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A B S T R A C T   

Large Granular Lymphocyte (LGL) Leukemia is a rare, heterogeneous even more that once thought, chronic 
lymphoproliferative disorder characterized by the clonal expansion of T- or NK-LGLs that requires appropriate 
immunophenotypic and molecular characterization. As in many other hematological conditions, genomic fea-
tures are taking research efforts one step further and are also becoming instrumental in refining discrete subsets 
of LGL disorders. In particular, STAT3 and STAT5B mutations may be harbored in leukemic cells and their 
presence has been linked to diagnosis of LGL disorders. On clinical grounds, a correlation has been established in 
CD8+ T-LGLL patients between STAT3 mutations and clinical features, in particular neutropenia that favors the 
onset of severe infections. Revisiting biological aspects, clinical features as well as current and predictable 
emerging treatments of these disorders, we will herein discuss why appropriate dissection of different disease 
variants is needed to better manage patients with LGL disorders.   

1. Introduction and LGLL classifications over time 

Chronic lymphoproliferative disorders of large granular lymphocytes 
(LGL) comprise a wide spectrum of conditions ranging from reactive 
polyclonal, usually self-limited lymphocytoses, to asymptomatic clonal 
LGL expansions, until manifest symptomatic leukemic diseases charac-
terized by dismal outcome. These abnormal proliferations result from 
the expansion of cytotoxic lymphocytes, the cells typically involved in 
immune responses against pathogens as well as in the control of 
neoplastic growth. Cytotoxic responses to exogenous stimuli are actually 
mediated by two highly professional although extremely different 
players, i.e. cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. 
A conventional polyclonal, sometimes oligoclonal, expansion of LGL is a 
feature currently occurring in patients with a variety of infections 
(Epstein-Barr virus, cytomegalovirus and hepatitis C virus, among 
others), following splenectomy or organ transplantation. 

Large Granular Lymphocyte Leukemia (LGLL) is a rare disease 
originating from the clonal expansion of LGLs whose diagnosis, classi-
fication and treatment have been hampered over time by its remarkable 
phenotypic, genotypic and clinical heterogeneity as well as their 
geographic diversity. Given the morphological appearance of mature 
lymphocytes, the first cases of LGL expansions reported in literature 

were classified as chronic lymphocytic leukemia (CLL). When immu-
nophenotyping was made available on a routine basis in the mid-70s, 
these disorders were included among type T-CLL [1–3] most of these 
lymphocytoses expressing CD3/CD8 determinants; only a minority of 
them exhibited markers related to NK cell lineage [4]. 

However, it soon became evident that many patients with lympho-
cytosis did not show any feature of overt clinical malignancy, raising the 
question of whether we were dealing with a reactive process or a 
neoplastic condition [5–7]. Given the virtually identical morphological 
features of reactive and leukemic LGLs, their distinction has been a long 
time dilemma, most patients presenting with indolent clinical course, 
similarly to CLL in very early stage. 

In the mid-80s, the discovery of T Cell Receptor (TCR), and its 
widespread use on clinical grounds to demonstrate T cell clonality 
thanks to the T-cell repertoire diversity [8], represented a significant 
step for the study of LGL lymphocytoses [9,10]. In fact, evaluation of 
clonality made the distinction possible between the end of normality and 
the beginning of disease. This possibility obviously opened new clues 
into the nature of these cell proliferations and first case series of LGL 
disorders were published around the world [11–13]. Due to the 
increasingly refined high throughput molecular technologies to study 
the TCR, including next generation sequencing (NGS), the proof of 
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clonality is easily detectable for T cell expansions. The clonality of NK- 
LGLs is more difficult to assess because these cells are not equipped with 
the TCR, thus lacking a reliable readout of clonality. In these cases, 
chromosomal abnormalities or a restricted fragment length poly-
morphism at the phosphoglycerate kinase loci on the X chromosome can 
provide evidence of clonality [14,15]. However, the lack of obtaining 
metaphases impedes to easily assess chromosomal lesions in LGLL pa-
tients and the genes’ polymorphism is technically difficult to test, its 
evaluation also being gender-related (i.e., females who are heterozygous 
for the above X-linked loci). Waiting for wider applicable methods to 
define NK cell clonality, a killer immunoglobulin like receptors (KIR, i.e. 
CD158 molecules, see below) restricted pattern of expression demon-
strated by flow cytometry analysis (either a dominant expression of a 
relevant KIR or lack of them) is accepted as a surrogate marker of clonal 
NK cell expansion [16,17]. In addition, the presence of mutations 
(including STAT3, STAT5B, TET2, TNFAIP3 and CCL22) have been 
recently integrated in the diagnostic algorithm to further differentiate 
reactive NK expansions from NK-LGL leukemias [18]. 

Many designations have been used in the nineties to label these 
lymphocytoses including Abnormal Expansions of Granular Lympho-
cytes, T Cell Lymphocytosis, T8 Hyperlymphocytosis Syndrome, T- 
gamma Proliferations, Monoclonal Lymphocytosis of Undetermined 
Significance [19], until the early 2000s when the WHO classification of 
lymphoid neoplasms definitively brought clarity subdividing chronic 
LGL disorders simply relying on immunophenotypic properties (T or NK 
lineage) of proliferating cells [20,21]. In the most updated 5th WHO 
classification [22] these disorders are designated as: 

• T-Large Granular Lymphocyte Leukemia (T-LGLL) 
• NK-Large Granular Lymphocyte Leukemia (NK-LGLL), that nowa-

days replaces the former provisional entity (named Chronic Lympho-
proliferative disease of NK cells, CLPD-NK) 

• Aggressive NK Leukemia (ANKL). 

2. Epidemiology 

LGL proliferations account for 2-3% of chronic lymphoproliferative 
disorders in North America and Europe [23] and for 5-6% in Asia [24]. 
T-LGLL and NK-LGLL are commonly diagnosed in elderly patients, with 
a median age of ~60 years with no gender, racial or genetic predispo-
sition; they unusually occur in individuals under 30 years. ANKL is more 
prevalent in East Asian populations and is frequently associated with 

Epstein-Barr virus (EBV) [25,26]. ANKL usually affects young to middle- 
aged adults (~40 years). 

