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Abstract: Estimating the dry matter losses (DML) of whole-plant maize (WPM) silage is a priority
for sustainable dairy and beef farming. The study aimed to assess this loss of nutrients by using
net-bags (n = 36) filled with freshly chopped WPM forage and buried in bunker silos of 12 Italian dairy
farms for an ensiling period of 275 days on average. The proximate composition of harvested WPM
was submitted to mixed and polynomial regression models and a machine learning classification
tree to estimate its ability to predict the WPM silage losses. Dry matter (DM), silage density, and
porosity were also assessed. The WPM harvested at over 345 (g kg−1) and a DM density of less
than 180 (kg of DM m−3) was related to DML values of over 7%. According to the results of the
classification tree algorithm, the WPM harvested (g kg−1 DM) at aNDF higher than 373 and water-
soluble carbohydrates lower than 104 preserves for the DML of maize silage. It is likely that the
combination of these chemical variables determines the optimal maturity stage of WPM at harvest,
allowing a biomass density and a fermentative pattern that limits the DML, especially during the
ensiling period.

Keywords: maize silage; porosity; density; dry matter loss; bunker silo; machine learning; classification
tree analysis

1. Introduction

Whole-plant maize (WPM) silage is the main own farm fodder contributing to the
formulation of total mixed ration for high-genetic-merit lactating dairy cows in the intensive
farming systems of many European countries [1–3]. It is a high-yielding and flexible
harvesting vegetable crop with a high nutritional value also for ruminant meat producers [4].
The main purpose of ensiling is to extend over time the use of WPM harvested at the
optimum phenological stage to maximize the nutritional profile and limit the presence
of harmful compounds such as mycotoxins [5]. However, the choice of the optimum
ensiling plant and grain maturity is also related to the dry matter (DM) content and
proximate composition of the freshly harvested maize because they affect the rate and
extent of the main fermentation end-compounds both during the fermentative phase and
the stable storage phase in the silo [5,6]. Furthermore, the choice of the maturity stage at
harvest affects the DM losses (DML) across the silage-making process since they seem to
be associated with the pre-ensiled DM content [6,7] alone or in interaction with the use of
microbiological additives [8,9]. Bulk silage density, when expressed on a wet basis [10],
DM silage density, and the porosity are reported to affect DML as well [9]. Porosity is
positively related to the DM density and negatively to the bulk density [10,11]. Compacting
adequately during the silo filling increases the bulk density and reduces the DML [8], and
it favors suitable microbiological quality [12]. However, knowledge of the effect of the
proximate composition of harvested WPM biomass on the DML that occurs during its
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ensiling process and the following preservation phase is still a challenge, especially under
field conditions. So far, various experimental approaches are proposed to assess the silage
losses at the farm bunker silo scale, such as total-in versus total out mass flow of the silo,
ash, or other nondegradable recovering biomarkers; the use of buried temperature loggers
to measure heat evolution appears instead to be more correlated to the onset of aerobic
deterioration [6,13]. A further experimental approach to simulate and predict the ensiling
losses under on-farm conditions is the buried bag technique, which is accomplished using
nylon mesh bags filled with freshly chopped forages and then buried in silos in order
to allow gas and fluid exchanges with the surrounding silage; the net-bags are removed
from the pile prior to air exposure, allowing the evaluation of DML [1,7]. However, rapid
and accurate characterization of silage DML still remains a gap while exploring the best
combination of whole-plant chemical constituents, which allows an optimal tuning up of
the ensiling process. Such a gap can be tackled by using some machine learning techniques
to define the best aggregate predictor able to achieve satisfactory predictive performance,
such as recursive partitioning and decision tree analysis [14].

The aim of this study was to investigate the effect of the pre-ensiled chemical traits on
the DML of a set of maize silage samples embedded as mini-bags inside the bunker silos in
a cohort of Italian dairy farms. It also investigated the relationship between density and
porosity, the incidence of DML, and the fermentative quality pattern of the WPM silages.

