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Abstract
Department of Civil, Architectural and Environmental Engineering

Doctor of Philosophy

Physics-Informed Neural Network in porous media and epidemiological

applications

Caterina Millevoi

This doctoral thesis delves into the application of Physics-Informed Neural Network (PINN)

across diverse domains, notably in the field of porous media and epidemiology. The

goal is to analyze the potential of PINNs in solving complex problems, for the purpose

of integrating them with well-established methods and enhancing the capability of ob-

taining reliable modeling predictions. The study aims at:

• utilizing PINN for forward solution modeling and parameter estimation in hydro-

poromechanics,

• extending PINN capabilities to track the temporal changes in the model parame-

ters and provide an estimate of the model state variables in epidemiological mod-

eling.

With the need for robust, computationally efficient tools in the field of application, PINNs

emerge as a promising tool to bridge traditional physics-based modeling and modern

machine learning approaches.

In the hydro-poromechanics domain, the study reveals insights into effective neu-

ral network architectures through a sensitivity analysis, shedding light on significant

hyper-parameters and network complexities crucial for efficient PINN training. Ad-

ditionally, a sensor-driven approach is introduced to accelerate convergence and en-

hance accuracy by integrating field data automatically during the training. The pro-

posed method showcases promising results in real-world applications, where com-

bining some data measured in the site can help to account for marginal effects due
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to several minor dynamics. The thesis also tackles the inverse problem of parameter

identification in Biot’s model, analyzing the potential of PINNs in estimating key ge-

omechanical and hydraulic properties of subsurface materials.

Shifting focus to epidemiology, the work introduces novel approaches to enhance

PINN applications for simulating the spread of epidemics, based on the solution of

Susceptible-Infectious-Recovered (SIR) based epidemiological models, and estimating time-

dependent transmission rates. In this context, a split PINN approach, involving a two-

step training process, is proposed. The method proves to be a computationally efficient

alternative, outperforming the traditional training of PINNs in terms of both accuracy

and speed. A reduction of the SIR model is also presented, which limits the number of

unknown functions and loss terms. Application to synthetic and real-world data from

the Italian COVID-19 epidemic highlights the adaptability of PINNs in capturing sys-

tem dynamics, showcasing improved accuracy in estimating critical time-dependent

parameters and modeling the process with respect to the traditional approach.

This interdisciplinary study underscores the versatility of PINNs, providing a frame-

work for assisting traditional methods in modeling coupled flow-deformation pro-

cesses in porous media and epidemiological investigations, where the integration of

data series with traditional differential models is crucial. The findings of this the-

sis work aim at contributing to advancements to the application of PINNs in hydro-

poromechanics and epidemiology, and open avenues for future research, with the goal

of combining the potential of deep learning in conjunction with physics-based models

to advance predictive capabilities in complex systems.
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Sommario
Dipartimento di Ingegneria Civile, Edile e Ambientale

Dottorato di Ricerca

Physics-Informed Neural Network in porous media and epidemiological

applications

Caterina Millevoi

Questa tesi di dottorato approfondisce l’applicazione delle Physics-Informed Neural

Network (PINN) in diversi ambiti, in particolare nel campo dei mezzi porosi e dell’epide-

miologia. L’obiettivo è analizzare il potenziale delle PINN nella risoluzione di problemi

complessi, col fine di integrarle ai metodi tradizionali per ottenere modelli affidabili in

grado di effettuare analisi e previsioni. Lo studio si propone di:

• fare uso delle PINN per approssimare le variabili di interesse e stimare i parametri

significativi in poromeccanica,

• estendere la capacità delle PINN di tracciare i cambiamenti temporali nei parametri

e nelle variabili di stato dei modelli epidemiologici.

Data la necessità di disporre di strumenti robusti ed efficienti dal punto di vista com-

putazionale in campo applicativo, le PINN emergono come uno strumento promettente

per fondere i modelli tradizionali basati sulla fisica con i più moderni approcci di ap-

prendimento automatico.

Nell’ambito dei mezzi porosi viene esaminato, attraverso un’analisi di sensibilità,

l’impatto dell’architettura delle reti neurali nella soluzione tramite PINN del modello

poroelastico formulato da Biot, facendo luce sugli iperparametri significativi per un

addestramento efficiente delle PINN. Inoltre, viene introdotto un approccio chiam-

ato sensor-driven per accelerare la convergenza e migliorare l’accuratezza del mod-

ello PINN, aggiungendo misurazioni disponibili al training delle reti neurali. I risultati
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ottenuti sono promettenti per le applicazioni del mondo reale, dove l’integrazione di

alcuni dati raccolti sul campo può aiutare a tenere conto degli effetti marginali dovuti

a fenomeni minori. La tesi affronta in questo ambito anche il problema inverso, ovvero

l’identificazione dei parametri nel modello di Biot, analizzando il potenziale delle PINN

nello stimare le principali proprietà geomeccaniche e idrauliche dei materiali del sotto-

suolo.

In campo epidemiologico, il presente lavoro di tesi introduce nuovi approcci per

migliorare l’applicazione delle PINN nella simulazione della diffusione di epidemie,

basandosi sul modello compartimentale SIR per stimarne la velocità di trasmissione. In

questo contesto, viene proposto un approccio split, che prevede un processo di ad-

destramento delle reti in due fasi. Tale metodo risulta un’alternativa efficiente dal

punto di vista computazionale, superando il tradizionale addestramento delle PINN

sia in termini di accuratezza, che di velocità. Viene inoltre presentata una forma ri-

dotta del modello SIR, che consente di diminuire il numero di funzioni incognite e di

termini della funzione costo. Le performance dell’approccio proposto vengono inves-

tigate e discusse in casi test sia con dati sintetici che con dati reali della sorveglianza

dell’epidemia di COVID-19 in Italia. I risultati evidenziano la capacità delle PINN di ap-

prossimare le dinamiche del processo epidemiologico e dimostrano una maggiore pre-

cisione sia nella stima dei parametri dipendenti dal tempo, che nella modellizzazione

dei contagi rispetto all’approccio tradizionale.

Questo studio interdisciplinare sottolinea la versatilità delle PINN, fornendo un in-

quadramento di questo strumento col fine di integrare la modellizzazione di problemi

accoppiati flusso-deformazione in mezzi porosi e di indagini epidemiologiche, in cui

svolge un ruolo fondamentale l’integrazione di serie di dati con approcci differen-

ziali classici. I risultati oggetto del lavoro di tesi vogliono contribuire al progredire

dell’applicazione delle PINN nell’ambito dei mezzi porosi nonché dell’epidemiologia,

gettando le basi per la ricerca futura, con l’obiettivo di combinare il potenziale del Deep

Learning (DL) con modelli basati sulla fisica per migliorare le capacità predittive nella

modellizzazione di sistemi complessi.
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Chapter 1

Introduction

Deep Learning (DL), a subfield of Machine Learning (ML), has gained success in solving

complex problems by utilizing artificial neural networks with multiple layers in differ-

ent applications, ranging from image recognition to natural language processing [Rus-

sakovsky et al., 2015; Young et al., 2017]. At its core, DL involves training a Neural Net-

work (NN) on vast amounts of data, enabling it to discern intricate patterns and make

predictions. This capability has strongly impacted on the way several complex prob-

lems are approached, allowing for significant accuracy and efficiency in tasks where

huge quantities of data are available [Sejnowski, 2018].

In recent years, the intersection of DL and traditional physics-based modeling has

led to important advancements, paving the way for innovative approaches [Karni-

adakis et al., 2021]. Physics-Informed Neural Network (PINN) combines principles of physics

with DL, leveraging NNs to approximate solutions to physical equations and handle

real-world applications [Raissi et al., 2019]. PINNs have introduced a novel paradigm

that integrates domain-specific knowledge with machine learning methodologies. PINNs

leverage the power of NNs to approximate solutions to partial differential equations, ef-

fectively combining data-driven insights with the governing laws of physics. Indeed,

the loss function is constructed to include physical constraints, incorporating informa-

tion from both data points and physics equations. This amalgamation can not only en-

hance the predictive capabilities of models but also enable the incorporation of physical

principles into the learning process. The practice to approximate unknown functions

with NNs offers flexibility and adaptability, and the use of automatic differentiation

to compute their derivatives in a continuous way minimizes the propagation of un-

certainties. PINNs find application across diverse scientific and engineering domains,

1
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ranging from blood flow simulations [Sun et al., 2020] and turbulent flows [Mathews

et al., 2021; Xiao et al., 2020] to optics [Chen et al., 2020b; Wiecha et al., 2021], molec-

ular dynamics [Stielow and Scheel, 2021; Islam et al., 2021], geoscience [Li et al., 2021;

Smith et al., 2021], and industrial processes [Yucesan and Viana, 2021]. The methodol-

ogy proves versatile, addressing both forward and inverse problems in these domains,

and it has the potential to become an important tool in safety-critical scenarios, digital

twin applications, and multi-scale modeling.

Numerous challenges necessitate a multidisciplinary approach, where insights from

diverse fields converge to address complex problems. This thesis discusses the appli-

cation of PINNs in the context of hydro-poromechanics and epidemiological model-

ing, endeavoring to contribute to two critical domains combined by the interplay be-

tween dynamic processes and difficult-to-model phenomena. The overarching goal is

examining the potential of PINN-based formulations to support the modeling of cou-

pled flow-deformation problems in porous media and epidemiological investigations,

where data integration with traditional differential approaches is crucial. The specific

objectives include:

• Formulate PINN tailored to hydro-poromechanical systems and epidemiological

processes.

• Investigate the efficacy of PINNs in accurately estimating parameters in the dy-

namic and complex contexts of both hydro-poromechanics and epidemiology.

• Apply the developed models to synthetic test cases and real-world scenarios, en-

compassing subsurface processes and the spread of infectious diseases within

populations.

In the field of hydro-poromechanics, which includes among others applications in

the geosciences and biomedicine, the coupled simulation of processes like fluid flow

and solid deformation in porous media is crucial. Well-established numerical meth-

ods, such as Finite Element (FE) and Finite Difference (FD), have been widely used [Lewis

and Schrefler, 1998], but PINNs can offer an alternative (or support) by integrating

physics-based modeling and machine learning. Within the context of coupled hydro-

poromechanics, the thesis investigates the application of PINNs for both forward and
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inverse modeling. Since advances in this field can have broad implications for resource

management and environmental sustainability, just to mention a few, we aim at build-

ing a PINN-based model for hydro-poromechanical applications governed by Biot’s

poroelasticity equations which is essential to many scientific fields, such as hydroge-

ology [Verruijt, 1969; Gambolati et al., 2000; Gambolati and Teatini, 2015], petroleum

engineering [Detournay and Cheng, 1993], soil mechanics [Verruijt, 2018], biomechan-

ics [Mow et al., 1980], rock mechanics [Guéguen et al., 2004; Castelletto et al., 2010],

and theoretical mechanics [Cheng, 2016] in civil engineering. We focus on the use of

the poroelasticity model in subsurface engineering for energy resources. PINN training

for multi-physics problems is demanding: challenges include convergence, stability,

and the impact of neural network architecture on solution accuracy. Investigating var-

ious configurations, including NN architectures, loss development, and training pro-

cedures is of central importance [Cuomo et al., 2022]. Therefore, a sensitivity analysis

of the architecture of PINNs is performed and a sensor-driven hybrid approach is pro-

posed, which integrates data within the PINN framework aiming to speed up the train-

ing times, reduce coupled problem solution complexity, and enhance neural network

efficiency [Millevoi et al., 2021]. Moreover, PINNs are introduced as a tool for inverse

modeling, providing estimations of material parameters, which are of paramount im-

portance for the characterization of the subsurface and the consequent approximation

of its behavior. The deterministic approach offered by PINNs is the core of the matter,

given by their capability to bridge physics-based modeling and machine learning. The

method is applied on different test cases, with a special focus on heterogeneous prob-

lems, that entail discontinuous derivatives of the quantities of interest [Millevoi et al.,

2023b]. The results consent us to highlight the strengths and the weaknesses of the

approach and propose possible solution to the challenges encountered.

Shifting focus to epidemiological models, the last part of the thesis discusses the

role of PINNs, particularly in the context of the simulation of the COVID-19 pandemic

evolution. Compartmental models, such as the Susceptible-Infectious-Recovered (SIR) model,

provide simple and efficient tools to analyze the relevant transmission processes during

an outbreak, to produce short-term forecasts or transmission scenarios, and to assess
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the impact of vaccination campaigns [Ogilvy and G., 1927]. However, their calibra-

tion is not straightforward, since many factors contribute to the rapid change of the

transmission dynamics during an epidemic. For example, there might be changes in

the individual awareness, the imposition of non-pharmacological interventions and

the emergence of new variants [Albi et al., 2021; Giordano et al., 2021; Marca et al.,

2022]. As a consequence, model parameters such as the transmission rate are doomed

to change in time, making their assessment more challenging. In this context, we pro-

pose to use PINNs to track the temporal changes in the model parameters and provide

an estimate of the model state variables. The ability of PINNs to identify unknown

model parameters makes them particularly suitable to solve ill-posed inverse prob-

lems, such as those arising in the application of epidemiological models. Hence, we

develop a reduced-split approach for the implementation of PINNs to estimate the tem-

poral changes in the state variables - i.e. compartmental classes of the susceptible,

infectious, and recovered population - along with the transmission rate - or the re-

production number - of an epidemic based on the SIR model equation and infectious

data [Millevoi et al., 2023a]. The main idea is to split the training first on the epidemi-

ological data, and then on the residual of the system equations. The proposed modi-

fications to the PINN algorithm aim to enhance convergence and stability, especially in

estimating time-dependent transmission rates.

Thesis structure

The remainder of the thesis is organized as follows:

• Chapter 2. This chapter provides a comprehensive survey of relevant literature

in DL and introduces the concept of PINN. The key elements of neural networks

are presented and an overview of the operating principles and the evolution

of NNs is given, with a far from exhaustive review of the plenty of applications in

the recent years. The chapter lays the groundwork for understanding the subse-

quent applications in hydro-poromechanics and epidemiological modeling.

• Chapter 3. Focusing on coupled hydro-poromechanics, this chapter explores
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the application of PINNs to describe processes in geomechanics and hydrogeol-

ogy. The discussion includes an initial sensitivity analysis on the different hyper-

parameter setting defining the architecture of PINNs in this context. The obtained

results are later applied for the forward solution of coupled Biot’s model, suggest-

ing a sensor-driven framework to improve the training trend and the prediction

accuracy.

• Chapter 4. In this chapter, we focus on the task of estimating material parame-

ters in hydro-poromechanical systems. We investigate the behavior of PINNs in

parameter identification in several test cases, including the simulation of the con-

solidation in homogeneous and heterogeneous domains with or without water

pumping installation.

• Chapter 5. Moving on to epidemiology, this chapter showcases the applica-

tion of PINNs in understanding and predicting the spread of diseases. The SIR

compartmental model has been considered and the chapter discusses the chal-

lenges posed by time-dependent transmission rates, presenting modifications to

the PINN algorithm for faster convergence and stability. The proposed split train-

ing and reduced model are tested and compared with the standard approach in

various setting, including a real-world application with data coming from the

Italian COVID-19 surveillance.

• Chapter 6. The final chapter summarizes the key findings, discusses the contri-

butions of this research, and outlines potential avenues for future exploration.





Chapter 2

Deep Learning Fundamentals

In the field of Artificial Intelligence (AI) - i.e. the capability of computers to mimic hu-

man intelligence way of thinking to execute tasks that need cognitive abilities [Russel

and Norvig, 2022] - Deep Learning (DL) belongs to the Machine Learning (ML) subclass,

which refers to an AI system ability to improve performance based on experience and

learn on its own by extracting patterns from raw data. Indeed, while AI (“The science

and engineering of creating intelligent machines” John McCarthy, 1956) can also be ac-

complished by explicitly programming a machine to tackle a specific problem stated

by formal instructions, a formal characterization of the task at hand is not always pos-

sible. In this context, computers are not expressly taught to perform a certain activity,

but instead learn via experience [Mitchell, 1997]. Arthur Samuel in 1959 announced

the advantage of ML and stated that "programming computers to learn from experi-

ence should eventually eliminate the need for much of this detailed programming ef-

fort" [Samuel, 1959]. In particular, the core of DL is the organization of the computation

path from inputs to outputs into many layers. The adjective deep mention the use of

multiple layers - i.e. compositions - to progressively extract higher-level features from

the raw input. For high-dimensional data, like images, DL has significant advantages

over some ML techniques.

The origins of DL date back to 1943, when McCulloc and Pitts [McCulloch and Pitts,

1943] tried to model the networks of neurons in the brain, aiming at simulating the

human way of thinking in order to build an intelligent entity that can compute how

to act effectively and safely in a wide variety of novel situations. The structure they

aimed to reproduce is the one of biological neurons, that are made up of a central body,

called soma - which contains the nucleus and many of the more complex components -

7
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some ramifications, called dendrites, and a longer extension, the axon. The fine terminal

branches of the axon, called telodendria, end with the synapses, that can link to other

neurons and send short electrical pulses - signals.

In this chapter we describe in detail the core of DL, that is Neural Network (NN), from

the fundamental structures to the basic computations underpinning NNs. Some of the

most popular architectures - such as Feedforward Neural Network (FNN), Convolutional

Neural Network (CNN), and Recurrent Neural Networks (RNN) - are introduced to finish

with Physics-Informed Neural Network (PINN), the protagonist of the whole study and

applications of this Ph.D. dissertation. This allows us to provide an overview of the

topic that contextualizes the thesis work embodied in the following chapters.

The main references for this chapter are: Russel and Norvig [2022]; Murphy [2012];

Haykin [1999]; Bose and Liang [1996].

2.1 Neural Networks

2.1.1 Basics of Artificial Neurons

Due to the link with biology, the basic unit of DL is called Neural Network (NN). In Good-

fellow et al. [2016] a NN is described as a mathematical function that simulates the link

between a set of input and some corresponding output values. This mathematical func-

tion is obtained by composing simple (nonlinear) functions and allows to learn com-

plex feature hierarchies. NNs can be utilized both for regression task and for classification

of data: in the former case the network provides a continuous output, while in the lat-

ter case the values produced are discrete. The goal is to exploit them to build a model

by means of dataset of input-output pairs, so that the model can learn the correlation

between the two and would be able to generalize to new data. The procedure is called

training and will be described in detail later on (Section 2.2). The key concept of NNs

is the need of data, that could come from measurements and investigations, or can be

built ad hoc, for example by simulations.
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Perceptrons

One of the simplest artificial NN is the perceptron [McCulloch and Pitts, 1943; Rosenblatt,

1958]. It models a biological neuron and serves as the fundamental building block for

more complex NN architectures.

A perceptron takes multiple binary inputs (0 or 1) with an associated weight: it

computes a weighted sum of these inputs and then applies an activation function to

the sum, whose output is also binary. The output ŷ of a perceptron can be represented

as:

ŷ =

8
>><

>>:

1 if
X

j

wjxj + b > 0

0 otherwise

(2.1)

Where wj are the weights associated with the inputs xj , b is a bias term. Perceptrons

are limited in their ability to model complex relationships in data and can only solve

linearly separable problems. However, they were a foundational concept in the de-

velopment of neural networks and served as a precursor to more advanced neuron

models, which can handle more complex tasks.

Activation Functions

The output shape can be generalized through the introduction of a function, called

activation function, that defines how the weighted sum of the input is transformed into

an output from nodes in a layer of the network. The following notation, with � the

activation function, generalizes (2.1) and is the fundamental operation of DL, called

node, or (artificial) neuron:

ŷ = �(
X

j

wjxj + b) (2.2)

Hence a perceptron is an artificial neuron using the Heaviside step function as acti-

vation function.

Whereas at the beginning the role of the activation function was to simulate the be-

havior of biological neurons (that can be on or off), by adjusting to 0 (off) and 1 (on) the

contributions that reach the neuron, later the main goal was to give nonlinearity to the

model. This will improve considerably the expressivity of the model, as a two-layer
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neural network with a nonlinear activation can be proven to be a universal function

approximator [Cybenko, 1989; Hornik et al., 1989]. This is known as the Universal Ap-

proximation Theorem.

In short, a node calculates the weighted sum of its inputs and then applies a non-

linear function to produce its output. The range of the activation function is generally

restricted, so that the weight values are maintained low. Activation functions are also

typically differentiable, given that NNs are frequently trained using the backpropaga-

tion of error algorithm (see Section 2.1.2), which needs the derivative of the prediction

error to update the model weights. The most common activation functions are dis-

played in Figure 2.1. Note that all of them are monotonically non-decreasing, which

implies that the derivative is �0 6= 0.

2.1.2 Building Blocks of Neural Networks

The foundational elements that serve as the bedrock upon which these intelligent sys-

tems are constructed are layers, weights and biases, forward propagation, and back-

ward propagation. These building blocks not only define architecture and data flow

of neural networks, but also yield a profound influence over their ability to perceive,

learn, and take decisions.

Layers

Layers form the structural framework of neural networks, akin to the layers of abstrac-

tion within the human brain. From the input layer, where data find their initial entry

point, to the hidden layers, which manage complex transformations by taking input from

a layer and pass output to another layer, and finally to the output layer, which delivers

predictions, each layer has a unique role in information processing.

In the input layer samples are encoded as values of the input nodes. Depending on

the nature of the inputs, different encodings and architectures are considered. When

the values are boolean (True/False), they are processed as 0/1, or �1/1. Categorical

attributes are translated with one-hot encoding in vectors with 0 everywhere, except

for the corresponding class entry. Numeric attributes are used as is (maybe scaled, see

Section 2.6.2), and images generally as pixels matrices with the RGB notation.
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(A) sign (B) softsign

(C) tanh (D) logistic

(E) linear (F) ReLU

(G) elu (H) softplus

FIGURE 2.1: Most common activation functions.
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The output layer is where the prediction ŷ is formulated to be later compared with

the real output data y. The same encoding as for the inputs is applied to the datum y.

For regression problems y is continuous, hence a linear output activation is the natural

choice. In case of boolean classification, the output activation is usually a sigmoid (Fig-

ure 2.1) and ŷ represents the probability that the example belongs to the positive class.

The concept can be extended for multiclass classification with softmax (Figure 2.1) as

output activation and so ŷ the categorical distribution. Several other types of output

may exist, but these three are the most typical.

In the hidden layers many halfway computations to process the input occur before

producing the output. The values computed at each layer can be seen as different

representations of the input. The composition of all these transformations succeeds - if

all goes well - in transforming the input into the desired output. Common activations

for hidden layers are sigmoid, tanh, softplus and Rectified Linear Unit (ReLU) , all plotted

in Figure 2.1. All hidden layers typically use the same activation function.

The number of nodes per hidden layer can vary, while in the input (output) layer

there must be as many nodes as the input (output) dimension of the problem.

Figure 2.2 shows a fully connected neural network, i.e. a NN where each node is

connected to all the nodes of the previous and following layers. The input layer is blue,

while the output one is green. It has two hidden layers (in orange) with three nodes

each (in yellow).

Weights and Biases

The weights and the biases are the parameters characterizing the neural network and

they are trained through an optimization algorithm so as to minimize a loss function,

that consists of a measure of the error of the approximation with respect to available

data. These adjustable parameters determine the strength and direction of connections

between neurons and are vital for learning.

Let nl be the number of neurons of the l-th layer. The weights of layer l can be

collected in the matrix W(l) = (w(l)
kj ) 2 Rnl⇥nl�1 , where index k corresponds to the

outgoing node and index j to the incoming node. Hence, for example, the weight that

links node 4 in the second layer with node 5 in the third layer is w(3)
54 .
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FIGURE 2.2: Fully connected Feedforward Neural Network with two hid-
den layers of three neurons each.