3. Morphologic assessment and immunophenotyping 

Leukemic cells in T-LGLL and NK-LGLL share the morphological 
appearance of LGL with typical variable sized azurophilic granules in 
their cytoplasm containing the weapons they are equipped with to 
accomplish the cytotoxic functions mentioned above. Peripheral blood 
smears demonstrate large size cells (15-20μM) with a round or reniform 
nucleus, irregular nuclear contour, coarse chromatin and abundant pale- 
staining cytoplasm containing variable amount of granules (Fig. 1A). On 
May-Grunwald Giemsa staining of smear specimens, LGL cytologic fea-
tures in T-LGLL and NK-LGLL are not distinguishable, not even from 
normal reactive cytotoxic lymphocytes. By contrast, proliferating cells 
in ANKL are characterized by atypical irregular nuclei, open chromatin 
with the presence of prominent nucleoli and by slightly basophilic 
cytoplasm containing coarse granules, sometimes hardly recognized 
(Fig. 1B) [27]. 

The immunophenotype is central to distinguish different LGLL sub-
types (Fig. 2). T-LGLL accounts for approximately 80% of LGL expan-
sions. Leukemic T-LGLs exhibit a post-thymic terminal effector memory 
phenotype (CD3+CD8+CD57+ CD45RA+CD62L-) along with a vari-
able expression of CD16, CD56, KIRs and CD94/NKG2 determinants, 
indicating that these cells are late stage fully differentiated cytotoxic T- 
lymphocytes [28,29]. 

Beyond LGLL characterized by the above phenotype, referred to as 
CD8+ T-LGLL and accounting for approximately 60% of LGLL cases, a 
less abundant percentage of patients (~30%) exhibits the CD4 deter-
minant either alone or in association with dimly expressed CD8 [30,31]; 
these cases are referred to as CD4+ T-LGLL. The preferential usage of 
one TCR-Vβ segment (most frequently Vβ13 in CD4+ T-LGLL [32]) 
through high sensitive flow cytometry analyses of the TCR repertoire 
can be regarded as a surrogate for molecular assessment [33,34]; of 
note, current anti-Vβ antibodies cover approximately 70% of all Vβ 
domains. Flow cytometric evaluation of the constant region 1 of the T- 
cell receptor β chain (TCRBC1) has recently been proposed as an easy 
and reliable method for assessing Tαβ clonality [35,36]. However, this 
type of analysis cannot be of use with the Tγ/δ disease variant 
mentioned below. Rare cases equipped with the CD3+CD8+CD56+
phenotype (Fig. 2) have been reported to present with very aggressive 

Fig. 1. Morphological appearance of LGLL. May-Grunwald Giemsa staining 1000x of 
A) LGL cytologic features in T-LGLL and NK-LGLL which are not distinguishable, not even from normal reactive cytotoxic lymphocytes. 
B) Cells from a patient with ANKL. Courtesy of Kazuo Oshimi (Kushiro, Hokkaido, Japan). 
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disease [37,38]. 
To emphasize their heterogeneity, depending of the type of heavy 

chain of the surface TCR (α/β or γ/δ) being expressed, T-LGLL can be 
further subdivided with Tα/β-LGLL (either CD8+ or CD4+) and Tγ/ 
δ-LGLL subsets [39,40]. Tγ/δ cells stand at the intersection between 
innate and adaptive immunity and, unlike conventional Tα/β cells, they 
preferentially dwell in non-lymphoid peripheral tissues and respond to 
ligands in a MHC-independent manner [41]. The rare patients (around 
10% of T-LGLL) whose cells belong to the group referred to as Tγ/δ-LGLL 
are characterized by CD57 and CD16 markers, can express CD8 (~70%) 
and lack CD4 molecules. These cells partially (~30%) express CD56 and 
NK receptors (NKR) and preferentially display the Vγ9/Vδ2 rearrange-
ment profile [39,42]. 

Conversely, NK-LGLL (accounting for approximately 20% of LGL 
disorders) is characterized by a CD3-CD16+CD56+ LGL expansion, with 
variable CD57 expression. NK LGLs typically display aberrant NKR and a 
restricted pattern of KIR is present, which is characterized either by the 
dominant expression of a relevant KIR, or by the lack of KIR expression 
[16,17,29,43]. Two monoclonal antibodies, i.e. EB6 (CD158a) and 
GL183 (CD158b), have been reported to recognize two different anti-
gens expressed on NK cell subsets belonging to the same 58 KDa mo-
lecular family [44,45]. Using these reagents, normal CD3-CD16+CD56+
NK cells can be further separated into four subsets: single positive 
phenotypes (either EB6+GL183- or EB6-GL183+), double positive 
phenotype (EB6+GL183+) and double negative phenotype (EB6-/ 
GL183-). Since the expression (or lack of expression) of each of these 
antigens is a stable property of NK cells, that is not modified by cell 
activation, proliferation or cloning [44,45], the analysis of distribution 
of these antigens in expanding NK cells of LGLL patients can provide 
information on the dominant subset. The eventuality that two different 
KIRs can be simultaneously expressed (or both lacking) on the same cells 
is a possible, already reported occurrence [46–47] that suggests clon-
ality provided the cells represent the large majority of expanding 
lymphocytes. 

NKR of the CD94-NKG2 family are also found at high level on pa-
tients’ NK cells, usually coupled with the inhibitory subunit NKG2A; in 
some cases the association with the activating form NKG2C has been 
reported [48]. Two major NK disease subsets can be identified, i.e. pa-
tients with CD56neg/dimCD16dim NK cells (less frequent, ~20%) and 
patients with CD56neg/dimCD16high NK cells (more frequent, ~80%). 
Within the latter subset, the presence of CD57 has been reported in 
about half of the cases [40,49] and its expression discriminates two 
patients’ subgroups characterized by CD57 negativity and positivity that 
were identified as “Cytotoxic” and “Memory” NK subgroups, 

respectively, with the more symptomatic cases and the presence of 
STAT3 mutations being included among the CD57 negative subset [50]. 

The presence of CCL22 somatic mutation has been recently reported 
in 16% of a series of 59 NK-LGLL patients, being mostly exclusive with 
STAT3 mutation and preferentially harbored in CD57dim/neg patients 
[51]. These features point to the mechanistic role of the CCL22 acti-
vating mutation in favoring the IL-15 mediated proliferating activity in 
NK-LGLL. Finally, the value of the combination of KIR phenotyping and 
targeted high-throughput sequencing was tested in a cohort of 114 
consecutive patients with NK cell proliferations. A NK-cell clonality 
score was proposed, combining flow cytometry and molecular profiling 
(namely STAT3 and TET2 mutations) with a positive predictive value of 
93%, thus contributing to a more stringent diagnosis of disease [18,52]. 

