable performance in predicting fu-
ture actions from multi-modal input streams, we extend its predictive capability
by explicitly designing a multi-scale fusion mechanism to capture slow and fast
features from observed video sequences.
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3.3 SlowFast RULSTM

As depicted in Figure 3.2, our SlowFast RULSTM model consists of two branches:
a slow branch that processes input videos using a low frame rate (one frame every
αs seconds) and a fast branch, which uses a high frame rate (one frame every αf

seconds). Our idea is to process input features at different time resolutions in
order to capture slow and fast relations between past and future frames.

Let x ∈ RT ×C×H×W be the input video to be processed and z ∈ RT ×D the
corresponding representation computed at each time step. Given a single input
frame xt at time t, zt = ϕ(xt) is its related representation where ϕ is a CNN feature
extractor, and T = Senc+Sant the total sequence length. Our slow branch processes
input video frames at 1/αs frame rate while our fast branch at 1/αf = R/αs with
R = αs/αf being the ratio between fast and slow frame rates, respectively. Given
an internal representation zt, the encoder in the fast branch produces feature
representations used by the decoder as follows:

rf
t = FR-LSTM

(︂
zt, r

f
t−1

)︂
(3.1)

where t ∈ {1, 2, . . . , T} and rf
t = (hf

t , cf
t ) is the state that contains hidden

and context vectors of FR-LSTM with hf
t , cf

t ∈ Rd. Our slow branch is similarly
defined:

rs
t = SR-LSTM

(︂
zt, r

s
t−1

)︂
(3.2)

Where t = kR + 1 with k ∈ {0, 1, . . . , ⌊T/R⌋}, and rs
t = (hs

t , c
s
t) is the state

containing hidden and context vectors of slow R-LSTM with hs
t , c

s
t ∈ Rd.

The decoder in the fast branch receives the representations given by the fast
encoder and produces the prediction by unrolling the Fast U-LSTM for T − t + 1
steps as follows:

uf
t,q = FU -LSTM

(︂
zt,u

f
t,q−1

)︂
, (3.3)

uf
t,t−1 = rf

t , uf
t = uf

t,T , (3.4)

where q ∈ {t, . . . , T}. Then, a fast prediction score over all action classes is
computed from the output of the decoder with a Multi-Layer Perceptron (MLP)
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at each time step as lft = MLP (uf
t ), where hidden and context vectors in uf

t

are concatenated. Similarly, the slow decoder receives the slow encoded features
rs

t and produces us
t by unrolling the Slow U-LSTM and then slow logits lst are

computed with an MLP. The formulation related to the slow decoding step is as
follows:

us
t,q = SU -LSTM

(︂
zt,u

s
t,q−1

)︂
, (3.5)

us
t,t−1 = rs

t , us
t = us

t,T , (3.6)
lst = MLP (us

t) . (3.7)

After slow and fast logit scores computation, our model fuses the obtained pre-
dictions with an attention mechanism. Specifically, given both slow and fast scores
(lst and lft ), we compute our final merged logits as lt = ws

t · lst + wf
t · lft , where ws

and wf represents slow and fast multipliers that weight slow and fast predictions
computed as follows:

[︂
λs

t , λf
t

]︂
= MLP

(︂[︂
rs

t , rf
t

]︂)︂
, (3.8)

ws
t = eλs

t

eλs
t + eλf

t

, wf
t = eλf

t

eλs
t + eλf

t

, (3.9)

where
[︂

·
]︂

stands for the concatenation operator.

3.4 SlowFast and Modalities Fusion Strategies

As proposed in [42], anticipating future actions can take advantage of multi-modal
input representations. For this reason, RU-LSTM proposes an attention mecha-
nism (MATT module) that appropriately weights each input modality. In our
work, we exploit the multi-modal video representation and investigate two differ-
ent techniques to embed both multi-modal and multi-scale inputs. As shown in
Figure 3.3, we could either merge our modalities with a MATT module and then
fuse both slow and fast branches (Fig. 3.3a) or firstly fuse slow and fast branches
for each modality, and then merge with a MATT module the multi-modal repre-
sentations (Fig. 3.3b). More specifically, Figure 3.3a depicts an architecture that
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(a) Mod-SF Fusion (b) SF-Mod Fusion

Figure 3.3: SlowFast and Modalities fusion schemes. (a) Modalities fusion
is applied at slow and fast frame rates, and then SlowFast fusion is applied
to the fused modalities. (b) SlowFast fusion is first applied to each modality
separately, and then the modalities fusion is applied to the fused time scales.

fuses two RU-LSTMs trained on two different time scales with our slow-fast atten-
tion scheme. The input of the attention network is the concatenation of the time
scale branches, where each branch is represented by the weighted internal repre-
sentation rt of the R-LSTM encoders for all the modalities, using the pre-trained
modalities attention weights.

As discussed in Sec 3.3, in Figure 3.3b, each modality is trained with a slow
and fast branch, fused with the slow and fast module, and then each modality is
merged with the same MATT used in RU-LSTM.

3.5 Experimental Results

We conducted several experiments on two popular datasets used for action an-
ticipation in order to investigate our SlowFast RULSTM model. Furthermore,
we study two architectures that embed different fusion mechanisms dealing with
multi-modal and multi-scale inputs. In the following, we describe our datasets,
the evaluation metrics, and the experiments in order to show the impact of our
slow and fast modeling approach.

3.5.1 Implementation Details

We use PyTorch [116] for our implementation and use pre-extracted features pro-
vided by [42] for training our method. We found it beneficial to train each branch
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separately and then fine-tune at the fusion stages. Specifically, for the Mod-SF
Fusion approach (see 3.3a), we train RU-LSTM at different frame rates using its
standard training pipeline, applying sequence completion pre-training stage and
then fine-tune slow and fast branches at the final stage. For the SF-Mod Fusion
approach, we apply a similar training strategy.

3.5.2 Datasets

As described in Subsection 1.2.1, we experiment on two popular egocentric datasets:
EpicKitchens-55 [43] and EGTEA Gaze+ [44]. EpicKitchens-55 collects 55 hours
of recorded videos and 39, 596 annotations of 32 participants involved in their daily
kitchen activities. The annotations contain 125 verb and 352 noun classes. All
unique (verb, noun) pairs are considered for a total of 2, 513 unique action labels.
EGTEA Gaze+ contains 28 hours of video clips showing hand-object interaction
actions performed by 32 participants. It contains 19 verbs, 51 nouns, and 106
unique actions. The average across three splits reported by the authors of the
dataset is considered.

We evaluate our proposed SlowFast RULSTM model for both datasets using a
Top-5 accuracy metric at different anticipation times.

3.5.3 Quantitative Results

3.5.3.1 Evaluation Results on EpicKitchens-55

Table 3.1 reports our results for SlowFast RULSTM and RU-LSTM models on
the validation split of the EpicKitchens-55 dataset. Our method outperforms
RU-LSTM considering both each modality separately and their fusion. The RGB
branch shows an improvement of 1.22% at 1 s. Additionally, almost 1% of improve-
ment is achieved for both FLOW and OBJ modalities. Combining all modalities,
our model achieves a 36.09% anticipation accuracy at 1 s, with an improvement
of approximately 0.8% over the RU-LSTM baseline. Our model also shows a re-
markable gain at 2 s of 1.14%, validating our idea to use a multi-scale approach
for capturing more information at the early stages of action anticipation. Our re-
sults prove that processing egocentric videos at different frame rates improves the
prediction accuracy, as the model benefits from the different information extracted
at different time scales.
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Top-5 ACTION Accuracy% @ different τa(s)

2.0 1.5 1.0 0.5

RGB
RULSTM [42] 25.44 28.32 30.83 33.31

SF-RULSTM 26.78 29.25 32.05 34.34

Imp. +1.34 +0.93 +1.22 +1.03

FLOW
RULSTM [42] 17.38 18.91 21.42 23.49

SF-RULSTM 18.01 19.82 22.36 24.15

Imp. +0.63 +0.91 +0.94 +0.66

OBJ
RULSTM [42] 24.56 26.61 29.89 31.82

SF-RULSTM 25.61 27.64 30.8 32.15

Imp. +1.05 +1.03 +0.91 +0.33

FUSION
RULSTM [42] 29.44 32.24 35.32 37.37

SF-RULSTM 30.58 32.83 36.09 37.87

Imp. +1.14 +0.59 +0.77 +0.5

Table 3.1: Top-5 accuracy at different anticipation times for RU-LSTM and
our SF-RULSTM model.

Top-5 ACTION Accuracy% @ 1s

RGB FLOW OBJ FUSION

TAB 28.25 19.60 30.09 35.73

SF-RULSTM 32.05 22.36 30.8 36.09

Imp. +3.8 +2.76 +0.71 +0.36

Table 3.2: Comparison of action anticipation Top-5 accuracy at 1 s between
SF-RULSTM and TAB [98] model.

Table 3.2 reports a comparison between SlowFast RULSTM and Temporal Ag-
gregation Block (TAB) models, as proposed in [98], which is a current state-of-the-
art multi-scale approach for action anticipation. We report results at anticipation
accuracy of 1 s, as authors do not provide anticipation accuracy at different an-
ticipation times. TAB performance is obtained by using the same configuration
reported in [98]. Our results show an accuracy improvement for RGB and FLOW
modalities of +3.8% and +2.76%, respectively. In this case, our improvement for
both the OBJ modality and the complete model is less marked, yet our slow-fast
fusion model still outperforms the TAB model.
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Top-5 ACTION Accuracy% @ different τa(s)

2.0 1.5 1.0 0.5

RGB
RULSTM 56.41 60.68 66.76 72.04

SF-RULSTM 57.84 62.36 67.21 72.32

Imp. +1.43 +1.68 +0.45 +0.28

FLOW
RULSTM 33.92 35.83 39.51 42.62

SF-RULSTM 36.93 39.29 42.84 45.94

Imp. +3.01 +3.46 +3.33 +3.32

FUSION
RULSTM [42] 56.82 61.42 66.4 71.84

SF-RULSTM 57.48 61.37 67.6 72.22

Imp. +0.66 -0.05 +1.2 +0.38

Table 3.3: Top-5 accuracy at different anticipation times for EGTEA Gaze+
dataset.

3.5.3.2 Evaluation Results on EGTEA Gaze+

Table 3.3 compares our proposed SlowFast RULSTM model to the RU-LSTM
model on the EGTEA Gaze+ dataset. Only RGB and optical flow features are
available for this dataset, and we train the RU-LSTM model to obtain results for
both modalities. By contrast, RU-LSTM fusion results are reported from [42].
The table shows a maximum improvement for the FLOW modality of approxi-
mately +3.5% at 1 s. Furthermore, our complete model improves the anticipation
accuracy at 1 s by 1.2%, which can be considered a relevant gain due to the re-
duced number of classes of this dataset compared to EpicKitchens-55 (106 instead
of 2513 classes).

3.5.4 Ablation Experiments

To assess the performance of each part of our model, we conduct a set of ablative
experiments. In this case, we focus on the EpicKitchens-55 dataset. Additionally,
all single modality-related experiments use only RGB features, as they can be
assumed to be more inclusive features than both optical flow and object-based
features.

3.5.4.1 Selection of Time Step Value

The main element of our model is represented by the choice of slow and fast time
steps to be fused. Table 3.4 illustrates our anticipation accuracy using different
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Top-5 ACTION Accuracy% @ different τa(s)

1 α (s) 2.0 1.75 1.5 1.25 1.0 0.75 0.5 0.25

0.1 25.13 - 27.26 - 30.44 - 33.27 -

0.125 24.53 25.63 27.3 28.97 30.96 32.23 33.49 35.02

0.2 25.16 - - 30.71 - - -

0.25 25.2 25.84 27.78 28.84 30.55 31.92 33.19 34.43

0.5 26.39 - 28.4 - 30.94 - 32.87 -

1.0 25.56 - - - 30.13 - - -

Table 3.4: Top-5 accuracy at different time steps (α) for a single modality
(RGB). At 1 s the best performance is achieved considering two frame rates:
0.125 and 0.5.

time steps (α ∈ {0.1, 0.2, 0.25, 0.5, 1.0}) for RGB features. As shown, the best
results (at 1 s) are obtained selecting α = 0.125 s and α = 0.5 s. For this reason,
we use these two values for our fast and slow branches, respectively.

Additionally, Figure 3.4 compares Top-5 accuracy results for each modality, using
three different time steps: 0.125 and 0.5, as obtained by our previous experiments
for the RGB modality, and 0.25, which represents the default time step value
used in [19]. As shown, our selected time steps improve Top-5 accuracy for each
modality.

Figure 3.4: Top-5 accuracy varying the time step α for different input modal-
ities. We select α ∈ {0.125, 0.5} for our SlowFast architecture as each branch
appears more accurate with respect to selecting α = 0.25, as used in [42].
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Top-5 ACTION Accuracy% @ 1s

τe (s) α = 0.125 α = 0.5

1.5 30.96 30.94

3.0 30.66 31.44

Table 3.5: Action anticipation results at 1 s for two different lengths of en-
coding time (τe) for RGB modality.

3.5.4.2 Sequence Length Encoding

Extracting relevant features from a video sequence may not only depend on the
selected frame rate but also on the length of observed sequences. To this end, we
test the impact of different buffer lengths on the anticipation task for the RGB
features. Two buffer lengths are considered: τe = 1.5 s, as proposed in [42], and
τe = 3.0 s. As shown in Table 3.5, increasing the buffer length provides a noticeable
improvement for the slow model (α = 0.5 s), while the opposite arises for the fast
model (α = 0.125 s). Since the slow model processes a smaller number of video
frames, it seems to be able to store more past frames. By contrast, increasing the
buffer of the fast model increases its complexity, requiring a smaller window size
to achieve better results.

3.5.4.3 SlowFast Fusion

Table 3.6 reports our results for different slow-fast fusion schemes considering the
RGB modality. The first three rows show different fusion methodologies using two
scale branches: slow (with α = 0.5s) and fast (with α = 0.125s). We consider two
additional fusion techniques other than the proposed attention-based fusion:

• Concat: prediction obtained directly from the concatenation of the internal
representations of the slow and fast branches;

• Ensemble: average of the predictions of the slow and fast branches.

The best fusion scheme at 1 s is represented by an attention-based approach,
which appears to discriminate better which branch should be used more for pre-
dicting future actions. The last row reports our results for the attention-based
model considering an additional time scale branch (α = 0.25 s). These results
confirm that anticipating future human actions requires different time scales for
obtaining better performance. Among the proposed models, the best results are
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Top-5 ACTION Accuracy% @ different τa(s)

α(s) 2.0 1.5 1.0 0.5

Concat {0.125, 0.5} 24.59 26.9 30.04 32.73

Ensemble (AVG) {0.125, 0.5} 26.98 29.59 31.71 34.2

Attention {0.125, 0.5} 26.78 29.25 32.05 34.34

Attention {0.125, 0.25, 0.5} 26.84 29.51 31.91 33.96

Table 3.6: Top-5 accuracy at different anticipation times for different slow-fast
fusion schemes (RGB modality).

Top-5 ACTION Accuracy% @ 1s

Concatenation 31.92

Mod-SF Fusion 36.09

SF-Mod Fusion 35.28

Table 3.7: Top-5 ACTION accuracy at 1 s for different variations of modalities
fusion.

achieved using two scale branches (slow and fast), while adding another branch
does not provide any improvement.

3.5.4.4 Modalities Fusion

To assess the performance of the proposed modalities fusion mechanism, shown in
Figure 3.3a (Mod-SF Fusion), an alternative fusion architecture (SF-Mod Fusion)
is tested (see Figure 3.3b). Table 3.7 provides Top-5 accuracy for both Mod-
SF Fusion and SF-Mod Fusion approaches. Additionally, we change the slow-
fast attention input to the concatenation of the internal representations of all
R-LSTM branches instead of the weighting mechanism, as discussed in 3.4. As
shown, the Mod-SF Fusion approach appears to be the best configuration since it
is easier, compared to the other models, to combine different modalities and allow
them to aid each other. Using SF-Mod Fusion, the combination of multi-modal
predictions is more complex and reduces model performance. The approach based
on concatenation provides the lowest accuracy, which can be due to the huge input
size of the attention network.
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Figure 3.5: Predictions scores of different video samples from our validation
set, where our model provides higher prediction scores than the RU-LSTM
model. For many actions (e.g., move garbage, arrange pan), at least one slow/-
fast branch has a higher prediction score, and so is our complete slow-fast model
compared to the selected baseline.

3.5.5 Qualitative Results

We qualitatively evaluate the behavior of our proposed SF-RULSTM in Figure 3.5
and Figure 3.6. Figure 3.5 shows the prediction scores of our SF-RULSTM model
(last row) against RU-LSTM model scores (first row) considering a subset of val-
idation samples, i.e., the ones where RU-LSTM assigns low scores. By contrast,
our model benefits from either the slow branch (second row) or the fast branch
(third row), resulting in a higher score.

Finally, Figure 3.6 shows how the slow-fast attention model adapts to different
action speeds. Our model is able to select the most appropriate branch for the
current action speed, i.e., the slow one when limited changes in the RGB video
stream occur or the fast branch for actions that evolve more rapidly.

3.6 Conclusion

This chapter proposes a multi-time-scale attention-based approach to fuse informa-
tion extracted at different time scales for anticipating human actions in egocentric
videos. Two branches process input videos to capture slow and fast features and
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Figure 3.6: Two examples of actions where slow-fast attention weights change
over time. The actions start with no significant changes in the input frames,
so the attention mechanism weighs more in the slow branch. When the action
rapidly evolves, more attention is provided to the fast branch instead.

better discriminate among different actions (or the same action performed by dif-
ferent actors). We design several fusion techniques for combining multiple input
modalities and demonstrate that an anticipation model can benefit from fusing
input modalities before combining different time scales.