Forward Propagation

Consider a NN with L layers. Let x(1) = (x(1)j ) 2 Rn0 be the input of the problem with

n0 the dimension of the input. The input weighted sum of the k-th node in the first

layer, for k = 1, . . . , n1, is:

z
(1)
k =

X

j

w
(1)
kj x

(1)
j + b

(1)
k (2.3)

and the output is:

x
(2)
k = �

(1)(z(1)k ) (2.4)

By proceeding along the NN, the evolution of the signal at layer l can be described by

the following feedforward equations, for k = 1, . . . , nl:

z
(l)
k =

X

j

w
(l)
kj x

(l)
j + b

(l)
k

x
(l+1)
k = �

(l)(z(l)k )

(2.5)

and the NN output ŷ = (ŷk) 2 RnL , with nL the dimension of the output, reads:

ŷk = �
(L)(z(L)k ) (2.6)
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In tensor notation, (2.3)-(2.6) can be expressed as the following:

z(1) = W(1)x(1) + b(1)

x(2) = �
(1)

.(z(1))

. . .

z(l) = W(l)x(l) + b(l)

x(l+1) = �
(l)
.(z(l))

. . .

z(L) = W(L)x(L) + b(L)

ŷ = �
(L)

.(z(L))

(2.7)

where W(l) 2 Rnl⇥nl�1 , b(l) 2 Rnl , �(l) are weights, biases, and the activation function

of the l-th layer, respectively; x(l) 2 Rnl�1 , z(l) 2 Rnl . Notation �.(x) means that the

function � is applied to each component of the vector x.

By defining the function ⌃(l) : Rnl�1 ! Rnl :

⌃(l)(x(l)) = �
(l)
.(W(l)x(l) + b(l)) (2.8)

it follows that a NN is formally the composition of non-linear functions:

ŷ(x(1)) = ⌃(L) �⌃(L�1) � · · · �⌃(1)(x(1)) (2.9)

Backpropagation

A NN can be conceptualized as a dataflow graph, or a circuit where each node repre-

sents a simple computation that decides how much information is passed on from the

predecessor to the next. All DL methods use the same principle: a dataflow graph is

constructed, and its weights are adjusted to fit the data.

Given the choice of the NN architecture (number of layers, number of neurons, type

of activations,. . . ), the weights are initialized, generally with random values, and the

input data x are provided to the model so that the output ŷ is computed following

(2.7).
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At this point, the prediction ŷ is compared with the real output y. Once the objec-

tive function L(y, ŷ), evaluating the error committed by the NN, is chosen, an attempt

is made to minimize such error as a function of the weights and the biases. Indeed, the

objective function depends on ŷ, hence on all the parameters of the NN, (2.9).

The minimization rests on correcting the weights proportionally to the gradient of

L. The backpropagation algorithm offers a practical method for computing the gradient

of the error function L, utilizing the chain rule of differentiation:

@g(f(x))

@x
= g

0(f(x))
@f(x)

@x
(2.10)

After initial computation in the forward pass, the error is transmitted layer by layer

backward from the output nodes, hence the name backpropagation.

Firstly, consider the NN in Figure 2.3 with a one-dimensional input - n0 = 1, x(1) =

x 2 R - and output - nL = 1, ŷ 2 R. Feedforward equations for this NN read:

z
(1) = w

(1)
x+ b

(1)

x
(2) = �

(1)(z(1))

z
(2) = w

(2)
x
(2) + b

(2)

ŷ = �
(2)(z(2))

(2.11)

Equations (2.11) allow to compute the prediction ŷ for a corresponding input x, and so

the associated mismatch L = L(y, ŷ).

FIGURE 2.3: Representation of the NN examined for backpropagation.

By introducing the following notation:

w̄ :=
@L
@w

(2.12)
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the derivative of the cost function with respect to the last weight is:

w̄
(2) = z̄

(2) @z
(2)

@w(2)
= ŷ

@ŷ

@z(2)

@z
(2)

@w(2)
(2.13)

Note that the term ŷ =
@L
@ŷ

is well-defined and easily computed for a given set of data

and depends on the chosen type of the cost function.

By applying the chain rule (2.10), the following equations arise:

ŷ =
@L
@ŷ

z̄
(2) = ŷ�

0(z(2))

b̄
(2)

= z̄
(2)

w̄
(2) = z̄

(2)
x
(2)

x̄
(1) = z̄

(2)
w

(2)

z̄
(1) = x̄

(2)
�
0(z(1))

b̄
(1)

= z̄
(1)

w̄
(1) = z̄

(1)
x

(2.14)

Each term of (2.14) depends on the previous ones and propagates backwards along the

network, starting from the cost function (Figure 2.4).
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(A) ŷ =
@L
@ŷ

(B) z̄(2) = ŷ�
0(z(2))

(C) b̄(2) = z̄
(2)

(D) w̄(2) = z̄
(2)

x
(2)

(E) x̄(2) = z̄
(2)

w
(2)

FIGURE 2.4: Backpropagation algorithm representation.
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For a general NN with L layers, the so-called backpropagation equations in tensor no-

tation become:
ŷ = rŷL

z̄(L) = ŷ � �
0(z(L))

. . .

x̄(l) = W(l)T z̄(l)

z̄(l) = x̄(l+1) � �
0(z(l))

b̄
(l)

= z̄(l)

W̄
(l)

= z̄(l)x(l)T

. . .

(2.15)

where notation � stays for the Hadamard product (A�B)ij = (A)ij(B)ij .

NN are always described in terms of tensor operations because of their natural in-

clination toward this notation and computational efficiency reasons. Indeed, tensors

enable highly optimized compiled code for Graphics Processing Unit (GPU)s and Tensor

Processing Unit (TPU)s, by processing many inputs in parallel.

2.2 Deep Feedforward Neural Networks

2.2.1 Architecture of Feedforward Networks

A further extension of the perceptron is its multilayered version, known as Multilayer

Perceptron (MLP), whose origins date back to 1966 [Ivakhnenko and Lapa, 1966; Amari,

1967]. MLP is a feedforward artificial neural network, renowned for its ability to dis-

criminate input that is not linearly separable. MLPs are made up of completely con-

nected neurons with a nonlinear type of activation function, grouped in at least three

layers. The attribute feedforward refers to the direct acyclic conveyance of signals from

input nodes to output nodes, without loops.

Deep Feedforward Neural Network are MLP with a huge set of nodes arranged in many

layers. Nodes in adjacent layers are linked and each link contains a weight. Every

node sends to the following layer an output value, that is the result of a weighted
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linear combination of input signals received from the previous layer nodes and the

application of an activation function.

Deep FNNs are capable of handling complex tasks that traditional perceptrons can-

not, thanks to the high number of hidden layers. The idea rests on building long com-

putation paths that allow the input variables to interact in complex ways.

2.2.2 Loss Functions

Loss functions vary according to the task at hand and the objective that has to be

achieved. Some of the most common error functions are described hereafter.

Mean Absolute Error (MAE) (or L1 loss) is one of the loss functions used in regression

settings. MAE takes the average sum of the L1-norms (||x||1 =
P

i |xi|) of the difference

between reference values yj and predictions ŷj :

MAE(y, ŷ) =
1

N

NX

j=1

||yj � ŷj ||1 (2.16)

being N the number of samples (xj
,yj), and ŷj = ŷ(xj). MAE does not depend on the

reflection of the coordinate sistem about a coordinate axis or its translation. The first

property makes them particularly recommended in presence of outliers - i.e. values that

are very different from the rest of the data - because it does not take into account their

direction.

Another common loss function for regression is Mean Squared Error (MSE) (or L2

loss), since it is associated with the L2-norm (||x||2 =
qP

i x
2
i ):

MSE(y, ŷ) =
1

N

NX

j=1

||yj � ŷj ||22 (2.17)

Note that each component of the difference vector is squared, and that means that the

outliers can weight more, so this can skew results. Usually, MSE works extremely well

with data that can be modeled into a Gaussian distribution.

For classification purposes, the main loss function is the Cross Entropy loss. In the

case of two classes, the datum y
j usually reads as 1 if the corresponding input xj be-

longs to the first class, 0 if it belongs to the second. The so-called Binary Cross Entropy
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takes the following form:

L(y, ŷ) = �
NX

j=1

y
j log(ŷj) + (1� y

j) log(1� ŷ
j) (2.18)

where the prediction ŷ
j is the probability that xj belongs to the first class. The straight-

forward extension to m categorical classes, referred to as Categorical Cross Entropy loss

is:

L(y, ŷ) = �
NX

j=1

mX

i=1

y
j
i log(ŷ

j
i ) (2.19)

Here, yj = (yji ) 2 Rm is a one-hot encoded vector that has the k-th entry equal to 1

if xj belongs to the k-th class, otherwise equal to 0, and ŷj = (ŷji ) is the vector of the

predicted probabilities that xj belongs to those classes.

2.2.3 Gradient Descent and Optimization

A NN can be simply thought as a function aiming at representing the relationship be-

tween input x and output y, say ŷ = f(x). This function relies on a number of weights

(and biases) w that modulate the signal of a layer during the conveyance to the follow-

ing. Therefore, it can be expressed as ŷ = f(x,w), and accordingly the cost function

L(y, ŷ) = L(y, f(x,w)). The best model is the one that minimizes the mismatch be-

tween data and predictions, hence it can be found by using an appropriate optimization

algorithm. The most popular optimization technique used for this task is the Gradient

Descent (GD) - including all its variants - because of its flexibility in a wide variety of

problems.

Gradient Descent

The basic idea underlying the GD algorithm relies on applying an iterative procedure

that looks for the global minimum of a function by finding local minima along a se-

quence of restricted (mono-dimensional) problems. The local gradient of the objective

function is computed with respect to a vector of parameters and the algorithm moves

in the descending direction of the gradient.
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In the specific case of NNs, the parameters ✓ are the weights and the biases of the

linear combinations in the neurons. They are generally initialized with random values,

then they are updated at each iteration following:

✓  ✓ � ⌘r✓L(✓) (2.20)

with the goal of reducing the loss function L until the algorithm reaches the global

minimum. A key GD hyperparameter is the learning rate ⌘, which controls the step size

in the gradient descending direction. If ⌘ is too small, the descent is slow and algorithm

takes many iterations to attain convergence. By distinction, if it is too large, there is a

risk of passing over the minimum trough, jumping from one side to the other of a local

convex hull.

For each input-output pair, the cost and its gradient are computed and the weights

are consequently changed to move close to the global minimum. Once the algorithm

has seen the whole dataset an epoch has been performed, and it starts again the weight

update for the next epoch. This strategy that considers the entire dataset through each

iteration in order to discover the best answer, may be time-consuming and computa-

tionally expensive.

A useful variant of GD, called Stochastic Gradient Descent (SGD), addresses some of its

drawbacks. Instead of using all the observations, each SGD iteration computes the gra-

dient using one randomly selected partition of the dataset that was shuffled. The com-

putational time can be drastically decreased, but this technique might produce noisier

outcomes than GD.

Mini Batch Gradient Descent is a hybrid variant of GD and SGD. At each epoch, this

method splits the dataset into small shuffled subsets (mini batches), computes the gra-

dients for each batch, and avoids iterating over the full dataset of observations. Mini

Batch GD is summarized in Algorithm 1. Usually, mini batches improve the algorith-

mic scalability, hence its performance for large datasets and in parallel computational

environments.
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Algorithm 1 Mini Batch Gradient Descent algorithm
1: Initialize ✓

2: Set ⌘
3: while stop condition do
4: Choose randomly a mini-batch from input-output dataset
5: Compute L
6: Compute g = r✓L(✓)
7: Update ✓ ! ✓ � ⌘g

8: end while

Adaptive Moment Estimation

Adaptive Moment Estimation (Adam) optimization is a stochastic gradient descent method

that is based on adaptive estimation of first-order and second-order moments of the

gradient to adapt the learning rate for each weight of the neural network.

Kingma and Ba [2015] introduced Adam that was found to behave in a more effec-

tive way in terms of generalizing performance with respect to vanilla SGD when the

gradients are small. According to the authors, the method is "straightforward to imple-

ment, computationally efficient, has little memory requirements, is invariant to diago-

nal rescaling of gradients, and is well suited for problems that are large in terms of data

and/or parameters". Adam provides an optimization algorithm that can handle sparse

gradients on noisy problems and non-stationary objectives [Pomerat et al., 2019]. The

adaptive learning rate qualifies it for a wide range of optimization tasks.

Algorithm 2 Adaptive Moment Estimation algorithm
1: Initialize ✓,m, v

2: Set ⌘, ⇢1, ⇢2, ✏
3: while stop condition do
4: Update ⌧ ! ⌧ + 1
5: Choose randomly a mini-batch from input-output dataset
6: Compute L
7: Compute g = r✓L(✓)
8: Store m! ⇢1m+ (1� ⇢1)g
9: Store v ! ⇢2v + (1� ⇢2)g � g

10: Correct m̂ = m
1�⇢⌧1

11: Correct v̂ = v
1�⇢⌧2

12: Compute g
0 = ⌘

1p
v̂+✏
� m̂

13: Update ✓ ! ✓ � ⌘g
0

14: end while
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Algorithm 2 provides an outline of the method. Default settings for the hyper-

parameters are ⌘ = 0.001, ⇢1 = 0.9, ⇢2 = 0.999, and ✏ = 10�8.

Adaptive learning rates are determined for each parameter using past gradients

(first moment estimate, m), and squared gradients (second moment estimate, v). The

exponential decay rates ⇢1 and ⇢2 determine how much past gradients and squared

gradients influence current updates. The first and second moment estimate are then

bias-corrected to m̂ and v̂, respectively.

The approach adjusts the learning rates for each parameter individually, allowing

it to handle sparse gradients and converge quickly on a wide range of optimization

problems. Adam offers several other benefits, including the fact that its step sizes are

roughly limited by the step-size hyper-parameter, that the magnitudes of weight up-

dates are invariant to gradient rescaling, and that it inherently performs a kind of step-

size annealing. Because of its robust performance and adaptive nature, Adam - and

some variants of it [Reddi et al., 2018] - have become a popular choice for optimizing

deep neural networks.

2.2.4 Training a Feedforward Network

Here, the training, i.e. the process aimed at building the model by computing the weights

and biases, is described in detail.

Once the architecture of FNN is designed, with its input, hidden, and output layers,

and appropriate activation functions are chosen, the NN parameters have to be com-

puted. Training a neural network is a critical step, where the network learns how to

make accurate predictions by adjusting its internal parameters - weights and biases -

based on the provided training data.

This learning process diversifies into supervised, unsupervised, and reinforcement

learning, depending on the type of information at hand.

During the training of a NN under supervised learning, the input is fed to the network,

which will output a value that is compared with the desired output. The error between

the two is computed, and if there is a discrepancy between the intended output and

the prediction, the NN is updated based on this error signal to reduce the discrepancy

between the desired and actual outputs.
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When the training is performed under unsupervised learning, similar-type inputs are

combined to form clusters. When the NN is applied to a new input pattern, it produces

an output response that indicates the class the input belongs in. No feedback is pro-

vided regarding what the intended outcome should be or whether it is proper, so the

network itself has to figure out how to identify patterns and features from the input

data, and how to relate the input to the output.

As the name suggests, reinforcement learning is used to reinforce or strengthen the

network over some critic information. The NN is provided with some feedback during

this kind of training: this puts it in line with supervised learning in certain ways, al-

though the feedback received here is evaluative rather than instructive. The network

adjusts in response to the feedback to get better critic information in future.

Training begins with the forward propagation of data through the network, follow-

ing (2.7). The input data is passed through the input layer and processed layer by layer

through the hidden ones until it reaches the output layer. At each neuron, weighted

sums of inputs are calculated, and activation functions are applied to produce output

values. These values are then passed to the next layer.

To measure how well the NN predictions match the actual target values in the train-

ing data, a loss function computes a single scalar value that reflects the difference be-

tween the predicted outputs and the true targets. By means of the backpropagation

equations (2.15), the gradients of the loss function with respect to each weight and bias

in the network are computed. These gradients indicate the direction and magnitude

of changes needed to minimize the loss. By applying the chain rule of calculus (2.10),

backpropagation algorithm efficiently propagates the error backward through the net-

work, providing information on how each weight and bias should be adjusted.

Observe that during the training the loss function is minimized as a function of

the parameters of the NN. Once the gradients are computed, optimization algorithms,

like GD or Adam, are applied to update the NN parameters iteratively: they adjust

weights and biases in the direction that reduces the loss, gradually bringing the NN

predictions closer to the target values.

Training occurs over multiple iterations. In each epoch, the entire training dataset

is passed through the network, and the weights and biases are updated based on the
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computed gradients. The number of epochs depends on factors such as the complexity

of the task and the convergence of the training process. It may require experimentation

to find the optimal number.

The minimization will find, at the end, the optimal values of the parameters at

which the prediction error is minimal. At this point, the NN is trained and the model is

ready for making predictions based on new inputs.

2.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is designed primarily for processing two-dimen-

sional grid-like data, such as images, with high degree of invariance to translation,

skewing, scaling, and other forms of distortion. The structure of CNN makes it possible

to preserve the meaning of adjacency of the elementary components in the samples

(e.g. pixels in images), that would be lost if the internal layers are fully connected.

In CNNs, each hidden node receives input from only a small local region of the

datum and the weights that connect it to a node in the hidden layer are the same for

each hidden node. As a consequence, adjacency is respected (at least locally), spatial

invariance is detected, and the number of weights is cut-down.

2.3.1 Convolutional Layers

A convolutional layer is a fundamental building block in a CNN, specialized for detecting

local patterns and features within the input data. Convolutional layers are crucial for

image recognition tasks because they allow the network to learn hierarchical features.

The initial layers may detect simple features like edges and corners, while subsequent

layers can learn to combine these features to recognize more complex structures like

shapes and objects.

At the core of a convolutional layer is the convolution operation. It involves sliding

a small filter (also known as a kernel) across the input data. This filter is a smaller

grid of learnable weights. As the filter moves across the input, it performs element-

wise multiplications between its values and the corresponding values in the input data,

producing a weighted sum. The weighted sum, often referred to as the feature map,
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represents the presence of specific patterns or features in the input. These patterns

might be edges, textures, or more complex structures, depending on the characteristics

of the filter.

Convolutional layers use shared weights within a single layer. This means that the

same filter is applied to different parts of the input data. Sharing weights helps the

network generalize better by detecting the same features across different regions of the

input and reduces the number of parameters to be tuned.

Typically, a convolutional layer does not use just one filter but multiple filters in

parallel. Each filter specializes in detecting different features or patterns. The num-

ber of kernels corresponds to the number of channels; when dealing with images in

RGB notation, along the NN there are no longer three dedicated color channels, but a

collection of feature maps, one for each kernel, carrying information from one feature.

After the convolution operation, each feature map often passes through an activa-

tion function, usually the ReLU. This introduces non-linearity into the network and

helps capture complex relationships within the data.

2.3.2 Pooling Layers

In many CNN architectures, after one or more convolutional layers, there may be pool-

ing layers, such as max-pooling or average-pooling. These layers reduce the spatial

dimensions of the feature maps, making them smaller and more manageable while

preserving important features. As a result, the model has fewer parameters overall,

which improves computational efficiency. Pooling summarizes a set of adjacent units

from the preceding layer with a single value, resulting in down sampling the input.

The activation function is usually linear.

Average-pooling computes average value of the neighborhoods, resulting in a coarser

resolution of the input. On the other hand, max-pooling calculates the maximum value,

looking for a feature that exists somewhere in the receptive field. Layers of this kind

facilitate multiscale recognition and reduce the weights required in subsequent layers,

thus involving lower computational cost and faster learning.

At each convolutional or pooling layer the spatial resolution is decreased, while the

number of feature mappings is raised, compared to the previous layer.
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2.3.3 Applications of CNNs

Convolutional layers enable CNNs to automatically extract relevant features from input

data, making them highly effective for tasks like image classification, object detection,

and image segmentation.

Image classification is the task of assigning a label or class to an input image. It is a

supervised learning problem, where a model is trained on a labeled dataset of images

and their corresponding class labels, and then used to predict the class label of new,

unseen images.

In computer vision, object detection looks for occurrences of a specific class of objects

of interest (like people, structures, or cars), mainly in digital images and videos.

The division of a digital image into various segments is the goal image segmentation.

The process reduces complexity and provides more understandable representations of

images, frequently used to identify objects and boundaries in images, as it gives each

pixel a label so that pixels with the same label have specific properties.

2.4 Recurrent Neural Networks

A Recurrent Neural Networks (RNN) differs from a FNN in that it has at least one feedback

loop. This means that the output of a neuron is supplied as input to at least one neuron

of the previous layer, and has a strong impact on the learning capability of the network

and its performance. RNN structure makes them suitable to face a problem with sequen-

tial data, since feedback loops allow to retain in memory the state from one iteration to

the following.

Feedback loops work as in Figure 2.5, and can be unfolded along the axis of con-

sequentiality - which usually is the time axis - and considered as a concatenation of

different steps of the same RNN, taking as input the current input xt and the output of

the previous step ht�1. By doing this, the network can keep track of the past history of

the data.

Every RNN has the shape shown in Figure 2.5, with a potential difference introduced

in the architecture of the A-module. For basic RNNs, called Vanilla Recurrent Neural

Networks, a single layer with one node constitutes the module (Figure 2.6).
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FIGURE 2.5: Representation of a RNN.

At each time t, the network carries out usual linear combination with weights W

and biases b of a vector that now is the concatenation [ht�1;xt]. Then it applies the

activation function � (often tanh):

zt = W[ht�1;xt] + b

ht = ŷt = �(zt)
(2.21)

The hidden state at time t, denoted by ht, depends on the hidden state at the previous

time step ht�1 and the current input xt: ht = f(ht�1,xt). In general, ht can differ from

the output ŷt generated by the RNN at the current time t, which is likewise a function

of ht�1 and xt.

FIGURE 2.6: Vanilla RNN.

2.4.1 Vanishing Gradient Problem

A common problem that arises during the training of deep NNs with many layers by

using methods based on GD and backpropagation is the Vanishing Gradient problem. At

each iteration, such methods update every weight of the NN on the basis of the partial
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derivative of the loss function with respect to the weight itself. When the derivative

is extremely small, the weights remains almost unvaried, so the training could never

converge to a good solution.

In 1991, Sepp Hochreiter found the Vanishing Gradient problem being the cause

of the poor success of RNN training [Hochreiter, 1991]. The recurrent nature of the ar-

chitecture makes this type of NN extremely exposed to vanishing gradients and entails

a gradual loss of the signal of the current error resulting in hardly learned long-term

dependencies [Pascanu et al., 2013].

As said before, ŷt and ht are functions of current input and previous time step

hidden state. For the sake of simplicity, the case in which ŷt = ht is examined, and it

could be easily extended to the more general one. It holds that yt̂ = f(ŷt�1,xt, ✓), with

✓ the parameters defining the RNN. By introducing notation f(t) := f(ŷt�1,xt, ✓), the

differential read as:

dŷt = r✓f(t)d✓ +rŷf(t)dŷt�1 (2.22)

During GD optimization, the parameters ✓ are updated following (2.20) by means of

✓̄ = r✓L(✓) = r✓L(y, ŷ). At time T , by recursively applying (2.22), the expression for

✓̄ is:
✓̄ = ŷTdŷT

= ŷTr✓f(T )d✓ +rŷf(T )dŷT�1

= ŷTr✓f(T )d✓ +rŷf(T )(r✓f(T � 1)d✓ +rŷf(T � 1)dŷT�2)

. . .

= ŷT (r✓f(T ) +rŷf(T )r✓f(T � 1) + . . . )d✓

(2.23)

To further simplify the notation, consider the case of scalar input xT and output yT ,

� = tanh. Forward equations read as:

zT = w1ŷT�1 + w2xT + b

hT = ŷT = tanh(zT )
(2.24)
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In this case, ŷT = f(ŷT�1, xT , w1, w2, b) = tanh(w1ŷT�1 + w2xT + b). Consider the

weight w1:

w̄1 = ŷT
@ŷT

@w1

= ŷT (tanh
0(zT )ŷT�1 + tanh0(zT )w1

@ŷT�1

@w1
)

. . .