The immunophenotype of cells in ANKL (about 5% of LGL disorders) 
is not completely divergent from that of NK-LGLL and to some extent 
similar to the aggressive CD3+CD8+ T-LGLL [37]. More in detail, in this 
disorder leukemic cells are devoid of the TCR and express surface 
CD2+CD3-CD5-CD7+CD16+/dim CD56+CD57- [26,53,54]. 

4. Genetics 

Molecular genetics nowadays dictates the classification of many 
hematological malignancies and LGL disorders are not an exception 
[55]. A genetic characterization of LGL disorders is also becoming 
steadily more relevant on clinical grounds for the possibility to distin-
guish discrete disease subsets on this basis, thereby lending the possi-
bility of informing the categorization as well as the management of LGLL 
patients [56–58]. However, we want to emphasize the difficulty in 
having comparable data on the real median incidence of mutations 
associated to LGLL since different methods were used, ranging from 
Sanger and targeted amplicon sequencing (mainly focused on the hot-
spot regions of the genes) to whole exome/genome sequencing. 

The discovery of STAT mutations has made a substantial contribu-
tion to the LGLL field not only for expanding our understanding of LGL 
leukemogenesis but also having improved the classification of these 
disorders [55,59]. Mutations on STAT3, STAT5B and CCL22 have been 
recognized as the commonest gain-of-function genetic lesions up to now 
identified in LGLL patients [51,60–67]. As discussed later in the section 
of etiopathogenesis, it is worth mentioning that the above gene muta-
tions are unlikely to be the initial inciting trigger of leukemic process; 
they are rather believed to represent an acquired event during the dis-
ease that confers a competitive growth advantage on clone development 
[68]. We herein put emphasis on the use of STAT mutations screening as 
a hallmark of disease, and in particular in terms of clinical correlations 

Fig. 2. Immunophenotype in different subsets of LGL disorders. Major LGLL subsets are reported, according to surface phenotype. See text for details. The figure does 
not include other less frequent immunophenotypic patterns, such as the rare phenotypical variants identified by a concomitant Tαβ/Tγδ or T/NK LGL pro-
liferations [40]. 
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and disease subtypes. Together with an appropriate immunophenotypic 
analysis, the assessment of mutational landscape is therefore now rec-
ommended for accurate characterization of LGLL patients [22]. 

STAT3 and STAT5B mutations occur in phenotypically distinct T- 
LGLLs and Fig. 3 shows the frequency of STAT mutations in LGL sub-
types. Before getting into details, it must be specified that the reported 
median incidence, according to the references mentioned in the figure, 
has the limitation that available data in different studies have been 
performed with different methods (also note the wide range). That being 
stated, STAT3 mutations are a discrete feature of CD8+ T-LGLL and of 
some Tγ/δ-LGLL, with an incidence ranging from 20 up to 70% across 
different case series (approximate mean 40%). STAT3 mutations are not 
detectable in the CD4+ T-LGLL subset, with only rare exceptions 
[65,69]. STAT5B mutations are mostly associated with the indolent 
CD4+ T-LGLL disease subtype [62] (with an incidence of ~66% using 
NGS analysis [63]) or with the aggressive variant of CD8+ T-LGLL [38]. 
In CD8+ T-LGLL STAT5B mutations are very rare and, when present, 
configure a severe disease [38]. Pretty rare STAT5B mutations have been 
also identified among some Tγ/δ-LGLL [70]. 

As for NK-LGLL, STAT3 mutations have a lower incidence (~25%, 
again with a wide range) in this disease as compared to T-LGLL (Fig. 3) 
[52,60,65,67,71–74]. In addition to STAT3, TET2 mutations were also 
detected in NK-LGLL with a similar incidence, whereas PIK3CD and 
TNFAIP3 mutations resulted less recurrent [72,73]. Opposite to CD4+ T- 
LGLL, NK-LGLL appears to be strikingly devoid of STAT5B genetic le-
sions, with the only exception of the aggressive case reported by Rajala 
and coworkers, who subsequently developed ANKL [38]. 

Mutations of the JAK/STAT pathway were also detected (~20%) in 
the aggressive ANKL in association with histone modifying molecules (i. 
e. TET2 [~20%], MLL2 and CREBBT) [75–77]. 

Y640F and D661Y are the most frequent STAT3 genetic lesions, 
whereas in STAT5B gene the most recurrent mutations are N642H and 
Y665F. Other activating abnormalities, albeit at much lower fre-
quencies, include both point mutations and insertion or deletions and 
are usually found in SH2 domain, although they can be located also in 
other gene domains [78]. In addition, in T-LGLL other mutated genes 
have been found, including TNFAIP3 and less frequently BCL11B, FLT3 
and PTPN23, and in particular recurrent mutations in chromatin and 
epigenetic modifying genes have been recently discovered in LGLL 
[52,72–74]. The above mentioned recent study by Baer and co-
investigators [51] demonstrated that somatic mutations in the chemo-
kine gene CCL22 is typical of a subset of NK cell proliferations (27%). 
This mutation is not shared by T-LGLL and, being mutually exclusive of 
STAT3 and STAT5B mutations, has been proposed as the hallmark of NK- 

LGLL. This genetic lesion has been regarded as a deregulating event of 
microenvironmental crosstalk in this disease [51] but the actual signif-
icance of all new mutations needs further studies. 

A variety of cytogenetic abnormalities, but without a consistent 
pattern of specific changes, have been occasionally reported in patients 
with T-LGLL and NK-LGLL [6,19,79] whilst ANKL is characterized by 7p 
and 17p losses and 1q gains [80]. 

5. Etiopathogenesis 

The etiology of LGL leukemia still remains unknown, but some cor-
nerstones to figure out disease’s development have been elucidated. 
Fig. 4 summarizes the current knowledge on etiopathogenesis of LGL 
disorders. 

The proliferation and persistence of T or NK cell clones result from a 
repeated hitherto unrecognized antigenic stimulation (auto-antigens or 
foreign infective antigens) in association with dysregulated LGL ho-
meostasis related to intrinsic (mutations) and extrinsic (microenviron-
ment) factors. 

As for the chronic antigenic stimulation, likely of viral origin hitting 
inside or outside the LGL population [81], serologic reactivity against 
the recombinant BA21 epitope of type one human T-lymphotropic virus 
(HTLV-I) envelope protein p21 has been detected in several LGLL pa-
tients, although an association with a prototypical HTLV infection has 
not been established [82–85]. Focusing on NK-LGLL patients, analysis of 
whole exome sequencing data failed to detect viral sequences, thus 
denying a direct role of an integrated or episomal viral agent in NK cells. 
However, merged literature data allowed to hypothesize the presence of 
retroviral agents located outside the hematopoietic compartment that 
might contribute to activate NK cells and, in turn, to sustain cell 
expansion [81,86–89]. At variance, EBV infection has long been asso-
ciated with ANKL, with a higher prevalence among people from Asia and 
Central/South America [25,26]. 