2. Materials and Methods
2.1. Experimental Design and Sampling Collection

The experimental trial was carried out in the lowland of the middle Veneto region
(45◦19′ lat. N, 11◦56′ long. E; Northeast Italy). In the spring of 2020, 12 farms were selected
to be representative of the intensive dairy farming system of the middle Po Valley (north
of Italy) that uses whole-plant maize (WPM) silage as the main fodder in the total mixed
ration of lactating dairy cows [15,16]. The maize crop consisted of a wide range of medium
(FAO class 400–500, n = 11) and late (FAO class 600–700, n = 25) hybrids, processed under
diverse agronomic management according to soil fertility and irrigation availability. The
WPM was harvested in August at a targeted DM concentration of 28–36%, corresponding
to the medium-early ripening phase (from half to two-thirds milk line stage) using multiple
rows of self-propelled forage harvesters, and chopped at a theoretical cut length (TCL)
of 15 ± 0.6 mm. The fresh ground WPM biomasses were ensiled in horizontal concrete
bunker silos with an averaged storage capacity of 920 ± 315 m3, mainly according to the
length extension (40 ± 12 m). The silage procedures were almost similar among dairy
farmers as regards the filling rate of the silo, tractor weight used to apply pressure to
increase the bulk density of harvested biomass, and the presence of lateral and longitudinal
(black-on-white) silage wrap plastic films. Over the top of the silo were placed gravel sacks
having an average weight of 180 ± 30 kg m2 increasing self-compaction; no silage additives
were used in this trial. Per each farm, three samples (around 8.0 kg each) of fresh ground
(pre-ensiled) WPM were randomly collected across the crop areas and packed into net-bags
(polyethylene, 0.5 × 0.35 m; 2 mm of mesh). The net-bags were buried in the middle part of
the bunker silos at 2.0 m above the floor; thus, they can be considered embedded into the
fermentative biomass as representative samples of the ensiling process (Figure 1). After the
ensiling period, all the net-bags were retrieved to be weighted and then opened to collect
WPM silage samples used to assay their proximate composition and fermentative profiles.
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Figure 1. A net-bag buried in a bunker silo (left); the electrical probe (right) to collect a determined 
volume of whole-plant maize (WPM) silage used to calculate dry matter density and porosity. 

2.2. Proximate Composition, Fermentative Profile, Density, Porosity, and Dry Matter Losses 
The DM and proximate composition of the fresh WPM forage samples used to fill 

the net-bags were assayed on-farm by the use of a portable near-infrared (NIR) instru-
ment (PoliSPECNIR; ITPhotonics, Fara Vicentino, Italy). At the end of the ensiling period, 
DM and fermentative profile of WPM silage of each net-bag were analyzed using a FOSS 
NIRSystem 5000 scanning monochromator (FOSS NIRSystem, Silver Pring, MD, USA). 
All samples were analyzed in triplicates, and NIR spectral data were averaged to predict 
the chemical variables using the calibration equation of our previous studies both on the 
portable [17] and bench-top [5] apparatus. The pH of silage samples was determined by 
using a pH meter (827 pH lab; Metrohm, Herisau, Switzerland). According to the farming 
operative conditions of maize silage in bunker silos of the Italian dairy farms, the 
net-bags were retrieved after 228 ± 64 days on average (median, 242 days). Before 
net-bags recovering from farm silos, bulk density was evaluated at three sampling points 
surrounding each net-bag, forcing an electrical powered cylindrical probe (2.3 cm of 
diameter) within the WPM silage mass by means of a pronged blade (Figure 1). The 
length of the collected cylindrical sample was recorded to calculate the volume accu-
rately, and then the silage DM density (kg of DM m−3) was determined using the DM 
content of the WPM silage sample from the buried net-bag. Porosity (Φ) [18] and dry 
matter (DM) losses (DML) of WPM maize silage were calculated following these equa-
tions: 

Φ = 1 – ρS × {[(1 – DM) / ρW] + [(DM × OM) / ρOM] + [(DM × (1 – OM)) / ρASH]}, (1) 

DML = [1 – (kg of DM of post-ensiled WPM / kg of DM of pre-ensiled WPM)] × 100, (2) 

where ρS is silage density on the wet basis (g cm−3); ρW is water density (1 g cm−3); DM 
and OM are dry and organic matter; ρOM is organic matter density (1.6 g cm−3); ρASH is 
ash density (2.5 g cm−3); WPM is whole-plant maize. 