We outperform a state-of-the-art model on two popular kitchen activities bench-
marks, e.g., EpicKitchens-55 and EGTEA GAZE+, and show better results com-
pared to a multi-scale model on the EpicKitchens-55 dataset. Our future work will
focus on considering more branches and investigating new techniques to combine
several multi-scale branches better.





Chapter 4

Early Pedestrian Intent
Prediction Via Features
Estimation

Chapter Abstract

This chapter addresses our second action anticipation domain of pedes-
trian action anticipation, explaining the G-RULSTM model. Our work
primarily aims to revise this standard evaluation protocol to forecast
crossing events as early as possible, where we conceive a solution upon
RULSTM, proposing to envision future features or modalities through a
goal module to better infer human intentions, using a properly attention-
based fusion mechanism. Experimental results validate our model against
JAAD and PIE datasets and demonstrate that an intent prediction
model can benefit from these additional clues for anticipating pedes-
trian crossing actions. The work in this chapter has been published
in [51]. ∗

4.1 Introduction

Self-driving cars and autonomous robots have recently been demonstrated to be
capable of performing multiple tasks (e.g., planning, control, manipulation, and

∗This chapter has been published as “Early Pedestrian Intent Prediction” in Proc. of IEEE
ICIP International Conference on Image Processing, 2022.
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Figure 4.1: Our model detects crossing events in two stages: an encoding
stage (R-LSTM), processing the initial part of the sequence (0.5 s), and a de-
coding stage (U-LSTM), predicting the event at multiple anticipation times. We
estimate future visual and non-visual features with an attention-based (goal)
module that is provided for the decoding stage. We consider anticipation times
in the range [4.0 − 0.1] seconds.

perception). Nevertheless, in crowded scenarios, such as streets, parks, or airports,
they must face critical decisions to avoid accidents and perform smooth navigation.
For example, assistive or delivery robots need to anticipate human motion to plan
their motion better and be socially compliant. In this regard, urban contexts
represent relevant scenarios where predicting human intentions relies on both fast
and correct scene perception. Furthermore, predicting future intentions as early
as possible helps in better plan their interaction with the environment. Multiple
cues are typically involved in this process, e.g., relative speed, pedestrian pose,
and road signs [7, 64–66].

In this regard, we primarily focus on predicting pedestrians’ intentions to cross-
roads as early as possible, given a fixed history of frames. To this end, we build
on top of an action anticipation model, an architecture that takes multiple input
features and provides the probability that each monitored pedestrian will either
be crossing or not in the future. Using past motion along with the surrounding
context is extremely useful when a pedestrian is walking on a sidewalk prior to
crossing or standing due to low visibility on rainy or foggy days, for example.
To improve our prediction accuracy, we conceive a goal module, whose aim is to
predict future features to be fused to motion history (see Fig. 4.1).

Predicting if a pedestrian will cross or not is still a challenging problem. Prior
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works on intent crossing prediction only focus on a time window of 0.3-0.5 s be-
fore the event to extract context features and classify the event [7]. More recent
works extend this anticipation time to different values with different observation
lengths, in addition to developing more advanced models with multiple input fea-
tures [64–66]. In [58], an evaluation benchmark is proposed to tackle this problem,
also adopted in [67–70]. This benchmark focuses on predicting future intentions
between 1.0 to 2.0 s earlier than the event and uses overlapping windows of 0.5 s as
motion history. An averaging operation is then employed to obtain the final pre-
diction. By contrast, our work aims to extend this anticipation time from 1.0 s to
4.0 s and use an adaptive observation window. We do not employ an averaging op-
erator to extract predictions at fixed anticipation times yet use pedestrian records
as single samples. We mainly focus on two largely adopted datasets, namely Joint
Attention for Autonomous Driving (JAAD) [7] and Pedestrian Intention Estima-
tion (PIE) [117], which include a large set of annotations.

Our research contributions presented in this chapter can be summarized as fol-
lows:

1. We extend the standard evaluation protocol to predict pedestrian crossing
intentions as early as possible.

2. We build on top of a state-of-the-art action anticipation model by introducing
a goal module to envision future motion in multiple feature spaces. We fuse
these features with the motion history using an attention-based mechanism
to predict crossing events.

3. We demonstrate, experimenting on multiple benchmarks, that pedestrian
intents can be foreseen several seconds in advance, thus improving human
safety and social awareness.

4.2 Intent Prediction Protocol

Pedestrian intent prediction relies on past motion to detect whether a pedestrian
will cross the street or not, and it can be treated as a binary classification task
at different anticipation times. In contrast to the standard benchmark proposed
in [58], which predicts the crossing events in a time window between 1.0 and 2.0
seconds, our protocol anticipates the events as early as 4.0 seconds. The standard
protocol, illustrated in Figure 4.2a, fixes the anticipation window in the [1.0, 2.0]
seconds for each pedestrian, with a fixed observation length of 0.5 seconds. To
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(a) Standard Protocol: Anticipation range [1.0, 2.0] seconds, with overlapped obser-
vations of 0.5 seconds.

(b) Our Protocol: Anticipation range [0.1, 0.4] seconds, with adaptive observation
window and simultaneous anticipations.

Figure 4.2: Standard intent prediction protocol [58] VS Our proposed proto-
col.

provide the predictions in the provided range, the protocol employs overlapped
observations throughout the range, with a step of α seconds. Each extracted
observation, paired with its corresponding anticipation, represents a distinct data
point during both training and inference time (see

[︂
P1, P2, . . . P 1

α

]︂
in Figure 4.2a).

On the other hand, our proposed protocol for intent prediction aims to provide
earlier anticipations, utilizing the availability of longer records of the observed
pedestrians, where it adaptively extends the observation window, given the tar-
geted anticipation time. Furthermore, treating the overlapped observations as
separate data points provides averaged prediction in the anticipation range, bi-
asing the prediction of the model during early anticipations. Therefore, as we
focus on earlier predictions, we overlooked the overlapped anticipations, where
our proposed model produces simultaneous and separate predictions as the differ-
ent anticipation times for each observed pedestrian, as shown in Figure 4.2b. This
allows more accurate evaluation at the different anticipation times, especially at
early anticipations. More specifically, let r be a set of RGB frames of a pedestrian
starting from t0 to the crossing event at time ts, and let ts − ta be the encoding
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time, where ta represents the remaining time from the current observation until
the event (anticipation time). Our task is to observe r from t0 until ts − ta and
predict the crossing/not crossing action at ts. We aim to predict crossing inten-
tions at different anticipation times, from very early (ta ↑) to very close to the
event (ta ↓).

4.3 RULSTM for Intent Prediction

As a backbone, we consider RU-LSTM [42], which processes the observed video
frames in two stages: an encoding stage of Senc steps and an anticipation stage of
Sant steps, with α as the time interval between subsequent time steps. As explained
in Chapter 3, this model uses an LSTM-based encoder-decoder, referred to as
rolling-LSTM (R-LSTM) and unrolling-LSTM (U-LSTM), respectively. During
the decoding stage, it simultaneously produces predictions at various anticipation
times, utilizing the binary cross entropy loss. RU-LSTM uses multi-modal features,
where different modalities are fused using an attention-based mechanism†(MATT).

4.4 Goal Module

4.4.1 Goal Estimation

Since RU-LSTM cannot use any information after ts − ta during the evaluation
phase, it repeats the observed frame at ts − ta for each step in the unrolling stage.
Nevertheless, this model may benefit from having a glimpse into the future. For
this reason, we define a goal module that predicts features that might be extracted
at ts and fuse this information with the features at ts − ta to enhance its unrolling
capability. Let i be the index of the frame at time ts − ta; then, for each modality
m, we use both encoding sequence (fm

enc) and frame features (fm
i ) to predict future

features at ts, as follows:

Gm
i = Dm

goal(LSTMm
goal(fm

enc) ⊕ fm
i ), (4.1)

where ⊕ denotes the concatenation operation, LSTMm
goal represents the encoding

process related to the goal prediction of modality m, and Dm
goal is a feed-forward

†We refer the reader to [42] for a full description of this model.
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neural network. We employ the root mean square error to train our goal module,
as given in (4.2).

Lgoal =
√︂

(Gm
i − fm

ts
)2 (4.2)

4.4.2 Goal Fusion

Using an MLP-based network, we define an attention mechanism (see Fig. 4.3) to
predict weights to be assigned to goal features at each unrolling stage, denoted by
W m

i in Eq. 4.3. W m
i inherits its length li from the corresponding unrolling stage,

where li = ta

α
is equal to the number of time steps in ta seconds, with an interval of

α seconds; for example, in Fig. 4.3, l0 = 5, l1 = 4, and the length keeps decreasing
reaching the event, where l4 = 1 at ta = α and t = ts − α. Concretely,

W m
i = Softmax(Dm

GAT T (hm
i ⊕ cm

i )) (4.3)

where Dm
GAT T is a feed-forward neural network representing our goal attention

mechanism (GATT) which uses hidden (hm
i ) and cell (cm

i ) vectors of R-LSTM at
time ta. Our new input to the U-LSTM is then a weighted average of Gm

i and fm
i ,

defined as Im
i = W m

i × Gm
i + (1 − W m

i ) × fm
i .

Finally, predictions from each modality are combined with the modality atten-
tion (MATT) mechanism, as proposed in [42], to provide the final prediction.

4.5 Experimental Results

4.5.1 Datasets

As mentioned in Subsection 1.2.2, we rely on two popular datasets for our eval-
uation, namely JAAD and PIE. JAAD dataset contains 2786 pedestrian sam-
ples, annotated with bounding boxes, and is split into two subsets (JAADbeh and
JAADall). PIE dataset contains 1842 annotated pedestrian samples with bounding
boxes and behavioral tags, in addition to the ego vehicle’s speed, GPS coordinates,
and heading direction.
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Three main modalities for both datasets are employed: bounding box coor-
dinates, pose features, and visual local context features. The PIE dataset also
includes ego-vehicle speed as an additional modality.

4.5.2 Implementation Details

Our LSTMs have 512 hidden layers, with Senc = 6 and Sant = 40. The time
interval is 3 frames (α = 0.1 s), while our models output 40 predictions from
ta = 4 s until ta = 0.1 s. For the sake of clarity, we consider only predictions
at ta ∈ {4, 3, 2, 1} s. For each anticipation time (ta), we discard videos that do
not satisfy the minimum length requirement, i.e., videos whose length is less than
ta. Therefore, we consider 4 s as the earliest anticipation time, where longer
predictions would lead to discarding too many examples (more than 50% of data
from the JAAD dataset). For a fair comparison, in the range [2-1] s, we use the
same evaluation protocol proposed in [58], averaging the predictions with a step
of 0.1 s for JAAD and 0.2 s for PIE.

4.6 Baselines

To evaluate the performance of the proposed method for early predictions, we
develop an LSTM-based model using RU-LSTM without the unrolling stage (R-
LSTM). Furthermore, we compare our model, at different anticipation times,
against PCPA [58], which uses fixed and overlapped observations of 0.5 s in the
range [2 − 1] s earlier the event. This model is modified to output earlier predic-
tions in the range [4−1] s. We also consider CAPformer [68] and TrouSPI-Net [70]
models.

4.6.1 Results and Baselines Comparison

Firstly, we evaluate our models on different anticipation times and, eventually,
measure the impact of the goal module. Table 4.1 reports our results for differ-
ent anticipation times (from 4 s to 1 s). Depending on the dataset, two main
trends emerge when approaching the event. On the JAADbeh dataset, all metrics
remain stable approaching the event, confirming our intuition to forecast features
in advance. This behavior may also be related to the limited samples of this
dataset, which is quite unbalanced, yet on JAADall, this trend is confirmed since
no remarkable drops in performance can be observed. Among the used models,
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JAADbeh

4 s 3 s 2 s 1 s [2-1] s

Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1

PCPA [58] - - - - - - - - - - - - 0.58 0.50 0.71

PCPA† [58] 0.54 0.51 0.62 0.47 0.46 0.54 0.49 0.45 0.61 0.45 0.52 0.63 0.56 0.50 0.67

R-LSTM 0.67 0.64 0.74 0.70 0.64 0.78 0.66 0.62 0.75 0.65 0.60 0.75 0.65 0.59 0.74

RU-LSTM 0.72 0.67 0.79 0.72 0.64 0.81 0.69 0.62 0.78 0.70 0.63 0.79 0.69 0.62 0.78

JAADall

PCPA [58] - - - - - - - - - - - - 0.85 0.86 0.68

PCPA† [58] 0.75 0.75 0.50 0.74 0.76 0.53 0.72 0.75 0.52 0.76 0.79 0.55 0.80 0.79 0.57

R-LSTM 0.83 0.74 0.54 0.86 0.73 0.58 0.85 0.73 0.57 0.87 0.77 0.62 0.86 0.76 0.60

RU-LSTM 0.84 0.76 0.57 0.87 0.78 0.64 0.85 0.76 0.59 0.86 0.78 0.62 0.86 0.78 0.62

PIE

PCPA [58] - - - - - - - - - - - - 0.87 0.86 0.77

PCPA† [58] 0.76 0.75 0.62 0.77 0.76 0.63 0.83 0.84 0.73 0.86 0.85 0.77 0.86 0.86 0.77

R-LSTM 0.75 0.64 0.48 0.75 0.66 0.50 0.76 0.66 0.51 0.76 0.67 0.52 0.76 0.67 0.52

RU-LSTM 0.77 0.76 0.63 0.80 0.79 0.68 0.85 0.82 0.74 0.88 0.85 0.79 0.87 0.84 0.77

Table 4.1: Comparison among multiple intent prediction models for both
JAAD and PIE datasets. We consider four anticipation times and the standard
evaluation protocol averaging predictions within the range [2-1] s. PCPA† [58]
denotes our retrained PCPA model (using the original code and configurations
provided in the official GitHub repository).

RU-LSTM performs the best in both cases. By contrast, on the PIE dataset, our
metrics increase when the anticipation time gets close to the event. It is worth
noting that RU-LSTM systematically improves performance metrics compared to
the other considered models for the different anticipation times. In the [2 − 1] s

range, RU-LSTM outperforms the considered models on JAADbeh dataset while
is on par with PCPA [58] on JAADall and PIE datasets. It is also worth men-
tioning that the standard protocol used in [58] increases the number of training
samples considering overlapping windows. By contrast, our proposed protocol
dumps this overlapping technique, leading to a more realistic evaluation of this
task yet largely reducing the number of training samples. This could also explain
the limited performance of RU-LSTM in the [2 − 1] s range, where PCPA uses
overlapping windows. Meanwhile, RU-LSTM outperforms all the models using the
same number of training samples at fixed anticipation times.

Table 4.2 compares our model to state-of-the-art architectures. RU-LSTM does
not contain the goal module, while G-RULSM uses future features estimation. We
observe that G-RULSTM outperforms the state-of-the-art models for JAADbeh, in
addition to a noticeable improvement over RU-LSTM. For JAADall, goal-boosted

https://github.com/ykotseruba/PedestrianActionBenchmark
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JAADbeh JAADall

Acc AUC F1 Acc AUC F1

PCPA [58] 0.58 0.50 0.71 0.85 0.86 0.68

CAPformer [68] - 0.55 0.76 - 0.82 0.63

TrouSPI-Net [70] 0.64 0.56 0.76 0.82 0.77 0.58

RU-LSTM 0.69 0.62 0.78 0.86 0.78 0.62

G-RULSTM 0.72 0.65 0.80 0.86 0.80 0.63

Imp. 3% 3% 2% - 2% 1%

Table 4.2: Comparison between our architectures and state-of-the-art models
within the [2 − 1] s range on JAAD dataset.

JAADbeh

4 s 3 s 2 s 1 s [2-1] s

Bounding Box

Without Goal 0.55 0.59 0.63 0.64 0.58

Interpolation 0.61 0.56 0.61 0.65 0.64

Concatenation 0.61 0.64 0.63 0.63 0.63

Attention 0.61 0.63 0.65 0.65 0.64

Pose

Without Goal 0.51 0.60 0.65 0.65 0.65

Interpolation 0.59 0.64 0.63 0.64 0.63

Concatenation 0.60 0.67 0.66 0.66 0.66

Attention 0.62 0.67 0.57 0.65 0.65

Local Context

Without Goal 0.68 0.66 0.65 0.67 0.66

Interpolation 0.73 0.67 0.63 0.66 0.61

Concatenation 0.65 0.70 0.68 0.68 0.68

Attention 0.69 0.67 0.66 0.69 0.66

Table 4.3: Ablation study reporting the accuracy metric using different fusion
methods for each modality on JAADbeh. Underlined numbers refer to the 2nd-
best-performing model.