= ŷT (tanh
0(zT )ŷT�1 + w1 tanh

0(zT ) tanh
0(zT�1)ŷT�2 + . . . )

(2.25)

Therefore, the contribution of ŷT�s in the update of w1 is controlled by:

w
s
1

sY

i=1

tanh0(zT�i+1) (2.26)

Given that tanh0(x)  1, 8x, (2.26) is bounded above by w
s
1, If w1 < 1, for large s, w1

tends to 0, and ŷT�s does not affect the update.

The same generalized equations hold for vector inputs and outputs, and a general

activation function.

2.4.2 Long Short-Term Memory

A possible solution to the vanishing gradient problem is the Long Short-Term Mem-

ory (LSTM) architecture (Figure 2.7). Designed in 1997 by Sepp Hochreiter e da Jürgen

Schmidhuber [Hochreiter and Schmidhuber, 1997] - and gradually improved over the

years - LSTMs have the capability to catch long-term dependancies on data.

FIGURE 2.7: Long Short-Term Memory
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Their main peculiarity are the gate structure and the cell state Ct, that travels along

the entire NN as a conveyor belt of information. As shown in Figure 2.8, a gate is a

layer that applies the logistic function �(z) =
1

1 + e�z
(see Figure 2.1) and then multi-

plies two vectors component-wise. This calculation consents to manage the memory of

the NN and ponder data storage: the logistic function ranges from 0 to 1, hence, when

it multiplies a value, it balances the amount of information to draw: from 0 (nothing)

to 1 (everything).

FIGURE 2.8: Gate structure

Ct is updated at each time by removing or adding new knowledge, or simply read

through input, forget, and output gate, respectively.

The forget gate draws a vector ft with the same number of components as Ct, with

values between 0 and 1, based upon the input xt and the hidden state ht�1. The com-

ponents of ft decide the percentage of information in the cell state that is to be kept (1

means remember everything, 0 completely forget).

The network then decides the new information to add. A first layer with hyperbolic

tangent activation outputs a vector C̃t of the sellable values to add; later the input gate

decides which values to actually add, by means of vector it - with entries in the [0, 1]

range too.

To compute Ct, the cell state at the previous time-step Ct�1 is multiplied by ft -

to forget the chosen knowledge - and it � C̃t is added - to memorize the information

needed.

Finally, the ot vector in the output gate chooses which part of Ct values to output.
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The whole process is summarized in Figure 2.9 and in the following:

ft = �(Wf [ht�1;xt] + bf )

it = �(Wi[ht�1;xt] + bi)

C̃t = tanh(WC [ht�1;xt] + bC)

Ct = ft �Ct�1 + it � C̃t

ot = �(Wo[ht�1;xt] + bo)

ht = ŷt = ot � tanh(Ct)

(2.27)

where Wf , Wi, WC , Wo are weights matrices and bf , bi, bC , bo bias vectors.

(A) Forget gate (B) Input gate

(C) Cell state update (D) Output gate

FIGURE 2.9: LSTM data-flow

2.4.3 Applications of RNNs

A popular application of RNNs is in the field of Natural Language Processing (NLP). NLP is

a field of study that looks at ways to utilize computers to interpret and handle natural
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language text or speech for practical purposes. The goal of NLP is to learn more about

how people interpret and utilize language so that the right tools and methods may be

created to help computers comprehend and manipulate natural languages in order to

complete the tasks that are needed [Chowdhury, 2003].

Speech recognition, also known as automatic speech recognition or voice recognition, is

a technology that enables a computer or machine to convert spoken language into

written text. It is a subfield of NLP and plays a crucial role in various applications,

making it possible for machines to understand and process human speech. The use

of RNNs has improved the accuracy and robustness of speech recognition systems, mak-

ing them highly effective in real-world applications like voice-controlled devices, au-

tomatic transcription services, voice assistants (e.g., Siri, Alexa, Google Assistant), and

accessibility tools for individuals with disabilities [Deng et al., 2013]. Overall, speech

recognition technology enables seamless human-machine interaction through spoken

language, making it an essential component of modern communication and automa-

tion systems.

A time series is a time ordered sequence of data. Time series can be distinguished in

univariate if the data are scalars (e.g. temperature values during the day or the number

of downloads per minute of an application), or multivariate if the components are vec-

tors (e.g. the speed of a car as a function of time or stereo recordings with two audio

channels). RNNs are mainly applied to time series to solve problems such as forecasting,

anomaly detection, and pattern recognition.

Forecasting refers to predict future samples in a sequence and is a sort of (nonlinear)

regression problem, since the goal is predicting a continuous quantity through some

features of the time series.

The goal of anomaly detection is to identify any deviation from a regular pattern. If

the kind of anomalies is known, the problem can be addressed as classification. Oth-

erwise, a regression model needs to be trained to predict future values and find dif-

ferences between predictions and actual values; any considerable discrepancy is recog-

nized as anomaly.

Finally, pattern recognition is the classification of time serie by automatically detect-

ing regularities and patterns.
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In all these cases, the time-dependence of the datum is a basic feature that is to

be carefully considered, especially during training and evaluation of the model. A

shuffled split of data into train and test will loose the consequentiality, so it is the norm

to split time series into two smaller ones in a way that all the test data follow the train

ones, as in Figure 2.10.

FIGURE 2.10: Time series split for training and validation of RNN.

2.5 Physics-Informed Neural Networks

Physics-Informed Neural Network (PINN) is a particular NN that makes it possible to in-

corporate information from the physics in addition to data by means of the govern-

ing PDEs [Raissi et al., 2019]. Indeed, the so-called loss function that has to be mini-

mized contains not only data and prediction mismatch (as in traditional DL), but also

the residual of the governing equations.

With respect to standard neural networks, PINNs usually allow to obtain reasonable

approximations with smaller datasets, as the governing physical laws are added as

constraints. Furthermore, the residual contribution acts as a regularization term and

increases the generalization ability of the neural network, thus allowing to deal with

noisy data and outliers without a significant lack of robustness.

In particular, PINN addresses two major challenges of deep learning application in

Earth system science, as identified in Reichstein et al. [2019]: (i) physical consistency,

thanks to the residual term of the loss function providing a physical constraint, and (ii)

limited labels, as the information given by the PDE balances the lack possibly coming

from data, since Earth measurements are often sparse and noisy.
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2.5.1 PINN loss function

For time dependent problems, the input of the first layer, x(1) 2 Rn0 , reads x(1) = (x, t)

and n0 = n+1, with x 2 ⌦ ⇢ Rn and n = 1, 2, 3 the spatial dimension. Then, the neural

network û(x, t) : Rn0 ! RnL with L layers can be written as:

û(x, t) = ⌃(L) �⌃(L�1) � · · · �⌃(1)(x, t). (2.28)

with ⌃(l) : Rnl�1 ! Rnl the function defined in (2.8).

Assume that a general PDE holds true in ⌦⇥ [0,+1):

ut +N [u,�] = 0, x 2 ⌦ ⇢ Rn
, t � 0, (2.29)

where N [·] is a non linear differential operator in space, that could depend on some

parameters �, and the subscript ·t indicates the derivative with respect to time. The so-

lution u(x, t) : ⌦⇥ [0,+1)! Rm, with m the output space size, is approximated by a

neural network û(x, t), whose training is performed by minimizing a cost function that

includes not only the errors with respect to data, but also the residual of Equation (2.29),

thus constraining the model to both fit the data and comply with the expected physics.

Furthermore, while data approximation is a point-wise learning mechanism, the resid-

ual entails also local knowledge of the solution, given by physical processes and dy-

namics involving partial derivatives [Kadeethum et al., 2020a].

Let us denote by NN the function set of all the neural networks û(x, t) defined in

⌦⇥ [0,+1). Using the Mean Squared Error (MSE) (2.17) as loss measure, the training of

the model aims at minimizing the functional L : NN ! [0,1):

L(û) = wd
1

Nd

NdX

i=1

kû(xi
d, t

i
d)� uik22 + wc

1

Nc

NcX

i=1

kût(x
i
c, t

i
c) +N [û(xi

c, t
i
c),�]k22, (2.30)

with {ui}Nd

i=1 the set of Nd training data for û(x, t), located at the data points {xi
d, t

i
d}

Nd

i=1;

{xi
c, t

i
c}Nc

i=1 the set of Nc collocation points for the residual computation; wd and wc

proper weights to balance the two contributions in (2.30) (Figure 2.11).

It is worth notice that, depending on the nature of the problem, the NN for the
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FIGURE 2.11: Scheme of the PINN approach for the solution of Equa-
tion (2.29). The NN û is trained by minimizing the loss function in (2.30),

with the contribution of the training data and of the residual.

solution approximation, û, could be of any kind with the minimal or even null change

in the model implementation. This means that û might be either a CNN [Zhang, 2022],

or a RNN [Asrav and Aydin, 2023], or another different type of NN.

2.5.2 Applications of PINNs

The combination of Machine Learning (ML) with physical modeling has been identified

as one of the most promising and challenging approaches for modeling real-world sys-

tems [Reichstein et al., 2019; Karniadakis et al., 2021], since it could result in a poten-

tially significant breakthrough for efficiency, accuracy and generalization capability of

numerical methods for PDE solution.

The peculiarity of PINN is that they allow to incorporate information from the physics

in addition to data by means of the use of the governing PDEs. Once a PINN has been

trained, it can provide an almost real-time solution [Jagtap et al., 2020; Shin et al., 2020;

Wang et al., 2020; Fuks and Tchelepi, 2020], thus drastically improving tasks such as

sensitivity analysis, model calibration, uncertainty quantification, parametric design,

optimization and so on.

The nature of PINN makes them suitable for different classes of problems, which

can be classified into two main groups: feedforward solution of differential equations

(direct problem), and parameter identification (inverse problem).

In the first class, PINNs are used as a pure PDE solver, where the user only knows

the governing equations alongside with the initial and boundary conditions. By dis-

tinction, in the second class some parameters of the PDE are assumed to be unknown,
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but it is assumed that some data inside the domain are available.

A hybrid approach - similar to a data assimilation approach - where PDE solution is

performed leveraging also on known data inside the domain, may also be possible and

makes PINNs attractive from a practical point of view.

2.6 Practical Aspects of Deep Learning

There are many real-world considerations and practical challenges that arise when ap-

plying DL techniques to solve specific problems or tasks. Implementing deep learning

in practical applications involves addressing a range of issues beyond just the theoreti-

cal understanding of neural networks. This section higlights some key practical aspects

of deep learning.

2.6.1 Overfitting and techniques for regularization

Overfitting means that the model has only memorized the right answer corresponding

to training inputs, rather than learn the general connection that links inputs to outputs.

This can happen when either the training is carried out for too long, or on a training

dataset that is not a representative sample of the problem at hand, or the model is too

complex for the amount of available training data. In presence of overfitting, a ML

model learns to perform exceptionally well on the training data but fails to general-

ize to unseen data or test data. In other words, the model becomes too specialized in

capturing noise or random variations in the training data, rather than learning the un-

derlying patterns. Overfitting can be recognized in case of a high training accuracy but

a significantly lower test accuracy.

Overfitting is a common challenge in deep learning and machine learning, and

regularization techniques are used to address it. The choice of regularization and its

hyper-parameters depends on the specific problem and dataset, and often requires ex-

perimentation to find the best combination for a given task. Among the several pos-

sible techniques, L1-regularization (Lasso) and L2 regularization (Ridge) are usually the
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most noteworthy. They add penalty terms to the loss function during training, corre-

sponding to the L1-norm or the L2-norm, respectively, of the NN weights, thus tend-

ing to reduce the weight size. L1-regularization encourages sparsity by pushing some

weights to exactly zero, effectively performing feature selection. L2-regularization pe-

nalizes large weights but does not force them to zero, thus usually yielding encourages

a smoother weight ditribution.

Other techniques include early stopping, which involves monitoring the model per-

formance on a validation dataset during training, and stops the latter when the vali-

dation performance starts to degrade (e.g., validation loss increases); reducing model

complexity (i.e. the number of layers, neurons, or using a simpler architecture); dropout

that randomly sets to zero a fraction of neurons in a layer at each forward and back-

ward pass to prevent the network from relying too heavily on any single neuron and

encourage it to learn more robust features; or the above-mentioned residual term in the

loss function, in the case of PINNs.

2.6.2 Data preprocessing and normalization

Data preprocessing in deep learning is the process of preparing and cleaning raw data

to make them suitable for training and feeding into a neural network. It is a crucial

step in the machine learning pipeline, as the quality and suitability of the data can

significantly impact the performance and effectiveness of the neural network.

This preprocess aims to ensure that the data are in a format that can be effectively

used by the neural network for training and inference - i.e. NN evaluation for predic-

tions. The specific preprocessing steps can vary depending on the nature of the data,

the task, and the neural network architecture being used. For example, categorical data

(non-numeric data) needs to be encoded into a numerical format for neural networks

to process. This can be achieved through techniques like one-hot encoding (creating bi-

nary columns for each category) or label encoding (assigning unique numerical values

to categories). Proper data preprocessing helps improve model performance, reduce

overfitting, and ensure the network can learn meaningful patterns from the data.

In classification tasks, if the classes are imbalanced (one class has significantly fewer

samples than others), it may be necessary to apply techniques such as oversampling
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(creating more samples of the minority class), undersampling (reducing the number of

samples in the majority class), or using appropriate loss functions and sampling strate-

gies. In computer vision tasks, data augmentation techniques like rotation, flipping,

cropping, and adding noise to images can be used to artificially increase the diversity

of the training data and improve model generalization.

For time-series data, appropriate time-based features, such as lag values or moving

averages, may be created to capture temporal dependencies.

Scaling the training data to the same order of magnitude is of utmost importance

for convergence achievement and acceleration, otherwise the loss function would be

stretched along a direction and the algorithm would converge slowly or even miss the

convergence. In general, features are scaled to take values from 0 to 1, e.g. with a min-

max scaling, or are standardized by removing the mean and scaling to unit variance,

since NNs often perform better when the input features are on a similar scale.

2.6.3 Strategies for model evaluation and validation

During training, it is strongly recommended to monitor the NN performance on a sep-

arate set of data, called validation dataset. This helps assess how well the network gen-

eralizes to new data and avoids overfitting. It is a good practice to save a percentage

of the available data (usually 30%) to check the efficiency of the model and verify if

the problem has overfitted the training data. Once the training is complete, the NN fi-

nal performance is evaluated on this dataset, called test dataset, to provide an unbiased

estimate of its capabilities.

Therefore, the dataset is typically divided into training, validation, and test sets.

The training set is used to train the model, the validation set helps in hyper-parameter

tuning and model selection, and the test set is used to evaluate the model performance

on unseen data.

2.6.4 Hyper-parameter tuning

Hyper-parameter tuning is the process of finding the best set of hyper-parameters for

a NN to achieve optimal performance on a specific task. Hyper-parameters are pa-

rameters that are not learned from the training data, but are set before training begins.
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Tuning them is crucial because they greatly influence the training process and its ability

to generalize to unseen data.

Here are some of the key hyper-parameters that are often tuned for neural net-

works:

• Learning rate ⌘ that controls the step size of the weight updates during train-

ing. A high learning rate may cause the training process to diverge, while a

very low learning rate may result in slow convergence (Section 2.2.3). Techniques

like learning rate schedules and adaptive learning rate methods - e.g., Adam (Sec-

tion 2.2.3) - can help find a suitable learning rate during training. The choice

itself of optimizer and any learning rate scheduling strategies (e.g., learning rate

decay) can affect training speed and convergence too.

• The architecture of the NN, including the number of hidden layers and the num-

ber of neurons in each layer, is a critical hyper-parameter. Deeper networks with

more neurons can capture complex patterns, but are more prone to overfitting.

The choice of architecture depends on the complexity of the task and the avail-

able training data. For specific network architectures - like CNNs or RNN -, there

exist other hyper-parameters related to their structures to be tuned (e.g., convo-

lutional filter sizes, recurrent sequence lengths).

• The choice of activation functions can significantly impact the NN ability to learn

and generalize. Different activation functions are suitable for different types of

problems and architectures.

• The batch size determines the number of training examples used in each forward

and backward pass during training. Smaller batch sizes can lead to noisy up-

dates, while larger batch sizes may require more memory and computation. The

optimal batch size depends on hardware constraints and the dataset.

• Hyper-parameters related to regularization techniques, such as the strength of L1

and L2 regularization (if used), dropout rates, and early stopping criteria, need

to be tuned to prevent overfitting.
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• The initialization of weights can impact how quickly the network converges and

whether it gets stuck in local minima. Techniques like Xavier (Glorot) initializa-

tion, [Glorot and Bengio, 2010], and He initialization, [He et al., 2015], are com-

monly used.





Chapter 3

PINN for forward solution in

hydro-poromechanics

Coupled hydro-poromechanics describes important processes occurring in many dif-

ferent fields, in particular in sectors of geomechanics, hydrogeology, and biomechan-

ics. Timely challenges, such as gas, water, CO2, hydrogen injection and/or withdrawal

from deep reservoirs, or the interaction between biological tissues and fluid flow, can

be accurately described only by considering a fully coupled formulation. In essence,

hydro-poromechanics consists of the simultaneous action of fluid flow and solid de-

formation in fully or partially saturated porous media. The native theory has been

developed starting from K. Terzaghi’s one-dimensional consolidation in 1925 [Terza-

ghi, 1925] and the three-dimensional extension by M. A. Biot in 1941 [Biot, 1941] with

successive thermodynamically robust formulations available nowadays [Coussy, 1995;

Wang, 2000]. Nevertheless, the numerical solution of hydro-poromechanical partial

differential equations is still an active subject of research, as they typically involve

multi-physics and multi-scale systems, and efficiency and accuracy are challenging

tasks. Many numerical strategies, based on either FE and FD methods, have been ap-

plied, also in the case of complex materials and high dimensional problems, e.g. [Wang

and Hsu, 2009; Ferronato et al., 2010; Castelletto et al., 2015].

Though the above mentioned numerical methods remain the preferred choice as

solvers for this system of PDEs, in recent years Physics-Informed Neural Network (PINN)

gained an increasing attention [Raissi et al., 2019, 2017a,b; Zhang et al., 2019].

The application of PINNs, in their two classical approaches, i.e. direct and inverse

problems, has been already investigated in many fields, such as fluid mechanics [Cai

43
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et al., 2022; Yang et al., 2019; Lou et al., 2021], solid mechanics [Haghighat et al., 2021;

Dourado and Viana, 2020], heat diffusion [Cai et al., 2021], acoustic [Song et al., 2021],

additive manufacturing [Zhu et al., 2021], health science [Sahli Costabal et al., 2020;

Yin et al., 2021; Kissas et al., 2020]. Also in the field of porous materials, the interest

in PINNs has grown rapidly in recent years, focusing in particular on aspects related to

fluid diffusion and transport [He et al., 2020; Almajid and Abu-Al-Saud, 2022; Zhang,

2022; Fraces and Tchelepi, 2021; Yang and Foster, 2021; Tartakovsky et al., 2020; Wang

et al., 2021a; Bekele, 2021]. However, the PINN training turned out to be a slow and

tricky activity, especially for multi-physics problems with coupled governing equa-

tions, due to the multi-objective optimization problem resulting from the multiple-term

loss function. For these reasons, the use of PINNs for the solution of the coupled hydro-

poromechanical problem still presents several issues that deserve attention [Bekele,

2020; Kadeethum et al., 2020b]. For example, to fix this problem, a stress-split sequen-

tial training is proposed in [Haghighat et al., 2022] and later applied taking the temper-

ature into account, too, [Amini et al., 2022].

In this chapter we focus on the development of a PINN-based model for hydro-

poromechanical applications, in particular governed by Biot’s poroelasticity equations,

discussing the principal aspects needed for an efficient and robust formulation. Ini-

tially, we investigate the role of PINN architecture and hyper-parameter selection in

the construction of an effective model. Subsequently, to take advantage of PINN abil-

ity to integrate data and reduce the complexity of the solution of the coupled hydro-

poromechanical problem, a so-called sensor-driven hybrid approach is proposed, where

data are provided at locations inside the domain even to solve a forward problem. In

other words, the idea is to exploit the possible availability of sensor-measured data in

practical applications so as to accelerate the PINN convergence to the problem solution.

This strategy, similar to a data assimilation approach, makes PINNs more attractive from

a practical point of view. In order to check carefully the accuracy of the proposed ap-

proach, the study focuses on well-known benchmark problems, which have been used

to assess the numerical implementation and performance.
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3.1 PINN solution to Biot’s model

We focus on Biot’s poroelasticity equations, governing the interaction between a granu-

lar material and the fluid filling its pores [Biot, 1941]. The set of PDEs consists of a stress

equilibrium equation coupled with a fluid flow equation, which result from a conserva-

tion law of linear momentum and mass, respectively. Incorporating Terzaghi’s effective

stress principle, which links the grain forces to the fluid pore pressure, the equilibrium

equation for an isotropic poroelastic medium and the continuity equation for the fluid

mass balance can be written as:

µ�u+ (�+ µ)rdivu = ↵rp+ b, (3.1)

� div(rp) + @

@t
(��p+ ↵divu) = f, (3.2)

where u is the medium displacement, p is the fluid pore pressure, b is the body force,

and f is a flow source or sink. Equation (3.2) has been obtained by coupling the conti-

nuity of pore fluid with Darcy’s law:

�1v +rp = 0, (3.3)

where v is Darcy’s velocity. The material parameters are Lamé’s moduli � and µ, the

Biot coefficient ↵, Darcy’s conductivity tensor , the medium porosity �, and the fluid

compressibility �. As usual, r and � denote the gradient and the Laplacian operator,

respectively.

Let ⌦ ⇢ Rn be the domain of the coupled partial differential system in (3.1)-(3.2)

and � its boundary. The problem of finding the unknowns u and p is well-posed if

proper boundary:

8
>>>>>>>><

>>>>>>>>:

u(x, t) = uD(x, t), 8x 2 �u, t > 0,

�(x, t)n(x) = tN (x, t), 8x 2 ��, t > 0,

p(x, t) = pD(x, t), 8x 2 �p, t > 0,

v(x, t) · n(x) = qN (x, t), 8x 2 �q, t > 0,

(3.4)
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and initial conditions:

8
><

>:

u(x, 0) = u0(x), 8x 2 ⌦ [ �,

p(x, 0) = p0(x), 8x 2 ⌦ [ �,
(3.5)

apply. In Equations (3.4) and (3.5), �u [ �� = �p [ �q = �, with �u \ �� = �p \ �q = ;,

� is the total stress tensor, and n is the outer normal to �, while the right-hand side

functions uD, tN , pD, qN , u0, and p0 are known.

In our problem, a neural network for each unknown is set up, i.e., one for the pres-

sure, p̂(x, t), and one for every component of the displacement, ûj(x, t) with j = 1, n.

This is motivated by results obtained in [Haghighat et al., 2021], which suggest using

many different NNs with single output instead of a unique one with multiple outputs,

even if entailing a higher number of parameters. The use of distinct networks is more

suitable, as the outputs of the problem have different physical natures. Denoting by û

the vector with components ûj , the loss function reads:

L(û, p̂) = Ld +
nX

j=1

Lequ,j + Lcont +
nX

j=1

L�u,j +
nX

j=1

L�� ,j + L�p
+ L�q

+ LIC . (3.6)

The terms in the loss function are defined as follows.