The bone marrow (BM) has been proposed as the setting where the 
putative antigen presentation takes place and dendritic cells (DC) have 
been hypothesized to represent the target of infection in these patients. 
In fact, a co-localization of DCs and leukemic LGLs has been demon-
strated both in T-LGLL and in NK-LGLL [90,91]. 

Once established, the survival of founding LGL clones is powered up 
by several pro-inflammatory cytokines, mostly related to immune 
cytotoxic response after viral infections, including IL-1β, IL-1Rα, IL-6, 
IFNγ, CCL5, CCL4, IL-18, IL-8, CXCL10, and CXCL9, some produced by 
leukemic LGLs themselves, others by non leukemic cells [92–96]. 

IL-15 is another key cytokine involved in LGLL pathogenesis and 

Fig. 3. Incidence of STAT3 and STAT5B genetic 
lesions in the different LGLL subsets. The figure 
shows the median incidence (percentage) and the 
range (percentage) of STAT3 and STAT5B genetic 
lesions in LGLL subtypes. Data included in the 
figure were collected from studies (the number of 
references shown in the figure relates to the list of 
references reported in the manuscript) based on 
cohorts of patients larger than 10 patients. A 
limitation of the reported percentages lies in the 
fact that the frequency of STAT mutations has 
been evaluated with different methods in 
different cohorts (see text).   
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there is a lot that goes to that: (i) the generation of IL-15 transgenic mice 
(IL-15tg) developing a fatal clonal NK and memory CD8+ expansion 
[97], (ii) the possibility to elicit LGL cytotoxicity and proliferation 
through proteasomal degradation of the pro-apoptotic protein Bid 
[98,99], and (iii) the induction of chromosomal instability and DNA 
hypermethylation via repression of mir-29b and the induction of a Myc/ 
NF-kB/DNMT3a axis [100]. Further supporting the pathogenetic role of 
IL-15, several groups identified IL-15, together with PDGF, as the master 
survival signaling switch that has a relevant impact on all known de-
regulations in T-LGLL [18,101,102]. 

The contribution of microenvironment to LGLL pathogenesis is also 
provided by the non-leukemic cells that are likely to be triggered by the 
same antigens prompting the expansion of the leukemic clone. In fact, a 
recent paper demonstrated that non-leukemic T cells in T-LGLL patients 
are mature, cytotoxic, clonally restricted and the non-leukemic immune 
cells are interconnected with leukemic cells via costimulatory cell–cell 
interactions, monocyte-secreted proinflammatory cytokines, and T-LGL- 
clone-secreted IFNγ [103]. 

In terms of intrinsic factors, leukemic LGLs are characterized by a 
dysfunctional activation-induced cell death (AICD) mechanism being 
LGLs not sensitive to Fas-induced apoptosis [104] and equipped with 
high levels of c-FLIP, a inhibitory protein of the death-inducing signaling 
complex [105]. 

Several cell signaling networks have been reported to play a role in 
LGL survival. The hyperactivity of STAT3, a transcription factor of 
several oncogenes, results from overactivation of STAT proteins as well 
as by the effects of gain-of-function mutations found in STAT3. As 
mentioned earlier, this finding is regarded as disease hallmark in LGLL 
patient. Beyond its role in cell survival, STAT3 has been also shown to be 
central in the pathogenesis of neutropenia through the STAT3-miR146b- 

FasL axis. In fact, neutropenic T-LGLL patients show large amounts of 
plasmatic soluble FasL leading to neutrophils’ Fas-mediated apoptosis 
[56,106,107]. The increased FasL production is due to Human antigen R 
(HuR), an essential FasL mRNA stabilizer and target gene of miR-146b, 
that in neutropenic patients is down-regulated as a consequence of 
STAT3-dependent miR-146b promoter hypermethylation [108]. The 
above effects of STAT3 activation are amplified by STAT3 mutations that 
stabilize the protein in its activated form and substantially foster clone 
development [68]. Kim and coworkers also showed that in leukemic 
LGLs STAT3 mutations modify the autoregulation of p-STAT3 and drive 
changes in epigenetic regulator levels, global DNA hypermethylation, 
and ROS production [109]. 

Other than STAT3 hyperactivity, an increased function of the PI3K- 
AKT pathway contribute to inhibit the apoptotic program in T-LGLs 
[110] and the high levels of RANTES, MIP-1beta and IL-18 demon-
strated in LGLL patients’ plasma [94], with the evidence of frequent 
somatic mutations on PI3K family members [74], are consistent with 
this finding. Acting downstream the PI3K-Akt pathway, and indepen-
dently from STAT3, a crucial role to prevent apoptosis is played by NF- 
kB through Mcl-1. Neoplastic LGLs express increased amount of c-Rel, a 
member of the NF-kB family, and exhibit higher NF-kB activity than 
normal peripheral blood mononuclear cells [101]. In NK-LGLL, the 
activation of Ras/MEK/ERK pathway contributes to the accumulation of 
NK cells caused by a constitutive stimulation of both extracellular- 
regulated kinase (ERK) and Ras. Consistently, Ras and ERK inhibition 
causes the reduction of the survival of patients’ NK cells [111]. In 
addition, ERK1/2 signaling can be activated also by a dysregulation of 
sphingolipid rheostat [112,113]. 