G-RULSTM outperforms our baseline for AUC and F1 metrics, which are more
robust metrics for unbalanced datasets. Our proposed model suffers from a hard
reduction of training samples, compared to [58], which limits its performance on
larger datasets, e.g., JAADall. Nevertheless, our model is on par with CAPformer
[68] and outperforms TrouSPI-Net [70] for both subsets.
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4.6.2 Ablation Study

Table 4.3 reports an ablation study considering three different fusion techniques
for estimating future features: 1) Interpolation, where Im

i is obtained as a linear
combination of fm

i and Gm
i , based on the time distance dj from the current step

to the frame corresponding to the event, i.e, Im
i = (1−dj)

li
× Gm

i + dj

li
× fm

i ; 2)
Concatenation followed by an MLP layer; 3) Attention, as defined in Sec.
4.4. We observe that our goal module, with any considered fusion technique,
improves prediction metrics over the baseline for all modalities and anticipation
times. Furthermore, a different fusion technique could be considered depending on
the considered modality. For example, for bounding box coordinates representing
the pedestrian’s motion within the image, a linear relationship over time is noticed.
By contrast, both pose and local context features show a different trend. In
this case, concatenation and attention perform better. We select the attention-
based technique for all modalities to adapt to both their linear and non-linear
relationships.

4.7 Conclusion

In this chapter of our research, we revise the standard evaluation protocol used to
measure the performance of pedestrian intent prediction models. We demonstrate
that crossing events can be predicted several seconds in advance with no (or neg-
ligible) impact on the performance. To validate our intuition, we build upon an
action anticipation model, a goal module to forecast future features and improve
its prediction metrics. This information can increase prediction accuracy up to
3% compared to models that do not envision future features.





Chapter 5

TAMFORMER: Temporal
Adaptive Mask Transformer for
Early Intent Prediction

Chapter Abstract

This chapter focuses on our TAMFORMER model, with ablation and
evaluation. We propose a novel approach based on a multi-modal trans-
former. Our model encodes past observations and produces multiple
predictions at different anticipation times. Moreover, we propose to
learn the attention masks of our transformer-based model in order to
weigh differently present and past temporal dependencies. We investi-
gate our method on several public benchmarks for early intention pre-
diction, improving the prediction performances at different anticipation
times. The work in this chapter has been published in [52]. ∗

5.1 Introduction

In this chapter, we continue in the pedestrians’ early intention prediction domain,
in which, from a current observation of an urban scene, the model predicts the fu-
ture crossing/not crossing actions of pedestrians approach the street. Our method
is based on a multi-modal transformer that encodes past observations and produces

∗This chapter has been published as “TAMFORMER: Multi-Modal Transformer with
Learned Attention Mask for Early Intent Prediction” in Proc. of IEEE ICASSP International
Conference on Acoustics, Speech, and Signal Processing, 2023.
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multiple predictions at different anticipation times. Moreover, we propose to learn
the attention masks of our transformer-based model (Temporal Adaptive Mask
Transformer) in order to weigh differently present and past temporal dependen-
cies. We investigate our method on several public benchmarks for early intention
prediction, improving the prediction performances at different anticipation times
compared to the previous works. In particular:

1. We propose a new model for early intent prediction based on a multi-modal
multi-predictions transformer.

2. We propose a new mechanism for learning adaptive attention masks inside
the transformer, leading to better performances and more efficient compu-
tation.

3. We propose a novel regularization loss function to improve the early predic-
tions.

4. We propose a data augmentation technique to overcome the problem of lim-
ited training data.

5. We conduct several experiments and model ablations on different datasets,
obtaining state-of-the-art results on the early intent prediction task.

5.2 Multi-Modal Transformer

Our proposed TAMformer model, depicted in Fig. 5.1, has three major compo-
nents: the Encoding in which the multi-modal input is encoded, the Query where
the future query is built, and the Decoding where the future predictions are com-
puted.

5.2.1 Value Encoding

Raw images are projected to different modalities with Φm, where m ∈ {1, . . . , M},
to xm ∈ RT ×Dm and subsequently passed to a transformer block TEm that creates
an encoded representation zm ∈ RT ×Dm , where T is the time sequence length and
Dm is the feature size:

zm = TEm(xm + p), ze = Cat
[︃
z1, . . . , zM

]︃
.
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In order to preserve the order of the sequence, the positional encodings p are
added to the input sequence after the linear projection.

Our model does not assume any particular input modalities; however, we used
the RGB local context, bounding box coordinates, pose, and the ego vehicle speed
in our work.

5.2.2 Query Encoding

Instead of applying a single late fusion of the encoded sequences, we allow the input
features to interact in an early fusion step, allowing to maximize the extracted
information during the fusion process from both the row modalities and their
encoded representations. A transformer block TQ processes the concatenated
features, creating a query at each time step, as follows:

z̃q = Cat
[︃
x1, . . . , xM

]︃
, zq = TQ(z̃q)

5.2.3 Decoding and Anticipation

A transformer decoder block TD processes the encoded representation ze and, for
each query in zq produces a decoded representation through the cross-attention
mechanism that subsequently is projected to the final prediction as follows:

zd = TD(ze, zq), ŷ = Sigmoid(MLP (zd))

5.3 Temporal Adaptive Mask

Usually, video frames are redundant when processed at a high frame rate, and,
by contrast, at a low frame rate, the information can be lost as the sampling
does not consider frame importance. For these reasons, we propose a method
that allows the model to choose the frames that maximize the information and
minimize redundancy. As depicted in Fig. 5.1, at the t-th step, the input features
are concatenated and fed to a feed-forward network that outputs a learned mask
Mt. We decided to encode the representations at a full frame rate (30 FPS)
and to make predictions at a sub-sampled frame rate (10 FPS) for more efficient
computation. In our model, we have two types of masks Me, Md related to the
encoding and decoding transformer blocks and, in order to avoid future information
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conditions in the present prediction, the masks are causal, and their t-th rows are
predicted as follows:

z̃ = Cat
[︂
x1, . . . , xM

]︂
,

M[:t] = Sigmoid(MLP (z̃[:t])).

5.4 Auxiliary Loss

Typically, anticipation models perform better as they get closer to the anticipated
action. Thus, we propose an auxiliary regularization loss function:

Lr =
∑︂

t

∥zd[t] − zd[T ]∥2

that minimizes the gap between the current decoder embedding zd[t] and the
final one zd[T ]. We found beneficial to train the model in two stages: we first pre-
train the system using only the cross-entropy loss Lce for action anticipation, and
subsequently we add the regularization term Lr to the total loss (L = Lce + Lr),
encouraging the earlier anticipation predictions to benefit from the last decoder
representation that can observe the whole sequence before the action starts.

5.5 Data Augmentation

In contrast to the standard protocol, [118], we abandon overlapped samples and
follow the proposed protocol in [51], treating each pedestrian as a single sample.
Consequently, a hard reduction in the number of samples is present, compared
to [118]. However, transformers require large training data for the best results.
Accordingly, we propose a data augmentation procedure to increase the training
data. As in [51], the observation length is 4.5s, ignoring any earlier frames in
the sample. We benefit from such frames to augment the samples, replacing the
encoding window with earlier frames when they exist. Thus, more versions of the
same sample with different encoding windows are available.
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5.6 Experimental Results

5.6.1 Implementation Details

We rely on the urban-scenarios datasets used in Chapter 4, with the same antici-
pation protocol and using the standard classification metrics for evaluation: Accu-
racy, AUC, and F1-Score. The training procedure includes two phases (500 epochs
each): a pre-training phase on action anticipation and a tuning phase with the reg-
ularizer Lr. We used the SGD optimizer with learning rates lr = {10−5, 10−2, 10−3}
for PIE, JAADall, and JAADbeh respectively. Each transformer block has Nh = 6
heads, ffdim = 1024, and the MLP producing the learned masks consists of Nl = 3
layers with sizes {128, 64, 32}.

5.6.2 Quantitative Results

We compare our model with PCPA [118], which represents the SOTA work in
intent prediction and an adapted PCPA version that can produce earlier antic-
ipations. Although we are not applying the overlapping protocol in [118], we
align with it on the used samples and anticipation range during evaluation to
allow for a fair comparison. Additionally, we compare with a single LSTM (R-
LSTM), RULSTM [119], and G-RULSTM [51]. Following [118], Table 5.1 reports
the comparison in the anticipation range of [2 − 1] s, and the main architecture
differences. We observe an F1-score out-performance gap that reaches +2% on
PIE and +5% on JAADall, comparing our TAMformer to the best model in the
table. Moreover, we reported a comparison on different anticipation times from 4s
to 1s in Table 5.2 and, depending on the dataset, we notice two trends: for PIE,
TAMformer outperforms by almost +2% on F1-score in all anticipation times.
Nevertheless, on JAAD, our model suffers a degraded performance at early antici-
pation ([4−3]s) while maintaining the improvements on JAADall (maximum +9%)
and on JAADbeh (maximum +2%). The reduction in training samples in early an-
ticipation (> 50% on JAAD) could explain this degradation, as transformers need
lots of training samples.
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Visual

Backbone
Blocks Fusion ta Stemp

PIE JAADall JAADbeh

Acc AUC F1 Acc AUC F1 Acc AUC F1

PCPA† [118] C3D GRU L-ATT [2 − 1]s 30 FPS 0.86 0.86 0.77 0.8 0.79 0.57 0.56 0.5 0.67

R-LSTM [119]
VGG16 LSTM L-ATT [4 − 0.1]s 10 FPS

0.76 0.67 0.52 0.86 0.76 0.6 0.65 0.59 0.74

RU-LSTM [119] 0.87 0.84 0.77 0.86 0.78 0.62 0.69 0.62 0.78

G-RULSTM [51] - - - 0.86 0.8 0.63 0.72 0.65 0.8

TAMformer (ours) VGG16 TF EC+LC [4 − 0.1]s Adaptive 0.88 0.86 0.79 0.88 0.83 0.68 0.73 0.69 0.8

Table 5.1: Architectural and performance Comparison of different SOTA mod-
els in the standard anticipation range [2 − 1]s. We compare three architectural
aspects: 1) Visual Backbone, the backbone model used in extracting context
features from images; 2) Blocks, the time sequence processing framework; 3)
Fusion, the merging technique of the multi-modalities, where L-ATT stands for
Late ATTention, EC is Early Concatenation, and LC is Late Concatenation.

PIE

4 s 3 s 2 s 1 s

Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1

PCPA† [118] 0.76 0.75 0.62 0.77 0.76 0.63 0.83 0.84 0.73 0.86 0.85 0.77

R-LSTM [119] 0.75 0.64 0.48 0.75 0.66 0.50 0.76 0.66 0.51 0.76 0.67 0.52

RU-LSTM [119] 0.77 0.76 0.63 0.80 0.79 0.68 0.85 0.82 0.74 0.88 0.85 0.79

TAMformer (ours) 0.78 0.77 0.65 0.81 0.81 0.7 0.87 0.84 0.76 0.88 0.88 0.8

JAADall

PCPA† [118] 0.75 0.75 0.50 0.74 0.76 0.53 0.72 0.75 0.52 0.76 0.79 0.55

R-LSTM [119] 0.83 0.74 0.54 0.86 0.73 0.58 0.85 0.73 0.57 0.87 0.77 0.62

RU-LSTM [119] 0.84 0.76 0.57 0.87 0.78 0.64 0.85 0.76 0.59 0.86 0.78 0.62

TAMformer (ours) 0.85 0.75 0.56 0.86 0.79 0.64 0.89 0.82 0.68 0.89 0.82 0.7

JAADbeh

PCPA† [118] 0.54 0.51 0.62 0.47 0.46 0.54 0.49 0.45 0.61 0.45 0.52 0.63

R-LSTM [119] 0.67 0.64 0.74 0.70 0.64 0.78 0.66 0.62 0.75 0.65 0.60 0.75

RU-LSTM [119] 0.72 0.67 0.79 0.72 0.64 0.81 0.69 0.62 0.78 0.70 0.63 0.79

TAMformer (ours) 0.68 0.62 0.77 0.73 0.68 0.80 0.73 0.7 0.79 0.74 0.69 0.81

Table 5.2: Performance at different anticipation times [4 − 1]s

5.6.3 Ablation Study

5.6.3.1 Time Scale Modeling

In Table 5.3, we evaluate the effect of processing input at different time scales
in the model. Three approaches are tested: single and fixed scales (30 FPS and
10 FPS), multi-scale (SlowFast [10 FPS-30 FPS]), and our adaptive scale. As
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JAADall JAADbeh

Acc AUC F1 Acc AUC F1

30 FPS 0.84 0.78 0.6 0.63 0.51 0.77

10 FPS 0.86 0.79 0.63 0.64 0.56 0.76

SlowFast 0.88 0.77 0.64 0.67 0.62 0.75

Adaptive 0.87 0.78 0.64 0.67 0.58 0.78

Table 5.3: Effect of Time Scale

noticed, scaling down can improve performance by discarding much redundant in-
formation. Almost better performance can be achieved by applying the SlowFast
multi-scaling that allows the model to benefit better from all available informa-
tion. Yet, allowing the model to choose where to look should be the best option
concerning the reported results.

5.6.3.2 Model Variants

Table 5.4 compares the model’s different variants, where the best performance is
triggered by increasing the training samples and applying the Lr loss. Additionally,
Fig. 5.2 illustrates the effect of applying the Lr loss on all anticipation times, where
a noticeable increase in the F1-score is present, especially at early anticipation
times on the JAAD dataset.

TAS DI Lr

JAADall JAADbeh PIE

Acc AUC F1 Acc AUC F1 Acc AUC F1

✓ ✗ ✗ 0.87 0.78 0.64 0.67 0.58 0.78 0.88 0.85 0.78

✓ ✓ ✗ 0.88 0.79 0.65 0.69 0.68 0.75 - - -

✓ ✓ ✓ 0.88 0.83 0.68 0.73 0.69 0.8 0.88 0.86 0.79

Table 5.4: Models Variants (DI stands for Data Increase)

5.6.4 Qualitative Results

Fig. 5.3 is an example of a learned mask and the corresponding input images. For
illustration, only the mask corresponding to the first 0.5s of observation is shown.

†The reported results are our run of PCPA. As reported on GitHub, there are issues on
reproducing the results of the original paper from the code.

https://github.com/ykotseruba/PedestrianActionBenchmark/issues/15
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The model chooses a different set of history frames at each time step that should
maximize the information and minimize the redundancy at the corresponding time
step. For example, at ta = 4s, the model uses only 5 frames from the available 16
frames. Given the raw images, we observe much redundancy, yet some differences
in the chosen images by the model.
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Figure 5.3: Qualitative example of a 0.5 s part of a learned attention mask,
starting at ta = 4.5 s until ta = 4.0 s, where ta is the anticipation time.
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5.7 Conclusion

In this chapter of our work, we propose a multi-modality transformer-based model
that adaptively learns attention masks to measure the temporal sequence’s corre-
spondences. We applied a new loss function to minimize the gap in performance
between early anticipation times and the closest one to the anticipated action.
The experiments demonstrate the proposed model’s out-performance, which can
reach +2% F1 on PIE and +5% F1 on JAAD, in the [2 − 1]s range. Similarly,
TAMformer surpasses at early anticipation times, mainly on PIE. Yet, our model
suffers a drop in performance at early anticipation times on JAAD. Thus, our
future work will focus on achieving robust performance at all anticipated times
with possible enhancement through adding or enhancing the used modalities, for
example, by considering more modern context feature extraction with Residual
networks or the ViT model. Additionally, more modalities could add value to the
anticipation, such as the inclusion of point cloud features or textual features



Chapter 6

Language-Aided Action
Anticipation with TAMFORMER

Chapter Abstract

This chapter explains the language-aided action anticipation part of our
research. We investigate the effect of taking advantage of a language
modality in pedestrian action anticipation, studying various captioning
techniques of the observed frames, and integrating the generated text
into our TAMFORMER model. Additionally, we expand the binary
crossing/not crossing pedestrian action anticipation into multi-action
anticipation. Experimental validation of our techniques on a large-
scale dataset (LOKI) proves the notable effectiveness of including text
in increasing the model comprehension and, consequently, increasing
the performance. ∗

6.1 Introduction

Language is a multifaceted tool for enriching visual content, offering a compre-
hensive and contextual means to describe the observed scenes. Its capacity to
furnish supplementary context and intricate details exceeds the details derived
from visual feature extraction alone. Thanks to the witnessed advances in natural
language processing (NLP), vision-language coupling is becoming more applicable,
adding noticeable value to visual tasks. Notably, contemporary models like CLIP

∗The work presented in this chapter is still in-progress for publication.
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[101] provide an opportunity for enhancing visual tasks through integrated textual
input.

In action anticipation, recent models have introduced innovative approaches, in-
corporating the generation of textual labels and seamlessly integrating them into
anticipation models [105–109]. However, this fusion of vision and language en-
counters the challenge of providing textual ground truth, especially in complicated
environments like urban scenes. In this part of our work, we integrate language
into the pedestrian action anticipation task, where the decisions of pedestrians are
affected by multiple factors, including the taken action by the person, the demo-
graphic profile, the collective behavior of surrounding people, and the overall state
of the street. Thus, leveraging language allows for a more comprehensive under-
standing of these diverse factors compared to relying solely on visually extracted
representations. Therefore, We dive into the task of generating informative textual
descriptions for the input images. In particular, we can summarize our contribu-
tions in this part as follows:

1. We extend the pedestrian action anticipation task to anticipating multiple
actions instead of the conventional crossing/not crossing prediction task.

2. We integrate vision and language to enhance the performance of action an-
ticipation in complex urban scenarios.

3. We conduct an in-depth exploration of various techniques for generating
per-frame textual captions.

4. We evaluate our approach on a novel large-scale urban dataset, validating
the effectiveness of vision-language coupling in action anticipation tasks.