The loss on training data Ld is:

Ld =
nX

j=1

wd,u,j
1

Nd

NdX

i=1

kûj(xi
d, t

i
d)� u

i
jk22 + wd,p

1

Nd

NdX

i=1

kp̂(xi
d, t

i
d)� p

ik22, (3.7)

where {xi
d, t

i
d}

Nd

i=1 are the points where data are imposed. The weights wd,· are selected

to ensure the dimensional consistency of Equation (3.7) and so as to normalize the

set of data {pi,ui}Nd

i=1 between 0 and 1. Also the terms associated to the residual and

boundary conditions must be multiplied by suitable weights w·, so that each contribu-

tion is comparable to others in the global loss function (3.6). This prevents from a term

to largely prevail over the others in the minimization process and generally is a good

practice for neural networks training, too. In practice, scaled neural networks p̂s and

ûs are built to fit the scaled data, while the neural network approximations p̂ and û are
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obtained by the inverse denormalization. The contributions Lequ,j and Lcont:

Lequ,j =wequ,j

1

Nc

NcX
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kµ(�û)j(x
i

c
, t

i

c
) + (�+ µ)(rdivû)j(xi
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c
)k22,
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c
, t

i

c
))� f(xi

c
, t

i

c
)k22,

(3.8)

are the loss terms arising from the residual of the governing physical equations on the

set of collocation points {xi
c, t

i
c}Nc

i=1, whereas the remaining terms in (3.6) are needed to

impose the boundary conditions (3.4):

L�u,j =w�u,j
1

N�u

N�uX

i=1

kûj(xi
�u
, t

i
�u
)� uD,j(x
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�u
, t
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�u
)k22,
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(3.9)

and the initial conditions (3.5):

LIC =
nX

j=1

wIC,u,j
1

NIC

NICX

i=1

kûj(xi
, 0)� u0,j(x

i)k22 + wIC,p
1

NIC

NICX

i=1

kp̂(xi
, 0)� p0(x

i)k22.

(3.10)

Here, �̂ = �(û) indicates the approximation of the total stress, that is defined by the

material constitutive law, {xi
�u
, t

i
�u
}N�u

i=1 , {xi
��
, t

i
��
}N��

i=1 , {xi
�p
, t

i
�p
}N�p

i=1 and {xi
�q
, t

i
�q
}N�q

i=1

are points on the boundary, and {xi
, 0}NIC

i=1 are points in the domain ⌦ at t = 0.

The presented PINN formulation is used in the next sections to solve two classical

benchmarks in coupled hydro-poromechanics.

3.2 Identification of PINN architecture

In this section, we investigate the optimal construction of PINNs for two classical cou-

pled problems, namely Terzaghi’s problem (1D) and Mandel’s problem (2D), for which

analytical solutions are available. In particular, we analyze the optimal choice of the
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hyper-parameters and evaluate the accuracy of the PINN model used as a forward

solver for the governing differential problem.

It is well-known that an established procedure to choose the architecture of a neural

network does not exist, but it mainly remains at the modeler’s experience. A general

rule of thumb is the deeper the network, the higher the ability to capture complex links,

but of course the slower the training time. Many factors can come into play, influencing

in different ways the difficulty of the procedure. Some of them are specifically problem-

dependent, e.g., the number of data and collocation points, or the hyper-parameters

regulating the training, such as batch size and number of epochs. However, other fac-

tors basically depend on the class of problem and the structure of the governing equa-

tions. Driven by these motivations, we extensively analyze the founding elements of

the architecture of PINNs for coupled hydro-poromechanics, with the aim at investigat-

ing its robustness and accuracy with respect to the hyper-parameter set selection.

Among the hyper-parameters needed to set-up a PINN model, the most influential

ones are:

• number of layers,

• number of neurons per layer,

• type of activation function.

For each item, we consider the set of possible entries reported in Table 3.1 with the

effect of all possible combinations.

For the sake of simplicity, we assume that all hidden layers have the same number

of neurons and the same activation function. For PINN models, it is preferable to use

differentiable activation functions, because the neural networks have to approximate

a smooth PDE solution and are automatically differentiated to compute the loss terms

(3.8). For this reason, along with tanh, we use the elu activation function, defined as:

elu(x) =

8
><

>:

x if x � 0

↵(ex � 1) if x < 0
, (3.11)

with ↵ = 1, instead of the more common Rectified Linear Unit (ReLU) function.



Chapter 3. PINN for forward solution in hydro-poromechanics 49

TABLE 3.1: Hyper-parameter set of values.

Hyper-parameter Description Set
Layers Number of hidden layers {4, 8, 12}

Neurons Number of neurons per layer {20, 40}
Act fun Activation function of each neuron in the hidden layers {tanh, elu}

In the following sections, we present the results obtained for a one-dimensional and

a two-dimensional formulation of the problem, comparing the accuracy of the approx-

imations for the different combinations of hyper-parameters.

A full factorial combination of the different values for the number of layers, neurons

and the activation function type has been considered, with the networks obtained by

each architecture properly trained. The quality of every realization is evaluated by

computing the weighted L2-norm of the difference between the NN prediction, ŷ, and

the analytical solution, y:

E(ŷ,y) =
kŷ � yk2
kyk2

(3.12)

The use of such weighted norm allows to deal with dimensionless and comparable er-

rors. Then, the population of E(ŷ,y) data is statistically processed in order to identify

the impact of the hyper-parameters, their mutual influence, the robustness of the pro-

posed PINN architecture with respect to their variation, and the setup providing the

most accurate outcome.

Different libraries have been recently developed to implement the PINN construc-

tion, e.g. [Hennigh et al., 2021; Lu et al., 2021; Koryagin et al., 2019; Chen et al., 2020a].

The model considered in this work has been implemented using SciANN (Scientific

Computational with Artificial Neural Networks), a recent TensorFlow and Keras wrap-

per specific to scientific computations with PINN [Haghighat and Juanes, 2021]. This

Application Programming Interface (API) makes it possible to build in a quite simple way

the PINN structure with a readable code and to use automatic differentiation to compute

at machine precision the derivatives of the neural network approximation of the solu-

tion u. Originally designed to optimize the Gradient Descent (GD) algorithm in the NN

training automatic differentiation turned out to be extremely useful in PINN implemen-

tation [Baydin et al., 2015]. The possibility of using automatic differentiation has been

inherited by SciANN from TensorFlow and Keras, resulting in faster and more robust
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FIGURE 3.1: Sketch of the setup for Terzaghi’s problem with indication
of sensor location.

codes, as it avoids the numerical discretization and the related rounding error propa-

gation. This is particularly attractive when dealing with noisy data, usually resulting

from real measurements. The library also supports running computations on a variety

of devices, including CPUs and GPUs.

3.2.1 1D: Terzaghi’s problem

Terzaghi’s problem consists of a poroelastic fluid-saturated column with a constant

loading PH applied instantaneously on top at time t = 0, as shown schematically in

Figure 3.1. The column has height H and at the basement there are zero flux and null

displacement. Only through the upper boundary free drainage is allowed. In a one-

dimensional configuration and assuming the z-axis positive downward (Figure 3.1),

equations (3.1) and (3.2) read:

(�+ 2µ)
@
2
u

@z2
= ↵

@p

@z
, (3.13)

� 
@
2
p

@z2
+

@

@t

⇣
��p+ ↵

@u

@z

⌘
= 0, (3.14)

with the following boundary conditions:

p(0, t) = 0, (�+ 2µ)
@u

@z
(0, t) = �PH , z = 0,

@p

@z
(H, t) = 0, u(H, t) = 0, z = H.

(3.15)
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TABLE 3.2: Material parameters definition.

Parameter Name Unit Definition
M Biot modulus MPa M = [�� + (↵� �)cbr]

�1

Ku Undrained bulk modulus MPa Ku = �+ 2µ/3 + ↵2M
cM Vertical uniaxial compressibility MPa�1 cM = [�+ 2µ]�1

c Consolidation coefficient m2/s c = k/[�w(M
�1 + ↵2cM )]

B Skempton’s coefficient – B = ↵M/Ku

⌫u Undrained Poisson’s ratio – ⌫u = [3⌫ + ↵B(1� 2⌫)]/[3� ↵B(1� 2⌫)]

The initial overpressure p0(z) and displacement u0(z) caused by the instant load PH

read [Wang, 2000; Wang and Hsu, 2009; Ferronato et al., 2010; Castelletto et al., 2015]:

p0(z) =

8
><

>:

0 z = 0

↵M

Ku + 4µ/3
PH otherwise

,

u0(z) =
1

Ku + 4µ/3
PH(H � z),

(3.16)

and the analytical solutions are:

p(z, t) =
4

⇡
p0

1X

m=0

1

2m+ 1
exp


�

⇣(2m+ 1)⇡

2H
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The definition of the material parameters arising in (3.16) and (3.17) is summarized

in Table 3.2, where cbr denotes the solid grain compressibility, k = ks the hydraulic

conductivity, �w the fluid specific weight, ⌫ the drained Poisson ratio, and � = �s and

µ = µs the Lamé constants. The poroelastic medium is supposed to be homogeneous

with H = 15m and PH = 10�2MPa. All material parameter values are reported in

Table 3.3.

In the 1D formulation (3.13)-(3.14), the unknown functions are the fluid pore pres-

sure p and the vertical displacement u. As stated in Section 3.1, they are approximated

by two distinct neural networks, with the loss function built following (3.6). The terms

of the loss function give their contribution on different portions of the space-time do-

main [0, H] ⇥ [0,+1). For this reason, training points have to be properly distributed
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TABLE 3.3: Material properties.

Parameter Name Value
�s Lamé constant (sand) 40 MPa
µs Lamé constant (sand) 40 MPa
�c Lamé constant (clay) 4 MPa
µc Lamé constant (clay) 4 MPa
↵ Biot coefficient 1.0
� Medium porosity 0.375
� Fluid compressibility 4.4 · 10�4 MPa�1

ks Hydraulic conductivity (sand) 10�5 m/s
kc Hydraulic conductivity (clay) 10�7 m/s
�w Fluid specific weight 9.81 · 10�3 MN/m3

⌫ Drained Poisson ratio 0.3
cbr Solid grain compressibility 0 MPa�1

FIGURE 3.2: Terzaghi’s problem: relative L
2-norm pressure error (equa-

tion (3.12)) with a uniform (left) and logarithmic (right) training point
distribution in time.

to cover the domain completely. They are generated with DataGeneratorXT of SciANN

which builds a grid with a number of points distributed in both the domain and the

boundaries, so as to guarantee that each loss term is proportionally sampled and the

optimizer performs better.

The numerical time domain is bounded at T = 1000s, which represents a value

where steady state conditions are practically achieved for the selected material param-

eters. First of all, we notice that a uniform distribution of training points in time is not

effective, since significant oscillations of the initial boundary bands can be observed
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FIGURE 3.3: Terzaghi’s problem: training point distribution in the
space-time domain. Blue ones are collocation points, while green, red
and black ones are used to impose initial and boundary conditions at
z = 0 and z = H , respectively. Pressure and displacement data are

given on them all.

(Figure 3.2). Such sharp oscillations are substantially smoothed generating a logarith-

mic random sample in time. This is motivated by the shape of the analytical solution

(3.17) that is exponentially decaying in time. This behavior is common for every cou-

pled hydro-poromechanical problem, independently of application dimension and the

specific boundary conditions.

The total number Nd of training data is set to 3000, half of which is equally dis-

tributed between boundary and initial conditions. This is an empirical choice balanc-

ing the need of limiting the computational burden of the training processes and the size

of the approximation errors. Therefore, we suppose to have pressure and displacement

data {pi, ui}Nd

i=1 obtained by evaluation of the analytical solutions (3.17) over training

points {zid, tid}
Nd

i=1 spread all over the domain. The points located inside the domain are

used as collocation points, while the ones on the space-time boundaries allow to evalu-

ate (3.15) and (3.16), thus resulting in Nc = 1500, NIC = 750, and NBC = 750 split into

top and bottom (Figure 3.3).

We consider all the possible 144 architectures generated by varying the number of

layers in {4, 8, 12}, the number of neurons in {20, 40} and the type of the activation

function, either tanh or elu, for both networks (Table 3.1). The number of epochs is set

to 5000 with a batch size of 500. Note that the size of the batches has to be quite big

so as to contain points over the boundaries too. This is necessary because the gradient
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updates have to consider also information for the boundary terms of the loss function

(3.6). An early stopping is added to quit the training if the loss function does not im-

prove for 500 epochs. Adam’s algorithm is used with a learning rate constantly equal to

0.001 until the 2000th epoch and then exponentially decreasing to 0.0001 until the last

epoch [Brownlee, 2016]. The weights of both the neural networks are initialized with

Glorot normal initializer of Keras.

As mentioned before, to improve the training procedure all data have been normal-

ized between 0 and 1 by Scikit-learn Min-Max scaler. First, the scaled networks p̂s and

ûs have been trained over these scaled data, and then denormalized to obtain p̂ and û:

p̂ = p̂spsc + pmin,

û = ûsusc + umin,

(3.18)

where psc = pmax � pmin, usc = umax � umin, with pmin, pmax and umin, umax the min-

imum and maximum pressure and displacement values, respectively. Also, each term

of the loss function is multiplied by an appropriate weighting factor to balance their

role in the training process. In this case, the weights have been set as follows: wequ,z =

w�p
= psc, wcont = w�u,z = usc, w�� ,z = PH , w�q

= 100psc, wIC,u,z = 1
Ku+4µ/3PHH , and

wIC,p = ↵M
Ku+4µ/3PH . The choice is also motivated by the different unit of measure of

the loss function contributions, see (3.13)-(3.16). Notice that w�q
is magnified 100 times

with respect to other similar weights to better enforce boundary conditions at z = H .

The seed generating the random points is the same in all simulations in order to have

reproducible and comparable results.

To evaluate the accuracy, the trained networks are computed over a uniform grid

with 1501 ⇥ 1001 points in the z � t domain [0, 15]m ⇥ [0, 1000]s. The errors are evalu-

ated by numerically computing the dimensionless weighted L
2-norm (3.12) over such

a uniform grid and plotted in Figure 3.4 for all 144 architectures. Mean value and stan-

dard deviation of the errors are equal to µp = 3.291⇥ 10�2 and �p = 1.719⇥ 10�2 for p,

µu = 5.622 ⇥ 10�2 and �u = 3.327 ⇥ 10�2 for u. Overall, we can observe that the PINN

accuracy appears to be quite satisfactory for almost any of the investigated architec-

tures. The displacement errors are larger than the pressure ones on average, with a

similar statistical distribution. It is interesting to note that for both p and u the smallest
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FIGURE 3.4: Terzaghi’s problem: errors in the pressure (top) and dis-
placement (bottom) reconstruction for the different architectures. On the

rightmost frames, the error statistical distribution is provided.

errors occur in architecture indices between 100 and 120, which correspond to the use

of elu activation function, 12 layers and 20 neurons for u. These plots highlight the ro-

bustness of the PINN method, that for a large number of combinations gives similar and

satisfactory error values. Outliers are quite few and even in the worse cases the errors

are at most around 12%. The full factorial combination of the values in Table 3.1 have

been done with three repetitions for each architecture, obtained using three different

random seeds. Graphs in Figure 3.4 preserve the same allocation of the errors for all

the different seeds, so that it is possible to conclude that the choice of the seed has a

negligible impact.

Figure 3.5 contains the main effect plots of the mean errors obtained with the dif-

ferent hyper-parameters. They show that the strongest impact on the PINN accuracy

is given by the choice of the activation function for û and the number of its neurons,

with elu and 20 neurons being more effective. The choices for the p̂ architecture are

not so significant for the accuracy in the displacement approximation. Conversely, for
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TABLE 3.4: Response optimization results.

Layers p Layers u Neurons p Neurons u Act fun p Act fun u
Terzaghi 10 12 40 20 elu elu
Mandel 4 8 20 20 tanh tanh

pressure approximation elu is again more appropriate. It is also possible to conclude

that a suitable value for the number of layers of both the NNs is between 8 and 12.

FIGURE 3.5: Terzaghi’s problem: main effect plots of the sensitivity anal-
ysis on all hyper-parameters for the pressure (top) and displacement
(bottom) approximations. A grey background denotes a term not sta-

tistically significant in the model.

Finally, a classical response optimization process [Box and Wilson, 1951], applied to

both p- and u-error provides the architecture in Table 3.4 as the best one. The response

optimization is ideal for optimizing and exploring deployed predictive data mining

models. It performs a discrete search in the independent variable space, so as to en-

rich the plumbed space of the hyper-parameters, until a set of independent values are

discovered for which the model yield minimizes the responses. Note that the optimal

values for û are elu activation function, 12 layers and 20 neurons, as confirmed also

from Figure 3.4 and 3.5.
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FIGURE 3.6: Sketch of the setup for Mandel’s problem with indication
of sensor locations, only in the portion of the domain considered for

symmetry reasons.

3.2.2 2D: Mandel’s problem

Mandel’s problem simulates the consolidation of an infinitely long poroelastic slab,

which is sandwiched between two rigid, impermeable and frictionless plates. The

poroelastic fluid-saturated slab is homogeneous and isotropic and both plates are sud-

denly squeezed at time t = 0 by a constant compressive vertical load per unit length

2F (Figure 3.6). Let 2a and 2b be the slab sizes. The left and right boundaries (x = ±a)

are stress-free, drained and always at ambient pressure (p = 0), while top and bottom

boundaries (z = ±b) have a prescribed stress and no flux. As the domain is symmetric,

only the highlighted quarter of the x� z plane in Figure 3.6 is considered.

Equations (3.1) and (3.2) in two dimensions for Mandel’s configuration take the

form:
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where the Darcy conductivity  is assumed to be the identity tensor 1 multiplied by

the scalar . The boundary conditions read:

@p

@x
(0, z, t) = 0, ux(0, z, t) = 0,

@uz

@x
(0, z, t) = 0, x = 0,

p(a, z, t) = 0,
@ux

@x
(a, z, t) =
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,
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(3.21)

The instantaneous load application at t = 0 causes the initial overpressure p0(x, z) and

horizontal and vertical displacements ux,0(x, z) and uz,0(x, z) [Ferronato et al., 2010;

Castelletto et al., 2015]:
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The analytical solution reads [Castelletto et al., 2015]:
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with ↵n the positive roots of the non-linear equation:

tan↵n = � ⌫ � 1

⌫u � ⌫
↵n. (3.24)
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See Table 3.2 and 3.3 for the material parameter definitions and values. We choose

a = b = 1m and the force F equal to 10�2MN/m.

In Mandel’s problem there are three unknown functions, i.e., fluid pressure p(x, z, t),

horizontal displacement ux(x, z, t), and vertical displacement uz(x, z, t). Each one is ap-

proximated by a neural network with the loss function built as in (3.6), so as to honour

both the governing equations (3.19)-(3.20) and the auxiliary conditions in (3.21)-(3.22).

The problem domain in space and time is ⌦ = [0, a] ⇥ [0, b] ⇥ [0,+1). Given the ma-

terial parameter values of Table 3.3, the domain is limited along the time direction to

T = 10s. Recalling the observations made for Terzaghi’s problem, we empirically select

Nd = 6000 data points using SciANN DataGeneratorXYT to build the random samples

{xid, zid, tid}
Nd

i=1 with a logarithmic scale in time. The procedure is forced to produce half

training points inside the domain and the remaining ones equally distributed along the

boundaries. In particular, 375 points are set on each side of the space domain boundary

and 1500 at t = 0.

The same hyper-parameter domain as Terzaghi’s problem (Table 3.1) is considered

for the sensitivity analysis. We use 5000 epochs with a batch size set equal to 1000 and

the learning rate of Adam’s optimization algorithm to 0.001 for the first 2000 epochs,

then exponentially decreasing to 0.0001 until the last epoch. As for Terzaghi’s problem,

the weights of the networks are initialized with Glorot normal initialization and the

training data are scaled with the min-max scaler. Then, three NNs, namely p̂s, ûx,s,

and ûz,s, are built to fit the scaled data and other three networks, p̂, ûx, and ûz , are

derived as in (3.18). The values for the remaining weights are: wequ,x = wequ,z = w�p
=

w�q
= psc, wcont = w�u,x = ux,sc, w�u,z = uz,sc, w�� ,x = w�� ,z = F

2µ , wIC,u,x = F⌫u
2µ ,

wIC,u,z = �F (1�⌫u)
2µ , and wIC,p =

B(1+⌫u)F
3a .

After training, the network accuracy is evaluated on an equally spaced grid in

[0, 1]m ⇥ [0, 1]m ⇥ [0, 10]s of 101 ⇥ 101 ⇥ 201 points. The L
2-errors of Equation (3.12)

are plotted in Figure 3.7. As for Terzaghi’s problem, the errors denote quite a limited

spread, providing evidence again of the PINN robustness. It appears also that displace-

ments are very marginally affected by the hyper-parameter selection, with the worse

outliers characterized by an error around 7%. By distinction, there exists a marked

difference for the fluid pressure, where the realizations which correspond to the tanh
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FIGURE 3.7: Mandel’s problem: errors in the pressure (top), horizon-
tal (middle) and vertical displacement (bottom) reconstruction for the
different architectures. On the rightmost frames, the error statistical dis-

tribution is provided.
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FIGURE 3.8: Mandel’s problem: main effect plots of the sensitivity anal-
ysis on all hyper-parameters for the pressure (top), horizontal (middle)
and vertical displacement (bottom) approximation. A grey background

denotes a term not statistically significant in the model.
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activation function for displacements (from no. 1 to no. 72) exhibit a more consistent

behavior than the remaining ones. Means and standard deviations of the errors are

µp = 4.671 ⇥ 10�2, µux
= 4.653 ⇥ 10�2, µuz

= 5.131 ⇥ 10�2, and �p = 1.314 ⇥ 10�2,

�ux
= 6.522 ⇥ 10�3, �uz

= 6.268 ⇥ 10�3, i.e. the same order of magnitude as Terza-

ghi’s problem. As for the 1D case, this chart shows the robustness of the method, since

around 70% of the possible architectures leads to errors inside tight µ· ± �· intervals.

The effect plots for Mandel’s problem are shown in Figure 3.8. According to these

diagrams the activation function of the displacements is the hyper-parameter mostly

affecting the overall network behavior. In this case, it appears preferable to set it at

tanh. The other hyper-parameter showing an appreciable influence on the network

accuracy is the number of layers for both displacement and pressure, the latter exclu-

sively for vertical displacement errors. The response optimization process gives the

architecture provided in Table 3.4.

3.3 PINN application with a sensor-driven condition

The quality and effectiveness of the PINN architectures identified in the previous sec-

tion are tested on a more challenging situation, with the aim of applying a PINN strat-

egy to something closer to a real-world application. First, we use the PINN model as

a standard forward PDE solver with no other information but the initial and boundary

conditions. Second, we add a few pieces of information as training data, arising from

a synthetic “sensor” installed at some fixed locations to monitor the evolution of the

process. This is quite a common situation that may occur in real-world applications,

where data can be recorded at some points of the space-time domain. Third, to better

replicate the condition driven by measured data, we add some noise to the synthetic

data. The key idea here is to show that even a few training data points from a very

limited subset of the domain can substantially improve the computational efficiency of

the numerical procedure for minimizing the loss function in the forward PINN solution

of a PDE system. At the same time, exploiting the available, and even noisy, data can

significantly improve the quality of the PINN prediction. This approach may be effec-

tive in a practical situation, where the general behavior of a physical process is known,
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but many different immeasurable phenomena may affect the outcome. The integra-

tion of some data measured in the site can help to account for marginal effects due to

several minor dynamics. In that event, the solution is not forced to strictly satisfy ex-

clusively the main process, but to balance it with other natural occurrences. We denote

the applications investigated in this section as sensor-driven simulations, in the sense

that we assume that data within the domain are available only where a physical sensor

is installed.

The procedure is here applied to artificially-created synthetic examples, but the ob-

jective is to assess the PINN performance in view of its application to a real case, where

monitoring data describing the evolution of the physical process are available at some

specified locations. Both the one-dimensional and the two-dimensional configurations

of Section 3.2 are tested and compared with a strictly forward solution.