The DM content (g kg−1) also accounted for the presence of volatile carbon com-
pounds, which might be lost in oven dissection [13,19]; thus, a correction was applied as 
DMcorrected = 22.2 + 0.96 × DMuncorrected [13]. 

2.3. Statistical Analysis and Machine Learning Algorithm 
All the statistical analyses were performed using R-software (v4.0.2; R Core Team 

2022). Data of replicates were averaged prior to statistical analysis. The chemical and 
physical traits of unprocessed and ensiled WPM and DML were normally distributed as 
assessed by the Shapiro–Wilk test. The association between DML and density, porosity, 
and DM_fresh was assessed with the Pearson correlation coefficient (r). A stepwise 
mixed regression model fitted by the restricted maximum likelihood (REML) criterion 

Figure 1. A net-bag buried in a bunker silo (left); the electrical probe (right) to collect a determined
volume of whole-plant maize (WPM) silage used to calculate dry matter density and porosity.

2.2. Proximate Composition, Fermentative Profile, Density, Porosity, and Dry Matter Losses

The DM and proximate composition of the fresh WPM forage samples used to fill the
net-bags were assayed on-farm by the use of a portable near-infrared (NIR) instrument
(PoliSPECNIR; ITPhotonics, Fara Vicentino, Italy). At the end of the ensiling period, DM and
fermentative profile of WPM silage of each net-bag were analyzed using a FOSS NIRSystem
5000 scanning monochromator (FOSS NIRSystem, Silver Pring, MD, USA). All samples
were analyzed in triplicates, and NIR spectral data were averaged to predict the chemical
variables using the calibration equation of our previous studies both on the portable [17]
and bench-top [5] apparatus. The pH of silage samples was determined by using a pH
meter (827 pH lab; Metrohm, Herisau, Switzerland). According to the farming operative
conditions of maize silage in bunker silos of the Italian dairy farms, the net-bags were
retrieved after 228 ± 64 days on average (median, 242 days). Before net-bags recovering
from farm silos, bulk density was evaluated at three sampling points surrounding each
net-bag, forcing an electrical powered cylindrical probe (2.3 cm of diameter) within the
WPM silage mass by means of a pronged blade (Figure 1). The length of the collected
cylindrical sample was recorded to calculate the volume accurately, and then the silage
DM density (kg of DM m−3) was determined using the DM content of the WPM silage
sample from the buried net-bag. Porosity (Φ) [18] and dry matter (DM) losses (DML) of
WPM maize silage were calculated following these equations:

Φ = 1 − ρS × {[(1 − DM) / ρW] + [(DM × OM) / ρOM] + [(DM × (1 − OM)) / ρASH]}, (1)

DML = [1 − (kg of DM of post-ensiled WPM / kg of DM of pre-ensiled WPM)] × 100, (2)

where ρS is silage density on the wet basis (g cm−3); ρW is water density (1 g cm−3); DM
and OM are dry and organic matter; ρOM is organic matter density (1.6 g cm−3); ρASH is
ash density (2.5 g cm−3); WPM is whole-plant maize.

The DM content (g kg−1) also accounted for the presence of volatile carbon com-
pounds, which might be lost in oven dissection [13,19]; thus, a correction was applied as
DMcorrected = 22.2 + 0.96 × DMuncorrected [13].