6.2 Language TAMFORMER

Our TAMFORMER model (see chapter 5) is designed to support multi-modalities.
Therefore, we investigate the influence of integrating vision and language modali-
ties in TAMFORMER. As depicted in Figure 6.1, the textual input is added as a
novel modality during the encoding process, value encoding, and query encoding,
in addition to being used as input in the learned mask module. The text descrip-
tion is set per frame to catch the progressing behavior of the person, along with
the possible changes in the context.
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The study applied in [109] confirmed the effectiveness of the pre-trained CLIP
framework [101] in representing the raw images and extracting meaningful infor-
mation with respect to action anticipation. Relying on that, we use a pre-trained
CLIP model to project the raw images and textual descriptions into the feature
space. For each modality m, an Φm function is applied to project the raw input,
where Φimg = CLIPimg and Φtxt = CLIPtxt. CLIPimg and CLIPtxt represent the
encoded representation extracted from a pre-trained CLIP model for images and
captions, respectively.

6.3 Captioning Techniques

The main challenge in integrating language into the pedestrian action anticipation
task is the absence of textual labeling for the images or the scene. In our work,
we investigate different techniques for generating textual labels for the images.

6.3.1 Predefined Captions

As our task addresses action anticipation in urban scenarios, this could limit the
range of possible activities that can be performed in an urban environment. A
straightforward technique to couple an image with a textual description is to pre-
defined a set of likely descriptions and then pair a given image with its closest
description in feature space. We split a textual description into four parts: De-
mographic description, basic activity description, behavioral description, location
description, and interaction description. Table 6.1 summarizes the possible de-
scriptions in each category, where each category aims to cover a possible aspect in
a given scene. The final list of predefined captions represents all possible combi-
nations between the defined text in all categories. The chosen caption CI for an
image I should have the closest representation to the image, as in (6.1), where K

is the number of predefined captions.

CI =
K

arg min
k=1

∥CLIPimg(I) − CLIPtxt(Ck)∥ (6.1)

6.3.2 Image Captioning

A more reasonable approach for getting a textual description for an image is using
an image captioner. BLIP-2 [104] is a recent image captioning, producing robust
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Description Category List of Predefined Captions

Demographic Description

A woman is

A man is

A girl is

A boy is

Basic Activity walking - standing

Location Description

on the sidewalk

on zebra line

next to a bus station

next to a car

next to traffic lights

in front of a building

Behavioral Description

while talking to someone

while talking in the phone

while looking at the phone

and raising his hand

while carrying a baby

while pushing a strolling

holding a crutch

Interaction Description
with a child

with a group of people

with a dog

ex. A man is walking on the sidewalk

ex. A woman is standing in front of a building while talking in the phone with a child

Table 6.1: Predefined Captions

image captions in multiple domains. We rely on a pre-trained BLIP-2 model to
generate our per-frame captions. However, many factors can affect the generated
captions, such as the scale of the context or the amount of noise in the image.
Therefore, we conduct multiple steps to ensure the accuracy and clarity of the
captions, including multi-spatial-scale captioning and caption cleaning.
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Figure 6.2: An example of the generated captions using different cropping
scales around the pedestrian in question. The Global Context is the complete
scene, without cropping. While a Local Context means a cropped image with
a ratio/scale of the size of the pedestrian bounding box (BBox).

6.3.2.1 Multi-Spatial-Scale Captioning

A single frame in our input represents a wide-view urban scene; however, as we
focus on a single pedestrian in the scene, the frame is cropped, centering the
pedestrian in the cropped image while adding a reasonable amount of context to
the image. However, the amount of context added to the cropped image affects the
interpretation of the image and, consequently, the generated caption, as illustrated
in Figure 6.2. To allow more informative captions, we employ different cropping
scales, capturing different contexts and information from the scene. Let S be the
number of considered cropping scales, and Cs

cap is the description generated by the
captioner for scale s, then the feature representation xcap_txt is given by (6.2).

xcap_txt =
S∑︂

s=1
CLIPtxt(Cs

cap) (6.2)

6.3.2.2 Captions Refinement

The generated captions incur a large amount of noise. Firstly, the pre-trained
model (BLIP-2) is not specialized in urban scenarios; therefore, the captions could
contain unrelated descriptions of an urban environment. Then, we have a high
percentage of noisy images due to zooming in for centering a relatively far pedes-
trian, leading to corrupted captions, as exemplified in Figure 6.3. To overcome
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Figure 6.3: Examples of corrupted captions due to unclear and noisy images.

such noisy captions, we create a dictionary of words related to the urban environ-
ment and activities, e.g., street, car, walk, etc. Then, we ignore any generated
caption that does not describe a street scene.

6.3.3 Template-based Captioning

A more stable technique for getting text captions for images could be achieved
through a fixed text template filled with correct information. Still, this technique
is conditioned on the availability of such information. In our work, we examine
this text-generation technique in our setup, where the text template "A/An per-
son_des is action_des" is used. The keyword "person_des" is replaced with
the corresponding pedestrian description (age/gender), and "action_des" is re-
placed by the detected activity in the corresponding frame, i.e., walking, standing,
crossing, etc. For example, one description could be "An adult female is walking
in the street".

The chosen attributes reflect the most important factors affecting the future ac-
tivity of the pedestrian. For example, both age and gender have a considerable
influence on the pedestrians’ decisions and, consequently, their future actions. The
most influential attribute is the history of actions taken by the pedestrian, provid-
ing a clear description of the observed events. The tremendous evolution in human
detection and action recognition models concedes the feasibility of obtaining these
descriptive attributes. However, Herein, we rely on the ground truth existence of
these features in our evaluation dataset.
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6.3.4 Text Prompting

Much like human perception, where different synonyms of a single word can influ-
ence the comprehension of a sentence, language models are similarly sensitive to
this phenomenon. Depending on the popularity of a given word and its contex-
tual prevalence during the language model’s training, the obtained representation
would be more/less informative. Considering this effect, we leverage text prompt-
ing within captions to optimize the model’s perception of the context and enhance
its understanding of the described events.

6.3.4.1 Manual Prompting

For both "person_des" and "action_des", we prompt the captions by al-
ternating their synonyms, producing multiple texts for the same image, allowing
richer language representations. Table 6.2 summarizes the synonyms used for the
prompting process. Given an initial template-based caption C1

temp, a number P of
prompted captions are created, where the collective representation of the projected
captions xtemp_txt is represented by (6.3).

xtemp_txt = Cat
[︃
CLIPtxt(C1

temp), . . . , CLIPtxt(CP
temp)

]︃
(6.3)

6.3.4.2 ChatGPT Prompting

Recently, GPT models achieved a significant jump in the field of natural language
processing, whereas ChatGPT showed impressive capabilities in multiple language
tasks, including paraphrasing tasks. We asked ChatGPT to prompt our caption
template into a set of possible paraphrased captions. To permit the production of
more prompted captions through ChatGPT, the concatenation fusion approach in
(6.3) is replaced with a summation.

6.3.4.3 Image Captions Prompting

The descriptions generated by an image captioner represent a broader interpre-
tation of the images compared to a predefined captioning template. In contrast,
template-based captioning provides a more to-the-point description of the event.
To take advantage of both captioning techniques, image captions are prompted
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Age Synonyms
Adult - Grownup

Child - Little Child

Gender Synonyms
Female

Male

Age/Gender Synonyms

Woman - Lady

Man - Gentleman

Girl - Schoolgirl

Boy - Schoolboy

Action Synonyms

Walking - Moving

Standing - Stopped - Was walking and stopped

Waiting to cross - Wanting to cross

Crossing the street - Crossing the road

Does not want to cross

Observed - Seen

ex. C1
temp: An adult female is walking in the street

C2
temp: A woman is Walking in the street

C3
temp: A grownup female is moving in the street

C4
temp: A Lady is Walking in the street and does not want to cross

Table 6.2: List of synonyms used in manual prompting

by our template, specifically, "person_des" and "action_des". Given an ini-
tial image caption Ccap, it is first prompted with the demographic age/gender
attributes to generate a new caption Ccap_D. Then Ccap_D is prompted with the
action attribute, generating Ccap_AD. The feature representation xcap_txt is pro-
vided in (6.4), where P is the number of template-promoting captions, S is the
number of the considered spatial scales, while α and β are uncertainty values to
reflect the possibility of erroneous descriptions generated by the captioner.

xcap_txt =
S∑︂

s=1
(α × CLIPtxt(Cs

cap) + β × CLIPtxt(Cs
cap_D) + CLIPtxt(Cs

cap_AD))

+
P∑︂

p=1
CLIPtxt(Cn

temp)

(6.4)
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6.4 Experimental Results

6.4.1 Dataset

We use a large-scale novel urban dataset LOKI [46] to evaluate our language-
aided action anticipation approach (see Subsection 1.2.2). The dataset provides
a larger-scale behavioral and demographical pedestrian annotation compared to
older datasets. It comprises 9226 pedestrians, annotated, at 5 FPS, with age,
gender, 2D bounding boxes, 3D bounding boxes, and intended action in the next
0.8 seconds (4 frames). The action labels for pedestrians consist of 5 actions:
Moving, Stopping, Waiting to cross, Crossing, and Other. Due to the considerable
imbalance in the dataset, we rely on the AUC and F1-score metrics for evaluation.
Following [7, 117], we split the dataset into 60% training and 40% testing.

6.4.2 Implementation Details

Only the first training phase of TAMFORMER is considered to prove the effective-
ness of the proposed approach. The model is trained for 500 epochs, using SGD
optimizer and 10−3 learning rate. The earliest anticipation time is set to 4.0 s, and
the warm-up window is 1 s. The time step α is constrained by the annotation rate
of the dataset and set to 0.2 s. With respect to the bounding boxes, our spatial
scaling ratios are represented by the range [1.5×, 5.0×] with step 0.5×, in addition
to the global scale, where S = 9 different scales. For manual text prompting, we
set the number of prompts P to 4 prompted captions, while it is set to 10 for
ChatGPT prompting. We employ three main modalities: Bounding boxes, the
cropped image with a ratio 1.5× of the bounding box, and the generated textual
descriptions.

6.4.3 Results

As we are the first to work on the task of action anticipation on the LOKI dataset,
we focus solely on the performance of our TAMFORMER model when upgraded
to the non-binary anticipation of multiple actions, evaluating the influence of in-
tegrating language into the model.

Table 6.3 provides a comparative analysis of TAMFORMER’s performance using
various captioning techniques. As the anticipation space expands to more actions,
the anticipation becomes increasingly complicated, resulting in poor performance.
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4 s 3 s 2 s 1 s

AUC F1 AUC F1 AUC F1 AUC F1

W/o Captioning 53.51 55.5 53.92 55.83 54.71 57.60 55.74 58.41

Predefined Captions 56.18 54.99 58.09 55.51 58.37 57.78 60.40 58.32

Image Captioner 56.34 57.65 57.96 58.18 61.28 57.97 63.98 60.39

Template Captions 70.10 64.51 70.77 65.14 72.98 70.10 80.80 77.68

Manual Prompting 77.30 71.05 80.86 75.95 84.64 80.92 89.67 87.40

ChatGPT Prompting 77.07 70.11 80.94 76.24 85.35 81.34 89.95 87.43

Captioner Prompting 77.77 72.16 80.95 75.98 85.24 81.34 90.16 87.92

Table 6.3: The performance comparison of TAMFORMER, with and without
language integration, employing various captioning techniques, across different
anticipation times {4.0, 3.0, 2.0, 1.0} s.

Yet, the integration of any form of textual description into the model significantly
improves anticipation performance. Notably, not all captioning approaches yield
equally impactful enhancements. The predefined captioning approach, which se-
lects the nearest predefined caption to the image in the CLIP feature space, shows
only marginal improvement over the model without textual input. This may be
attributed to the possible limitation in added value compared to using image fea-
tures alone, in addition to the restricted range of events and activities permitted
in the predefined captions limiting the capabilities of the used captions. In con-
trast, employing a pre-trained image captioner allows for broader descriptions and
interpretations, enriching the model with more valuable representations and yield-
ing much-improved anticipations. However, our template-based captioning proves
quite advantageous, offering more precise and accurate descriptions and achieving
notably higher performance.

Textual prompting of all types shows impressive performance enhancement. Al-
most all prompting techniques are on par, yet the best performance is achieved by
prompting the image captioner prompting, which takes advantage of both the gen-
erality of the pre-trained image captioner and the precise template-based captions.
ChatGPT prompting allowed for increasing the number of prompted captions,
richer representations, and high performance.
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4 s 3 s 2 s 1 s

AUC F1 AUC F1 AUC F1 AUC F1

1.5× 55.62 55.74 56.53 56.7 56.47 58.36 58.81 57.84

3.0× 54.61 56.64 60.23 54.33 56.75 57.96 59.40 58.28

5.0× 55.54 56.73 56.61 57.41 59.29 56.82 59.80 57.80

Global 55.43 56.62 59.70 54.82 58.18 56.3 59.40 57.13

Fusion 56.34 57.65 57.96 58.18 61.28 57.97 63.98 60.39

Table 6.4: The effect of changing the spatial scale of the cropped image in the
generated captions and the performance.

6.4.4 Ablation Experiments

We conduct a set of ablation experiments to assess the effect of the different
parameters in the captioning techniques utilized.

6.4.4.1 Spatial Scaling

Table 6.4 reports the effect of changing the spatial scale of the cropped image on
the generated captions, leading to a shift in the anticipation performance. Each
spatial scale in the image allows the captioner to capture a different perspective
about the observed scene, as depicted in Figure 6.2. Therefore, combining different
spatial scales widens the range of the captured information, offering better and
more robust performance.

6.4.4.2 Manual Text Prompting

We test the effect of using different words describing the age/gender attributes on
the anticipation performance, as shown in Table 6.5. In the first Text Prompt
(TP1), the word "person" is used in replacement of the age/gender attributes, i.e.,
"a person is walking in the street", leading to degraded anticipation. Therefore,
TP[2:6] show higher performance, as they employ the age/gender description. For
each test, we fix the "person_des" to specific synonyms representing age and
gender during training and evaluation. For example, TP2 uses "adult/child" for
age and "male/female" for gender, while TP3 represents age/gender with "wom-
an/man/girl/boy". Notably, alternating the words used in the captions affects the
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4 s 3 s 2 s 1 s

AUC F1 AUC F1 AUC F1 AUC F1

TP1 67.56 62.65 71.04 66.95 72.52 68.72 80.36 74.46

TP2 70.10 64.51 70.08 65.14 72.98 70.10 80.80 77.68

TP3 69.74 63.79 74.50 68.96 76.74 72.63 80.16 75.37

TP4 69.28 62.97 73.25 67.83 76.50 73.54 79.84 74.79

TP5 65.68 62.84 72.27 65.95 76.97 72.16 82.33 77.42

TP6 68.70 62.60 73.88 67.52 73.63 72.25 80.80 77.20

Fusion (TP2, TP3) 73.42 67.90 77.43 72.66 82.31 78.50 88.00 85.54

Fusion (TP[2:4]) 76.35 70.58 80.25 74.37 83.59 79.17 89.77 87.70

Fusion (TP[2:4], TPact) 77.30 71.05 80.86 75.95 84.64 80.92 89.67 87.40

Table 6.5: The effect of prompting the template-based captions with differ-
ent synonyms representing the "person_des" and the "action_des". The
Text Prompts (TP[1:6]) prompts the "person_des", and TPact includes
"action_des" prompting as well. The fusion technique used is as in Equa-
tion (6.3).

perception of the sentence in the language model, adding more/less information
to the produced representation and influencing the performance.

Fusing multiple prompted captions improves the extracted information, com-
pared to using a single caption, which leads to enhanced performance, as shown in
Table 6.5. Additionally, as more captions are fused, the anticipation performance
is better. Finally, adding TPact, which prompts the "action_des", pushes the
model to further performance improvement.

Table 6.6 reports the results of applying different fusion schemes on the prompted
captions. As depicted, concatenating the text of captions and extracting the fea-
tures of the concatenated texts, as in (6.5), shows a poor performance. Further-
more, increasing the number of concatenated captions decreases the performance
even more. This degraded performance of the Cattxt approach could be attributed
to the increased complexity of the integrated text, making it harder for the CLIP
model to provide a precise representation of the given text. Therefore, a finer
approach is to apply the fusion in the feature space instead. Using the Avgfeat

function, defined in (6.6), reports a better performance compared to the first ap-
proach, where the model is able to benefit from the integrated information. The
best performance is achieved through the concatenation of features extracted from
the integrated captions, as in (6.3).
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4 s 3 s 2 s 1 s

AUC F1 AUC F1 AUC F1 AUC F1

Cattxt(P = 2) 65.87 63.63 73.52 63.26 76.06 69.68 78.70 70.37

Cattxt(P = 3) 62.24 61.69 68.81 64.60 71.09 63.28 72.72 73.69

Avgfeat(P = 2) 65.70 63.42 72.25 65.31 74.68 70.29 81.97 80.53

Catfeat(P = 2) 73.42 67.90 77.43 72.66 82.31 78.50 88.00 85.54

Table 6.6: Comparing different fusion approaches for the prompted captions.
Cattxt(P ), defined in Equation (6.5), denotes text concatenation, where the
number of texts is P . Avgfeat(P ), defined in Equation (6.6), averages the ex-
tracted features from the captions, and Catfeat(P ), defined in Equation (6.3),
concatenate the extracted features.