3.3.1 1D: Terzaghi’s problem

Following the outcome of Table 3.4, we build the PINN model by using a pressure net-

work with 10 layers, 40 neurons and elu activation function, while the displacement

network has 12 layers, 20 neurons and elu activation function. This PINN model is used

to solve the classical 1D Terzaghi’s consolidation problem in the setting of Figure 3.1

with the initial and boundary conditions of Equations (3.15)-(3.16). Since we assume to

use PINN as a forward PDE solver with no additional information available, the num-

ber of collocation points has to be significantly increased with respect to the analysis

carried out in Section 3.2. In particular, to achieve a sufficient accuracy we needed

Nc = 20000 collocation points inside the domain where the PDE residual is evaluated,

NIC = 6000 initial points and NBC = 9000 points uniformly distributed in time along

the z-boundary. The training is performed with Adam’s algorithm for 30000 epochs,

with a batch size equal to 1000 and a learning rate constantly equal to 0.001 for the

first 2000 epochs and then with an exponential decay to 0.0001 until the 5000th epoch

and to 0.00001 until the end. The loss function is the same as in (3.6), but the weights

vary following a Neural Tangent Kernel (NTK) guided gradient descent. This is chosen

because it has been verified that this method generally improves convergence [Wang

et al., 2021b]. All the other parameters have been chosen the same as in Section 3.2.1,
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with no early stopping. The accuracy of the outcome is satisfactory (Figure 3.9) with

relative L
2-errors for pressure and displacement at about 2% and 0.7%, respectively.

FIGURE 3.9: Terzaghi’s problem: comparison between analytical
and PINN solution using the model as a forward PDE solver.

Now, we assume that a sensor is located at z = 7m collecting pressure and dis-

placement values in time, as in Figure 3.1. Exploiting the data coming from one single

point in the physical domain, the number of collocation, initial, and boundary points

used for the PDE residuals and the auxiliary conditions can be reduced to Nc = 10000,

NIC = 3000, and NBC = 4000, with no other data points inside the domain, except

for Nd = 3000 points at z = 7m (Figure 3.10a). Pressure and displacement data at the

sensor location are synthetically obtained from the analytical solution (3.17). In order

to better reproduce a realistic setting, noise has been also added to the exact values by

introducing an error with a Gaussian distribution, zero mean and a standard deviation

equal to 5% of exact values (Figure 3.10b), similarly to what is done in [Raissi et al.,

2019].

The training is carried out with the same parameters as before, but now it can be

stopped after 10000 epochs. The trends of the loss functions provided in Figure 3.11

clearly show the improvement allowed by the introduction of one "sensor" point only in

space with respect to a simple forward solution in terms of both speed of convergence

and accuracy. The mean of the L
2-norms of the errors on the validation set of three

runs is about 0.5% for the predicted pressure and 0.2% for the vertical displacement

(Table 3.5). Notice that also in case of noisy data we have an improvement both in the

accuracy and in the convergence speed, hence in the overall computational load.
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(A) Training points (B) Noisy data

FIGURE 3.10: Terzaghi’s problem: (a) training points in the sensor-driven
simulation in Terzaghi’s problem with data given only at z = 7m; (b) 5%
noise is added to the training sensor data to better reproduce a realistic

setting.

(A) Terzaghi (B) Mandel

FIGURE 3.11: Comparison between the losses relative to the initial value
L0 of the forward and sensor-driven frameworks.

We considered also the case where only partial measurements are available, i.e. only

pressure points are used within the domain at z = 7m with no data for displacements.

This is usually closer to a real-world hydro-poromechanical problem, since in many

applications, for example in subsurface engineering, it is generally easier and less ex-

pensive to monitor the fluid pressure in time with respect to deep displacements. In

these last cases the accuracy obviously decreases, but the approximation errors still re-

main acceptable from an engineering application point of view, as it can be noticed in

Table 3.5, with the related loss functions still efficiently minimized (Figure 3.11a).
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TABLE 3.5: Errors for the different model applications. The mean error
computed from three runs and different random seeds are provided.

Terzaghi Mandel
1 sensor at z = 7m 2 sensors at (x, z) = (0.3, 0.3)m, (0.7, 0.7)m

Error p Error u Error p Error ux Error uz
No data 2.279⇥ 10�2 7.205⇥ 10�3 2.655⇥ 10�1 1.921⇥ 10�1 1.268⇥ 10�1

Sensor data u&p 4.891⇥ 10�3 2.731⇥ 10�3 4.311⇥ 10�2 3.521⇥ 10�2 5.571⇥ 10�2

Noisy data u&p 1.556⇥ 10�2 3.106⇥ 10�3 2.177⇥ 10�2 3.518⇥ 10�2 6.799⇥ 10�2

Sensor data only p 6.654⇥ 10�3 1.314⇥ 10�2 2.595⇥ 10�2 1.446⇥ 10�1 1.265⇥ 10�1

Noisy data only p 1.411⇥ 10�2 1.051⇥ 10�2 4.327⇥ 10�2 1.437⇥ 10�1 1.275⇥ 10�1

3.3.2 2D: Mandel’s problem

The same analysis as in Section 3.3.1 is applied to Mandel’s problem. We consider

the PINN architecture defined by the hyper-parameters in Table 3.4, using for fluid pore

pressure 4 layers with 20 neurons and tanh activation, and for horizontal and verti-

cal displacement 8 layers with 20 neurons and tanh activation. We refer to the prob-

lem setting of Figure 3.6 and carry out an initial test with no other data but the initial

and boundary conditions (3.21)-(3.22). The networks are trained over Nc = 40000 col-

location points for the PDE residuals, NIC = 8000 initial points, and NBC = 12000

points equally distributed along the four spatial boundaries. The loss function is built

as stated before with the NTK weighting. The training is performed for 30000 epochs

with Adam’s algorithm, a 0.001 learning rate constant until the 2000th epoch, with an

exponential decay to 0.0001 for 3000 epochs and then to 0.00001 until the end. The size

of the batch has been chosen equal to 2000, while the other choices follow those of the

previous Section 3.2.2 without early stopping.

Figure 3.12 shows a comparison between the PINN approximation and analytical

solution. The outcome is only fairly satisfactory, with discrepancies that can be appre-

ciated for both the pressure and the displacement solution. In this case, the relative

L
2-error norm is around 26% for pressure, 14% for horizontal displacement, and 13%

for vertical displacement.

If we add a few pieces of information, the training process can be substantially

improved. We suppose that two sensors are located at (x, z) = (0.3, 0.3)m and (x, z) =

(0.7, 0.7)m collecting pressure and displacement values in time, as in Figure 3.6. As

before, the synthetic measurements in time taken from the analytical solution (3.23)

at the sensor locations are also perturbed by some noise with the same characteristics
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FIGURE 3.12: Mandel’s problem: comparison between analytical
and PINN solution using the model as a forward PDE solver.

as for Terzaghi’s problem. The networks are now trained over Nc = 20000, NIC =

6000, and NBC = 8000 points, while Nd = 6000 training data points split into 3000

data points are collected at each location in time. As already observed in Terzaghi’s

application, the introduction of a sensor-driven condition significantly improves both

the accuracy and the convergence speed. The loss minimization process requires only

10000 epochs with the behavior shown in Figure 3.11b, while the relative L
2-errors

decrease to 4.3%, 3.5% and 5.6% for pressure, horizontal, and vertical displacement,

respectively (Table 3.5).

As done before, we considered also the case where only pressure measurements are

available. A summary of the errors is reported in Table 3.5. In Mandel’s case, the errors

are larger with respect to Terzaghi’s case, but the advantage of the sensor-driven frame-

work is still evident (Figure 3.11b and Figure 3.12). In particular, in this example, the

precision reached by the forward solution is not fully satisfactory. Assuming that the

information is available both for the pressure and displacements field, the results are

again quite accurate. As expected, in the case where only pressure data are available,

the accuracy for pressure remains quite good, but the errors for the approximations of
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the displacements are higher.

3.3.3 Discussion

The implementation of PINN models for problems governed by Biot’s equations of

hydro-poromechanics has been investigated. By this approach, prior knowledge (the-

oretical, empirical, mathematical, observational, etc.) of a problem is used to enhance

the overall modeling procedure. However, the construction of effective neural net-

works for an accurate representation of the physical process depends on the selection

of a number of hyper-parameters and is often quite expensive, ultimately remaining on

the modeler’s experience rather than on robust indications. The extensive experimen-

tation carried out to analyze the structure of effective architectures for the accurate PINN

training in poromechanics shows that some hyper-parameters are more influential than

others in controlling the PINN model accuracy. Such a knowledge can limit the usu-

ally time-demanding empirical process required to build the approximating networks,

driving the user into the design of NN architectures for the problem of interest. On the

other side, PINN implementation on coupled problems suffers from well-known draw-

backs as the high computational cost and the difficulties related to the multi-objective

loss minimization. These limitations make the method non-competitive with most

traditional and well-established PDE solvers based on discretization methods. How-

ever, PINNs have the advantage of allowing for an automatic data integration in the PDE

solution stage. A sensor-driven framework has been introduced with the purpose of

both accelerating the convergence of the minimization process and increasing the ac-

curacy of the method. The numerical experiments on synthetic test cases show that

integrating very few samples in space can substantially improve the PINN performance

as a forward PDE solver. The results that follow are worth summarizing.

• The most significant hyper-parameter is the activation function of the neural net-

works approximating displacements. Care must be taken in its setting, restricting

the choices to tanh and elu.

• The NNs for poromechanical applications do not seem to require a very complex

structure to achieve approximation relative errors lower than 10�2. Twelve layers
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or less, along with no more than 40 neurons per layer, is enough.

• The magnitude of the approximation errors appears to be acceptable (< 10%) for

a wide range of hyper-parameter combinations, providing evidence of a good

matching between analytical and PINN solutions.

• The analysis emphasizes the robustness of the PINN approach, also due to the

presence of the PDE residuals in the loss function acting as regularization terms.

This means that there is a high chance to reach good accuracy once identified only

the most significant hyper-parameters.

• The proposed sensor-driven architecture has resulted in improvements with re-

spect to a pure forward solution in terms of both computational training time and

model accuracy.

• The application of the analysis to more practical cases, such as assuming the avail-

ability of a limited number of observations, has provided promising results, since

it has led to accurate approximations from data given only on very few (1 or 2)

fixed locations. This appears to be a good starting point for the assimilation of

data in real-world problems’ modeling.





Chapter 4

PINN for inverse solution in

hydro-poromechanics

In the context of hydro-poromechanics, the need to estimate the main material param-

eters governing subsurface processes is definitely compelling. Since most of the mea-

surement techniques are indirect and representative of the medium only at a very local

level, the need for robust and efficient inverse solutions becomes of paramount impor-

tance.

When the required parameters have a measurable physical meaning, a major inves-

tigation branch concerns either in-situ observations used to study reservoir deforma-

tion with specialized measurement equipment, such as surface deformation monitor-

ing by satellite techniques or well-logs equipped with radioactive markers [Ferronato

et al., 2013], or laboratory tests, properly developed for characterization of geological

formations [Mantica et al., 2016].

Otherwise, inverse modeling and data assimilation methods must be employed in

order to exploit observations for approximating those parameters that are not directly

linked to measurable quantities, [Zoccarato et al., 2016; Guzman et al., 2014; Wilschut

et al., 2011; Jahandideh et al., 2021; Fokker et al., 2015]. Disposing of fast and accu-

rate estimates of quantities of interest is extremely useful - if not even necessary - in

a real-time or multi-query context, since the former requires the computation of the

model in a very short amount of time, while the latter requires the model to be solved

a huge number of times corresponding to various parameter instances sampled from

parameter space.

71



72 Chapter 4. PINN for inverse solution in hydro-poromechanics

Inverse problems, pervasive in hydrogeology, geomechanics, and reservoir engi-

neering, require the unraveling of subsurface properties from observed data. Tradi-

tional approaches often grapple with computational challenges, limited data availabil-

ity, and the inherent nonlinearities of the subsurface processes [Zoccarato et al., 2019;

Bottazzi and Rossa, 2017]. In this context, Physics-Informed Neural Network (PINN) can

be applied to decipher the complexities of hydro-poromechanical systems, by exploit-

ing its cutting-edge property to fuse physics-based modeling and machine learning

together. PINN can not only bridge the gap between data-driven and physics-based

methodologies but also promise versatility in solving inverse problems. Indeed, if

the governing equations of two different problems have the same structure, the resid-

ual loss term of PINNs does not change, resulting in a straightforward implementation

of PINN to several applications, which only needs a slight change perhaps in the bound-

ary and initial conditions.

We showcase PINN application in crafting alternative inverse solutions in the hydro-

poromechanical field. Through insightful case studies, this chapter aims to provide an

overview of an easy-to-implement tool, which highlights the current strengths and lim-

itations of PINN application for parameter estimation of subsurface processes. The use

of PINN in the context of addressing inverse problems in coupled hydro-poromechanics

still needs investigations and in-depth analyses. Therefore, the results obtained in this

work can be regarded as a preliminary outcome that has to be further considered in the

next future.

The setting is the same as in Chapter 3, but this time the aim is to estimate not only

the state variables, but also the geomechanical and hydraulic parameters involved in

the Biot’s model, represented by the Lamé constants and the hydraulic conductivity.

4.1 1D: homogeneous problem

In this section, we delve into the results obtained from the parameter identification

of the Biot’s model (3.1)-(3.2), focusing on a one-dimensional homogeneous setting,

i.e. the Terzaghi’s problem presented in Section 3.2.1. The system under consideration



Chapter 4. PINN for inverse solution in hydro-poromechanics 73

consists of a fluid-saturated sandy column subjected to a constant load, thus reproduc-

ing Terzaghi’s classical scenario. The corresponding Lamé constants, �s, µs, and the

hydraulic conductivity, ks, (see Table 3.3) are additional unknowns of the problem, that

can be estimated with the aid of some available data.

To quantify the impact of the number of training data points, we conduct a compar-

ative analysis of parameter prediction accuracy between two cases:

• an ideal framework in which we suppose to have data spread over the entire

domain,

• a more realistic framework in which data are located at one fixed location, sim-

ulating the presence of a sensor as in the sensor-driven condition proposed in

Section 3.3.

The model is built as stated in Section 3.2.1, using the loss function (3.6) where the

weights vary following a NTK. The difference is that the hydraulic conductivity ks =

10�5 m/s and parameter �s + 2µs - which is the inverse of the vertical uniaxial com-

pressibility cM - with �s = 40 MPa, µs = 40 MPa the Lamé constants, are unknown

constant parameters. For their estimation, we use an object of the SciANN parameter

class with the additional non-negative constraint, [Haghighat and Juanes, 2021]. The

object consists of a scalar value that is updated during the training in the same way as

the NN weights. In accordance with the results in Table 3.4, we built the model using a

displacement NN that has 12 layers, 20 neurons, and elu activation function, and a pres-

sure NN that has 10 layers, 40 neurons, and the same activation. With the initial and

boundary conditions from Equations (3.15)-(3.16), this model is applied to the classical

1D Terzaghi’s consolidation problem in Figure 3.1.

The training is performed with Adam’s algorithm for 15000 epochs, with a batch size

equal to 1000 and a learning rate constantly equal to 0.001 for the first 2000 epochs and

then with an exponential decay to 0.0001 until the 5000th epoch and to 0.00001 until

the end.
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4.1.1 Spread training data points

In the first scenario, we explore an ideal framework where data points of pressure

p and displacements u are assumed to be randomly distributed across the entire do-

main (Figure 3.3). This scenario represents an optimal condition where comprehensive

knowledge of the system is available.

(A) (B)

(C) (D)

FIGURE 4.1: Accuracy of parameter predictions in an ideal framework
with training data points spread across the domain (top) and corre-
sponding mean error (4.1) trend (bottom) with the change in number
of training data points. Grey bands provide the confidence interval for

one standard deviation.

Figure 4.1 illustrates the accuracy of parameter predictions under this idealized con-

dition. Hydraulic conductivity can take extremely low values and what is of interest

in its estimation is the order of magnitude; hence, we report the base-10 logarithm of

the predicted values. The solid lines correspond to the mean outcome from 10 different

runs, while grey bands provide the confidence interval for one standard deviation. The
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parameter errors are relative absolute errors between predictions, �̂, and real values, �:

Error(�̂,�) =
|�̂� �|
|�| . (4.1)

As depicted in Figure 4.1, the PINN model exhibits good accuracy in capturing the Lamé

constants and hydraulic conductivity across the entire domain. The even distribution

of data points ensures a robust training regimen, with a clear correlation between esti-

mate improvement and number of training data points.

4.1.2 Sensor training data points

In a more realistic framework, we simulate a sensor-driven condition where data points

are available only at a single fixed location, akin to the presence of a sensor (Fig-

ure 3.10a). This scenario reflects practical limitations in data acquisition, as sensors

might be strategically placed in a very few locations only due to resource constraints

or specific measurement objectives.

Figure 4.2 presents the results obtained under this sensor-driven condition. The

plots illustrate that, even with a limited number of data points in a localized region,

the PINN model demonstrates accuracy in predicting the geomechanical and hydraulic

parameters. The network effectively learns the system characterization, showcasing its

ability to extrapolate information beyond the sparse data points. The trend of the ac-

curacy is no more consistent with the amount of training data points, as if at a certain

point the data information becomes redundant. Here, we are increasing the number of

measurements in time, while keeping constant the space location of the sensor. From

the practical consequence perspective, the results suggest that the amount of measure-

ment in time is not the crux of the problem. Actually, at some points it appears that

the boost of training data points located at fixed points in the domain adversely affects

the estimations of the unknown parameters. This is probably due to the unbalance be-

tween the terms in the loss function, with the information of sensor data - narrowed

to a small portion of the domain - hiding the physical knowledge describing the entire

domain.
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A comparison of Figures 4.1 and 4.2 indicates that while the mean and standard

deviation errors are marginally higher in the sensor-driven condition, the PINN model

remains robust in both scenarios, with a similar behavior under different training con-

ditions. This underscores the versatility of PINN in handling diverse data configura-

tions.

(A) (B)

(C) (D)

FIGURE 4.2: Accuracy of parameter predictions in a sensor-driven con-
dition (top) and corresponding mean error (4.1) trend (bottom) with the
change in number of training data points. Grey bands provide the con-

fidence interval for one standard deviation.

The results presented here show the PINN effectiveness in identifying parameters

of Biot’s model under varying data conditions in a one-dimensional homogeneous set-

ting. The model adaptability to sparse, sensor-driven data advises its applicability in

real-world scenarios, where data availability may be limited.

In the subsequent sections, we delve deeper into the nuanced aspects of the param-

eter identification and discuss the broader implications of these findings in the context

of hydro-poromechanics.
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4.2 2D: homogeneous problems

We present the outcomes of the parameter identification for Biot’s model (3.19)-(3.20),

governing the coupled mechanics and fluid flow processes in a two-dimensional set-

ting. The simulations involve a 2D spatial domain subjected to consolidation. The

parameters of interest include the Lamé constants, representing geomechanical proper-

ties, and the hydraulic conductivity, characterizing fluid flow within the porous medium.

The focus is on two distinct test cases:

• the simulation of 2D consolidation within a fluid-saturated porous medium with

homogeneous properties,

• an extended scenario in which we introduce a pumping well within the domain

undergoing 2D consolidation.

4.2.1 Case 1: Homogeneous consolidation

In our first test case, we investigate the parameter identification of Biot’s model in

the context of two-dimensional consolidation within a fluid-saturated, homogeneous

porous medium. The medium is made of a homogeneous material, e.g. sand, and

undergoes consolidation due to external loading, PH . Our focus is on estimating the

parameters characterizing the geomechanical and hydraulic properties of the sandy

medium, �s, µs, and ks. Figure 4.3 provides a visual representation of the model setup.

The equations describing the problem are (3.19)-(3.20) in ⌦ = [0, L]⇥[0, H]⇥[0,+1),

with � = �s, µ = µs, and k = ks. The initial conditions read:

p0(x, y) =

8
><

>:

0 z = H

PH otherwise
, ux,0(x, z) = 0, uz,0(x, z) = 0, (4.2)

and the boundary conditions:

@p

@x
(0, z, t) = 0, ux(0, z, t) = 0,

@uz

@x
(0, z, t) = 0, x = 0,

@p

@x
(L, z, t) = 0, ux(L, z, t) = 0,

@uz

@x
(L, z, t) = 0, x = L,

@p

@z
(x, 0, t) = 0,

@ux

@z
(x, 0, t) = 0, uz(x, 0, t) = 0, z = 0,

p(x,H, t) = 0,
@ux

@z
(x,H, t) = 0, (�s + 2µs)

@uz

@z
(x,H, t) = �PH , z = H.

(4.3)
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FIGURE 4.3: Case 1: Sketch of the setup for 2D consolidation in a homo-
geneous setting with indication of sensor locations.

We set the external load PH = 90 kPa, and the domain dimensions L = 100 m and

H = 30 m. All the other parameters are chosen as in Table 3.3. The numerical final time

is T = 218160 s.

The PINN model consists of three NNs - p̂s, ûx,s, ûz,s - trained by minimizing the mis-

fit with pressure and displacement scaled data obtained by solving the problem with

a FE method over training points {xid, zid, tid}
Nd

i=1 corresponding to ideal sensors located

as in Figure 4.3. In particular, we suppose to have the datum of surface displacements

in time at x = 25 m and x = 75 m, and pressure measurements in (x, z) = (50, 21)

m and (x, z) = (50, 15) m. In order to reduce the number of loss-terms, the Dirichlet

boundary conditions in (4.3) have been imposed in a strong form by adjusting the NN

architecture, as proposed in [Sukumar and Srivastava, 2022; Berrone et al., 2023]:

p̂s = p̂spBC �
pmin

psc
,

ûx,s = ûx,sux,BC �
ux,min

ux,sc
,

ûz,s = ûz,suz,BC �
uz,min

uz,sc
,

(4.4)

with pBC = H � z, ux,BC = (L � x)x, and uz,BC = z. The corresponding un-

scaled NNs (3.18) serve to compute both the residual of the governing equations (3.19)-

(3.20) and the auxiliary conditions in (4.2)-(4.3). Hence, we minimize the model loss

function built as in (3.6) with NC = 10000 collocation points, NIC = 3000 initial points,

and NBC = 4000 boundary points. We made use of 25 data points for each sensor, for

a total of Nd = 100 training data points. The training lasts 100000 epochs.
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(A) (B)

(C)

FIGURE 4.4: Case 1: Estimation of the unknown parameters �s (A), µs

(B), and ks (C) during the training for 2D consolidation in a homoge-
neous porous medium.
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As depicted in Figure 4.4, the parameter identification process yields accurate pre-

dictions for the geomechanical and hydraulic parameters governing the process. Ta-

ble 4.1 contains the errors (3.12)-(4.1) in the PINN approximations of the problem un-

knowns. The model is able to solve the governing equations while simultaneously es-

timating the parameters involved in with errors up to 10%. The identified parameters

enable a comprehensive understanding of the consolidation process in the homoge-

neous porous medium (Figure 4.5). This validates the effectiveness of the methodology

in capturing the behavior of the system.

FIGURE 4.5: Case 1: Comparison between analytical and PINN solution
in a two-dimensional homogeneous consolidation setting.

4.2.2 Case 2: Homogeneous consolidation with a pumping well

In the second test case we extend the previous scenario by introducing a water pump-

ing well within the domain undergoing the consolidation, adding complexity to the

problem dynamics (Figure 4.6). The simulation involves the same 2D spatial domain

of the previous case, but the presence of the well modifies the flow and deformation
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TABLE 4.1: Errors (3.12)-(4.1) for the different model applications in a
two-dimensional homogeneous framework.

Case 1 Case 2
Error p 8.621⇥ 10�2 1.301⇥ 10�1

Error ux 1.251⇥ 10�2 1.601⇥ 10�3

Error uz 1.291⇥ 10�2 5.985⇥ 10�2

�s real [MPa] 40 40
�s pred [MPa] 42.53 40.54
Error �s 6.330⇥ 10�2 1.358⇥ 10�2

µs real [MPa] 40 40
µs pred [MPa] 41.05 39.81
Error µs 2.631⇥ 10�2 4.824⇥ 10�3

log ks real [m/s] �5 -
log ks pred [m/s] �5.49 -
Error log ks 9.775⇥ 10�2 -

FIGURE 4.6: Case 2: Sketch of the setup for 2D consolidation in a ho-
mogeneous setting with a pumping well. The stars indicate sensor loca-

tions.

patterns. Our objective is to identify the material parameters considering the influence

of the pumping well on fluid flow and consolidation.