2.3. Statistical Analysis and Machine Learning Algorithm

All the statistical analyses were performed using R-software (v4.0.2; R Core Team 2022).
Data of replicates were averaged prior to statistical analysis. The chemical and physical
traits of unprocessed and ensiled WPM and DML were normally distributed as assessed by
the Shapiro–Wilk test. The association between DML and density, porosity, and DM_fresh
was assessed with the Pearson correlation coefficient (r). A stepwise mixed regression
model fitted by the restricted maximum likelihood (REML) criterion was performed to
evaluate the most predictive pre-ensiled chemical variables to estimate the DML across the
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ensiling period using the farm as a random effect in the nlme package. As the coefficient
of determination of the model, a pseudo-R2 was calculated adopting the MuMln package.
Regression coefficients (b ± standard error) were estimated. A polynomial regression
model was also used to interpolate a 3D surface plot on DML, density, and DM_fresh data.
According to the experimental outcomes of Köhler et al. 2019 [1], the DML values were split
into three quantitative classes; considering that the average and standard deviation (s.d.)
were 5 ± 4%, the middle class (M-class) was centered on the mean, and the width of the
class was equal to the s.d., thus between 3% and 7% (average minus or plus half s.d.). The
three quantitative groups were: (i). DML < 3% (low DML, L-class); (ii). 3% ≤ DML ≤ 7%
(medium DML, M-class); (iii). DML > 7% (high DML, H-class).

A machine learning classification tree analysis was performed to detect the most
discriminating fresh WPM chemical features by using the experimental data set (n = 36).
A recursive partitioning method was carried out within the rpart package; this package
builds a decision tree having both the smallest number of classification branches and the
lowest misclassification rate based on 10-folds cross-validation. The developed decision tree
model was run in the original data set generating a confusion matrix to test the effectiveness
of a correct assignment to the three actual DML classes by a set of qualitative statistical
indicators [20].

3. Results
3.1. Chemical and Physical Traits of Harvested Biomass and Silage

The proximate composition and the structural and non-structural carbohydrates frac-
tions of harvested fresh WPM forage are reported in Table 1. The data set highlighted a low
variability of all variables, except for the content of water-soluble carbohydrates (WSC) that
ranged between 22 and 112 g kg−1 DM. The chemical traits and pH of WPM silage samples
ensiled in concrete bunker silos showed a high-quality fermentative profile (Table 1). On
average, the silages had a density of 214 kg DM m−3, but a wide variability was observed
among individual silos (Table 1).

Table 1. Descriptive statistics for the chemical traits of green chopped whole-plant maize (WPM) and
for dry matter (DM), fermentative profile (acids, ammonia, pH), porosity, DM density, and DM losses
(DML) of post-ensiled WPM.

Variables Pre-Ensiled (g kg−1 DM) Mean s.d. IQR Min Median Max

DM_fresh (g kg−1) 338 34 57 280 346 411
Crude protein 66.8 3.9 4.3 60.5 67.1 77.5
Ether extract 27.4 1.9 2.9 23.3 27.1 31.5

Ash 37.9 3.1 3.3 32.1 38.9 44.2
Starch 339 26 40 301 341 395

Water-soluble carbohydrates 70.1 32.3 64.8 22.1 62.5 113.2
aNDF 389 23 22 335 391 439
ADF 209 20 21 175 211 246

Lignin 25.5 5.7 7.5 16.0 26.5 38.1

Variables Post-Ensiled (g kg−1 DM)

DM (g kg−1) 336 31 51 281 335 395
Lactic acid 51.9 8.9 11.4 34.0 52.0 68.8
Acetic acid 26.5 6.8 7.8 5.9 25.4 39.9

Propionic acid 9.9 2.3 3.5 6.2 9.3 14.8
Butyric acid 0.87 0.12 0.19 0.70 0.85 1.10

NH3-N (g 100 g−1 total N) 7.8 0.7 0.8 6.3 7.9 9.5
pH 3.83 0.10 0.12 3.57 3.84 4.01

DM density (kg DM m−3) 205 26 39 152 209 254
Porosity (decimals) 0.41 0.07 0.06 0.33 0.40 0.60

DM losses (%) 5.04 3.76 4.65 0.53 4.15 14.13

IQR, interquartile range (difference between the 75 and 25 percentile).
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3.2. Dry Matter Losses (DML) of WPM Silage

The DML of WPM silage were 5.04 ± 3.76% on average; there was a large variability
among individual net-bag, especially for samples with DML higher than the median value
(Table 1). The DML were negatively correlated with DM density (r = −0.45; p = 0.006),
whereas they were positively associated with porosity (r = 0.62; p < 0.001) and to DM_fresh
(r = 0.37; p = 0.028). The mixed regression model (R2 = 0.63) showed a positive association of
DML (%) with DM_fresh (b = 0.044 ± 0.021; p < 0.05) and lignin (b = 1.00 ± 0.408; p < 0.05)
and a negative association with ADF (b = −0.290 ± 0.111; p < 0.05).