Cattxt(P ) = CLIPtxt(Cat
[︃
C1

temp, . . . , CP
temp

]︃
) (6.5)

Avgfeat(P ) =
∑︁P

p=1 CLIPtxt(Cp
temp)

P
(6.6)

6.4.4.3 ChatGPT Prompting

Using ChatGPT for prompting introduces a broader range of prompts to the cap-
tions. In Table 6.7, we study the impact of increasing the number of prompts
generated by ChatGPT. Firstly, comparing our template-based caption Ctemp and
a single randomly generated ChatGPT prompt demonstrates a clear preference
for Ctemp. ChatGPT tends to produce complex and general synonyms, such as
"strolling" or "wandering" for the word "walking", potentially blurring the straight-
forward meaning of the caption and posing challenges for the feature extractor in
providing informative representations. However, with increasing the number of
prompts generated by ChatGPT, more informative descriptions are incorporated,
resulting in improved performance. The peak performance is achieved with 10
generated prompts, beyond which the inclusion of additional prompts introduces
numerous complex words, contributing to a decline in performance.
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4 s 3 s 2 s 1 s

AUC F1 AUC F1 AUC F1 AUC F1

Ctemp 70.10 64.51 70.08 65.14 72.98 70.10 80.80 77.68

GPT (P = 1) 61.08 58.20 63.42 57.88 62.76 60.53 68.12 64.14

GPT (P = 4) 75.15 70.54 77.77 73.06 81.29 75.74 86.14 84.53

GPT (P = 10) 77.07 70.11 80.94 76.24 85.35 81.34 89.95 87.43

GPT (P = 20) 77.02 71.29 80.55 75.86 85.54 80.96 89.74 87.93

Table 6.7: Ablation on ChatGPT prompting, where P is the number of the
prompted captions, GPT denotes ChatGPT prompting, and Ctemp is the tem-
plate caption on the form "A /An <adult /child> <male /female> is
<movnig /stopping /waiting to cross /crossing /observed>".

6.4.4.4 Image Captions Prompting

In this ablation study, we examine the impact of different levels of refining the
image captions generated by a pre-trained captioner. The first two rows in Table
6.8 establish a comparison baseline using our template-based captioning approach.
The first row represents the results of using a single templated caption, while the
second row employs text prompting. The performance is notably subpar when
directly using image captions without any refinement. A marginal improvement
is observed when cleaning up the captions, as outlined in Section 6.3. The im-
provement, though limited, becomes more pronounced with the incorporation of
multiple spatial scales, although it does not yet match the performance achieved
with the template-based captioning approach. This observation can be attributed
to the non-negligible noise present in the images, leading to captions with inherent
noise. Consequently, refining the captions by incorporating accurate age, gender,
and action attributes yields a remarkable enhancement in performance.

Comparing the refined image captions with the templated captions demonstrates
the effectiveness of image captions in capturing additional information from the
scene beyond the "person_des" and the "action_des" attributes used in our
templates. The integration of the manual prompting procedure with refined image
captions proves to be the most effective approach, surpassing the performance of
all captioning techniques considered in our work.
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Cap CU MS AR MP
4 s 3 s 2 s 1 s

AUC F1 AUC F1 AUC F1 AUC F1

TC - - - ✗ 70.10 64.51 70.08 65.14 72.98 70.10 80.80 77.68

TC - - - ✓ 77.30 71.05 80.86 75.95 84.64 80.92 89.67 87.40

IC ✗ ✗ ✗ ✗ 55.62 55.74 56.53 56.7 56.47 58.36 58.81 57.84

IC ✓ ✗ ✗ ✗ 55.65 55.73 56.53 57.27 56.2 58.5 61.15 57.27

IC ✓ ✓ ✗ ✗ 56.34 57.65 57.96 58.18 61.28 57.97 63.98 60.39

IC ✓ ✓ ✓ ✗ 77.25 71.4 78.82 75.56 85.22 81.93 88.9 87.11

IC ✓ ✓ ✓ ✓ 77.77 72.16 80.95 75.98 85.24 81.34 90.16 87.92

Table 6.8: Studying the performance of the image captioning throughout
the different levels of prompting and refinement. TC is the template-based
captioning technique, and the IC reflects the usage of image captioner. For
the image capions, we define the refinement levels as: CU denotes the cleanup
process of the captions, MS represents the multi-spacial-scale fusion, and AR is
the age/gender/action attributes refinement process, as described in Equation
(6.4), but excluding the integration with the manually prompted captions C1:P

temp.
Finally, MP denotes the application of the manual prompts in either template-
based captions or with the generated image captions.

6.4.5 Qualitative Example

Figure 6.4 presents a detailed case study on the generated image captions, focusing
on a scenario where the pedestrian in question was initially crossing the street but
was interrupted to pick something up and stopped. The template captions take
advantage of the age/gender/action attributes at each frame, offering precise yet
limited descriptions restricted to these attributes. In contrast, image captions
provide broader descriptions but are vulnerable to generating errors or conveying
misleading information. For instance, in Figure 6.4, due to the similarity between
our pedestrian’s body movements and those of someone engaged in skating, the
captioner erroneously describes a skating activity in the images. Therefore, the
incorporation of multi-scale information proves to be a necessity to capture a
broader and more accurate understanding of the scene. The wider contexts in
larger spatial scale captioning help the captioner align more accurately with urban
scenarios activities.

Moreover, the generated captions have the potential to include more general yet
valuable information, describing possible interactions within the scene, such as "A
group of people walking down the street." In the refinement process, new captions
are generated and integrated with the original ones, as detailed in Section 6.3.
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These new captions aim to leverage the existing context in the original descrip-
tions but are skewed more towards the accurate age/gender/action attribution.
While the new captions might inherit some noisy contexts from the originals, they
generally contribute to more accurate prompting in most cases, as evidenced by
the enhanced performance outlined in Table 6.8.

6.5 Conclusion

In this chapter, we propose the integration of language descriptions in pedestrian
action anticipation. We study multiple language generation approaches and tools,
proving the effectiveness of coupling vision-language features to enrich the under-
standing of visual scenes and enhance anticipation performance. Additionally, we
extended the binary crossing or not crossing pedestrian anticipation task into an-
ticipating multiple actions, evaluating our task on a novel large-scale urban scenes
dataset (LOKI). Our evaluation and ablation experiments demonstrate the out-
performance of our language-aided anticipation approach, with an improvement
over not using language, that reaches 29.5 % F1-score at 1-second anticipation and
16.66% at 4-second anticipation.

The generation of a textual description of an image is a fast-advancing field,
where more informative and accurate captions could be generated, leading to even
more improved performance, which is our focus in our future work.



Chapter 7

Traffic Flow Anticipation and
Data Imputation

Chapter Abstract

This chapter addresses a specific type of behavior anticipation, antic-
ipating traffic flow. Traffic flow represents the aggregate patterns of
human behavior influenced by the road network and temporal varia-
tions throughout the day. We introduce a model for anticipating traf-
fic speed, utilizing attention-based spatiotemporal encoding and a dual-
graph road-network representation. The dual-graph framework com-
bines spatial and contextual sub-graphs, facilitating the exploration of
non-Euclidean spatial correlations and potential contextual similarities
within road networks. To dynamically capture spatiotemporal correla-
tion, we employ multi-head self-attention modules capable of discern-
ing temporal and spatial correlations. Additionally, we extend to the
problem of traffic data imputation, where we present a fast conditional
diffusion model for spatiotemporal traffic data imputation, employing
a high-order pseudo-numerical solver. ∗

∗This chapter has produced two submitted journal papers: 1) “DSP-ST: Dynamic Struc-
tural Prior Spatio-Temporal Graph Attention Networks for Traffic Speed Prediction” in IEEE
Intelligent Transportation Systems Magazine. 2) “FastSTI: A Fast Conditional Pseudo Numeri-
cal Diffusion Model for Spatio-Temporal Data Imputation” in IEEE Transactions on Intelligent
Transportation Systems.
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7.1 Introduction

Traffic prediction is a foundational component of an Intelligent Transportation
System (ITS) [83,120]. Accurate forecasting is crucial in improving traffic control,
route optimization, and vehicle scheduling [79]. However, dynamic and accurate
traffic forecasting is challenging due to the highly complex spatial and temporal
correlations of roads (e.g., the coexistence of cyclicity, randomness, and fluctuating
transmission) [121]. For decades, traffic prediction techniques have been exten-
sively investigated. Early traditional methods are primarily statistical techniques
[71, 72], which have visible limitations because of the nature of the assumption
that time tends to be stationary. Classical ML methods [73, 74, 122] have been
shown to outperform the statistical approaches on nonlinear and nonstationary
traffic data. Still, these methods usually depend on human-engineered features,
failing to capture complex spatial-temporal features for traffic prediction.

Deep learning (DL) approaches can approximate complex functions by learning
deep nonlinear network structures to better mine the spatiotemporal evolution
patterns of traffic conditions [86, 123]. The existing methods have extensively
promoted the development of spatiotemporal traffic prediction, yet there are still
open limitations:

• The absence of implicit contextual information extraction: similar
traffic conditions in a physical road network may be implied between roads
[82]. As depicted in Figure 7.1, two road nodes (Node A and Node B)
located in a business district may experience similar traffic patterns during
peak hours, with traffic congestion showing an upward or downward trend.
However, most studies commonly employ the spatial adjacency matrix (e.g.,
distance-based matrix); as a result, the semantic information is ignored.

• Lack of a dynamic capturing of long-term traffic features: Exist-
ing time-series modeling methods, such as RNN and its variants LSTM and
GRU, have received extensive attention in time-series analysis. However, the
above RNN-based methods have limitations, such as time-consuming train-
ing, gradient explosion/vanishing, and slow response to dynamic changes.
These methods fail to forecast long-term traffic accurately, where spatial
traffic at different timestamps has a varying scale of impact on the target
road node’s pattern.
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(a) Spatial location of similar
nodes

(b) Comparison of traffic con-
ditions of similar nodes

Figure 7.1: Traffic patterns between contextually similar nodes.

To address the abovementioned challenges, we propose Dynamic Structural Prior
Spatio-temporal Graph Attention Networks (DSP-ST) to forecast traffic condi-
tions. To extract the spatial correlation of roads more comprehensively, we desig-
nate a dynamic structural prior spatiotemporal graph architecture: the physical
subgraph of road connectivity and the contextual subgraph constructed based on
the tempo-feature similarity of different nodes. This graph is integrated into a
spatio-temporal graph block with a self-attention mechanism to learn dynamically
the spatio-temporal correlations. A Gated-TCN is used to extract the tempo-
ral correlation of long-range dependencies to improve the long-term predictions
further.

Additionally, we address the problem of missing traffic data (traffic data impu-
tation). Spatiotemporal traffic data is derived from diverse sensing systems such
as loop detectors and floating cars, where equipment failures and transmission
errors in these sensors leads to missing data and negatively affects the prediction
task. Among various imputation methods, deep generative models have gained
significant popularity. Recently, diffusion models have emerged as the new state-
of-the-art method of deep generative models family [124–126], surpassing the
long-standing dominance of generative adversarial networks (GANs) in diverse,
challenging domains [127]. Existing works started to apply "Denoising Diffusion
Probabilistic Model" (DDPM) to impute traffic missing data [128–130]. However,
these approaches involve iterative procedures with several evaluation steps, which
can be time-consuming and inefficient in real-time applications. Here, we design a
fast conditional pseudo-numerical diffusion model for spatiotemporal traffic data
imputation (FastSTI), where we apply pseudo-numerical methods and a predefined
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variance schedule to accelerate the inference time while retaining the imputation
precision.

7.2 Problems Statement

The traffic network, a combination of intersections and roads, is a graphical struc-
ture. The road network can be denoted as a graph G = (V, E,A), where V and
E represent a finite set of vertices (intersections) and edges (roads), respectively.
Let N = |V | be the number of nodes, then the adjacency matrix A ⊆ RN×N is
a 0/1 matrix, representing the connections between each pair of nodes (vi, vj).
We define a dual-graph structure, i.e., a physical subgraph GP = (V, EP ,AP ),
including the spatial information of the road nodes, and a contextual subgraph
GC = (V, EC ,AC), representing the contextual similarities between the nodes.

7.2.1 Flow Anticipation

Let X = {x1, x2, . . . , xL} be a sequence of traffic flow signals (traffic speed), where
X ∈ RL×N , L represents the length of time steps, and N is the number of ob-
servation nodes (e.g., observational points on the road map). The traffic signals
at timestamp t are defined in the matrix Xt ∈ RN×1, where N is the number of
nodes. Traffic anticipation aims to learn a function f( · ) that maps Sobs time
steps of historical flow signals to future Sant time steps of anticipated flows. Given
our graphs GP and GC , the anticipation process at time ta is represented by:

[︂
X(ta−Sobs), X(ta−Sobs+1), . . . , X(ta−1); GP ; GC

]︂
f( · )→

[︂
X(ta), X(ta+1), . . . , X(ta+Sant)

]︂
(7.1)

7.2.2 Data Imputation

During data imputation, a binary mask is used to simulate the missing values,
where the task is to estimate these values based on the observed traffic patterns.
Our binary mask at imputation time step timp is given by Mtimp

= {0, 1}N×N , if
M i,j

timp
= 0, the corresponding element X i,j

timp
is missing, while M i,j

timp
= 1 denotes

that X i,j
timp

is an observed value. The objective of the task is to estimate the
missing/masked signals in the data sequence.
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7.3 Anticipation Model

Figure 7.2 illustrates the architecture of the proposed method. our DSP-ST is
built upon the baseline model [86], which mainly stacks multiple spatio-temporal
blocks (ST-blocks). In DSP-ST, each ST-block contains a self-attention Gated
Temporal Convolution Network (Att-gated TCN) layer, along with the dual graph
attention network (GAT) layers. Initially, feature mapping is applied with linear
projection; then, the mapped features are concatenated into the ST-blocks. In the
stacked ST-blocks, the temporal correlation of traffic conditions is dynamically ex-
tracted through the Att-gated TCN. Meanwhile, the spatial correlation is captured
through the GAT module combining the dual graphs (i.e., physical and contextual
sub-graphs). Finally, a linear anticipation head produces the predictions.

Figure 7.2: Overall structure of DSP-ST
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7.3.1 Temporal Modeling

Traffic conditions present complex nonlinear changes in temporal evolution. To
capture such nonlinear changes, a self-attention Gated-TCN is employed to extract
the temporal correlation dynamically of traffic conditions. The Att-Gated-TCN
module mainly comprises a self-attention module, dilated causal convolutions rep-
resenting the temporal convolution, and gated activation units.

7.3.1.1 Multi-Head Attention

The temporal correlation of traffic characteristics is influenced by the overall in-
teraction of the traffic network, plus a sort of randomness, as explained in [131].
To strengthen the model’s capability to extract temporal features dynamically, we
introduce a multi-head self-attention mechanism in the Gated-TCN. Given a time
sequence input X ∈ RN×T , representing N nodes at T time steps, self-attention is
computed over the input sequence. The attention is computed by Hatt = Att(X),
producing a finer representation of the temporal correlations between the nodes,
with the same size as X, where Hatt ∈ RN×T .

7.3.1.2 Dilated Causal Convolution

Dilated causal convolution can exponentially improve the receptive field by in-
creasing the layer depth and obtaining plenty of feature information [132]. Thus,
following [86], we use dilated causal convolution as the temporal convolution layer.
Given a 1D time sequence of attention representation Hn ∈ RT of length T at node
n, and a filter F (K) with kernel size K, dilated causal convolution takes the forms
in (7.2), where t denotes the time step, and l represents the dilation factor.

Hn
att(t) ∗l F (K) =

K−1∑︂
k=0

F (k) ∗ Hn
att(t − l × k) (7.2)

7.3.1.3 Gated Activation

Following [86], the temporal features are extracted through a gated activation,
applied after the TCN (Gated-TCN). For our hidden representation Hatt of length
T , the gated activation is illustrated in Equation (7.3), producing the final tempo-
ral representation Htemp, where σ is the sigmoid activation, ⊙ is the element-wise
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product, and Θ1 and Θ2 are the kernels representing TCN-a and TCN-b respec-
tively (see Figure 7.2).

Htemp = tanh(Θ1 ∗l Hatt) ⊙ σ(Θ2 ∗l Hatt) (7.3)

7.3.2 Spatial Modeling

We employ a dual-graph representation of the traffic network: A physical graph
to capture the physical spatial neighborhood of the nodes, and a contextual graph
to capture the semantic correlations between the nodes.

7.3.2.1 Physical Graph Construction

The physical connectivity of roads is one of the critical factors to consider in
spatial correlation, where a pair of road nodes (vi and vj) have a physical/spatial
neighbor relationship when they share the same intersection. Hence, the physical
graph GP = (V, EP ,AP ) defines the spatial adjacency matrix AP as follows:

[Ap]ij =

⎧⎪⎪⎨⎪⎪⎩
1, vi and vj are directly connected

0, otherwise
(7.4)

Intuitively, points nearby in a road network are more likely to share similar
traffic patterns. In [48, 85, 133], the Euclidean distances between nodes represent
the spatial neighbor relationship as edge weights, where the weight increases as
the distance decreases.

7.3.2.2 Contextual Graph Construction

The traffic network always has contextual similarities between roads at different
times. For example, in Figure 7.1, the nodes A and B do not have a physical
connection yet show a similar traffic pattern at a specific time period. Therefore,
to capture such contextual information of the traffic network, we build a contextual
subgraph GC = (V, EC ,AC), adopting the improved Derivative Dynamic Time
Warping (DDTW) [134] to calculate the similarity between the traffic time series.