The well is located at x = 50 m, starting from z = 3 m to the top surface. The

presence of the well entails an additional constraint for pressure:

p(50, z, t) = 0, x = 50, 0  z  3 (4.5)

that is imposed as Dirichlet boundary condition in a strong way, by constructing a

proper distance function pBC in (4.4). The same equations (3.19)-(3.20) and boundary

conditions (4.3) of Case 1 hold, so the loss function is the same. The hyper-parameters

defining the training and the model structure have been chosen as in the previous case,

the only difference being the number and location of the sensors, which now are 6 in
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(A) (B)

FIGURE 4.7: Case 2: Estimation of the unknown parameters �s (A) and
µs (B) during the training for 2D consolidation in a homogeneous porous

medium with a pumping well.

total. We suppose to have 3 sensors measuring surface displacements at x = 25, 50, 75

m and 3 piezometers in the same x-locations at different heights (z = 15, 18 m), as in

Figure 4.6. In this setting, the presence of the well perturbs the flow dynamics and chal-

lenges the estimation of the hydraulic conductivity. We have tested different scenarios

of sensor collocation and ks was always predicted null and interfering with the Lamé

constant predictions. Postponing the problem discussion to a future work, we focus on

the estimation of Lamé constants �s and µs only.

Figure 4.7 illustrates the results obtained for this scenario, showcasing the model

ability to discern the geomechanical parameters in the presence of a pumping well too.

The state variables exhibit variations near the well, reflecting the localized influence of

pumping on consolidation dynamics (Figure 4.8); nevertheless the model is capturing

the general behavior fairly well.

To quantitatively assess the accuracy of parameter identification, we report the rel-

ative absolute error (4.1) for each parameter in Table 4.1, along with the L
2-errors (3.12)

for p, ux, uz . The results highlight the model ability to accurately identify parameters

in both test cases, with slightly increased error values in Case 2, due to the additional

complexity introduced by the pumping well. PINN proved to be a robust tool in han-

dling the added complexity introduced by the well. The identified parameters show-

case the model adaptability to dynamic changes in the porous medium. This capability

to adapt to varying conditions highlights the versatility of the parameter identification

methodology.
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FIGURE 4.8: Case 2: Comparison between analytical and PINN solution
in a two-dimensional homogeneous consolidation setting with a pump-

ing well.

4.3 2D: heterogeneous problems

In this section, we widen the application of PINN to a more complex 2D scenario, tar-

geting the identification of hydraulic and geomechanical parameters in Biot’s system

of PDEs. The study domain is characterized a heterogeneous material involving two

distinct layers: one composed of sand and the other of clay. This stratified subsurface

setting provides a representation of the actual geological conditions often encountered

in real sedimentary basins.

4.3.1 Case 3: Heterogeneous consolidation

The first test case considers a 2D domain discretized into two layers, with different

material properties, subjected to a constant load PH . The lower layer has height H1

and consists of sand, while the H2-high upper layer is composed of clay. See Figure 4.9

for a sketch of the application into consideration. The challenge is to accurately identify
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FIGURE 4.9: Case 3: Sketch of the setup for 2D consolidation in a het-
erogeneous setting with indication of sensor locations.

the hydraulic conductivities (ks and kc) and the Lamé constants (�s, µs, �c, and µc) for

each layer.

The heterogeneity is modeled as follows. We marked the collocation points as be-

longing to the sandy or clayey layer, and the loss function contains double residual

terms for the equilibrium equation (3.19) and the continuity equation (3.20): one for the

lower layer, computed over the sand-collocation points, while the other is computed

over the remaining clay-collocation points, corresponding to the upper layer. This is

equivalent to assume to know the spatial distribution of the different layers, but not

the nature of the materials which are made of, which is a quite usual condition met in

reality. The boundary conditions (4.3) still hold, but the boundary condition for uz on

the top surface reads:

(�c + 2µc)
@uz

@z
(x,H, t) = �PH , z = H. (4.6)

since the upper layer is now made of clay. The domain dimensions are as in the previ-

ous cases, with H1 = 18 m and H2 = 12 m the heights of the lower and upper layers,

respectively.

The sensor locations are highlighted in Figure 4.9. We consider four top surface

sensors measuring displacements in x = 20, 40, 60, 80 m and three sensors in (x, z) =

(25, 15) m, (50, 18) m, (75, 15) m, measuring both pressure and displacements.

We analyze the results obtained from the inverse solution of Biot’s model in a 2D

heterogeneous setting, as presented in Figure 4.10. Table 4.2 displays the real values of

the parameters alongside their corresponding predicted values obtained through PINN
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TABLE 4.2: Errors (3.12)-(4.1) for the different model applications in a
two-dimensional heterogeneous framework.

Case 3 Case 4
Error p 8.621⇥ 10�2 4.182⇥ 10�1

Error ux 1.251⇥ 10�2 6.900⇥ 10�4

Error uz 1.291⇥ 10�2 2.471⇥ 10�1

�s real [MPa] 40 40
�s pred [MPa] 0 38.46
Error �s 1.000⇥ 100 3.847⇥ 10�2

µs real [MPa] 40 40
µs pred [MPa] 6.14⇥ 10�3 38.96
Error µs 9.985⇥ 10�1 2.601⇥ 10�2

log ks real [m/s] �5 -
log ks pred [m/s] �6.63 -
Error log ks 3.263⇥ 10�1 -
�c real [MPa] 4 4
�c pred [MPa] 5.49 0.762
Error �c 3.744⇥ 10�1 8.095⇥ 10�1

µc real [MPa] 4 4
µc pred [MPa] 3.61 2.59
Error µc 9.686⇥ 10�2 3.526⇥ 10�1

log kc real [m/s] �7 -
log kc pred [m/s] �6.81 -
Error log kc 2.615⇥ 10�2 -

(A) (B)

(C)

FIGURE 4.10: Case 3: Estimation of the unknown parameters �s, �c (A),
µs, µc (B), ks, kc (C) during the training for 2D consolidation in a hetero-

geneous porous medium.
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FIGURE 4.11: Case 3: Comparison between analytical and PINN solution
in a two-dimensional heterogeneous consolidation setting.

and the approximation errors (3.12)-(4.1) for each of the unknowns. The Lamé con-

stants �c and µc predictions are relatively close to their real values, suggesting that the

model is able to capture the geomechanical properties of the clay layer with reasonable

accuracy. The predicted hydraulic conductivity (kc) for the clay layer is slightly higher

than the real value; on the other hand, the predicted hydraulic conductivity (ks) for

the sand layer is significantly lower than the real value. This might imply a more re-

strictive flow within the sand layer in the model compared to the real-world conditions

and that the clay layer is considered more permeable than it actually is. However, it

is to be noted that the harmonic mean of the hydraulic conductivities is 1.98 ⇥ 10�7

m/s and the predicted kc and ks take values close to it, since they respectively equal

1.52 ⇥ 10�7 m/s and 2.33 ⇥ 10�7 m/s. This can be explained by the equivalence be-

tween the flow in an heterogeneous medium orthogonal to the spatial distribution of

the materials - as in the present case - and the flow in a homogeneous domain with the

hydraulic conductivity equal to the harmonic mean of the previous ones. Such result

implies that the model is able to capture the physical process behind the data, but fails
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to catch the heterogeneity that characterize the problem. In practice, the fluid can be

equivalently predicted by two heterogeneous layers or a homogeneous one with the

harmonic mean of the hydraulic conductivities, and the PINN model converges to the

latter solution. Another evidence of this is the prediction of the Lamé constants �s and

µs, which is zero. This indicates challenges in capturing the mechanical behavior of

the sand layer accurately, so the heterogeneity. The null predictions, that are not phys-

ically consistent, are a consequence of the ill-posedness of the inverse problem in the

sandy layer. Indeed, in the lower part of the domain, the pressure p and the vertical dis-

placements uz are respectively almost constant and almost linear in space (Figure 4.11).

Therefore, their first and second derivatives, respectively, are null. In particular, �u,

rdivu, and rp equals zero, so the equilibrium equation (3.1) for the sandy layer:

µs�u+ (�s + µs)rdivu = ↵rp, (4.7)

is always satisfied for any value of �s and µs. The minimization performed during

the training returns the lowest possible value which, with the non-negative constraint,

is 0. Further investigation is needed to address this issue, for example by imposing a

condition along the boundary between the two layers, which constrains the parameter

values to be different from zero (as in the next test case in Section 4.3.2). Recently, a

cusp-capturing PINN, able to present continuous solutions that inherently have discon-

tinuous first derivatives on interfaces, has been proposed in Tseng et al. [2023], and

could be also helpful to fix the problem.

4.3.2 Case 4: Heterogeneous consolidation with a pumping well

The fourth test case corresponds to a 2D heterogeneous framework with two layers

(sand and clay) and a pumping well located in the middle of the domain. The setting

is the same as Case 3, so all the hyper-parameters are set as in the previous sections. To

model the presence of the well at x = 50 m, we impose in a strong way the boundary

condition (4.5) by modifying the NN approximating p, as stated in Section 4.2.2.

The presence of the well makes the pressure no more constant in space in the lower
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FIGURE 4.12: Case 4: Sketch of the setup for 2D consolidation in a het-
erogeneous setting with a pumping well. Sensor locations are marked

with colored stars.

layer. However, in order to avoid the ill-posedness of the problem, we add a Neumann-

type constraint on the vertical displacement along the boundary between the two lay-

ers:

(�s + 2µs)
@uz

@z

�
(x,H1, t) = p(x,H1, t)� PH , z = H1. (4.8)

where we use the superscript ·� to indicate the left partial derivative of uz with respect

to z. Therefore, the loss function contains an extra term to impose that the neural

networks p̂ and ûz and the estimated parameters satisfy condition (4.8) too.

The number of training data points is 150, since we consider 25 training data points

per sensor. In this test case, displacement measurements are given at (x, z) = (25, 30)

m, (50, 30) m, (75, 30) m, while both pressure and displacement are supposed to be

known at (x, z) = (25, 15) m, (50, 18) m, (75, 15) m.

Table 4.2 provides various error metrics (3.12)-(4.1) and compares real values with

the predicted ones for different parameters. The L
2-error for horizontal displacement

(ux) is relatively low, indicating a good agreement between the predicted and real val-

ues. However, the errors for pressure (p) and vertical displacement (uz) are higher,

suggesting potential challenges in capturing pressure and vertical deformation accu-

rately, possibly influenced by the presence of the pumping well.

The predicted Lamé constants for the sand layer are reasonably close to their real

values, with errors within acceptable ranges (2-4%). This indicates that the model is

capable of capturing the geomechanical properties of the lower layer. For the clay layer,
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(A) (B)

FIGURE 4.13: Case 4: Estimation of the unknown parameters �s, �c (A),
and µs, µc (B) during the training for 2D consolidation in a heteroge-

neous porous medium.

the predicted �c and µc show discrepancies, with higher errors compared to the sand

layer, suggesting that the presence of a pumping well challenges the geomechanical

characterization of the upper layer.

Further refinement of the model, possibly by adjusting model architecture or train-

ing strategies, may be needed to improve accuracy in capturing the effects of the pump-

ing well on both geomechanical parameters. Moreover, additional data points or con-

siderations specific to the influence of pumping on material properties could be incor-

porated for enhanced model performance.

4.4 Discussion

In this chapter, we presented a comprehensive investigation into the application of PINNs

for the hydro-poromechanical modeling of 2D consolidation in porous media. The in-

verse problem of parameter identification in Biot’s model was approached using neural

networks to estimate key geomechanical and hydraulic properties of subsurface mate-

rials. The study involved several test cases, each shedding light on the capabilities

and challenges of the PINN approach. The outcomes of this 2D application hold signifi-

cant implications for hydro-poromechanics, since a good characterization of subsurface

materials is crucial for predicting fluid flow, deformation, and overall mechanical re-

sponses in hydro-poromechanical systems.
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FIGURE 4.14: Case 4: Comparison between analytical and PINN solution
in a two-dimensional heterogeneous consolidation setting.

The results of the PINN simulations demonstrated promising accuracy in estimating

certain parameters. In the absence of a pumping well (Cases 1 and 3), the model exhib-

ited proficiency in predicting the Lamé constants for the surface layer. In the homoge-

nous setting, the hydraulic conductivity also showed reasonable agreement with real

values, suggesting the model’s ability to capture geomechanical and hydraulic prop-

erties with precision. However, in the heterogeneous application, the hydraulic con-

ductivities were predicted equal to the harmonic mean of the reference values, since in

that setting, the fluid can be equivalently predicted by two heterogeneous layers or a

homogeneous one with the hydraulic mean of the conductivities. This indicates poten-

tial challenges in accurately characterizing heterogeneous conductivity and the need to

properly constrain the model to the heterogeneous solution.

The ill-posed nature of the inverse problem became also evident in Case 3, where

the PINN model struggled to accurately predict the geomechanical properties of the

sand layer. The occurrence of zero predictions for the Lamé constants is due to the

ill-posedness of the problem in regions where pressure and vertical displacements
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showed almost constant and linear behavior, respectively. Strategies such as incorpo-

rating boundary conditions or exploring cusp-capturing PINN models were suggested

for addressing these challenges.

The introduction of a pumping well in Cases 2 and 4 added another level of com-

plexity to the simulation. In Case 4, the Lamé constants were still accurately estimated,

but the presence of the well complicated the fluid dynamics and made the hydraulic

conductivities hardly identifiable. While the model of Case 4 exhibited reasonable ac-

curacy in predicting the Lamé constants for the sand layer, discrepancies were observed

in the clay layer. The pressure and vertical displacement errors increased, indicating

potential challenges posed by the presence of a pumping well in accurately character-

izing the subsurface.

The outcomes of this study provide valuable insights into the application of PINN

for hydro-poromechanical simulations in homogeneous and heterogeneous subsur-

face environments. Future research directions could involve refining the model ar-

chitecture, exploring advanced training strategies, and incorporating additional data

points specific to the influence of pumping on material properties. Investigating cusp-

capturing PINN models, as suggested in the literature, may offer a solution to the ill-

posedness observed in certain regions.

In conclusion, while the PINN approach shows promise in estimating certain pa-

rameters in hydro-poromechanical simulations, ongoing research and refinement are

essential to address challenges associated with ill-posedness and the influence of com-

plex factors. These findings pave the way for advancements in the field, offering new

avenues for improving the accuracy of subsurface parameter identification in real-

world applications, providing a preliminary interpretation of the results and suggest

avenues for further investigation of the PINN model for improved parameter identifica-

tion in heterogeneous hydro-poromechanical settings and highlight potential areas for

improvement and future research.





Chapter 5

PINN for time-dependent parameter

estimation in epidemiology

Epidemiological models are nowadays fundamental to assist and guide policy mak-

ers in the fight against the spreading of diseases. This has been evident during the

recent SARS-CoV-2 pandemic, when epidemiologists and scientists all over the world

devoted their research to develop ad-hoc transmission models. Focusing, for exam-

ple, on Italy, where the European outbreak started in February 2020, epidemiolog-

ical models have been adopted to analyze different aspects of the epidemic: to de-

termine the urgency to impose regional restrictions [Guzzetta et al., 2020]; to analyze

the impact of the national lockdown [Marziano et al., 2021b; Gatto et al., 2020]; to ex-

plore the results of transmission scenarios after the release of the restrictions [Bertuzzo

et al., 2020]; to study the impact of the different variants and the vaccination cam-

paign [Marziano et al., 2021a; Gozzi et al., 2022; Parolini et al., 2022]; and to compute

optimal strategies for the vaccine deployment in order to minimize the number of cases

or deaths [Lemaitre et al., 2022; Ziarelli et al., 2023]. Most of these studies describe the

SARS-CoV-2 transmission using different variations of compartmental models. The

basic SIR model is at the core of those more-complex epidemiological models. It sub-

divides the population of interest into compartments indicating the infectious status

of each individual (i.e. susceptible, infected, or recovered individuals). The dynamic

describes the mean contacts between susceptible and infected individuals, and thus,

the average rate at which susceptible individuals transit to the infected compartment.

The main model parameter is the rate of transmission of the infection, �. This is strictly

related to the well known basic reproduction number, R0, representing the average

93



94 Chapter 5. PINN for time-dependent parameter estimation in epidemiology

number of secondary infections generated by one infected individual in a totally sus-

ceptible population. The value of this quantity changes during an outbreak due to the

temporal variations in human behavior (caused, for example, by changes in individ-

ual awareness or social distancing policies) and in the infectiousness of the virus. The

effective reproduction number, Rt, aims at describing the ongoing transmission in a

changing system.

Data-driven methods provide effective estimates of Rt based on the renewal equa-

tion [Cori et al., 2013; Pasetto et al., 2021; Trevisin et al., 2023], i.e., a convolution on

the reported cases having as kernel the serial interval (the time interval between the

symptom onset of an individual and its secondary infections). These data-driven esti-

mates do not explicitly provide a relationship between the changes in Rt and its possi-

ble causes, such as the implemented non pharmaceutical interventions or the vaccina-

tion campaigns. Compartmental models give a deeper understanding of the ongoing

spreading of the disease and, at the same time, allow the computation of Rt using the

spectral radius of the next generation matrix [Mari et al., 2021; van den Driessche and

Watmough, 2002; Diekmann et al., 1990]. However, they require the assessment and

calibration of time-dependent parameters.

Tracking the temporal variations in the model parameters is an essential but com-

plex problem to follow and predict the spreading of a disease. Many studies tackle

this problem using Bayesian inference, i.e., searching for the posterior distribution of

the unknown parameters based on the available reported cases and the prior distri-

bution. Among these approaches, we recall the iterative particle filter [Ionides et al.,

2015], sequential data-assimilation schemes [Pasetto et al., 2017], or the use of subse-

quent Markov Chain Monte Carlo (MCMC) [Parolini et al., 2022; Bertuzzo et al., 2020].

Being based on random sampling, these approaches might result in low quality results

and large computational times, due to the slow Monte Carlo convergence.

Here, we propose to adopt a deterministic approach based on Physics-Informed Neu-

ral Network (PINN). In practice, this is done by describing the state variables and, in

case, the time-dependent parameters using NNs. The parameters of the NNs are trained

by seeking the minimum of a loss function based on both the misfit on the available

data, and the residual of the differential equations governing the problem at hand, i.e.,



Chapter 5. PINN for time-dependent parameter estimation in epidemiology 95

the SIR model equations in our case.

The application of PINNs to epidemiological models became particularly relevant

during the COVID-19 pandemic. Many studies used PINNs as an inverse-problem

solvers, to calibrate the parameters of epidemiological compartmental models. How-

ever, the model parameters has frequently been considered constant in time, e.g, [Torku

et al., 2021; Malinzi et al., 2022], or with particular periodic dependencies on time

[Berkhahn and Ehrhardt, 2022]. Schiassi et al. [2021] showed the computational effi-

cacy of using PINNs to estimate constant parameters of different basic compartmen-

tal models under increasing levels of noise in the data. Long et al. [2021] consid-

ered a more realistic scenario, and used PINNs to accurately identify the time-varying

transmission parameter in a Susceptible-Infectious-Recovered-Deceased (SIRD) model of

COVID-19 when assimilating the reported infected cases in three USA States. Feng

et al. [2022] proposed a similar approach to predict the number of active cases and re-

moved cases in the US. Olumoyin et al. [2021] used PINNs to track the changes in trans-

mission rate and the number of asymptomatic individuals for COVID-19, while Ning

et al. [2023] presented a similar application to a Susceptible-Exposed-Infectious-Recovered-

Deceased (SEIRD) model during the first months of the Italian outbreak. Bertaglia et al.

[2022] constrained PINNs to satisfy an asymptotic-preservation property to avoid poor

results caused by the multiscale nature of the residual terms in the loss function. Build-

ing on top of these examples, we aim to deeper explore the properties of PINNs as an

inverse solver for the estimation of a time-dependent transmission rate in SIR models.

In particular, we propose two modifications of the PINNs algorithm that grant faster

convergence and more stable results.

The first proposed modification splits the PINN implementation in two steps. The

motivation for this approach is that in the common PINN implementation for SIR-like

models, the NNs representing the model state variables and, if present, the time-de-

pendent parameters are calibrated together through the minimization of the loss func-

tion on the data and the model residual. This inverse problem is particularly complex

and many epochs might be required to achieve convergence. Starting from the idea that

the available epidemiological data, which are typically the daily or weekly reported in-

fections, is directly associated to a model state variable, the split PINN approach is based
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on the following two steps: as first, construct the NN of the state variable associated to

the data, e.g., the infected compartment, by minimizing the loss function based on the

data; as second, calibrate the other NNs for the remaining state variables and parame-

ters based on the NN computed in the first step and the minimization of the residuals

of the governing equations. We will refer to the traditional PINN approach as joint ap-

proach, in contrast to the described split approach.

The second proposed modification reduces the number of NNs considered in the

PINN approximation and, consequently, simplifies the structure of the loss function.

This simplification is possible because, in simple SIR-based models, the transmission

parameter and the infected compartment control the system dynamic. In fact, these

functions allow to directly evaluate the other state variables, which are then redundant

in the formulation of the loss function.

Our analysis compares the joint, split and reduced approaches in a sequence of syn-

thetic test cases where we progressively challenge the structure of the transmission rate

from constant, to a sinusoidal-like dependence on time, to a real scenario, and increase

the noise on the synthetic reported data. The proposed test cases assume model param-

eters that are inspired by the first months of the COVID-19 outbreak in Italy. As a final

example of application, the proposed PINN strategies are adapted in order to fit the real

epidemiological data recorded in Italy. Due to the large uncertainties that characterize

the real data on the reported infections, in this last setting we propose to include in

the loss function also the data on the daily hospitalizations, which are a more reliable

representation of the number of individuals with severe symptoms.

5.1 PINN solution to the SIR model

The well-known SIR model is largely adopted for the theoretical analysis of epidemics,

and lies at the core of several more complex epidemiological models for real applica-

tions. At a given time t [T], the individuals in a population of dimension N [–] are

subdivided into compartments on the basis of their epidemiological status, in this case

the susceptible (S), the infected (I), and the recovered (R) individuals. The number

of individuals in the three compartments changes in time under the assumption that,
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FIGURE 5.1: Scheme of the SIR compartmental model.

in a well mixed population, any susceptible individual can enter in contact with any

infected individual, thus possibly becoming infected itself (Figure 5.1).

From a mathematical point of view, the strong form of the ordinary differential

problem governing these dynamics can be stated as follows. Let T = [t0, tf ] ✓ R+ [

{0} be the time domain of interest, with t0 and tf [T] the initial and final times of the

simulation, respectively. Given the continuous functions �(t) : T ! R+ and �(t) : T !

R+, find S(t) : T ! [0, N ], I(t) : T ! [0, N ], and R(t) : T ! [0, N ] such that:

8
>>>>>><

>>>>>>:

Ṡ(t) = � �

N
I(t)S(t)

İ(t) =
�

N
I(t)S(t)� �I(t)

Ṙ(t) = �I(t)

, 8 t 2 T , (5.1)

and satisfying the initial conditions:

8
>>>>>><

>>>>>>:

S(t0) = N � I0

I(t0) = I0

R(t0) = 0

(5.2)

In Eqs. (5.1)-(5.2) � [T�1] is the transmission rate controlling the average rate of the

infection, � [T�1] is the mean rate of removal of the infected individuals that become

recovered, and I0 is the number of infected individuals (typically 1, but not necessarily)

at the initial instant. Another relevant quantity used to set up the model is D = �
�1, i.e.,

the mean reproduction period [T] representing the average time spent by an individual

in compartment I . Initial conditions for the spreading of a new disease assume that the

population at the initial time is completely susceptible besides a small number I0 of

infected individuals.
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FIGURE 5.2: Solution of the SIR model (5.1) with R0 = 3 and constant
parameters.

The basic reproduction number R0 [-] associated to this model reads R0 = �(t0)/�(t0)

and provides an estimate of the number of secondary infections generated by one in-

fectious individual in a susceptible population, i.e. at the beginning of the epidemic.