Fig. 4. Schematic representation of LGLL etiopathogenesis. Three main pathogenetic steps are shown: 1. the antigenic stimulation, 2. the polyclonal expansion, and 
3. the monoclonal expansion. The lightning bolts indicate the putative key triggers (in the 1st phase) and then subsequent events (in the 2nd and 3rd phases) that 
sustain LGL proliferation and the disease progression. 
LGL, large granular lymphocyte; BM-DC, bone marrow dendritic cell; Mo, monocytes; T-Ly, T lymphocytes; PDGF, platelet-derived growth factor; RANTES: regulated 
on activation, normal T cell expressed and secreted; MIP-1β: macrophage inflammatory proteins-1β; IL, interleukin; MEK, mitogen activated protein kinase kinase; 
ERK, extracellular-regulated kinase; PI3K, phosphatidylinositol-3-kinase; NF-kB, nuclear factor kappa B; STAT, signal transducer and activator of transcription; HuR, 
human antigen R; c-FLIP, cellular FLICE-like inhibitory protein; Fas, first apoptosis signal; FasL, Fas ligand. Parts of the figure were drawn by using pictures from 
Servier Medical Art. 
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6. Future challenges of research 

Exhaustive answers to the many remaining questions in terms of 
genomics and immunopathogenic mechanisms are expected [114]. 
Much is still to be learned in terms of the role of mutations already 
known and of possible additional ones as well as about the permissive 
influences of epigenetic mechanisms. Furthermore, the study of the ef-
fects of TCR sharing on both pathogen escape and disease should be 
prioritized. Towards that end, in depth tracking of the clonal and non- 
clonal T-cell repertoires as well as the non-leukemic immune land-
scape are currently being exploited in LGLLs taking advantage of the 
unprecedented improvement of high throughput sequencing and multi- 
omics single-cell analysis [103,115]. 

Since also STAT unmutated patients are equipped with a hyperactive 
STAT machinery, other than somatic mutations, additional mechanisms 
are likely to finely tune the STAT axis network pathway in LGLL, 
including non coding RNA (microRNA, circular RNA, long non coding 
RNA). Development of recurrent pervasive mutations in chromatin and 
epigenetic modifying genes could represent the additional event 
entailing progression. A genome-wide DNA methylation profile analysis 
might be central to further investigate this issue. In addition, the 
crosstalk contribution of myeloid cells to signals between myeloid clonal 
hematopoiesis of indeterminate potential (CHIP) and LGL leukemia 
[114] has been up to now much less characterized and warrants further 
assessment. 

Another relevant issue to be further investigated rests on the immune 
environment that is paramount for development and progression of LGL 
disorders [96]. The microenvironment is a dynamic and complex pro-
cess that can provide both a negative role by promoting the immune 
escape of tumor cells as well as a positive task by limiting tumor growth 
through the activation of antitumor immunity. These investigations, 
including the interplay between leukemic cells and the different players 
occurring in the immune environment, should be aimed not only at 
better uncover the mechanisms underpinning the pathogenesis of these 
proliferations but could also represent another important step to specify 
the primum movens that triggers the disease’s onset ultimately aiding to 
shed some light on the etiology of LGL leukemias. Hopefully, these re-
searches will also set the stage for discovering new markers that may 
connote how patient is going to behave or define prognostic models to 
estimate the disease progression risk. We anticipate that a comprehen-
sive understanding of the interactions between tumor cells and the im-
mune environment, of their function and spatial organization, nowadays 
made possible thanks to the forthcoming single cell transcriptomic 
analysis, will also help lay the groundwork for better immunotherapies. 

7. Clinical features 

Most T- and NK-LGLL are indolent and chronic diseases. Conversely, 
ANKL is characterized by a highly aggressive clinical course typically 
refractory to therapeutic intervention. 

CD8+ T-LGLL is initially asymptomatic in about 30% of patients, 
with LGL lymphocytosis being the unique abnormality [4,5,22], usually 
within ~2 to 20 x 109 granular lymphocytes/L. Fatigue and B symptoms 
(fever, night sweats, weight loss) are seldom observed. On exam, 
lymphadenopathy and hepatomegaly are uncommon although spleno-
megaly may occur (~20%). Isolated neutropenia (Absolute Neutrophil 
Count [ANC] <1.5 x 109/L) represents a clinical hallmark of the disease, 
with severe neutropenia (ANC <0.5 x 109/L) affecting 19–26% of the 
population [82]. Neutropenia favors the onset of aphthous, oral ulcer-
ations and infections, usually bacterial, involving skin, oropharynx, lung 
and perirectal areas; blood stream infections may also happen. Acute 
viral and fungal infections are less common. During the natural history 
of the disease, patients tend to accumulate complications mainly due to 
recurrent infections. 

Anemia, even transfusion dependent, can be detected in even more 
variable amounts of patients, ranging from 25 to 49% of cases, with 

autoimmune hemolytic anemia, myelodysplastic neoplasms and Pure 
Red Blood Cell Aplasia (PRCA) involving a not negligible percentage of 
patients [4,5,29,116–120]. Of notice, the incidence of LGLL associated 
PRCA is highly variable, ranging from 7.3% to 68.2% in the reported 
cases series [121]. Most importantly, anemia due to PRCA seems to be a 
more common hematologic complication in Asian patients as compared 
to Western patients, suggesting the role of a genetic background in the 
pathogenesis of this disorder. It is well established that clonal T cells are 
detected in PRCA patients [122], but recent evidence suggests that 
STAT3 mutated CD8+ T cells expansion can be recognized both in PRCA 
patients with LGLL and without LGLL, even if with higher frequency in 
the first subgroup [123–124]. These findings postulate a common 
pathogenetic mechanism in erythroid impairment in different PRCA 
subsets and a crucial role of STAT3 mutated CD8+ T cells clones in 
erythroid suppression. Thrombocytopenia is less frequent, observed in 
approximately 20% of cases. 

A peculiar feature of the disease is the association with autoimmune 
disorders [29,125,126], both hematological (autoimmune hemolytic 
anemia, immune thrombocytopenia) and non-hematological like rheu-
matoid arthritis (RA), detected up to 30% of patients, including “gray- 
zone” cases [127]. The disease frequently coexists with secondary 
neoplasm, mostly hematological including plasma cell dyscrasias, non- 
Hodgkin lymphomas and Myelodysplastic Neoplasms 
[29,118–120,128]. 

CD4+ T-LGLL is usually an indolent disease and patients, unlike 
those affected by the CD8 counterpart, do not present autoimmune 
symptoms and cytopenias [30]; it is rather associated with concurrent 
solid tumors [65]. CD4+ T-LGL clones have been reported to recognize 
CMV antigens [129], with other viruses having a role in the pathogen-
esis [130]. 

According to the largest series today covering more than two decades 
and including 127 patients at 9 sites across 5 countries on 3 continents 
[70], Tγδ-LGLL represents a subset of T-LGLL characterized by more 
frequent symptoms, need for treatment and reduced survival as 
compared to Tαβ-LGLL. Neutropenia and anemia are the most relevant 
clinical features, being present in approximately half of cases, including 
severe neutropenia and anemia in around 20% of patients. The absence 
of the Vγ9/Vδ2 rearrangement profile, together with an infrequent 
expression of CD56 and NKG2A, is correlated to a more symptomatic 
disease [42]. 