Dynamic Time Warping (DTW) is widely used for finding an optimal alignment
between two-time series under certain conditions [135]. However, the traditional
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DTW calculates the similarity by matching the numerical difference between the
two sequences but tends to ignore the trend information. In Figure 7.3a, the two
nodes A and B show similar traffic sequences; using the traditional DTW, as in
Figure 7.3b, a mismatching occurs between 9:00 and 10:30, where the downtrend
information of node A matched the uptrend information of node B. In other words,
the downtrend and uptrend of traffic sequence may correspond to the beginning
and end of road congestion, where the traditional DTW cannot accurately reflect
the similar trend information between the two sequences.

To overcome the limitation that the traditional DTW algorithm fails to study the
trend information, we use the derivatives to preprocess the initial data to reflect the
shape characteristics and the trends of the values. The DDTW matching strategy
is shown in Fig. 7.3c, which can reflect the difference in values and consider the
trend information between the two sequences. Given two initial time sequences
A = (a1, a2, ..., aTA

) and B = (b1, b2, ..., bTB
) , where TA and TB represent the

lengths of the sequences. Firstly, the elements of sequences are preprocessed to
estimate the derivatives, as in (7.5), and the Z-Score normalization, as in (7.6).

A′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a′
i = (ai−ai−1)+((ai+1−ai−1)/2)

2 2 ≤ i < TA

a′
i = a2 − a1 i = 1

a′
i = aTA

− aTA−1 i = TA

(7.5)

Where a
′
i is the ith element of the sequence, and µA and σA denote the mean

and standard deviation of A, respectively

a
′

i∗ = a
′
i − µA

σA

(7.6)

We can compute the Euclidean distance between a
′
i∗ in A and b

′
j∗ in B as in

(7.7). To reduce the complexity of DDTW, we restrict its “Search Length” to
Tsearch.

d(a′

i∗ , b
′

j∗) =
√︂

(a′
i∗ − b

′
j∗)2, i, j < Tsearch (7.7)

Let l be a random alignment between the elements in A and the elements in B,
and L is the number of all possible alignments between the two sets. The DDTW
distance dDDT W between A and Bis given by (7.8)
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(a) The original se-
quences

(b) Traditional DTW
matching

(c) The modified
DDTW matching

Figure 7.3: Traffic speed similarity matching between two sequences.

dDDT W (A, B) = min
l∈L

∑︂
(i,j)∈l

d(a′

i∗ , b
′

j∗) (7.8)

Accordingly, we define the contextual subgraph GC = (V, EC ,AC) through the
DDTW distance of the traffic speed among road nodes. The contextual adjacency
matrix AC is defined in (7.9), representing whether the nodes are contextually
neighbors, where τ denotes a threshold to control the sparsity of the matrix.

[Ac]ij =

⎧⎪⎪⎨⎪⎪⎩
1, dDDT W < τ

0, otherwise
(7.9)

7.4 Imputation Model

Figure 7.4 illustrates the pipeline of the proposed FastSTI. FastSTI is built on top
of the state-of-the-art PriSTI model [130]. In FastSTI, the input X ∈ RN×T of
complete observation is masked to simulate the missing data. Random sampling,
representing noise, and linear interpolation, representing conditional prior, are
applied to the masked values. The conditional features prior module is used to
project the prior features, and then the projected prior and the noisy samples are
fed into the noise prediction module, producing the imitated values.
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Figure 7.4: FastSTI pipeline.

7.4.1 Masking Strategy

Given the observed sequence X, we split it into two parts: one represents the
imputation target X́, while the other represents the observed values serving as
conditional observations. To simulate different real-life scenarios of missing traffic
data, following [136], we consider two masking strategies:

• Block-missing scenario: Missing values occur in contiguous blocks over
time. We randomly mask 5% of the available data and adopt simulated
failures with a probability of 0.15% for each node/sensor. The duration of
each failure is sampled uniformly from the interval [min_steps, max_steps],
where min_steps and max_steps correspond to the length of time steps.

• Point-missing scenario: Random occurrence of missing values, where 25%
of observations are masked in a random manner.

7.4.2 Linear Interpolation

Following [130], linear interpolation is employed to fill in the missing data at each
node. This approach can construct a rough but efficient interpolated conditional
information χ for denoising. The linear interpolation relies on the uniform distri-
bution of missing data to ignore the randomness of time series but retains certain
spatiotemporal relations.

7.4.3 Conditional Feature Prior Module

The linear interpolation method assumes uniform and linear changes in traffic
states. However, traffic data exhibits dynamic temporal dependencies, and the
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flow of different regions/interactions affects each other, making linear interpola-
tion inadequate for capturing the nonlinear and random patterns in real-life traffic
conditions [137]. Therefore, [130] employed a learnable conditional prior module
ρ ( · ). It takes the interpolated information χ and the adjacency matrix A to
model the nonlinear conditional information Hcond that represents the global spa-
tiotemporal and local geographic correlations, as given in (7.12), where H is a
1 × 1 convolution of the interpolated data (H = Conv(χ)). To capture the global
temporal correlation, an attention module ϕT em (H) is applied in (7.13), while an-
other global attention module ϕSpa (H) captures the global spatial correlations in
(7.14).

PriSTI [130] uses a simple message-passing network (MP) to capture the spatial
geographic correlation, where ϕSGC (H, A)) = ϕMP (H, A)). Unlike PriSTI, we
model the spatial correlation using a graph convolution network module named
Diffusion-GCN (Diff-GCN) [48], defined in (7.10) and (7.11), where ϱ ∈ [0, 1] is
the graph coefficient, and k is the graph convolution step. In contrast to the
MP, the Diff-GCN benefits from a bidirectional random walk strategy, providing
enhanced flexibility in capturing influences from upstream and downstream traffic
conditions.

DiffGCN(H, A) = ϱ
K∑︂

k=0
AχW (7.10)

ϕSGC (H, A) = Norm (DiffGCN(H, A) + H) (7.11)

ρ (H, A) = MLP(ϕT em (H) + ϕSpa (H) + ϕSGC (H, A)) (7.12)

ϕT em (H) = Norm (AttnT em(H) + H) (7.13)

ϕSpa (H) = Norm (AttnSpa(H) + H) (7.14)

7.4.4 Noise Prediction Module

The noise prediction module is designed to utilize conditional information to pre-
dict the missing imputation values, as shown in Fig. 7.4. The module takes two
inputs: 1) The conditional prior Hcond; 2) Noise information Hnoi = Conv(χ||X́),
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where Conv(.) is the 1 × 1 convolution, (||) represents concatenation, and X́ is
the data sequence with the missing data sampled from a standard Gaussian noise.
The temporal, spatial, and geographic modules of the noise prediction are the
same modules of the conditional feature prior. However, the noise information
Hnoi would not provide an accurate representation of real-life traffic data; there-
fore, the conditional information Hcond is used for both the query and value of the
temporal attention ϕT em and spatial attention ϕSpa, while Hnoi is used for the key.

The output of each layer in the noise prediction module is split into a residual
connection and skip connections. The residual connection is the input of the next
layer, and the skip connections of each layer are added and fed into a two-layer
1 × 1 convolution to obtain the output of the noise prediction module, where the
output contains only the value of the imputation target.

7.4.5 Diffusion Procedure

Following [130], given the observed sequence X and split into: The imputa-
tion target X́, generated by the masking strategies, in addition to the remaining
observed values (conditional observations) χ. The noise predictor ϵθ, is trained
to minimize the loss function Lt, defined in (7.15), where the imputation target
X́ t =

√
ᾱtx0 +

√
1 − ᾱtϵ, βt is the noise level in the diffusion model, αt = 1 − βt,

ᾱt = ∏︁t
i=1 αi, and ϵ is the sampled Gaussian noise.

minLt = minEX́∼q(X́0),ϵ∼N(0,I) || ϵ − ϵθ(X́ t, χ, A, t) ||2 (7.15)

7.4.5.1 Pseudo-Numerical Diffusion

We aim to speed up the imputation process and improve its quality. PriSTI
[130], and CSDI [128] directly employ the reverse process of the denoising diffusion
probabilistic model (DDPM), which requires a sufficient number of denoising steps
and encounters random noise. To tackle the issue, we apply the high-order pseudo-
numerical methods [138] for denoising. The adopted methodology starts with
transforming the reverse process of diffusion, given in (7.16), into an ordinary
differential equation by subtracting xt from both sides, replacing the discrete t−1
with a continuous version represented by t − ∆t and allowing Deltat to reach 0,
producing the differential equation given in (7.17).
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xt−1 =
√︄

ᾱt−1

ᾱt

(︂
xt −

√
1 − ᾱtϵθ(xt, t)

)︂
+

√︂
1 − ᾱt−1ϵθ(xt, t) (7.16)

dx

dt
= −ᾱ′(t)

⎛⎝ x(t)
2ᾱ(t) − ϵθ(x(t), t)

2ᾱ(t)
√︂

1 − ᾱ(t)

⎞⎠ (7.17)

The pseudo-numerical method applies three classical numerical techniques: Heun’s,
the Runge-Kutta (RK), and the Linear Multi-Step (LMS). The numerical methods
are split into two components: a gradient component responsible for determining
the gradient at each step and a transfer component generating the result for the
next step. All numerical methods share the same transfer part, given in (7.18),
while their gradient parts differ, as given in Table 7.1.

ν (xt, ϵt, χ, A, t, t − ∆t) =
√

ᾱt−∆t√
ᾱt

xt − (ᾱt−∆t − ᾱt)
√

ᾱt

(︂√︂
(1 − ᾱt−∆t) ᾱt +

√︂
(1 − ᾱt) ᾱt−∆t

)︂ϵt
(7.18)

We provide two kinds of pseudo-numerical methods for the conditional diffusion
model in our task: FastSTI-2 (2nd-order) and FastSTI-4 (4th-order), where we
initially adopt the 4th-order pseudo Runge-Kutta (PRK4) method to obtain the
results of the first three steps, followed by the utilization of the 4th-order pseudo-
linear multi-step method (PLMS4) to compute the remaining.

7.4.5.2 Accelerated Diffusion

To accelerate the imputation (sampling) process, inspired by [139], we introduce
a "schedule alignment" approach that utilizes a predefined number of Tacc-steps
to minimize the imputation time without significant loss of quality. As shown
in Fig. 7.5, the key concept is to align the original T -steps reverse process into a
condensed Tacc-steps process using a predefined variance schedule. Given the steps
of Tacc ≪ T in the imputation process and a predefined variance schedule {ξt}Tacc

t=1 ,
we can calculate the corresponding constants as in (7.19). The objective is to
determine the value of √

φ̄c between the training noise levels:
√

ᾱt and
√

ᾱt+1,
such that √

φ̄c closely approximates
√

ᾱt. Then, the aligned diffusion step t is
obtained by calculating the floating-point tc, as in (7.20).
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2nd-order pseudo linear multi-step (PLMS2)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
et = ϵθ (x́t, χ, A, t) ,

e′
t = 1

2(3et − et−∆t),

xt−∆t = ν(x́t, χ, e
′

t, A, t, t − ∆t).
2nd-order pseudo Heun’s (PH2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1
t = ϵθ (x́t, χ, A, t) ,

x1
t = ν(x́t, χ, e1

t , A, t, t − ∆t),
e2

t = ϵθ

(︂
x́1

t , χ, A, t − ∆t
)︂

,

e′
t = 1

2(e1
t + e2

t ),

xt−∆t = ν(x́t, χ, e
′

t, A, t, t − ∆t).
4th-order pseudo linear multi-step (PLMS4)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

et = ϵθ (x́t, χ, A, t) ,

e′
t = 1

24(55et − 59et−∆t + 37et−2∆t − 9et−3∆t),

xt−∆t = ν(x́t, χ, e
′

t, A, t, t − ∆t).
4th-order pseudo Runge-Kutta (PRK4)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1
t = ϵθ (x́t, χ, A, t) ,

x1
t = ν(x́t, χ, e1

t , A, t, t − ∆t

2 ),

e2
t = ϵθ(x́1

t , χ, A, t − ∆t

2 ),

x2
t = ν(x́t, χ, e2

t , A, t, t − ∆t

2 ),

e3
t = ϵθ(x́2

t , χ, A, t − ∆t

2 ),

x3
t = ν(x́t, χ, e3

t , A, t, t − ∆t),
e4

t = ϵθ

(︂
x́3

t , χ, A, t − ∆t
)︂

,

e′
t = 1

6(e1
t + 2e2

t + 2e3
t + e4

t ),

xt−∆t = ν(x́t, χ, e
′

t, A, t, t − ∆t).

Table 7.1: Gradient equations of the different pseudo numerical methods [138]

φt = 1 − ξt, φ̄t =
t∏︂

s=1
φc, ˜︁ξt = 1 − φ̄t−1

1 − φ̄t

ξt (7.19)

tc = t +
√

ᾱt −
√

φ̄c√
ᾱt −

√
ᾱt+1

(7.20)
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Figure 7.5: Accelerated imputation. FastSTI utilizes "schedule alignment" to
estimate the denoised distribution, replacing multiple classical denoising steps,
thereby accelerating inference without significant loss of accuracy.

7.5 Experimental Results

7.5.1 Datasets

As detailed in Subsection 1.2.3, we conducted our experiments on two publicly
available real-life traffic datasets: METR-LA and PEMS-BAY [48]. METR-LA
comprises four months of traffic speed statistics collected from 207 loop detectors
installed on the highway of Los Angeles County. Similarly, PEMS-BAY holds six
months of traffic speed data from 325 sensors in the Bay Area.

7.5.2 Evaluation Metrics

7.5.2.1 Anticipation Metrics

We followed the same evaluation protocol as in [135, 140] to provide a fair com-
parison with the state-of-the-art. The data sets are split into 70% for training,
10% for validation, and 20% for testing. The model takes the historical traffic
speed of one hour and predicts the expected traffic speed for the next 15, 30, or 60
minutes. Three evaluation metrics are used: Mean Absolute Error (MAE), as in
(7.21); Root Mean Square Error (RMSE), described in (7.22); and Mean Absolute
Percentage Error (MAPE), described in (7.23).

MAE = 1
n

n∑︂
i=1

|yi − ýi| (7.21)

RMSE =
⌜⃓⃓⎷ 1

n

n∑︂
i=1

(yi − ýi)2 (7.22)
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MAPE = 1
n

n∑︂
i=1

|yi − ýi

yi

| (7.23)

7.5.2.2 Imputation Metrics

For imputation, we followed the evaluation protocol in [128,130]. Again, the data
sets are split into 70% for training, 10% for validation, and 20% for testing. Three
evaluation metrics are adopted: Mean Absolute Error (MAE), as in (7.21); Mean
Square Error (MSE), described in (7.24); and Continuous Ranked Probability
Score (CRPS) [141]. CRPS reflects the compatibility between a missing value x

and its estimated probability distribution D. CRPS is calculated as the integral
of the quantile loss Λω, as in (7.25), where ω is the quantile level and D−1(ω) is
the ω-quantile of the distribution D. The quantile loss is defined in (7.26).

MSE = 1
n

n∑︂
i=1

((xi − x́i) ⊙ meval)2 (7.24)

CRPS(P −1, x) =
∫︂ 1

0
2Λω(P −1(ω), x)dω (7.25)

Λω(D−1(ω), x) = (ω − 1x<D−1(ω))(x − D−1(ω)) (7.26)

Following the same setting in [128], 100 samples are generated to approximate
the distribution of missing values. We compute quantile losses for discretized
quantile levels with 0.05 ticks in Equation (7.27). The final metric is the average
CRPS computed at of the missing points CRPS(D, ˜︂X), as in (7.28).

CRPS(D−1, x) ≃
19∑︂

i=1
2Λi∗0.05(D−1(i ∗ 0.05), x)/19 (7.27)

CRPS(D, ˜︂X) =
∑︁˜︁x∈ ˜︁X CRPS(D−1, ˜︁x)⃓⃓⃓˜︂X ⃓⃓⃓ (7.28)
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Hyperparameter Value
Epochs 200
Batch size 16
Sequence length L 24
Learning rate 1 × 10−3

Weight decay 1 × 10−6

Residual layers 4
Residual channels r 64
Self-attention heads h 8
Temporal embedding dim m 128
Diffusion Schedule Quadratic
The minimum noise level β1 01
The maximum noise level βT 0.2
Diffusion steps T 50
Accelerated denoising steps Tacc 6
Variance Schedule {01, 1, 0.2, 0.3, 0.5, 0.9}

Table 7.2: FastSTI hyperparameters

7.5.3 Implementation Details

7.5.3.1 Anticipation Model

We train the model for 100 epochs, where the batch size is 64, using the Adam
optimizer with a learning rate of 1 and setting the dropout value to 0.2. To
extract the contextual graph, we set the search length in the DDTW algorithm to
Tsearch = 12, the longest prediction time step in the DSP-ST model. We tuned the
hyper-parameters of the model to the following values: The threshold of controlling
the sparsity of the contextual matrix is set to τ = 0.85, the number of attention
heads is 3, the hidden dimension of GAT is 32, and the number of the stacked
ST-blocks is S = 2.