As expected, porosity and density were negatively correlated (r = −0.54; p < 0.001).
Moreover, due to multicollinearity, both of them cannot be present in the polynomial
regression model as predictors of the DML occurring during the ensiling and preservation
period of WPM. Therefore, the relationship between DML and two of the main predictive
variables was assessed by choosing silage DM density and DM_fresh, as reported in Figure 1.
The second-order regression polynomial model (adjusted R2 = 0.82) estimated the following
parameters: (i). silage density, first order b =−0.448± 0.243, second order b = 0.001 ± 0.001;
(ii). DM_fresh, first order b = 0.274 ± 0.148, second order b = −0.0003 ± 0.0002. The visual
interpretation of the 3D surface plot allowed us to establish the threshold value needed to
limit a high level of DML (over 7%), which is 350 g kg−1 of DM_fresh having a DM density
higher than 180 kg DM m−3 before the feed-out phase (Figure 2).
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forage DM (DM_fresh) content (g kg−1) and the DM density (kg DM m−3).

3.3. Modeling the DML of WPM Silage

To depict the range of variation of DML in the investigated bunker silos, three quan-
titative groups were defined as L-class (DML < 3%), M-class (3% ≤ DML ≤ 7%), and
H-class (DML > 7%), and they accounted for 14, 15, and 7 samples of the original data set,
respectively. According to these classification criteria, a decision tree algorithm was built on
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three selected chemical features of the fresh forage (Figure 3). The threshold of 345 g per kg
of green chopped maize forage (DM_fresh) was able to discriminate between the L-group
and the cluster M- and H-groups. The correct assignment for L-samples was 71%; mean-
while, for M- and H-samples was 63% and 26%, respectively. Moving to the left branch
of the decision tree (47% of the original data set), a value of aNDF ≥ 373 (g kg−1 DM)
discriminated the L-class (86%). Instead, the right branch of the decision tree showed that
WSC < 104 (g kg−1 DM) values could allow distinguishing M- from H-samples.
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Figure 3. Dry matter losses (DML) of whole-plant maize (WPM) silage based on a decision tree
algorithm. Data inside each node are (top to bottom): prevalent DML-class (increasing % of samples
belonging to the class raising the intensity of color); fractions of the three DML classes within the
node; percentage of original data set explained. 1—L-class, DML < 3%; 2—M-class, DML 3–7%;
3—H-class, DML > 7%. DM_fresh, NDF (as aNDF), and WSC refer to the pre-ensiled forage (see
Table 1).

With regard to the evaluation of the algorithm performance, a confusion matrix
highlighted a high level of sensitivity (Se) for the L- and M-classes (Se > 0.85), whereas
the H-class had a fair level (Table 2). The specificity was highly satisfactory across the
DML classes. The values of the balanced accuracy confirmed the suitable discriminative
capability of the decision tree, especially for the prediction of a low level of DML (L-class)
along the ensiling process of WPM (Table 2).

Table 2. The confusion matrix for the decision tree model applied to three dry matter losses (DML as
%) quantitative classes (low, L vs. medium, M vs. high, H).