In terms of clinical correlations between mutations and clinical 
features, following the first preliminary series of cases [60,61,131,132], 
the presence of STAT3 mutation has been convincingly linked to CD8+
T-LGLL patients characterized by neutropenia, to the CD16+CD56- 
phenotype regardless of the CD57 presence, and to symptomatic disease 
[40,56,58]; more specifically, the evidence of neutropenia in STAT3 
mutated patients correlates with a worse survival. Suggested mecha-
nisms accounting for neutropenia development include the trigger of a 
STAT3-miR-146b-FasL axis [108]. Furthermore, the majority of patients 
harboring STAT3 genetic aberrancies are neutropenic and exhibit the 
largest LGL clonal expansion [40]. 

Besides neutropenia, several other clinical features turned out to be 
more frequent in patients with STAT3 mutations, including different 
cytopenias or autoimmune diseases and treatment requiring disease 
[40,67,74,116,117,133]. Interestingly, T-LGLL patients with multiple 
STAT3 mutations have been reported concomitantly with rheumatic 
diseases, in particular with RA [125,126], a disorder that has long been 
associated with LGL leukemias [11–13]. Furthermore, recent data sup-
port the hypothesis that somatic mutations in leukemia driver genes 
contribute to autoimmune disease. In fact, Masle-Farquhar et al. in mice 
with germline STAT3 gain-of-function mutations demonstrated that the 
resulting effector CD8+ T cell clonal accumulation contributes to 
autoimmune pathology [134]. 

At variance with STAT3, STAT5B mutations have been associated 
with a different clinical behavior [40,61,62]. Depending on the immu-
nophenotype of the mutated clone, the presence of STAT5B mutations in 
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the same hotspot position represents a signature of poor prognosis in 
aggressive CD8+CD56+ T-LGLL patients [37,38], while it is devoid of 
negative prognostic significance in CD4+ T-LGLL and Tγδ-LGLL patients 
[62,70]. 

Reasoning on future potential utilities of the application of molecular 
profiling in LGLL, the question of whether treatment decisions might be 
guided by molecular features prior to the emergence of clinical in-
dications still remains unanswered and needs detailed longitudinal 
studies. 

Despite the different role of STAT mutations, the clinical features of 
NK-LGLL are basically not divergent to those seen in T-LGLL, but these 
patients are usually less symptomatic. Similar to T-LGLL, NK-LGLL often 
occurs in association with other disease states but less frequently with 
autoimmune diseases [65]. Dissimilarly from ANKL, evidence of EBV 
infection is lacking in T-LGLL and NK-LGLL. 

ANKL belongs to NK related chronic disorders, but it manifests as a 
rapidly progressing life-threatening systemic disease, with patients often 
dying within weeks or months of onset. Patients present with fever, 
lymphadenopathy, enlarged spleen and liver, constitutional symptoms 
and lymphocytosis. ANKL sometimes can resemble the hepatosplenic T 
cell lymphoma. Based on the fact that leukemic cells are equipped with 
an immunophenotype similar to NK-LGLL (Fig. 2), clinical evaluation is 
necessary to make the diagnosis [22,26,135]. Bone marrow involvement 
is an ever-present finding. The evidence of large nucleoli in leukemic NK 
cells (Fig. 1B), associated with systemic symptoms, lymph node 
swelling, hepatosplenomegaly and EBV positivity (EBERs detectable by 
immunohistochemistry) strongly points to the diagnosis of ANKL. EBV 
negative patients are known to occur but their morphological and 

clinical features are similar to the EBV positive counterpart. 

8. Diagnosis of LGLL 

Prerequisite for the diagnosis of LGLL is the exclusion of conditions 
mounted or perpetuated by highly specific polarized immune responses 
to strong antigenic stimuli, thereby the demonstration of cell clonality is 
mandatory. T and NK cell expansions are engendered as a part of a 
reactive immune response but following the clearance of the relevant 
stimuli, these proliferating cells undergo AICD, this way maintaining 
immune homeostasis. These cell expansions can be either polyclonal, 
oligoclonal or monoclonal, the latter conditions sometimes making the 
differential diagnosis with T/NK malignancies difficult [114,136,137]. 
In fact, an immunodominant clonal expansion may be so significant to 
be detectable above the polyclonal background. For this reason, the 
persistence of the abnormal population over time (>6 months) is 
required. 

The number of LGL in the peripheral blood is usually greater than 2.0 
x 109/L but also >0.5 x 109 clonal lymphocytes/L are accepted for LGLL 
diagnosis, particularly when associated with an unexplained cytopenia. 

The decision making process to meet the diagnosis of LGLL is sum-
marized in Fig. 5. The following criteria need to be diligently fulfilled  

(i) the presence of an abnormal LGL expansion characterized by T 
(CD3+CD8+ or CD3+CD4+, and associated cytotoxic markers) 
or NK (CD3-, CD16+, KIR and associated cytotoxic markers) cells; 
see Fig. 2. 

Fig. 5. Algorithm to proceed to diagnosis of LGL disorders. As mentioned in the legend of Fig. 2, additional less frequent possible immunophenotypic patterns might 
occur. 
+ Immunophenotype with monoclonal antibodies against CD3, CD4, CD8, CD16, CD56, CD57, KIR; 
• T cell clonality assessment by evaluation of the TCR; 
# NK cell clonality assessment by evaluation of KIR restriction (p58 molecules); 
* molecular profile by STAT3 and STAT5B mutations and Vδ2 assessment; 
** molecular profile by STAT3 and STAT5B mutations; 
*** molecular profile by STAT3, TET2 and CCL22 mutations. 
M, mutated; WT, wild-type. 
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(ii) the presence of a clonal T cell population detected by molecular 
techniques (Polymerase chain reaction, Spectratyping, Sanger 
sequencing or NGS) or by the proof of a discrete TCR Vβ usage (in 
T cell expansions [32–36,138]) or KIR restriction (in NK cell ex-
pansions [16,17]) at flow cytometry analysis; see Fig. 5. NGS 
profiling is nowadays the forefront of standard of methods 
[64,139] but this technique is still expensive and requires high 
quality DNA and bioinformatics skill for the analysis of data to 
ensure their appropriate interpretation.  

(iii) the persistence of the abnormal population over time (>6 
months) particularly when associated with an unexplained 
cytopenia, in the absence of positive serology for common vi-
ruses, thus ruling out reactive conditions [43,57].  