7.5.3.2 Imputation Model

Table 7.2 summarizes our hyperparameters, where the model is trained for 200
epochs with a batch size of 16, learning rate of 10−3, and Adam optimizer. The
diffusion model noise schedule is Quadratic, and we utilize user-defined variance
schedules {01, 1, 0.2, 0.3, 0.5, 0.9}.
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7.5.4 Anticipation Results

We compare the DSP-ST model with nine baseline models, including statistical,
classical ML, and mainstream DL models in the traffic prediction domains, as
provided in Table 7.3. Our model DSP-ST outperforms other baseline models on
PEMS-BAY and METR-LA datasets. Traditional traffic prediction methods such
as ARIMA [72] and SVR [142] have the highest prediction errors. These method-
ologies cannot handle complex nonlinear traffic data, relying on historical time
series features and ignoring the spatial correlation. For the DL-based models, the
STGCN [143] and DCRNN [48] can simultaneously capture spatial and temporal
correlations. Still, these methods only use a predefined spatial/physical adjacency
matrix to construct a graph convolution network for spatial correlation modeling
but overlook semantic neighbor features. The Graph WaveNet [80] utilizes the
self-learning adjacency matrix to extract spatial features; however, it has a weak
ability to extract temporal features dynamically. Conversely, PGCN [86] combines
multiple graphs, such as the structural graph, self-adaptive graph, and progressive
graph, to capture the spatial correlation of traffic networks. However, the focus of
these graphs is mainly on local information aggregation and updates. In contrast,
Our DSP-ST considers both the local physical sub-graph and the global contextual
sub-graph, thereby enabling more effective learning of spatial correlations.

AA visualization of the forecasting curves of one hour on the PEMS-BAY and
METR-LA datasets is given in Figure 7.6. The DSP-ST model has a satisfac-
tory performance in data fitting for both datasets, proving that, regardless of the
curve smoothness, the DSP-ST model has a promising ability to learn the traffic
conditions and anticipate future flows.

7.5.5 Anticipation Ablation Experiments

We first analyze the effect of the sparsity hyperparameter τ on the RMSE perfor-
mance using the METR-LA dataset. As seen in Table 7.4 and Figure 7.7, there is
a moderate RMSE performance and computational cost when the threshold value
range is [0,1]. To balance both performance and computation cost, we chose 0.85
as the optimal value.

We conduct another ablation study on the METR-LA datasets to verify the
impact of the different components of our DSP-ST model: GAT w/o, DSP-ST
without the GAT module, replaced by a GCN module; CG w/o, DSP-ST without
the contextual graph; Multi-Att w/o; DSP-ST without the multi-head attention
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Datasets Models 15min (t=3) 30min (t=6) 60min (t=12)
e1 e2 e3 e1 e2 e3 e1 e2 e3

METR-LA

ARIMA [72] 3.99 9.60 8.21 5.15 12.70 10.45 6.90 17.40 13.23
SVR [142] 3.76 8.34 7.63 4.58 11.57 9.24 6.01 15.28 12.19

STGCN [143] 2.88 7.62 5.74 3.47 9.57 7.24 4.59 12.70 9.40
DCRNN [48] 2.77 7.30 5.38 3.15 8.80 6.45 3.60 10.50 7.60

Graph WaveNet [80] .69 6.90 .15 3.07 8.37 6.22 3.53 10.01 7.37
GMAN [144] 2.75 7.19 5.42 .01 .18 6.25 .34 .71 .21

MTGNN∗ [81] .69 .89 5.22 3.07 8.19 .19 3.52 9.84 7.23
GTS [145] 2.67 7.21 5.27 3.04 8.41 6.25 3.46 9.98 7.30
PGCN [86] 2.70 6.98 5.16 3.08 8.38 6.22 3.54 9.94 7.36

DSP-ST (ours) 2.71 6.71 5.06 2.94 7.85 6.11 3.31 9.67 7.15

PEMS-BAY

ARIMA [72] 1.62 3.50 3.30 2.33 5.40 4.76 3.38 8.30 6.50
SVR [142] 1.58 3.41 3.43 2.29 4.98 4.53 3.01 7.25 6.43

STGCN [143] 1.36 2.90 2.96 1.81 4.17 4.27 2.49 5.79 5.79
DCRNN [48] 1.38 2.90 2.95 1.74 3.90 3.97 2.07 4.74 4.90

Graph WaveNet [80] .30 2.73 .74 1.63 3.67 .70 1.95 4.52 4.63
GMAN [144] 1.34 2.81 2.82 .62 .63 3.72 .86 .31 .32

MTGNN∗ [81] 1.35 2.75 2.83 1.65 3.68 3.76 1.89 4.50 4.49
GTS [145] 1.34 2.82 2.83 1.66 3.78 3.77 1.95 4.58 4.43
PGCN [86] .30 2.72 .74 .62 .63 3.67 1.92 4.55 4.45

DSP-ST (ours) 1.28 .75 2.65 1.58 3.60 3.67 1.85 4.24 4.18

Table 7.3: Performance comparison of DSP-ST and other baseline models
(bold = best, underline = second best). MTGNN∗ denotes our retrain of the
model. e1 is the MAE, e2 is the MAPE (%), and e3 is the RMSE.

τ Training time (s/epoch) Inference time (s)
0.6 28.55 8.71
0.8 16.48 3.26
0.85 15.33 3.11
0.9 14.42 2.41
0.95 13.80 2.25

Table 7.4: The computational cost the sparsity threshold τ

for the temporal correlation modeling; Gating w/o; DSP-ST without the gating
mechanism at the TCN.

Figure 7.8 shows the average scores of MAE and RMSE over one-hour prediction,
compared to the complete DSP-ST model. There is a notable drop in the predic-
tion performance, especially for long-term forecasting (i.e., > 30 min) when GCN
replaces the GAT module (GAT w/o), where the edges among nodes are static
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(a) PEMS-BAY

(b) METR-LA

Figure 7.6: DSP-ST prediction curves on PEMS-BAY and METR-LA datasets

Figure 7.7: The RMSE performance of the sparsity threshold τ

weights rather than dynamic, resulting in a weak ability to extract spatial depen-
dencies dynamically. The same is observed with the removal of the multi-head
attention module (Multi-Att w/o). When the contextual graph is excluded (CG
w/o), the model no longer considers the semantic similarity information among
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Figure 7.8: Ablation study on DSP-ST

nodes on the traffic road network, leading to a decrease in the prediction accuracy,
as there is no extraction of the deep latent spatial correlation between the nodes.
The gating module can, to some extent, help the model remember necessary infor-
mation and ignore worthless ones during the training process, whereas the (Gating
w/o) shows a slightly decreased performance.

7.5.6 Imputation Results

We compare our FastSTI model with sixteen baseline models, including statistical
(Mean, KNN [146], Linear InTerPolation (Lin-LTP)), classical ML (MICE [147],
Vector AutoRegression (VAR), Kalman Filter (KF)), low-matrix factorization
(TRMF [148], BATF [149]), deep autoregressive (BRITS [150], GRIN [136]), and
deep generative models (V-RIN [151], GP-VAE [152], rGAIN [153], CSDI [128],
SSSD [129], PriSTI [130]) in the missing data imputation domain. Table 7.5 re-
ports the MAE and MSE comparison on METR-LA and PEMS-BAY datasets,
while Table 7.6 reports the CRPS metric on the two datasets. FastSTI, using only
6 denoising steps, outperforms all of the baselines, producing more realistic impu-
tation. Focusing on the comparison between FastSTI and PriSTI [130], we have a
close but still better performance, proving the effectiveness of the proposed con-
ditional pseudo-numerical method in generating higher-quality samples. FastSTI
also benefits from the GCN-based conditional features extractor, in contrast to the
message-passing neural network (MPNN) used in PriSTI. Additionally, the com-
parison between FastSTI-2 and FastSTI-4 favors FastSTI-4, which makes sense,
as the imputation quality should increase as the order of the numerical method
increases.
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METR-LA PEMS-BAY
Method Block (16.52%) Point (31.09%) Block (9.20%) Point (25.01%)

MAE MSE MAE MSE MAE MSE MAE MSE
Mean 7.48 139.54 7.56 142.22 5.46 87.56 5.42 86.59
KNN 7.79 124.61 7.88 129.29 4.30 49.90 4.30 49.80

Lin-ITP 3.26 33.76 2.43 14.75 1.54 14.14 0.76 1.74
KF 16.75 534.69 16.66 529.96 5.64 93.19 5.68 93.32

MICE 4.22 51.07 4.42 55.07 2.94 28.28 3.09 31.43
VAR 3.11 28.00 2.69 21.10 2.09 16.06 1.30 6.52

TRMF 2.96 22.65 2.86 20.39 1.95 11.21 1.85 10.03
BATF 3.56 35.39 3.58 36.05 2.05 14.48 2.05 14.90
BRITS 2.34 17.00 2.34 16.46 1.70 10.50 1.47 7.94
GRIN 2.03 13.26 1.91 10.41 1.14 6.60 0.67 1.55
V-RIN 6.84 150.08 3.96 49.98 2.49 36.12 1.21 6.08

GP-VAE 6.55 122.33 6.57 127.26 2.86 26.80 3.41 38.95
rGAIN 2.90 21.67 2.83 20.03 2.18 13.96 1.88 10.37
CSDI 1.98 12.62 1.79 8.96 0.86 4.39 0.57 1.12
SSSD 2.95 23.48 2.83 21.95 1.03 7.32 0.97 2.98
PriSTI 1.86 10.70 1.72 8.24 0.78 3.31 0.55 1.03

FastSTI-2 1.81 10.44 1.73 8.17 0.78 3.28 0.51 0.98
FastSTI-4 1.79 10.38 1.71 8.15 0.75 3.26 0.50 0.96

Table 7.5: MAE and MSE comparison with the baselines (All baseline results
are obtained from [130]) [bold = best, and underline = second best]

Method METR-LA PEMS-BAY
Block-M Point-M Block-M Point-M

V-RIN 0.1283 0.7781 0.0394 0.0191
GP-VAE 0.1118 0.0977 0.0436 0.0568

CSDI 0.0260 0.0235 0.0127 0.0067
PriSTI 0.0244 0.0227 0.0093 0.0064

FastSTI-2 0.0243 0.0223 0.0095 0.0062
FastSTI-4 0.0241 0.0219 0.0093 0.0060

Table 7.6: CPRS comparison (All baseline results are obtained from [130])
[bold = best, and underline = second best].
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(a) Block-missing scenario (b) Point-missing scenario

Figure 7.9: The impact of missing rate on the imputation performance on
METR-LA

We evaluate the impact of missing rates in the METR-LA dataset on the imputa-
tion performance in Figures 7.9a and 7.9b. Intuitively, as the rate of missing values
increases, data imputation becomes more challenging due to the reduced availabil-
ity of observed values and the increased complexity of extracting spatiotemporal
correlation of traffic conditions. Meanwhile, we can see that our proposed FastSTI-
4 consistently outperforms baseline models in terms of imputation performance,
regardless of the missing rate. Compared with the best baseline model PriSTI,
FastSTI-4 reduces the MAE by up to 17.96% (block-missing at 90% rate) and
7.3% (point-missing at 90% rate).

FastSTI utilizes a tuned variance schedule to improve inference speed in the
imputation process, which enables FastSTI to impute highly accurate traffic speed
data with only 6 reverse steps (8.3x less than the 50 steps of both PrisTSI [130]
and CSDI [128], and 33.3x less than the 200 steps of SSSD [129]). Thereby,
FastSTI significantly reduces the computational time required compared to these
competing diffusion architectures. Figure 7.10 displays the imputation time of
the models for all sensors throughout 2 hours with 5-minute intervals (24 points).
Our FastSTI-2 (6 steps) (∼ 15.12s) is 5x faster than PriSTI (∼ 78.96s) and 4x
faster than CSDI (∼ 60.2s). The higher-order FastSTI-4 (6 steps) (∼ 31.44s)
requires more inference time; however, FastSTI-4 (6 steps) is still 2.5x faster
than PriSTI and 2x faster than CSDI. Fast-STI (50 steps) requires more time
compared to the baseline models due to the utilization of two kinds of high-order
pseudo-numerical methods rather than the first-order one, which highly improves
imputation accuracy.
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Figure 7.10: Inference Times on METR-LA and PEMS-BAY Datasets

PN Diff-GCN
METR-LA

Block-missing Point-missing
MAE MSE MAE MSE

✗ ✗ 1.86 10.70 1.72 8.24
✗ ✓ 1.83 10.40 1.74 8.22
✓ ✗ 1.89 10.87 1.82 8.57
✓ ✓ 1.79 10.38 1.71 8.15

Table 7.7: The influence of the different components on FastSTI-4.

7.5.7 Imputation Ablation Experiments

We conduct an ablation study on the METR-LA datasets to verify the impact of
different components of our FastSTI model, where Table 7.7 illustrates the per-
formance of FastSTI-4 with and without employing the pseudo-numerical method
(PN) and the GCN-based conditional extractor (Diff-GCN). When we remove the
pseudo-numerical (PN) methods, the model no longer considers high-order numer-
ical methods converging to the exact solution when ∆t is closer to 0. Consequently,
it no longer utilizes a larger iteration interval ∆t to reduce global error, decreasing
imputation accuracy. The spatial learning sub-component, Diff-GCN, is crucial
in extracting geographic interactions among nodes within the spatial correlation.
Its absence leaves the model with a weak ability to capture the influence among
nodes by spreading the traffic feature information on graph G.
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METR-LA PEMS-BAY
Method Block (16.52%) Point (31.09%) Block (9.20%) Point (25.01%)

e1 e2 e3 e1 e2 e3 e1 e2 e3 e1 e2 e3

FastSTI-2-50 1.80 10.34 0.0241 1.69 8.01 0.0220 0.72 3.26 91 0.52 1.01 61
FastSTI-4-50 1.79 10.29 0.0239 1.68 7.99 0.0219 0.70 3.24 89 0.51 0.99 59
FastSTI-2-6 1.81 10.44 0.0243 1.73 8.17 0.0223 0.78 3.28 95 0.51 0.98 62
FastSTI-4-6 1.79 10.38 0.0241 1.71 8.15 0.0219 0.75 3.26 93 0.50 0.96 60

Table 7.8: The impact of increasing the number of steps on FastSTI. e1 is the
MAE, e2 is the MSE, and e3 is the CRPS.

Diffsion parameters Performance
β1 βT schedule MAE MSE

01 0.2
linear 1.96 12.46
cosine 1.88 11.78

quadratic 1.79 10.38
1 0.2 quadratic 2.06 13.87

01 0.1 quadratic 1.86 11.54
0.3 quadratic 1.91 11.89

Table 7.9: Influence of different diffusion parameters on METR-LA dataset
[bold = best].

Furthermore, Table 7.8 compares our FastSTI (6 steps) and FastSTI when in-
creasing the number of steps to 50. Surly, increasing the number of steps increases
the performance by a noticeable gap, proving the effectiveness of FastSTI quality-
wise. However, increasing the number of steps results in a dramatic increase in
imputation time.

We further explore the impact of the diffusion parameters on performance using
the METR-LA dataset, including the minimum noise level β1, the maximum noise
level βT , and the diffusion schedule to generate β. Table 7.9 reveals that FastSTI
performs best when setting β1 to 01, βT to 0.2, and utilizing a quadratic diffusion
schedule. Here, the noise level parameter is employed to regulate the diffusion
speed. The convergence speed of the model slows down when the βT is smaller,
while the numerical stability of the model is compromised when the βT is larger.
Additionally, regarding the diffusion schedule, a quadratic schedule outperforms
linear and cosine schedules, as the quadratic schedule allows for a gentle decay of
αt, improving sample quality and making it the optimal choice for FastSTI.
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7.6 Conclusion

We investigated the challenges of traffic speed prediction, proposing the new
method DSP-ST. In DSP-ST, we adapt physical and contextual graphs to extract
local spatial proximity and global contextual similarities of roads, in addition to
an attention Gated-TCN component to learn the temporal dependencies and a
GAT component to learn the spatial dependencies of roads. Our experiments on
real-world traffic datasets demonstrate our models’ ability to improve performance
compared to state-of-the-art works in traffic prediction.

Additionally, we investigated the accuracy and speed challenges of traffic data
imputation, proposing the FastSTI diffusion model. FastSTI utilizes a higher-
order pseudo-numerical methodology for a conditional diffusion model to enhance
traffic data imputation accuracy, in addition to utilizing a GCN-based module,
serving as feature prior knowledge and capturing the spatiotemporal correlations.
Additionally, in FastSTI, we address the time consumption problem of the diffusion
models with the utilization of a variance schedule to reduce the sampling iterations.
Again, our experiments on real-world traffic datasets proves the effectiveness of
our accelerated FastSTI in merging both fast and accurate sampling of the missing
traffic data.
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Chapter 8

Anomaly Actions Localization in
Semi-Supervised Videos

Chapter Abstract

This chapter details our novel approach and its preliminary results in
the extra task of anomaly actions detection and localization in videos,
with semi-supervised labeling. We introduce a transformer-based temporal-
hierarchical model that weighs the impact of the observed actions in
classifying a video as anomalous. Implementing a divide-and-conquer
approach over the temporal axis, the video is hierarchically segmented
into multiple instances, creating distinct temporal patches. Obtaining
sub-predictions from these diverse patches enhances the model’s ability
to estimate abnormality scores within video segments. ∗

8.1 Introduction

Surveillance plays a central role in almost all security systems; however, extracting
important events, particularly anomalies, from the vast pool of collected videos is
a time-consuming and exhaustive task. There arises a critical need for an intel-
ligent system capable of accurately and autonomously extracting and localizing
events of interest. The main challenge in training such a localization model lies
in the lack of supervision, as the massive amount of collected data for this task is

∗The work in this chapter was carried out during a 3-month visiting period in Computer and
Systems Engineering Department, Alexandria University, Egypt, under the supervision of Prof.
Marwan Torki.
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Figure 8.1: Each video is split into N segments. A normal video (yv = 0)
contains only normal segments (yi

s = 0, ∀i ∈ [1 : N ]). While an anomaly video
(yv = 1) contains at least one anomaly segment (yi

s = 1, ∃i ∈ [1 : N ]).

unsupervised or weakly supervised. Consequently, the employed model must be
able to decode event sequences, extract embedded relations, and identify potential
outlier behaviors. Many prior works have tackled this task, some in a fully unsu-
pervised approach [154,155], but mostly in a semi-supervised approach [24–27,49].
In weakly supervised settings, each video is labeled as normal or anomalous, yet
the specific location of the anomaly segment within the anomalous video is un-
specified. The standard protocol in the semi-supervised setting operates at the
segment level, aiming to maximize the hidden representation gap between normal
and anomalous segments, often overlooking per-video classification. However, de-
coding the relative dependencies within videos should enhance event understanding
and improve anomaly localization. Recent attention has been directed towards im-
age reconstruction approaches, wherein models are trained to reconstruct normal
videos or frames [156, 157]. Subsequently, these trained models are repurposed
to distinguish between high-quality reconstructions, indicative of normal frames,
and poor-quality reconstructions, indicative of anomaly frames. In our attempt to
address this challenge, we propose a novel approach utilizing per-video classifica-
tion. If a model can distinguish videos containing anomalies from normal videos,
the model’s hidden representation should inherently contain sufficient informa-
tion about the anomaly locations. We proposed a temporal divide-and-conquer
transformer-based model to classify the normality of a given video and its segments
at various temporal levels. We extract potential anomaly segments based on the
aggregated classifications of the model, along with their corresponding activation
maps. Preliminary results indicate promising insights into the effectiveness of our
proposed approach.
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Figure 8.2: Our divide-and-conquer transformer-based model

As shown in Figure 8.1, each video is split into a set of segments, where a video
is normal if it does not contain any anomalies, while it is an anomaly video if it
contains at least one anomaly segment. Unlike previous works, our objective is
to solve two tasks: the per-video classification task, predicting yv, and the per-
segment classification, predicting yi

s for each segment i in a given video. The per-
segment classification is fully unsupervised, based on the information extracted
during the per-video classification.