Prediction Original Farm-Derived Data Set (n = 36)

Actual class DML < 3.0 3.0 ≤ DML ≤ 7.0 DML > 7.0
Predicted as DML < 3.0 (L) 12 1 1
Predicted as 3.0 ≤ DML ≤ 7.0 (M) 2 13 1
Predicted as DML > 7.0 (H) 0 1 5

Predictive Statistics
Sensitivity 0.86 0.87 0.71
Specificity 0.91 0.86 0.97

Positive predictive value 0.86 0.81 0.83
Negative predictive value 0.90 0.89 0.93

Balanced accuracy 0.88 0.86 0.84
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4. Discussion

The study was planned in order to define a set of chemical and physical markers
of fresh chopped WPM able to predict the DML that would occur during the ensiling
fermentative process in operating farming conditions. Therefore, the experimental data set
consisted of a total of 36 net-bags buried in many farm concrete bunker silos to simulate
the ensiling process of WPM harvested at the expected stage of maturity that yields high
nutrients contents (i.e., starch and CP) and optimal moisture to allow packing high-density
forage. All silage samples from the net-bags were characterized by an optimal fermentation
profile according to the literature [21,22], confirming that all farms performed the silage-
making process properly by applying suitable management practices such as filling the silo
within 48 h before sealing and ensuring an effective and uniform fresh forage compaction
(i.e., use of tractors and covering with gravel sacks).

Although the trial was performed in a restricted agronomic area involving dairy
farmers applying common harvesting and silage-making procedures, consistent with the
literature [1,12], the range of DML measured in the trial was rather wide (1% to 14%)
because of various physiological, physical, and chemical variables of the fresh material
that could affect its ensiling pattern and the rate and extent of the main fermentation
compounds production. In this study, both the mixed and polynomial regression models
confirm a positive relationship between DM content of harvested WPM biomass and DML
resulting from the ensiling process and fermented preservation. The WPM preservation
through the ensiling is accomplished by avoiding the high level of DM of the green chopped
WPM since it is reduced silage density and promotes aerobic deterioration [6]. When maize
plants were ensiled at lower DM content (early maturity stage), the silage resulted in a low
air circulation supporting intensive lactic acid-dominated fermentation pathways [23] and
limiting the adverse effects due to an intense role of others than lactic acid bacteria (i.e.,
undesired fermentation generating CO2) and/or the production of undesirable compounds
from yeasts and molds [24,25]. As stated by Borreani et al. [6], the results of this study
confirm that DML can be minimized by limiting porosity at 0.40 [11], and this seemed to
be accomplished by increasing silage density over 200 kg DM m−3. As the lower packing
density at a recommended harvesting DM_fresh ranges between 300 and 400 g kg−1,
a threshold of 200 kg DM m−3 is recommended to ensure a low porosity of silage [10].
A higher porosity (over 0.40) of a lower density WPM silage could allow rapid oxygen
movement inside the biomass, promoting microbial activity and silage damage [26,27].
A study by Gallo et al. [28] demonstrated that the lower density (measured by a mass
penetration resistance) of the peripheral bunker silo zone significantly led to high air
penetration, predisposing raising temperature and oxidative process, and an impaired acid
profile consequently.

Several factors affect the DML, including DM at harvest and porosity, since there is
evidence that the rate of oxygen movement through the silage is proportional to its density
and porosity [10,29]. Moreover, porosity is proportional to DM content and negatively
correlated to bulk density [18]. According to Woolford 1990 [30], the degree of anaerobiosis
is the most crucial single factor influencing silage conservation. On the other hand, the
considerable respiratory activity of plant and aerobic micro-organisms can cause DML
as well. Borreani et al. 2018 [6] reported two formulas that negatively relate DML to
the density and intensity of the packing procedures. However, Griswold et al. 2010 [31]
confirmed a weak inverse relationship between DML and DM density but suggested that
other factors play a role in DML. Moreover, the same authors proposed a response surface
regression between DML, DM, and DM density where it appears that at lower densities
(100–200 kg DM m−3), DML has a curvilinear trend with a minimum at about 350 g kg−1

of DM, increasing up to 7% of DML at DM of 390 g kg−1. In our study, the data ranges
(min–max/median) were 0.33–0.60/0.40 for porosity, 152–254/209 (kg DM m−3) for density,
280–411/346 (g kg−1) for DM_fresh, which corresponds to low density in the proposed
response surface, and high porosity compared with those suggested by Holmes et al.
2007 [10]. These findings of our study are suggestive that aerobic activity has occurred
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during the conservation period and may explain the positive relationship between DML
and relatively high DM content.