(iv) the presence of STAT3 or STAT5B mutations might contribute to 
confirm the clonality in discrete patients (e.g., oligoclonal LGL 
expansions with no restricted immunophenotype) and especially 
help to predict the outcome [40,58,66]. Their evaluation is an 
important complement in the differential diagnostic work-up and 
is considered one of the major findings that can aid the diagnosis 
of LGLL [56–62]. However, the diagnosis of T-LGLL can be made 
also in STAT3 wild-type patients. 

The BM evaluation is sometimes suggested to exclude other potential 
causes of cytopenias, including myelodysplastic neoplasms and pure red 
cell aplasia. BM appearance in LGLLs does not present a specific pattern 
in terms of cellularity; BM biopsy shows variable in size interstitial and 
intrasinusoidal infiltrates of lymphocytes, sometimes associated to 
nodular aggregates of lymphoid cells with azurophilic granules often 
hardly recognizable [140]. In patients with neutropenia, a decrease in 
granulocyte precursors and left-shift maturation is usually observed but 
the degree of marrow infiltration by LGL does not correlate with the 
degree of cytopenia [141]. The evidence of interstitial and intra- 
sinusoidal CD8+/TiA1+, Granzyme B lymphoid infiltrates with 
altered immunophenotype may confirm the diagnosis [140]. BM biopsy 
in patients with mutant STAT3 often revealed hypercellular marrow 
with a higher percentage of T-LGLL tumor burden, and intrasinusoidally 
distributed cytotoxic T cells, relative to patients with wild-type STAT3 
[57]. 

Once the above criteria are met, the distinction between T-cell clones 
of uncertain significance (T-CUS) and LGLL is mandatory to rule out 
incidental non-malignant clonal T cell expansions, first of all ascer-
taining whether the clone is stable, progressive, or transient. CUS de-
fines T-cell clones of uncertain significance exhibiting 
immunophenotypic features closely resembling those of T-LGLL but the 
individuals are devoid of clinical or laboratory features supporting a 
diagnosis of T-cell malignancy [114,136,142]. Given the fact that T-CUS 
is a potential precursor of T-LGLL, some overlap between non-malignant 
clonal T cell expansions and indolent T-LGLL may occur. The differential 
diagnosis is usually based in the context of clinical features mentioned 
above, mainly by cytopenias and related events including aphthous oral 
mucosa and recurrent bacterial infections, by bone marrow and other 
tissues involvement, by the evidence of a CD8+/CD57+/CD16+
phenotype, as well as by the presence of mutations 
[29,114,136,143–145]. Of course, the number of circulating abnormal 
cells is central, the threshold commonly accepted for LGLL diagnosis 
being 0.5 x 109 clonal lymphocytes/L [40,43,64]. 

Tγ/δ− LGLL sometimes may resemble hepatosplenic T cell lymphoma 
since they can both display Tγ/δ profile, CD56 and NKR markers, 
however the latter generally lacks CD8 and CD57 expression [146,147]. 
Also in this disorder discrete mutations (STAT5B [31%] STAT3 [9%] and 
PIK3CD [9%]) have been detected, thus not helping in the differential 
diagnosis [148]. 

9. Current treatment options and future directions: the 
challenge of innovative therapies 

Unfortunately, the lack of deep understanding of etiopathogenesis of 
the disease prevents the design of effective target therapies, leaving 
current patients with limited therapeutic options. Reasoning that 
leukemic LGL are activated cytotoxic lymphocytes, standard treatment 
of T-LGLL and NK-LGLL today mostly relies on immunosuppressive 
backbone (Methotrexate, Cyclophosphamide and Cyclosporin A) [149]. 
Supporting evidence for this approach is limited due to the lack of 
prospective clinical trials and we have long been hoping for better 
appropriate therapeutic, possibly targeted, options. 

The decision on when and if a LGLL patient should undergo therapy 
is critical. Treatment of LGLL is usually required in presence of symp-
tomatic neutropenia, transfusion dependent anemia or presence of 
concomitant symptomatic autoimmune diseases, but the results are not 
exciting [29,65]. At least 4-6 months of therapy are required to evaluate 
the response [127,149,150]. 

Methotrexate (MTX) 10 mg/m2 per week and Cyclophosphamide 
(CTX) 50-100 mg/day are the generally recommended standards of care 
for the first line treatment while Cyclosporine A (CyA) is usually favored 
for patients at relapse [151]. Overall response (OR) and complete 
response (CR) rates are variable (40-70% and 47-50%, respectively) 
depending on the reported retrospective case series [152–153]. Never-
theless, in the first prospective trial of immunosuppressive therapy in 
LGLL, the MTX OR rate (ORR) was found slightly lower (38%) [154]. Of 
notice, while MTX therapy can be pursued until progression or unac-
ceptable toxicity, CTX therapy should be continued not more than 12 
months to avoid secondary myelodysplastic neoplasms or acute myeloid 
leukemia. The first prospective randomized trial (NCT01976182) eval-
uating MTX or CTX as first line treatment for LGLL is currently ongoing 
and preliminary results are up to now not available. 

CyA at 3-5 mg/kg/day dose administered until progression is 
generally used in patients failing the first line therapy, with variable 
ORR (21 to 100%) [152]. However, the largest multicenter Tγδ series of 
patients today showed better response with first line CyA with respect to 
MTX and CTX, suggesting a potential benefit upfront in this rare subtype 
of T-LGLL [70]. 

By contrast, ANKL requires intensive chemotherapy even though the 
optimal regimen has not yet been established and unfortunately com-
plete remissions are rare and the outcome is poor [25]. Nevertheless, L- 
asparaginase-based regimens such as SMILE (dexamethasone, metho-
trexate, ifosfamide, etoposide and L-asparaginase), AspaMetDex (L- 
asparaginase, methotrexate, dexamethasone) or VIDL (etoposide, ifos-
famide, dexamethasone, L-asparaginase) have improved the outcome of 
ANKL patients; in particular SMILE chemotherapy and hematopoietic 
stem cell transplantation (HSCT) were suggested to be the key compo-
nents of the therapeutic strategies of ANKL [155,156]. 