The threshold R0 > 1 indicates the occurrence of an outbreak, while R0 < 1 indi-

cates that the number of infected individuals is rapidly decreasing. Note that, in a

real population, the number of individuals in each compartment is a discrete variable,

whose dynamic can be described by stochastic approaches, e.g., the Gillespie method

or discrete Markov chains. Hence, the continuous deterministic model in Equations

(5.1)-(5.2) is a valuable representation of the mean process in large populations.

Standard numerical Ordinary Differential Equation (ODE) solvers, such as Runge-

Kutta-based methods, can provide an accurate solution to the differential problem

(5.1)-(5.2). For R0 > 1 and constant parameters, the solution depicts an initial exponential-

like increase in the number of infections up to a peak, and then a fast decrease due to the

depletion of susceptible individuals (see Figure 5.2). However, it is clear that this dy-

namic does not correspond to what happens during an outbreak. The main challenge

when using a model based on (5.1) to describe a real epidemic is that the transmis-

sion rate � and the mean reproduction period �
�1 can change in time because of many

factors: social behaviors (individual awareness, increase or decrease of gatherings, mo-

bility, social distancing), non-pharmaceutical interventions (use of devices that reduce

transmission - such as masks, introduction of lock-downs), changes in the pathogen in-

fectiousness due to new variants, reduction of the susceptibility of the population due
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to vaccination campaigns. In this evolving scenario, the effective reproduction number

Rt [-] is the critical quantity that controls the spreading of the disease. Rt is the equiv-

alent of R0 in time, i.e., Rt = �(t)/�(t) · S(t)/N , taking into account that the number of

susceptible individuals decreases and the main parameters controlling the spreading

of the disease generally change. An essential element for a reliable simulation is there-

fore the assessment of Rt, hence �(t) and �(t) along with the compartment S(t), from

the available epidemiological data.

We develop and analyze a PINN-based approach to simultaneously solve the prob-

lem (5.1)-(5.2) and estimate the temporal values of the reproduction number by using

a time series of infectious individuals as basic epidemiological information.

For the SIR model (5.1)-(5.2), we assume that the training data points for the fitting

are the reported infections. Let Ĩj be the number of reported infected individuals at

times t̃j , j = 1, . . . , Nd. This might be subject to reporting errors, thus, in general

Ĩj 6= I(t̃j). The residual of the governing equations is computed over Nc collocation

points.

We aim at finding an approximate NN representation for the susceptible, infected

and recovered individuals, Ŝ(t), Î(t), R̂(t), respectively, along with the transmission

rate �̂(t). The rate of removal from the infectious class � is assumed constant in time

now on. Since the state variables S, I , R span an extremely wide range of values (from

zero to the population size N > 106), the functional search is optimized by a proper

scaling:

S(t) = CSs(ts), I(t) = CIs(ts), R(t) = CRs(ts), (5.3)

where C [-] is an appropriate constant and ts is the dimensionless scaled temporal

variable, ts = (t�t0)/(tf�t0). The system of ODEs (5.1) for the scaled variables becomes:

8
>>>>>><

>>>>>>:

Ṡs(ts) = �C1�s(ts)Is(ts)Ss(ts)

İs(ts) = C1�s(ts)Is(ts)Ss(ts)� C2Is(ts)

Ṙs(ts) = C2Is(ts)

, ts 2 [0, 1], (5.4)

where �s(ts) : [0, 1] ! R+, C1 = (tf � t0)C/N and C2 = (tf � t0)�C. The initial

conditions (5.2) are correspondingly scaled as well as the infectious data Ĩj = CĨs,j at
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times t̃s,j = (t̃j � t0)/(tf � t0).

The SIR model (5.4) does not consider death and birth processes and assumes a

negligible mortality rate of the disease. Thus, the total population N is constant in

time and equal to N = S + I + R. Under these hypotheses, the PINN model needs

only two NNs representing the behavior of the population: one for the state variable of

the susceptible individuals Ŝs, and one for the infected individuals Îs. The number of

recovered individuals is computed as R̂s =
N
C � Îs� Ŝs. A third NN is included for the

estimation of the transmission rate �̂s. This approach consistently reduces the number

of parameters to be tuned during the training.

It is important to underline that the state variables represent the number of indi-

viduals in a compartment, thus they all have positive outputs. Training the model

without imposing this condition could lead to nonphysical negative NNs outputs. The

non-negative constraint can be imposed in the NN in two alternative ways: inserting

a penalty term for the negative values of th NNs (weak constraint) or building the NN

architecture so as to allow for positive values only (hard constraint). The latter prescrip-

tion can be met by setting the output activation function, i.e., the one related the last

layer, equal for example to the square function. An experimental comparison between

the two approaches shows that the latter is generally more effective and provides more

robust results. The numerical outcomes that follow are therefore obtained by using the

hard constraint prescription for the non-negativity of the solution. The same constraint

is adopted to entail a positive value for �s.

The selection of the loss function is one of the most sensitive steps in the PINN ap-

proach, given the multi-objective nature of the method. Using the MSE as loss measure,

the objective is to minimize the mismatch on the Nd data:

Ld(Îs) = !d
1

Nd

NdX

j=1

h
Îs(t̃s,j)� Ĩs,j

i2
, (5.5)
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FIGURE 5.3: Diagram of the PINN model for the SIR equations with un-
known �(t). The parameters of the NNs for �, S, I are obtained by mini-
mizing the loss functions on the infectious data, and on the residual and

initial conditions of the model equations.

the squared norm of the residual of Equations (5.4) evaluated on Nc collocation points

{t̄s,i}Nc

i=1:

LODE(Ŝs, Îs, �̂s) =
1

Nc

NcX

i=1

n
!S

h
dŜs

dts
+ C1�̂sÎsŜs

i2���
t̄s,i

(5.6)

+!I

h
dÎs

dts
� C1�̂sÎsŜs + C2Îs

i2���
t̄s,i

+ !R

h
dR̂s

dts
� C2Îs

i2���
t̄s,i

o
,

and the misfit on the initial conditions:

LIC(Ŝs, Îs) = !S0

h
Ŝs(0)�

N � I0

C

i2
+ !I0

h
Îs(0)�

I0

C

i2
+ !R0R̂

2
s(0) , (5.7)

where !⇤ are proper weights needed to balance the relative importance of the entries

arising from each contribution to the global MSE value. Figure 5.3 shows a diagram of

the PINN implementation for the solution of the scaled SIR model (5.4).

We explore two possible approaches for the construction of the PINN model, indi-

cated as joint or split. The joint approach aims to simultaneously calibrate Ŝs, Îs, and �̂s

by minimizing the joint loss function corresponding to the sum of Ld, LODE and LIC :

Ljoint(Ŝs, Îs, �̂s) = Ld(Îs) + LODE(Ŝs, Îs, �̂s) + LIC(Ŝs, Îs). (5.8)
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By distinction, the split approach subdivides the overall problem. First, Îs is indepen-

dently calibrated on the data error Ld (5.5) only. In this case, a standard NN is used

with weight !d = 1, thus obtaining a differentiable regression function for the data.

The only-data regression is followed by a fully-physics-informed regression, where the

parameters defining Ŝs and �̂s are trained by minimizing:

Lsplit(Ŝs, �̂s) = LODE(Ŝs, �̂s) + LIC(Ŝs). (5.9)

5.1.1 Reduced SIR model

The system of ODEs in (5.1) can be further reduced by directly considering the defini-

tion of the effective reproduction number Rt. By easy developments, the model (5.1)

becomes: 8
>><

>>:

İ(t) = �(Rt � 1)I(t)

Ṡ(t) = ��RtI(t)

, t 2 [t0, tf ]. (5.10)

where the unknown functions are I(t) and S(t), and the state variable R(t) is simply

obtained from the consistency relationship R(t) = N�S(t)�I(t). The initial conditions

(5.2) still hold. The new system (5.10) can be solved sequentially by integrating the

upper equation first and then computing S(t) from the second equation.

This approach reduces the number of functions that are approximated by NNs to

two, i.e., I and Rt, and eliminates any redundant term in the loss function minimized

in the PINN approach. The same scaling as in Equation (5.3) is used for the state variable

I , so that the upper equation in (5.10) reads:

İs(ts) = �(tf � t0)(Rt � 1)Is(ts), ts 2 [0, 1]. (5.11)

The NNs approximating the variables of interest, i.e., Îs and R̂t, can be obtained by

minimizing the mismatch on data Ld (5.5) and the squared norm of the residual of

Equation (5.11) on Nc collocation points:

Lr,ODE(Îs, R̂t) =
1

Nc

NcX

i=1

h
dÎs

dts
� �(tf � t0)(R̂t � 1)Îs

i2���
t̄s,i

(5.12)
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Notice that in this case the contributions in Ld and Lr,ODE have a consistent size, hence

there is no need for introducing the weight parameters !⇤ to balance the loss function

terms. For this reason, we simply set !d = 1 in the expression (5.5).

The joint and split approaches can be formulated for this PINN-based model as well.

The joint approach consists in training simultaneously the NNs Îs and R̂t by minimiz-

ing the total loss function:

Lr,joint(Îs, R̂t) = Ld(Îs) + Lr,ODE(Îs, R̂t). (5.13)

By distinction, the split approach implies training Îs on the data only by the minimiza-

tion of Ld in Equation (5.5). Then, the time-dependent parameter R̂t is obtained by

minimizing:

Lr,split(R̂t) = Lr,ODE(R̂t). (5.14)

Notice that in the reduced PINN model no initial condition is set, but we let the model

deduce it from the data. From a theoretical viewpoint, initial conditions are not nec-

essary because Îs is obtained from the data, while the governing differential equation

(5.11) is used to calibrate R̂t. This outcome is relevant because it replicates what typ-

ically happens in a real-case scenario, where there is no actual knowledge about the

instant of beginning of the epidemic outbreak. In fact, the case 0 in most outbreaks is

unknown and the conventional start of the epidemic has a number of infected individ-

uals that is usually largely underestimated. The use of the reduced modeling approach

makes it possible to remove the term related to the initial condition from the loss func-

tion.

5.1.2 SIR model with the hospitalization compartment

The reported infections can be often affected by large uncertainties. Especially at the

beginning of an epidemic outbreak, the disease cannot be easily recognized, either be-

cause of the difficulty of correctly identifying the symptoms, or the absence of well-

established detection and surveillance procedures, or the impossibility of reaching and

testing all the people infected by the disease. Moreover, these data can be strongly af-

fected by territorial peculiarities and the logistic of testing facilities. Hence, founding
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an epidemiological model on these pieces of information can undermine its reliability.

A much less uncertain epidemiological datum is the daily number of individuals that

require to be hospitalized. This is fraction of the overall number of infected individuals,

however such a value can be representative of the entire I compartment by assuming

that hospitalization is needed over a certain common threshold level of symptoms in

the population.

We introduce a new variable, H , defined as:

H(t) = ��I(t), (5.15)

where � represents the fraction of infected individuals moving to the hospitalized com-

partment. Note that also parameter � might change in time, for example because of the

insurgence of more aggressive variants or the improvement of home treatment. A more

convenient formulation uses the cumulative number ⌃H of hospitalized individuals:

⌃H(t) =

Z t

t0

H(z) dz. (5.16)

The new formulation of the updated SIR model can be therefore stated as follows. Given

Rt : T ! R+, �(t) : T ! [0, 1], and �(t) : T ! R+, find ⌃H(t) : T ! [0, N ],

I(t) : T ! [0, N ], and S(t) : T ! [0, N ] such that:

8
>>>>>><

>>>>>>:

⌃̇H(t) = ��I(t)

İ(t) = �(Rt � 1)I(t)

Ṡ(t) = �Rt�I(t)

, 8 t 2 T , (5.17)

with R(t) = N � I(t) � S(t), the initial conditions (5.2) and ⌃H(t0) = 0. The avail-

able information from the actual epidemiological data is the daily variation �H of the

cumulative number of hospitalized individuals:

�H(t) = ⌃H(t)� ⌃H(t� 1) ' ⌃̇H(t), (5.18)

whose values represents the training dataset for the PINN approximation of system (5.17).
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As previously done, the functional search of the approximating NNs is carried out on

the properly scaled quantities I(t) = CIs(ts) (see Equation (5.3)) and:

�H(t) = CH�H,s(ts), (5.19)

with CH the scaling factor. The upper equation in system (5.17) with the scaled quanti-

ties reads:

CH�H,s(ts) = �C�s(ts)Is(ts), (5.20)

with �s : T ! [0, 1], while the second scaled equation is the same as in (5.11). Hence,

the NNs needed to solve the SIR model with hospitalization data are �̂H,s, Îs, �̂s, and

R̂t. The training data points for the fitting are both the scaled reported infections Ĩs,j

and the hospitalizations �̃H,s,j at the scaled times t̃s,j , j = 1, . . . , Nd. The NNs can be

obtained by minimizing the mismatch (5.5) on the infection data and on the hospital-

ization data:

LH =
1

Nd

NdX

j=1

h
�̂H,s(t̃s,j)� �̃H,s,j

i2
, (5.21)

and the squared norm of the residuals of Equations (5.11) and (5.20) on Nc collocation

points:

LH,ODE(�̂H,s, Îs, �̂s, R̂t) =
1

Nc

NcX

i=1

nh
dÎs

dts
� �(tf � t0)(R̂t � 1)Îs

i2���
t̄s,i

+
h
�̂H,s �

�C�̂s

CH
Îs

i2���
t̄s,i

o
. (5.22)

The joint approach consists in the simultaneous estimate of �̂H,s, Îs, �̂s, and R̂t by

finding the minimum to the functional:

LH,joint(�̂H,s, Îs, �̂s, R̂t) = Ld(Îs) + LH(�̂H,s) + LH,ODE(�̂H,s, Îs, �̂s, R̂t). (5.23)

As for the PINN solution to the reduced SIR model, it is not necessary to include the

mismatch on the initial conditions into the global loss function (5.23) because they are

met through the available training data. Moreover, also the use of non-unitary weights

!⇤ for the different contributions to LH,joint is not required since all terms are likely to
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have a similar magnitude.

In the split approach, �̂H,s is directly trained with the hospitalization data only by

minimizing LH in Equation (5.21). Then, Îs is computed from (5.20) as:

Îs =
CH

�C

�̂H,s

�̂s
, (5.24)

and �̂s and R̂t are trained by minimizing:

LH,split(�̂s, R̂t) =
1

Nd

NdX

j=1

h
CH

�C

�̂H,s(t̃s,j)

�̂s(t̃s,j)
� Ĩs,j

i2
+ (5.25)

1

Nc

NcX

i=1

n
CH

C

h
d

dts

⇣�̂H,s

��̂s

⌘
� (tf � t0)(R̂t � 1)

�̂H,s

�̂s

io2���
t̄s,i

.

In real-world scenarios, the new daily infections is a more common piece of infor-

mation than the total number of infected individuals. In order to include these data in

the PINN model, we introduce the cumulative number ⌃I of infected individuals:

⌃I(t) =

Z t

t0

I(z) dz. (5.26)

The variation of ⌃I in time coincides with negative variation of the class of susceptible

individuals S(t), so we can simply update the SIR model with hospitalization data (5.17)

by replacing the last equation with:

⌃̇I(t) = �RtI(t) (5.27)

Since the available information is the daily variation �I of the cumulative number of

infected individuals:

�I(t) = ⌃I(t)� ⌃I(t� 1) ' ⌃̇I(t), (5.28)

we use these values as training data set. As usual, scaled values are considered such

as �I = C�I,s and we assume that the set of scaled values �̃I,s,j is available at the

training scaled times t̃s,j , j = 1, . . . , Nd, instead of Ĩs,j . The mismatch of �̂I,s, i.e.,
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the NN approximating �I,s, with the data is measured by:

LI =
1

Nd

NdX

j=1

h
�̂I,s(t̃s,j)� �̃I,s,j

i2
, (5.29)

while the squared norm of the residual reads:

LHI,ODE(�̂H,s, �̂I,s, Îs, �̂s, R̂t) =
1

Nc

NcX

i=1

nh
dÎs

dts
� �(tf � t0)(R̂t � 1)Îs

i2���
t̄s,i

(5.30)

+
h
�̂H,s �

�C�̂s

CH
Îs

i2���
t̄s,i

+
h
�̂I,s � �R̂tÎs

i2���
t̄s,i

o
.

Hence, with the joint approach we aim at minimizing the functional:

LHI,joint(�̂H,s, �̂I,s, Îs, �̂s, R̂t) = LI(�̂I,s)+LH(�̂H,s)+LHI,ODE(�̂H,s, �̂I,s, Îs, �̂s, R̂t).

(5.31)

By distinction, with the split approach we first train �̂H,s by the available data (see

Eqiuation (5.21)). Then, we use Equation (5.24) for Îs and:

�̂I,s =
CH

C

R̂t�̂H,s

�̂s
(5.32)

for �̂I,s, and minimize the functional:

LHI,split(�̂s, R̂t) =
1

Nd

NdX

j=1

h
CH

C

R̂t�̂H,s(t̃s,j)

�̂s(t̃s,j)
� �̃I,s,j

i2
(5.33)

+
1

Nc

NcX

i=1

n
CH

C

h
d

dts

⇣�̂H,s

��̂s

⌘
� (tf � t0)(R̂t � 1)

�̂H,s

�̂s

io2���
t̄s,i

.

This choice for the split approach is based on the fact that hospitalization data are

usually more reliable than infected individuals, hence they are more appropriate for

an only-data regression training.

5.2 Comparison of the joint and split approaches

We analyze the performance of the PINN-based approaches to estimate the state vari-

ables and identify the governing parameters of an epidemiological model mimicking
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State variables Estimated parameters Reference values Training data
Case 1 S,I ,R � (constant) �0 = 0.6 d�1 Ĩj (Poisson error)
Case 2 S,I ,R � (time-dependent) Synthetic � Ĩj (Poisson error)
Case 3 S,I ,R � (time-dependent) COVID-19 Rt Ĩj (Poisson error)
Case 4 I Rt Synthetic � Ĩj (40% Gaussian error)
Case 5 I ,�H Rt,� (time-dependent) Synthetic �,� Ĩj (40% Gaussian error), �̃H,j (Poisson error)
Case 6 �I ,�H Rt,� (constant) COVID-19 Rt �̃I,j , �̃H,j (COVID-19 dataset)
Case 7 �I ,�H Rt,� (time-dependent) COVID-19 Rt �̃I,j , �̃H,j (COVID-19 dataset)

TABLE 5.1: Different scenarios adopted to analyze the performance of
the proposed PINN-based approaches.

the setup of the first 90 days of a COVID-like disease outbreak in Italy. The total popu-

lation is set to N = 56⇥ 106 and the mean infectious period to D = 5 days, which is an

estimate used for COVID-19 [Bertuzzo et al., 2020]. Therefore, in the following we will

assume that � = D
�1 is constant in time. The initial value of infectious individuals I0

is set to 1. The accuracy of the trained NNs is evaluated by the 2-norm of the error with

respect to the 2-norm of the reference solution:

er =
kŷ � yrefk2
kyrefk2

, (5.34)

where y can be either one of the state variables, or a time-dependent parameter. The

relative error (5.34) is numerically computed by using 90 points equally spaced in the

domain. Our PINN-based approach is implemented by making use of the SciANN soft-

ware library [Haghighat and Juanes, 2021].

We consider a number of scenarios, summarized in Table 5.1, differing for the refer-

ence SIR model and state variables of interest, the selection of the estimated governing

parameters, and the available training data.

For the estimation of the transmission rate �(t) in the basic SIR model (5.1)-(5.2), we

consider three different scenarios:

• Case 1: constant �. We use this scenario to compare the efficiency of the joint and

split approaches (5.8) and (5.9), respectively;

• Case 2: synthetic time-dependent �(t), where the reference values are provided

as an analytical function;

• Case 3: an application to a real-case scenario where the reference �(t) is obtained

from the estimates of Rt in the first months of the COVID-19 epidemic outbreak
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in Italy.

In each case, the training data are the number of infectious individuals per day. These

are synthetically generated by numerically integrating the system (5.1) using the se-

lected reference function for �(t). In particular, we used Nd = 90 training data points

(one value per day). To take into account possible reporting errors, the data Ĩj for each

time t̃j are obtained by sampling from a Poisson distribution having as mean I(t̃j).

This kind of Poisson error is frequently assumed on data arising from a counting pro-

cess. The infectious data and the epidemiological model are scaled by a factor C = 105

(see Eq. (5.3)). The NNs for Ŝs and Îs are built with 4 hidden layers, 50 neurons for

each and tanh as activation function, while �̂s has 4 hidden layers with 100 neurons.

In Case 1 the constant transmission rate is treated as a single parameter in the train-

ing. The output activation is set to x
2, as stated in Section 5.1. We consider Nc = 6000

collocation points randomly sampled in [t0, tf ] from a uniform distribution, Adam op-

timization algorithm [Kingma and Ba, 2015] with a learning rate equal to 0.001, and

Glorot initialization [Glorot and Bengio, 2010] of the NNs. In the joint approach we

trained the NNs for 5000 epochs with batches containing 100 training points, while in

the split approach we set the number of epochs to 3000 for the data fitting training and

to 1000 for the fully-physics-informed regression, with a batch size equal to 10 and 100,

respectively. The weights !⇤ are calibrated in the fitting process using the eigenvalues

of the NTK [Wang et al., 2021b].

The reduced SIR model (5.10) is used to explore a more realistic scenario with strongly

perturbed data. The motivation is that the data collected during the beginning of

an outbreak are particularly subject to reporting errors. For example, the lack of a

proper surveillance system and the low capacity in testing the presence of an infection

may lead to an underestimation of the ongoing transmission. The joint and split ap-

proaches (5.13) and (5.14), respectively, are used to estimate the governing parameter

Rt in the following inverse problem:

• Case 4: synthetic time-dependent �(t) (as in Case 2), subject to a larger error noise

on the infectious data.

The same NN architectures as described before for �̂s is used for R̂t as well.
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Finally, the performances of the joint and split PINN approaches in the SIR model

with hospitalization datafor the simultaneous calibration of parameters � and Rt are

compared in the following realistic case scenarios:

• Case 5: an adaptation of the synthetic scenario described in Case 4, considering

both infections data, hospitalization data, and a time-dependent �;

• Case 6: an application to the real data collected in Italy during the first months

of the COVID-19 pandemic, considering as unknowns the value of Rt (time-

dependent) and � (constant).

• Case 7: the same of Case 6, but having both Rt and � as functions of time.

The NN for R̂t has 4 hidden layers with 100 neurons each, �̂s has 10 hidden layers with

5 neurons each. In Case 5, the synthetic data of the daily hospitalizations, {�̃H,j}Nd

j=1,

are obtained by sampling from a Poisson distribution having as mean value the refer-

ence solution. The scaled values are obtained by setting CH = 103. In Cases 6 and 7,

we consider the epidemiological data provided by the Italian surveillance system Epi-

Centro [2020] from February 21st, 2020 to May 20th, 2020. The period coincides with the

advent of the disease and its initial spread. The vaccination campaign was not started

yet and possible reinfections are negligible. The Italian dataset contains the number of

new daily hospitalizations and reported infections, {�̃H,j}Nd

j=1 and {�̃I,j}Nd

j=1, respec-

tively, and supplies an estimate of the COVID-19 reproduction number Rt based on

Cori et al. [2013]. The scaled values are obtained by setting C and CH equal to the

maximum experimented values for �I and �H , respectively, in the 90 days taken into

consideration. New infections are multiplied by a reporting ratio ↵r = 6, following the

estimate from Italian Institute of Statistic based on the sierological data [ISTAT, 2020].

5.2.1 Case 1: constant parameter

The first scenario assumes a constant transmission rate during the simulation. The ref-

erence value for the parameter is fixed to � = �0 = 0.6 d�1, corresponding to a basic

reproduction number R0 = 3, which is an estimate of the basic reproduction number

in the COVID-19 epidemic in Italy. The resulting system dynamic is shown in Figure

5.4a. The evaluation of a constant parameter does not require an additional NN for �,
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(A) (B)

FIGURE 5.4: Case 1: Comparison between (A) reference solutions of
the SIR model (5.1) and PINN approximations in the split approach; (B)

�0 identification during training of the joint and the split methods.