8.2 Temporal Divide-and-Conquer Model

We consider two classification tasks: whole video classification and individual
segments classification. The input to the model is a whole video, split into a
sequence of N segments, where each segment is a set of frames representing an
action/event. As depicted in Figure 8.2, the raw images in a segment Si are
projected to the feature space using Φ(Si), given in (8.1). Following [27], we
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extract the features xi ∈ R1×D from Si with a pre-trained SlowFast network [97],
where D is the feature size.

xi = Φ(Si) = MLP (SlowFast(Si)) (8.1)

Our divide-and-conquer approach begins with the coarse-grained task of per-
video classification, repeatedly breaking down the task into smaller sub-tasks until
reaching the fine-grained task of per-segment classification. The input features
of the complete sequence x ∈ RN×D is fed into the first prediction level, as an
initial representation of the segments h0,1

seg = (x + P ), where P is the position
embedding of the segments to preserve the temporal causality. At each prediction
level k ∈ [1, K], where K is the total number of levels, the model encodes the
segments signals received from the preceding level k − 1 with 2k−1 parallel self-
attention transformer layers [TLk

1 . . . TLk
2k−1 ]. The input to the transformer layer

TLk
l , at level k and split l, is the corresponding segments encoding from the

previous level h
k−1,⌈ l

2 ⌉
seg concatenated with the class query Cls, as shown in (8.2).

hk,l, wk,l = TLk
l (Cls∥h

k−1,⌈ l
2 ⌉

seg ) ∀l ∈ [1, 2k−1] (8.2)

From each transformer layer TLk
l , we consider the encoded representations of

the segments hk,l
seg ∈ R

N

2k−1 ×D, the encoded class hk,l
cls ∈ R1×D, and the attention

weights of the class query wk,l
cls ∈ R1×N , as shown in (8.3).

hk,l
cls = hk,l[0], hk,l

seg = hk,l[1 : N

2k−1 ], wk,l
cls = wk,l[0] (8.3)

A split l at level k represents a sub-prediction task of the normality of segments
included in the split. To classify the given split l, the model uses both class
encoding hk,l

cls and segments encoding hk,l
seg, as in (8.4). To capture the single effect

of each segment in the prediction, we apply a single layer perceptron without bias
on the average pooled encodings of the segments.

yk,l
cls = Sigmoid(MLP (hk,l

cls))
yk,l

seg = Sigmoid(SLP (AveragePooling(hk,l
seg)))

yk,l = (yk,l
cls + yk,l

seg)/2

(8.4)
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8.3 Localization Approach

Our model breaks the video prediction into a set of sub-predictions, where we aim
to measure the influence of a segment Si in all of its corresponding sub-predictions.
To capture such influence, we rely on three measuring factors:

• The abnormality prediction in the corresponding splits across the different
levels; the probability of Si to be an anomaly segment is monotonically
increasing with the corresponding probability of a parent split. Therefore,
this probability of Si is measured as the averaged predictions of its parent
splits across the K levels (pi = Average

k∈[1,K]
yk,l, l = ⌈ i

2k−1 ⌉).

• The activation effect of Si in the prediction yseg of parent splits; The higher
is the activation of the segment in an anomaly class, a the higher is its
probability of being anomaly. The averaged activation across the levels is
given by ai = Average

k∈[1,K]
hk,l

seg[i] and l = ⌈ i
2k−1 ⌉.

• The attention weights of Si in the class encoding wcls. Again, the higher
attention given to a segment during anomaly prediction, the more is its
influence and the higher is its probability to be an anomaly. Therefore the
attention maps of the class encodings in the corresponding splits are averaged
across the levels to provide an estimation of effect of Si in the prediction.
(wi = Average

k∈[1,K]
wk,l

cls[i], l = ⌈ i
2k−1 ⌉).

Based on these three factors, an aggregated estimation of the abnormality score
ni of a segment is computed as the weighted average of the normalized factors, as
given in (8.4), where α, β, and γ are weighting parameters.

ni = αyi + βwi + γhi (8.5)

Considering the fact that anomaly segments are mostly grouped together in the
video, we smooth the estimated probabilities of the segments across the video with
moving average followed by spikes filtering to remove possible outlier scores.
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8.4 Experimental Results

8.4.1 Dataset

We evaluate our model on the UCF-Crime dataset (see Subsection 1.2.4) [49].
The dataset consists of 1900 surveillance videos, over 128 hours, and contains 13
different anomaly behaviors, (i.e., Abuse, Assault, accident, fighting, robbery, . . . ).
The videos are split into 32 segments, and the ground truth per-segment class is
provided for the 32 segments in only the test split of the data.

Following the standard evaluation of the task [24], we use AUC-ROC to evaluate
the detection performance of anomalies, and we also report the accuracy and the
F1-score.

8.4.2 Implementation details

To increase the temporal resolution of the input, we split the videos into N = 64
segments, setting the number of levels to K = 6. The feature size D is 288, and
each transformer layer includes 8 self-attention heads. The model is trained for
100 epochs with an SGD optimizer with a learning rate 0.01 and binary cross
entropy loss. The weighting parameters α, β, and γ are set to 0.9, 0.05, and 0.05,
respectively.

8.4.3 Preliminary Results

First, We report the Preliminary outcomes of our approach. As shown in Ta-
ble 8.1, we divide the SOTA works into two categories: basic multiple instance
learning models [24,25,49], and iterative MIL with pseudo labeling model [26–28].
Our model achieves slightly better performance with the best performing basic
MIL learning [24], yet it overlooks the bags pairing techniques used in the MIL
approaches, achieving good performance by only measuring the influence of the
segments in the individual videos classification. However, compared to the itera-
tive techniques, our model achieves degraded performance. Such techniques aim
to overcome weak supervision by providing a form of pseudo labels to the training
dataset, transforming the problem to fully supervised learning, which explains the
out-performance of these techniques.
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Approach Backbone AUC
MIL [49] Inter-bags distance ↑ C3D + FC 75.41
TCN-IBL [25] Inter-bags ↑ & Intra-bags distance ↓ C3D + TCN 78.66
MIL-MA [24] Attention-based inter-bags distance ↑ PWCNet + TAN 79.00
GC-LNC [28] Iterative Label Cleaning C3D + GCN 82.12
MIL-MIST [26] Pseudo Labels I3D + Attention 82.30
MIL-Aug [27] Pseudo Labels SlowFast + FC 81.24
Ours Estimate segments activation SlowFast + Transformer 79.47

Table 8.1: Comparison with the state-of-the-art works.

# of Levels (K) Cls Multi-scale ACC AUC F1
K = 1 K = 6 Query Input

✓ ✗ ✗ ✗ 83.97 83.89 83.09
✓ ✗ ✓ ✗ 85.02 84.83 83.40
✓ ✗ ✓ ✓ 85.02 84.90 83.89
✗ ✓ ✓ ✓ 87.46 87.43 87.05

Table 8.2: Per-video performance ablation.

Then, we show initial ablation experiments evaluating the different components
in the proposed approach. Table 8.2 reports the per-video performance with differ-
ent model variants. Notably, including the sub-predictions levels has the strongest
influence on the per-video classification, where breaking down the problem into
sub-tasks and attempting to solve these tasks propagates to the primary classifica-
tion task, improving its performance. Additionally, integrating a class query into
the transformer layers adds value to the performance, as it is able to give more
attention to the highly related segments to the prediction. Finally, as mentioned
earlier, we increase the temporal resolution by increasing the segmentation from
the standard 32 to 64; however, integrating both resolutions through averaging
into the model allows for higher temporal interpretation and better performance,
as shown in the table.

Finally, Table 8.3 illustrates the per-segment anomaly localization using differ-
ent estimation techniques. Again, the inclusion of multiple levels has the most
significant effect on the detection performance, where the score of each segment
is measured concerning multiple temporal splits. The activation maps of the seg-
ments and the attention weights of the class query provide a reasonable estimation
of the segments’ abnormality, where this estimation is the best when used together.
The model reports a degraded accuracy and F1, indicating an increase in the miss-
rate of the normal class. Although, the F1 drops by 2.5% against 5% increase in
the AUC, which is the most meaningful metric in the anomaly detection task.
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# of Levels (K) Activation Attention Predictions ACC AUC F1
K = 1 K = 6 Maps Weights

✓ ✗ ✓ ✗ ✗ 73.73 72.83 40.11
✓ ✗ ✗ ✓ ✗ 70.09 72.28 38.17
✓ ✗ ✓ ✓ ✗ 73.18 73.87 40.65
✗ ✓ ✓ ✓ ✓ 66.54 79.47 37.78

Table 8.3: Per-Segment performance ablation.

Figure 8.3: A qualitative example on the anomaly scores estimations for the
anomaly action "Assult", where the action starts at segment S5 and continues
until final segment S32. ni is the score estimated in (8.5), ai is the segments
activation weights, and wi is the attention weights.

8.4.4 Qualitative Example

Figure 8.3 plots the estimated anomaly scores of the segments contained in an
anomaly video ("Assult" event). The video begins with normal events during the
first segments [S1 −S4]; then the anomalous event starts at S5. As shown, all three
abnormality measuring factors report lower scores at the beginning but get higher
as the anomaly action starts. The aggregated anomaly estimation ni gives smooth
estimations along the segments, benefiting from the fused estimation factors. The
activation map ai and the attention weights wi report slightly decreased scores
during the anomaly event, yet they are still higher than the normal segments.
The anomaly estimation starts to decrease by the end of the video, where the
"assaulting" event starts to decay. This proves the ability of the model to interpret
the events apparent in the segments and distinguish anomaly ones, depending
solely on the information extracted during classifying the video.
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8.5 conclusion

In this chapter, we detailed our work on the anomaly localization and detection
task in semi-supervised videos. The preliminary results provide promising insights
into the proposed approach, with a close performance to the state-of-the-art works
in the problem. However, the work is still open to further improvements.

Our future direction will aim to tune the predictions of the sub-video-sequences.
In our current setting, we assume anomaly labeling for all sub-predictions related
to an anomaly video. However, the perfect scenario is to have the correct labels for
all predictions. Based on the SOTA comparison, pseudo-labeling allows for better
performance, which could be a promising direction. Another promising direction
is decoding the single frames, where more information could be extracted from a
single anomaly, helping the model better detect the anomaly events.





Chapter 9

Conclusions and Future Work

We conclude the work integrated into this dissertation, summarizing our con-
tributions and findings and exploring the possible directions of future work. In
summary, we addressed the human action anticipation task, focusing on two key
domains for action anticipation: kitchen activities anticipation and pedestrian ac-
tion anticipation. Then, we expanded our research to traffic flow anticipation and
tackled the anomaly actions detection domain. Our research focused on designing,
developing, and evaluating different deep-learning models and approaches across
diverse domains.

9.1 Summary of Contributions

SlowFast RULSTM, We introduced a novel multi-time-scale attention-based
approach that combines information extracted from varied time scales to antici-
pate human actions in egocentric videos. Our methodology involved employing
two time branches, slow and fast. This dual-branch design facilitated the discrim-
ination of diverse actions with different progressing rates. We investigated several
fusion techniques to combine multiple input modalities, demonstrating the model’s
tendency to benefit from fusing the input modalities prior to integrating the dif-
ferent time scales. Our proposed approach outperformed a state-of-the-art model
on two well-known kitchen activities benchmarks, EpicKitchens-55 and EGTEA
GAZE+. We also demonstrated superior performance compared to another multi-
scale model on the EpicKitchens-55 dataset.

Early Intent Anticipation, We moved to the pedestrian action anticipation
task, revisiting the standard anticipation protocol employed for pedestrian intent
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prediction and expanding the intent anticipation to several seconds before the
event. Our proposed early anticipation protocol showed robust performance with
no or negligible impact on early anticipation with respect to late anticipation.
We adapted RULSTM for intent anticipation, and to further improve the early
anticipation performance, we extended the model by incorporating a goal module
designed to anticipate future features, thereby enhancing the prediction. Our
model proved out-performance, particularly in early anticipations, compared to
a state-of-the-art model in intent prediction on JAAD and PIE datasets. The
integration of the goal module results in a notable improvement in prediction
accuracy, reaching up to 3% compared to models that do not anticipate future
features.

TAMFORMER, Here, we addressed pedestrian action anticipation again, intro-
ducing a transformer-based model with a multi-modality approach. We upgraded
our transformers with a module that dynamically learns attention masks to mea-
sure the correspondences within temporal sequences. We additionally employed a
novel loss function, aiming to narrow the performance gap between early antici-
pation times and the latest anticipation. Our experimental results highlighted the
superior performance of our proposed model, showing an improvement of up to
+2% F1 on PIE and +5% F1 on JAAD within the [2 − 1]s anticipation range.

Language-Aided Anticipation, Continuing on the pedestrian action anticipa-
tion task, we expanded the conventional binary task of predicting the pedestrian’s
intent to cross or not cross to encompass the anticipation of multiple actions.
We then proposed and investigated the incorporation of language descriptions
for pedestrian action anticipation. Our investigation involved diverse language
generation approaches and tools, proving the efficacy of merging vision-language
features to augment the comprehension of visual scenes and elevate anticipation
performance. Our evaluation on a novel large-scale urban scenes dataset, named
LOKI, proved the superiority of our language-aided anticipation approach, reach-
ing a notable 29.5% F1-score improvement at the 1-second anticipation and 16.66%
improvement at the 4-second anticipation, over to not using language.

Traffic Flow Anticipation and Data Imputation, We addressed the prob-
lem of traffic behavior anticipation, proposing a dual-graph-based approach that
considers the contextual correlations within the road network in addition to the
physical neighboring correlation. The proposed model employs an attention-based
approach to encode the spatial and temporal information, in addition to a utilized
GCN for encoding the dual-graph. We extended the problem to traffic data im-
putation. The experimental evaluation demonstrated the outperformance of our
model compared to the existing prediction baselines.
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Anomaly Actions Recognition and Localization, We investigated the task
of abnormal behavior recognition in semi-supervised videos, proposing a new
transformer-based model for anomalous segments localization, utilizing a multi-
level scoring approach. The preliminary results provide promising insights into
the proposed approach, with a close performance to the state-of-the-art works in
the problem.

9.2 Future work

The significance of human action anticipation is evident in many applications,
as explained throughout our work. Despite the current advancements, anticipa-
tion performance remains constrained, particularly the early anticipation of multi-
second predictions, as deep learning models have yet to match human capabilities
in comprehending and perceiving visual stimuli. This limitation prompts the ex-
ploration of promising directions for field advancement.

One direction is represented in the integration of language and vision in antici-
pation tasks. For example, vision question answering could guide image captioners
to furnish tailored captions in response to posed questions, opening new dimen-
sions for anticipatory understanding. Another promising direction is the collective
anticipation involving multiple agents. This broader scope allows for considering
the interactions among agents within an environment during anticipation. For
instance, simultaneously predicting the actions of multiple pedestrians while fac-
toring in their mutual influence holds the potential for heightened context com-
prehension and superior anticipation. Expanding collective anticipation to include
vehicles, bicycles, and other potential agents in street scenes promises a more com-
prehensive understanding. To this extent, our future work will include, but not
limited to, the exploration of these directions, investigating their potentials and
tailoring models that effectively leverage additional information to augment the
anticipation.

Moreover, the anticipation task can be extended to various other applications.
For instance, broadening the scope of anomaly detection to include anomaly an-
ticipation could significantly enhance the capabilities of security and surveillance
systems, contributing to the prevention of accidents and abnormal behaviors. How-
ever, this particular task has not been thoroughly explored in the research com-
munity, especially with insufficient grounding for the training data. Therefore,
investigating this direction could unveil numerous research opportunities.
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