For relapse/refractory disease, only few agents are available with 
limited experience and variable responses. Monotherapy with the anti- 
CD52 monoclonal antibody Alemtuzumab has been evaluated in 25 
patients and proved effective with an ORR of 74% and 47% CR rates, 
respectively [157]; the presence of a STAT3 mutation doesn’t seem to 
impact on ORR [158]. Purine analogs (fludarabine, cladribine, pentos-
tatine) and bendamustine have been used in limited cases series with 
variable OR rates [159–161]. Finally, in patients with concomitant RA 
and T-LGLL, rituximab monotherapy induced unexpected responses, 
including CR [162]. Splenectomy may be considered in cases of symp-
tomatic splenomegaly or refractory cytopenias particularly anemia 
[163]; in this series of cases, although transfusion independence 
improved, neutropenia did not ameliorate. HSCT has been reported for a 
series of patients [164–166]; among the 15 patients reported by EBMT, 
five underwent autologous HSCT (three obtaining CR, still alive and two 
with progressive disease), and ten allogeneic HSCT (5 still alive at last 
follow up). This indicates that bone marrow transplantation for LGL 
leukemia is not without risks and should be limited to well selected 
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patients. 
In this landscape, the desperate demand for more effective and 

possibly personalized therapies represents an unmet need in LGLL pa-
tients. The adverse impact of STAT3 mutations in patients’ survival 
[40,58] suggests that this pathway as well as other emerging networks 
should be regarded as a potential target to be exploited to help direct the 
design of specific new compounds for innovative, molecularly tailored 
therapeutic approaches, even subset-specific at least leading to pro-
longed survival. Available correlative studies argue that a gene signature 
and mutated STAT3 Y640F genotype are potential predictors of response 
to MTX [56,65,80] but data to that effect are still immature and further 
validation in larger studies is warranted. In this context, the JAK3 in-
hibitor Tofacitinib has been evaluated in 9 patients (four of them being 
STAT3 mutated) with relapse/refractory T-LGLL and concomitant RA. 
Hematological response was observed in 6 cases with increase in neu-
trophils’ count in 5 patients [167]. Moignet and colleagues reported 
promising results with the JAK inhibitor Ruxolitinib in two cases of 
refractory LGL leukemia [168]. 

IL-15 plays a crucial role in LGLL pathogenesis [98–100] and several 
attempts to inhibit this pathway have been pursued, thus offering the 
proof of concept for further drug developments. A phase 1 trial evalu-
ating the monoclonal antibody Hu-Mikβ1 which blocks IL-15 trans- 
presentation failed to prove a significant clinical benefit [169]. More 
recently, emphasis has been put on BNZ-1, a novel multi-cytokine in-
hibitor that has been claimed as a new promising drug in LGLL [170]. 
BNZ-1 is a pegylated peptide that blocks IL-2, IL-9 and IL-15 binding to 
the common γ chain receptor. In vitro studies on T-LGLL cell lines and 
patients’ samples showed increased apoptosis following BNZ-1 treat-
ment; moreover, this agent blocked in vivo T-LGLL development in IL-15 
transgenic mice. Based on these findings, a phase I/II multicenter clin-
ical trial evaluating BNZ-1 treatment in T-LGLL patients is ongoing with 
promising results (enrolled 14 cases, with results indicating 20% of 
hematological response) [171] but we are waiting for maturity of data. 

Despite the high incidence of STAT genetic lesions [57–66], addi-
tional gene mutations [51,52,72–74], or deregulation of other signaling 
molecules including Fas ligand axis [108,105,172] might be involved in 
association with STAT mutations thus contributing to pathogenesis of 
these disorders. Increased DNA methylation [173] and the development 
of recurrent pervasive mutations in chromatin and epigenetic modifying 
genes [174] are likely to represent additional events involved in disease 
onset also in relationship to the influences on microenvironment 
immunocompetent cells and their control of neoplastic growth [103]. 
This is clearly going to be another option to help us make further 
effective treatments. 

Defining new putatively druggable targets [175], these emerging 
studies might offer the rationale to direct the design of specific inno-
vative compounds (STAT pathway’s inhibitors, demethylating agents, 
etc.) providing hope for new interventions that could lead to prolonged 
survival of these patients. This challenge of genomics will be made 
possible only by an appropriate disease subtypes’ categorization and 
subsequent recruitment of discrete patients’ subgroups. 

10. Relevance to physician and patient of disease categorization 

A final remark in closing. Why make such great efforts to dissect 
disease’s subsets and look for correlations between immunophenotype 
(Fig. 2), molecular analysis (Fig. 3) and clinical features with the ulti-
mate goal to appropriately characterize and overall differentiate these 
rare diseases one from the other and from irrelevant T/NK cell expan-
sions (Fig. 5)? Inherent in this question is to what extent this endeavor 
might facilitate the doctor-patient relationship. The achievement of a 
correct disease’s categorization will provide comfort both to physicians 
and their patients. Physicians can juggle better in the maze of these rare 
conditions more properly managing patients with LGLL. Patients, un-
derstandably anxious about a disorder termed as leukemia, a definition 
that invokes the specter of relentless lethal process, and constantly 

reminded of the insidious nature of their disease at follow-up visits, can 
in this setting benefit of confidence that physician can convey explaining 
the indolent clinical course of their leukemia in most these disorders. 

The issue of clonality and its relationship with cancer is a contro-
versial issue to address and we should never forget that mutations 
themselves do not denote malignancy [114,176]. In fact, the presence of 
a clone is not the sole defining characteristic of neoplasia and several 
additional factors, the progress to metastasis and/or compromise of 
normal tissue function among others, must be taken into account, 
including indolent disease that causes no harm during the patient’s 
lifetime. In this regard, as research continues to progress, we believe that 
further knowledge on the biology of these disorders might also lead to 
the reassessment of the semantic distinction of these conditions. Their 
renames might not only influence the patients’ self-perception but also 
have practical repercussions in terms of regulatory prerogatives, such as 
health care resource allocation and cancer-specific indemnity policy 
payouts; this represents a must for the patient. 

Practice Points  

• Need to ensure that patients undergo accurate immunophenotyping 
to differentiate discrete disease subsets. 

• Evaluation of STAT3 and STAT5B somatic mutations is recom-
mended to aid to envisage the prognosis of patients.  

• The association with accompanying diseases must always be 
investigated.  

• Therapy is required in the presence of symptomatic neutropenia, 
transfusion dependent anemia or presence of concomitant symp-
tomatic autoimmune diseases. 

Research Agenda  

• Learn more on pathogenetic mechanisms of disease, the precise role 
of mutational profiles, including newly discovered mutations.  

• Assess clinical and laboratory parameters that may define prognostic 
models to estimate the disease progression risk.  

• Develop selected novel agents based on mechanisms of disease to 
improve the treatment efficacy.  

• Design randomized controlled trials evaluating new therapeutic 
strategies based on the rationale provided by genetic molecular 
profiling and functional studies. 
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