Daily data Weekly data
Joint Split Joint Split

Training time [s] 2223 719 1977 493
Error S 2.763⇥ 10�3 6.221⇥ 10�4 2.833⇥ 10�2 2.247⇥ 10�2

Error I 3.846⇥ 10�3 8.444⇥ 10�4 4.544⇥ 10�2 4.245⇥ 10�2

Error R 3.258⇥ 10�3 7.434⇥ 10�4 3.276⇥ 10�2 2.491⇥ 10�2

Error � 5.086⇥ 10�3 3.587⇥ 10�4 4.693⇥ 10�2 5.187⇥ 10�2

PINN �̂ 0.59738 0.60007 0.57323 0.56888

TABLE 5.2: Case 1: Training time, approximation errors, and estimations
of the joint and split methods for a constant transmission rate � = �0 =
0.6 d�1. The daily and weekly infection data two correspond to Nd = 90

and Nd = 13, respectively.

and it is implemented through an object of the SciANN parameter class with the addi-

tional non-negative constraint. Both the joint and split approaches obtain solutions that

match well the reference dynamic (see Figure 5.4a for the results of the split approach).

Figure 5.4b shows that the convergence of the joint approach to the reference � value

is slower than the split approach. In fact, there are strong oscillations during training.

The split approach mitigates these oscillations and reaches a faster convergence to the

reference value.

Table 5.2 provides a quantitative comparison of the resulting errors for each state

variable along with the training times. Note that for the split approach the sum of

the only-data and physics-informed training is reported. In both approaches the PINN



112 Chapter 5. PINN for time-dependent parameter estimation in epidemiology

FIGURE 5.5: Case 1. Comparison between �0 identification during the
training of the joint and split methods for the weekly infection data

(Nd = 13).

solution reaches an acceptable accuracy, with a relative error on the order of 10�3 for

all state variables, resulting in a good estimate of the unknown parameter � as well.

The split approach reduces the total training time about by a factor 3, and improves

the accuracy with respect to the joint approach by one order of magnitude on average,

hence it appears to be in this case largely preferable.

A second test is carried out by changing the amount of available data for the train-

ing. For instance, we consider only weekly values for the infection data, which are

more likely to compensate the errors and oscillations of daily data. This reduces the

number of training points to Nd = 13. The model is built and trained as stated in Sec-

tion 5.2, with the difference that the training of Îs in the split method is performed at

each epoch on the whole data set and the mini-batches are not needed. Moreover, given

the overall small size of the training data set, we can decrease the maximum number

of epochs in the data regression from 3000 to 1000. Training times and approximation

errors reported in Table 5.2 show an equivalent outcome in terms of accuracy, but with

a strong gain in training time for the split approach. By reducing the number of sam-

ples the amount of information is smaller, hence the accuracy decreases with respect to

a daily updated information. The convergence of the parameter � has a similar behav-

ior to the one shown previously (Figure 5.5), with the split method reducing both the

oscillations and the convergence time.

5.2.2 Cases 2 and 3: Time-dependent transmission rate �(t)

Case 2 consists of a simulation of disease spread according to the time-dependent trans-

mission rate plotted in Figure 5.6. This �(t) behavior implies two waves of infection,
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with a maximum number of infectious individuals two orders of magnitude lower than

in Case 1. As in Case 1, the numerical integration of the SIR model (5.1)-(5.2) provides

the reference solution, from which we take the perturbed synthetic samples on the in-

fectious individuals to train the neural networks. The transmission rate is here approx-

imated by a NN, �̂s, since it is a function of time. Notice that even �̂s has a quadratic

output activation to ensure its non-negativity.

(A) Joint (B) Split

FIGURE 5.6: Case 2: Comparison between the reference solution of
the SIR model and the PINN approximations with the joint (A) and split
(B) approach. Grey bands provide the confidence interval for one stan-

dard deviation.

Figure 5.6 shows the reference values of the unknowns and the corresponding PINN

approximations. The dashed lines correspond to the mean outcome from 10 differ-

ent runs, while grey bands provide the confidence interval for one standard deviation.

Usually, the split method provides more stable and accurate results, with smaller vari-

ations from one run to another. The higher stability and speed of convergence of the

split approach can be also appreciated from the error behavior on �̂s during the train-

ing (Figure 5.7). The overall performance of the PINN approaches is summarized in

Table 5.3.
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FIGURE 5.7: Case 2: Comparison between the errors on �̂
s
(t) during the

training with the joint and split approach.

Joint Split
Case 2
Training time [s] 1936 717
Error S 1.814⇥ 10�3 3.381⇥ 10�4

Error I 2.501⇥ 10�2 7.754⇥ 10�3

Error R 2.288⇥ 10�1 4.251⇥ 10�2

Error � 2.678⇥ 10�1 4.127⇥ 10�1

Error � (last 70d) 5.979⇥ 10�2 1.563⇥ 10�2

Case 3
Training time [s] 1906 726
Error S 1.935⇥ 10�3 5.031⇥ 10�4

Error I 4.729⇥ 10�3 6.006⇥ 10�3

Error R 2.805⇥ 10�2 7.101⇥ 10�3

Error Rt 4.692⇥ 10�1 6.988⇥ 10�1

Error Rt (last 70d) 5.341⇥ 10�2 6.701⇥ 10�2

TABLE 5.3: Cases 2-3: Training time and approximation errors for the
state variables and the estimated parameters with the joint and split ap-

proach.

Both approaches, however, fail to estimate the initial values of � (Figure 5.6). The

low number of infected individuals and the presence of perturbed data produce an ini-

tial dynamic that the NNs erroneously learn by considering a larger number of initial

infected individuals and a lower initial transmission rate. These kinds of errors rep-

resent a common hurdle in epidemiology, as the evolution of a disease is extremely

difficult to be identified at the beginning of the epidemic outbreak under the assump-

tion of a temporal-depending transmission rate. For this reason, Table 5.3 provides

also the error for � during the last 70 days of simulation. These small errors confirm

the accuracy of the PINN estimates when the data provide a clear signal.

Case 3 has the same setting as Case 2 but considers as reference values for the ef-

fective reproduction number, and consequently the transmission rate in the model, the

estimates supplied by the Italian Institute of Health ISS [EpiCentro, 2020], depicted in

Figure 5.8. For the first 20 days, the values have been kept equal to 3.012, in order to
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(A) Joint (B) Split

FIGURE 5.8: Case 3: Comparison between the reference solution of
the SIR model and the PINN approximations with the joint (A) and split
(B) approach. Grey bands provide the confidence interval for one stan-

dard deviation.

simulate the free transmission of the pathogen in a completely susceptible population

without restrictions in contacts. This application to a realistic scenario reproduces the

first three months of the Italian COVID-19 epidemic, from February 21st to May 20th,

2020. The epidemiological data for training the PINN approaches are synthetically gen-

erated as in Case 2. Figure 5.8 and Table 5.3 contain the outcome of the joint and split

methods. Similarly to Case 2, the estimation of the temporal evolution of the transmis-

sion rate is hard for the initial times. Both methods can achieve a good accuracy after

the first 20 days, as it can be deduced from Figure 5.8 and from the errors associated to

the last 70 days of the simulation. The matching is quite accurate, with relative errors

on the order of 10�3, and the variance from 10 different runs is also limited. While the

gain in accuracy of the split method is not so clear in this case, the benefit in the train-

ing duration is still relevant. Similar results in terms of accuracy has been obtained

on these test cases when using the reduced implementation (5.10) of the split and joint

approaches.
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(A) Joint (B) Split

FIGURE 5.9: Case 4: Reference solution and PINN approximation with
the joint (A) and split (B) approach in the reduced SIR model (5.10) and

noisy data.

5.2.3 Cases 4 and 5: Reduced model and hospitalization data

Case 4 is used to investigate the performance of the joint and split approaches for the

reduced model (5.10) in a synthetic scenario where the data are subject to large errors.

The unknown time-dependent transmission rate is the same as the one of Case 2, whose

corresponding reproduction number is shown in Figure 5.9.

The time domain is extended to tf = 120 days, which implies two complete waves

of infection. To simulate the typically large uncertainties on the reported daily infec-

tions, we generate synthetic noisy data by perturbing the numerical solution for I(t̃j)

with a Gaussian error having zero mean and coefficient of variation of 40%. The data

are then rounded to the closest integer with the negative values set to 0. Finally, the

scaling factor C is set to 105 with Nd = 120.

The outcome of the PINN approximations are provided in Figure 5.9 and Table 5.4.

The larger errors on the data reduce the accuracy in the estimate of the reproduction

number. The two approaches are almost equivalent in terms of accuracy, but the split

one has faster training times. Clearly, a large uncertainty in the training data reduces

the reliability of the split approach, which mostly relies on this piece of information,

while the joint approach compensate possible errors on data with the residuals of the

governing equations. Nevertheless, the accuracy in the reproduction of the Rt appears

to be in any case fairly satisfactory, given the large reported errors.

In Case 5 we try to improve the Rt estimates obtained in Case 4 by introducing the
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Joint Split
Case 4
Training time [s] 1658 1053
Error I 1.411⇥ 10�1 1.331⇥ 10�1

Error Rt 4.961⇥ 10�1 4.744⇥ 10�1

Error Rt (last 100d) 3.141⇥ 10�1 3.336⇥ 10�1

Case 5
Training time [s] 1829 1445
Error �H 8.783⇥ 10�3 4.722⇥ 10�3

Error I 1.209⇥ 10�1 7.434⇥ 10�2

Error Rt 4.407⇥ 10�1 4.992⇥ 10�1

Error Rt (last 100d) 2.410⇥ 10�1 1.240⇥ 10�1

Error � 3.858⇥ 10�1 1.417⇥ 10�1

Error � (last 100d) 2.626⇥ 10�1 1.145⇥ 10�1

TABLE 5.4: Cases 4-5: Training time and approximation errors for the
state variables and the estimated parameters with the joint and split ap-

proach.

information on the daily hospitalizations. This entails that PINN trains also the NN for

parameter �, that describes the fraction of infected individuals that become hospital-

ized. The reference � for this case is shown in Figure 5.10. The results of the joint and

split approaches are summarized in Figure 5.10 and Table 5.4. The inclusion of more

reliable data implies a better estimate of Rt with respect to Case 4. This is particularly

evident for the split approach, which is able to provide good estimates of both temporal

depending parameters (Rt and �), and thus, lower errors (Table 5.4).

5.2.4 Cases 6 and 7: Application to real data

Cases 6 and 7 use the same setup as Case 5, but with the real epidemiological data

collected during the Italian COVID-19 epidemic outbreak. The fraction of the number

of infected individuals that becomes hospitalized, �, is assumed to be constant in time

in Case 6 and time-dependent in Case 7. The goal is to estimate Rt and � by means

of the presented PINN approaches. We use the reproduction number evaluated by ISS

(Figure 5.11) as a reference value for the comparison.

The results of the joint and the split approaches are shown in Figures 5.11 and 5.12

for Cases 6 and 7, respectively. In Case 6 the joint approach provides an acceptable

accuracy on the new infection data, while the peak of the daily hospitalizations is

underestimated (Figure 5.11a). The split approach, instead, is firstly trained on the

daily hospitalization well retrieving these high-fidelity data. The second part of the

training, considering both the daily infections and the reduced model equations, does
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(A) Joint (B) Split

FIGURE 5.10: Case 5: Reference solution and PINN approximation in the
joint (A) and split (B) approaches when considering the daily data on

both hospitalizations and infections.

not achieve the same level of accuracy for the infection data with respect to the joint

approach (Figure 5.11b). For what concerns the estimation of Rt, the joint approach

strongly underestimates its value at the beginning of the epidemic. By distinction, the

split approach provides a trend of Rt that is fully consistent with the ISS estimates, i.e., a

decrease during the first weeks of the epidemic, followed by an almost stationary value

around 1 during the recession phase. The overall performance of the PINN approaches

are summarized in Table 5.5.

Joint Split
Case 6
Training time [s] 1655 1042
Error Rt 3.881⇥ 10�1 2.495⇥ 10�1

Error Rt (last 100d) 1.474⇥ 10�1 1.821⇥ 10�1

Estimated �̂ 0.0686 0.0849
Case 7
Training time [s] 1778 1101
Error Rt 3.646⇥ 10�1 2.236⇥ 10�1

Error Rt (last 100d) 1.682⇥ 10�1 1.742⇥ 10�1

TABLE 5.5: Cases 6-7: Training time and approximation errors for the
state variables and the estimated parameters with the joint and split ap-

proach.
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(A) Joint (B) Split

FIGURE 5.11: Case 6: PINN approximations with the joint (A) and split
(B) methods for the real Italian COVID-19 outbreak with � as a constant

parameter. The blue trajectory of Rt is the official estimate by ISS.

Finally, considering a time-dependent � (Case 7) helped both approaches to im-

prove the estimate of both hospitalized and infectious data. Both approaches depict a

similar trend for �, showing that the fraction of infected individuals that became hos-

pitalized decreased during March 2020 from a peak of about 23% to about 3%, which

is a realistic outcome in the framework of Italian COVID-19 outbreak. The main dif-

ferences among the two approaches are still at the beginning of the outbreak, where

the joint approach suggests a lower value of �, while underestimating the values of Rt.

The training time required by the split approach was about 40% of the of time for the

joint approach (Table 5.5).

5.3 Discussion

Synthetic test Cases 1-3 showed that, when infectious data are subject to small errors,

both the split and joint PINN approaches are able to retrieve with high accuracy the

system dynamics. The initial training on the data of the split approach provides a
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(A) Joint (B) Split

FIGURE 5.12: Case 7: PINN approximations with the joint (A) and split
(B) methods for the real Italian COVID-19 outbreak with � as a time-
dependent parameter. The blue trajectory of Rt is the official estimate

by ISS.

clear advantage when minimizing the residual on the model equations and estimating

the reproduction number. In fact, it achieves lower errors (up to an order of magni-

tude) with faster computational times (speed up larger than 60% in Cases 2 and 3).

This is probably due to more stable results during the training epochs, as depicted in

Figure 5.4b for a constant transmission (Case 1), and Figure 5.7 for a time-dependent

transmission (Case 2). However, the simultaneous estimate of the initial conditions and

the initial transmission proved to be particularly challenging for both PINN approaches

(Figures 5.6 and 5.8). In fact, even small errors on the data become particularly rel-

evant when there are low number of infections, such as at the beginning of the epi-

demic. Model results could improve by assuming a constant initial transmission rate,

which is generally in agreement with the free circulation of the pathogen in absence of
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interventions.

The large errors that typically characterize the data on reported daily infections

might deteriorate the retrieval of the temporal changes of the transmission rate and the

associated effective reproduction number (Case 4, Figure 5.9). For this reason, numer-

ous epidemiological analysis are based on data that are not biased by the surveillance

system, such as daily hospitalization data, e.g., Bertuzzo et al. [2020]. The synthetic test

Case 5 shows that the use of daily hospitalizations and infections into the reduced PINN

model allowed to improve the accuracy in the estimation of the uncertain time-varying

parameters, in particular both the effective reproduction number Rt and the fraction of

infected individuals requiring hospitalization �. The split approach still outperforms

the joint counterpart with 20% savings in the training cost, however both approaches

still present limitations at the beginning of the outbreak.

The application to the Italian COVID-19 epidemic (Cases 6 and 7) emphasizes the

importance of considering the fraction of hospitalized individuals, �, as a temporal-

dependent parameter. In fact, the PINN approximations were not able to accurately

follow both time series of daily hospitalized and infectious data when considering a

constant � (Figure 5.11). Results notably improve in the case of a temporal-dependent

� (Figure 5.12). Many modeling studies assume a constant �, with possible temporal

variations assigned only on the arrival of new disease variants or after the deployment

of vaccines. Other processes that might directly impact this parameter are typically

neglected. For example, in the early stages of the outbreak, the fear of the new dis-

ease might prompt many symptomatic infected individuals to seek health care at the

hospital (thus generating a large value of �). The subsequent overcrowding of the hos-

pitals and improvement of treatment at home might reduce the value of � in time. The

time-dependent � values estimated by the PINN approaches (Figure 5.12) show exactly

such a dynamic, with small differences at the beginning. We argue that also in this

application the split approach outperforms the joint one. Besides the advantages in the

computational times (40% faster), the effective reproduction number obtained with the

split approach depicts a closer trajectory to the reference Rt estimated by the Italian

Institute of Health ISS (Figure 5.12).
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This study focuses on the standard SIR model. While the split approach can be eas-

ily adapted to more complex compartmental models (which, for example, consider an

exposed compartment, deaths, re-infections, and vaccinations), the reduced equations

described in (5.10) will require ad-hod formulations depending on the model.

In conclusion, the proposed split PINN-based approach is a robust and easy-to-

implement tool to monitor the initial spreading of a disease. It provides estimates of the

temporal changes in the model parameters, which is essential to produce more accurate

short-term forecasts.
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Conclusions

In this thesis, we focussed on exploring of the application of Physics-Informed Neural

Network (PINN) across diverse domains, spanning hydro-poromechanics and epidemi-

ology. The investigation encompassed various test cases and applications, providing

insights into the potential of PINNs in solving complex problems and contributing to

advancements in both fields. The examination included employing PINNs for forward

solution modeling in hydro-poromechanics, leveraging these NNs for parameter esti-

mation in the same context, and extending their application to epidemiological model-

ing.

The motivation behind this study stemmed from the need for robust, computation-

ally efficient tools capable of handling intricate phenomena in hydro-poromechanics

and epidemiology. Traditional approaches faced challenges in capturing the complex

dynamics of these systems, dealing with high computational times and resources, the

need of almost real-time data assimilation, and the problem specificity of the models.

In this context, PINNs, with their ability to incorporate physics-based constraints into

machine learning frameworks, can present a promising avenue for addressing these

challenges.

PINNs were employed not only for generating forward solutions but also for esti-

mating the governing problem parameters within the respective domains. Enhancing

the assimilation of real-world data, particularly in scenarios with limited or noisy infor-

mation, remains a pivotal area for improvement, and the development of robust data

assimilation techniques could further enhance the accuracy of parameter estimations.

• In hydro-poromechanical applications in the geosciences, the accurate modeling
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of subsurface processes is paramount for mitigating geological hazards, opti-

mizing resource extraction, and ensuring the sustainability of civil engineering

projects.

• In epidemiology, the refined models bear implications for public health strate-

gies, offering a more precise understanding of disease spread and aiding in the

formulation of effective intervention measures.

The interdisciplinary nature of this work showcases the versatility of PINNs as a pow-

erful tool in bridging the gap between traditional physics-based modeling and modern

machine learning approaches.

PINN in hydro-poromechanics

The implementation of PINN models for problems governed by Biot’s equations in

hydro-poromechanics has been investigated.

• Since the effectiveness of neural networks in representing physical processes de-

pends on hyper-parameter selection, we performed an extensive experimentation

to analyze effective architectures for accurate PINN training in poromechanics, re-

vealing the most influential hyper-parameters. Results of the analysis include in-

sights into significant hyper-parameters, network complexity requirements, and

the robustness of the PINN approach.

• PINN implementation on coupled problems faces other challenges like high com-

putational cost and difficulties in multi-objective loss minimization. Despite these

limitations, PINNs have an advantage in allowing automatic data integration in

the PDE solution stage. A sensor-driven framework was introduced to acceler-

ate convergence and improve accuracy by automatically integrating the available

field data. The sensor-driven approach demonstrated improvements in compu-

tational training time and model accuracy.

Application of the analysis to practical cases, such as limited observations, provided

promising results, offering a starting point for data assimilation in real-world problems.

A comprehensive exploration of PINN applications to inverse solution in porous

media was presented too.
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• The study considered multiple test cases, revealing insights into the capabili-

ties and challenges of the PINN approach. The PINN simulations demonstrated

promising accuracy in estimating parameters such as Lamé constants and hy-

draulic conductivity in certain scenarios.

• In cases without a pumping well, the model proficiently predicted Lamé con-

stants for the surface layer. In a homogeneous setting, hydraulic conductivity

showed reasonable agreement with real values. However, challenges were ob-

served in accurately characterizing heterogeneity, indicating the need for proper

constraints.

• The introduction of a pumping well added complexity, challenging accurate char-

acterization of the fluid dynamics. Therefore, while PINN approach tuned out to

be promising in estimating certain parameters, ongoing research and refinement

are essential to address challenges associated with ill-posedness and the influence

of complex factors.

The findings pave the way for advancements in subsurface parameter identification,

suggesting directions for improvement and future research in heterogeneous hydro-

poromechanical settings.

PINN in epidemiology

In the context of epidemiology, we proposed two innovative approaches to improve

the application of PINNs for the solution of SIR-based epidemiological models, and to

estimate the time-dependent transmission rate, or the effective reproduction number,

of an epidemic.

1. The first idea consists in splitting the training of the NNs in two steps: the first step

provides the fit on the epidemiological data, while the second step minimizes the

residual on the model equations. The performance of the split approach has been

compared to a standard PINN application, which trains simultaneously the NNs

on the joint loss function on data and residual.
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2. The second idea consists in implementing a modification to the basic model equa-

tions, possibly removing the state variables that are not directly related in the dis-

ease transmission and the associated redundant terms in the loss function. This

reduced PINN model has been extended to include both infection cases and hos-

pitalization data, which are usually more reliable pieces of information.

The model has been applied on several synthetic test cases revealing that both split

and joint PINN approaches accurately capture system dynamics when infectious data

have small errors.

• The split approach, with preliminary training on data, showed advantages in

minimizing residuals and estimating the reproduction number.

• Daily hospitalization data integration into the reduced PINN model enhanced ac-

curacy in estimating time-varying parameters, including the effective reproduc-

tion number and the fraction of infected individuals requiring hospitalization.

• An application with real-world data, coming from the Italian COVID-19 epi-

demic has been presented. PINN approximations showed good results, aligning

well with real-world reference data.

PINNs showcased their adaptability by incorporating epidemic surveillance data,

enabling improved estimates of critical time-dependent parameters such as the effec-

tive reproduction number and the fraction of infected individuals requiring hospital-

ization. The split approach, involving a two-step training process, emerged as a com-

putationally efficient alternative, outperforming the joint approach in terms of both

accuracy and speed. In conclusion, the study proposes a reliable split-PINN-based ap-

proach for disease spread monitoring, providing accurate parameter estimates crucial

for improved short-term forecasting.

Future research should delve into methodologies for quantifying and propagating

uncertainties within the PINN-based models. This would provide a more comprehen-

sive understanding of the reliability of model predictions and parameter estimations.

The contributions of this work could be further extended and enhanced in several

ways. The integration of additional data sources and more complex models to further
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improve the accuracy and robustness of the proposed methodologies should be ex-

plored. Furthermore, the application of PINNs in addressing real-world challenges and

the incorporation of additional features into the modeling frameworks present pos-

sible directions for future investigations. The proposed techniques could be further

exploited to improve the assessment of quantities of interest and effectively manage

the tasks of uncertainty quantification and sensitivity analysis. Advancements in the

integration of machine learning techniques with physics-based models can hold the

potential to improve our understanding and predictive capabilities in the domains of

hydro-poromechanics and epidemiology.





Acronyms

Adam Adaptive Moment Estimation

AI Artificial Intelligence

API Application Programming Interface

CNN Convolutional Neural Network

DL Deep Learning

FD Finite Difference

FE Finite Element

FNN Feedforward Neural Network

GD Gradient Descent

GPU Graphics Processing Unit

ISS Istituto Superiore della Sanità

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MCMC Markov Chain Monte Carlo

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Squared Error

NLP Natural Language Processing

NN Neural Network
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NTK Neural Tangent Kernel

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PINN Physics-Informed Neural Network

ReLU Rectified Linear Unit

RNN Recurrent Neural Networks

SEIRD Susceptible-Exposed-Infectious-Recovered-Deceased

SIR Susceptible-Infectious-Recovered

SIRD Susceptible-Infectious-Recovered-Deceased

SGD Stochastic Gradient Descent

TPU Tensor Processing Unit
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