The machine learning algorithm defined a threshold of 345 g per kg of harvested fresh
WPM biomass to limit the DML to a very low level (L-class, DML < 3%). Although it
would appear advantageous to ensile mature WPM because of the higher DM and starch
yields, this forage is more difficult to pack, and the resulting silage often shows higher
DML [1] and spoils rapidly when exposed to air [22]. However, the main outcome of the
study is that the DM content alone of WMP harvested biomass could not explain the DML
because lignin and WSC were additional predisposing factors, while aNDF seemed to be
preventive [11,12]. It is well known that early phenological stages of harvest are associated
with high aNDF and sugars contents; meanwhile, concentrations of DM and starch increase
with increasing maturity [32]. A lower aNDF content in the advanced maturity stage of
the maize plant is due to the rising incidence of grains, and greater starch concentration
in developing caryopsis WSC are converted into polysaccharides [33]. Even though the
H-class seems rarely to occur, 8% of the samples consistent with the algorithm decision
tree represent the WPM harvesting target that should be avoided. Probably, harvesting
biomass with high DM contents and WSC levels greater than 100 g kg−1 DM might have
predisposed to low DM density and excessive fermentative rate, two detrimental ensiling
conditions, which resulted in a DML rate over the 7%.

However, botanical (i.e., hybrid and FAO classes) variability could affect the concentra-
tion of nutrients, especially WSC, across the phenological stages [17]. Indeed, the nutrients’
variability is also associated with many agronomic factors and weather conditions (i.e.,
cool, rainfall) [11]. Therefore, before extending the suggested results to the maize silage
population, validation is required by further on-farm investigation, testing the variability
associated with crop and harvesting circumstances, and ensiling methods. The outcomes
of this study suggest that a strengthened application of the decision tree analysis or similar
machine learning techniques on chemical and physical data of fresh maize forage can be
useful to explicate the probability of occurrence of a well-established DML threshold over
the ensiling time. Although the complexity of the fermentation process makes it challenging
to identify a clear explanation of drivers of the DML at the farm bunker silo scale [1], the
buried net-bag method may be considered one of the most accurate to ascertain the role of
the individual factors related to the chemical and physical characteristics of the fresh maize
harvested biomass, even if the application of digital and automatic weighing systems could
be made effective also the total-in versus total out method [1,13]. Quite apart from the
method of assessment of silage DML, further investigations should consider increasing
ensiling efficiency in terms of a careful assessment of the variables allowing an effective
packing density of fresh forage and driving an optimal fermentative pattern along the
ensiling process.

5. Conclusions

The current study suggests that the DM content of fresh WPM strongly affects the DML
across the ensiling process due to the different silage densities achieved in the bunker silos.
A maturity stage of WPM defined by a DM content of 345 g kg−1 seemed the minimum
threshold to achieve a bunker silo DM density driving an optimal anaerobic fermentation,
which is at least 180 kg DM m−3. However, the optimal ensiling maize plant maturity to
limit the DML seemed to be partially a linear DM-driven function, which is also related to
a phenological stage allowing a rapid achievement of aerobic stability in the bunker silo.
This phenological stage seemed to correspond to an aNDF content over 370 g kg−1 DM.
A prolonged harvesting time, reducing aNDF, and increasing lignin deposition may limit
the effective packing of the biomass in the silo, thus decreasing the silage density along with
the consequent adverse effects on the ensiling process due to aerobic deterioration. The
study highlighted that using net-bags filled with freshly chopped forage and buried in the
bunker silos can simulate the silage-making process in farming operating conditions, albeit
in a miniaturized, controlled, and easy sampling fermentative environment. Therefore, this
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technique can support an effective decision-making strategy for farmers and nutritionists
to improve the fermentative and nutritional quality of maize silage used for lactating cows
and beef cattle. However, the results of this study have to be integrated with further similar
trials in the future to verify the accuracy and repeatability of the tested models.
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