
Chapter 5
Projecting Proportionate Age–Specific
Fertility Rates via Bayesian Skewed
Processes

Emanuele Aliverti, Daniele Durante, and Bruno Scarpa

5.1 Introduction

There is an extensive interest on models for fertility rates in statistics and demog-
raphy (Hoem et al. 1981; Scarpa 2014). Several approaches have demonstrated a
satisfactory fit for age–specific fertility rates via standard routine formulations such
as the Hadwiger model (Hadwiger 1940), the Gompertz model (Murphy and Nagnur
1972) and the Gamma model (Hoem et al. 1981). These analyses have led to impor-
tant insights on relevant population patterns and on how education, fertility control
and marriage practices have played a key role in determining the shapes of fertility
curves (Rindfuss et al. 1996; Billari and Kohler 2004). However, recent studies
on developed countries have observed that age–specific fertility rates require more
flexible models which are able to capture both symmetric and asymmetric patterns
(Mazzuco and Scarpa 2015; Peristera and Kostaki 2007; Chandola et al. 1999).
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The above findings have stimulated new research questions and the development
of more flexible statistical models which are able to adequately describe these
non–standard shapes and characterize their dynamic evolution. Recent approaches
include models relying on mixtures of symmetric distributions (Peristera and
Kostaki 2007; Bermúdez et al. 2012), smoothing splines (Schmertmann 2003) and
skewed distributions (Mazzuco and Scarpa 2015), with some parametric assump-
tions sometimes relaxed via nonparametric alternatives (Kostaki et al. 2009; Canale
and Scarpa 2015). Clearly, the improved fit of these models comes at a price in terms
of interpretability. For example, smoothing splines generally provide an excellent
fit, but interpretation of the parameters is difficult (Hoem et al. 1981; Peristera
and Kostaki 2007). Besides this, few attention has been devoted to forecasts.
In fact, until 2011, most demographic projections were based on deterministic
predictions of fertility rates produced by the World Population Prospect report of
the United Nations (Lutz and Samir 2010). In these forecasts, potential variability
is only included via low and high fertility scenarios obtained by manipulating the
Total Fertility Rates’ (TFR) projections (Alkema et al. 2011; Raftery et al. 2013).
However, such an approach does not properly quantify predictive uncertainty, and
the extent to which these low or high level scenarios are realistic is still an open
question (Alkema et al. 2011).

More recently, United Nations and other agencies have started moving to proba-
bilistic approaches for population forecasting. However, in most of the cases, only
summary indicators such as TFR and life expectancy at birth (e0) are stochastically
projected. This means that, in a cohort–component perspective, these indicators
have to be converted into age–specific—fertility or mortality—rates, in order to
project the population counts. A naive solution would be to assume a standard age
schedule that is applied for every year, but this strategy has two major drawbacks.
First, it has been shown that mean, variance and even skewness of the age schedule
of fertility are not fixed, but time–varying (Mazzuco and Scarpa 2015; Keilman and
Pham 2000). Second, in this way a component of uncertainty is missing, whereas
we would like to incorporate in our forecasts the uncertainty due to varying age
schedules (Ediev 2013).

Motivated by the above considerations, recent approaches for probabilistic fore-
casting have focused on Bayesian hierarchical models (Alkema et al. 2011; Raftery
et al. 2013, 2014; Ševčíková et al. 2016). These methods aim at projecting TFR

and life expectancies at birth, while deriving related quantities—such as the age–
specific fertility rates—via Markov chain Monte Carlo (MCMC) (Alkema et al. 2011;
Ševčíková et al. 2016). Indeed, Bayesian models facilitate probabilistic forecasts
via posterior predictive distributions, and incorporate uncertainty in estimation and
prediction. For high and medium fertility countries, the proposal to project age
schedules of fertility consists in a linear interpolation among a starting fertility
age pattern and a target model chosen among different possible age schedules of
fertility (Ševčíková et al. 2016). For low fertility countries, it is assumed that a
target model will be reached by 2025–2030. Such assumptions are coherent with
the United Nations population forecasts, in which both fertility and mortality levels
of all countries are assumed to eventually converge to a global value. However, in
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single population forecasting settings, it is preferable to use a more data–driven
approach, without considering target schedules.

In this contribution we propose a Bayesian dynamic model for proportionate
age–specific fertility rates (PASFRS)—i.e. the age–specific fertility rates divided
by the TFR to obtain values summing up to one. Our goal is to provide a
parsimonious, yet flexible, representation of PASFRS based on densities of skew–
normal variables with moments evolving in time via flexible Gaussian process
priors. Such a specification allows to model proportionate age–specific fertility
rates across different years via a skewed process, and to characterize their temporal
evolution flexibly, while quantifying the uncertainty in estimation and prediction.
We refer to our Bayesian skewed processes as BSP. Unlike available Bayesian
solutions, BSP provides a direct model for PASFRS, thus allowing to define the entire
distribution of these quantities across all the ages, while characterizing its dynamic
evolution over time.

5.2 Bayesian Skewed Process

A fertility curve defines the fertility rates at each age or age group y—i.e. the annual
number of births to women of a specified age or age group y per woman in that age
group. Following Hoem et al. (1981), such a function may be written as

g(y;R, θ2, . . . , θr ) = R · f (y; θ2, . . . , θr ), (5.1)

where R is the TFR, i.e. the expected number of children born per woman in
her fertile window, and f (·; θ2, . . . , θr ) is a density function characterizing the
PASFRS. Such a choice ensures that for any set of valid parameters (θ2, . . . , θr )

the PASFRS are positive and integrate to one without further constraints on the
r − 1 parameters and in the observed data (Bergeron-Boucher et al. 2017), thus
facilitating estimation and inference. In this contribution, our main goal is to provide
flexible, yet interpretable, models and inference procedures for f (·; θ2, . . . , θr )

rather than g(·;R, θ2, . . . , θr ). We shall, however, emphasize that when the interest
is on learning the total fertility curve in equation (5.1), our approach can be easily
combined with a Bayesian updating for the posterior distribution of R, thereby
inducing a full posterior on g(·;R, θ2, . . . , θr ).

Several specifications of f (·; θ2, . . . , θr ) are illustrated in Hoem et al. (1981)
leveraging the Hadwiger (inverse–Gaussian), Gamma, Beta, Coale–Trussell, Brass
and Gompertz densities. Other formulations have been suggested by Peristera and
Kostaki (2007), Bermúdez et al. (2012), Schmertmann (2003), and Chandola et al.
(1999). More recently, Mazzuco and Scarpa (2015) proposed to use a generalization
of the normal distribution, known as skew–normal, to fit age–specific fertility rates.
Such a distribution is denoted as y ∼ SN(ξ, ω, α) and has density function equal to

f (y; ξ, ω, α) = 2ω−1φ[ω−1(y − ξ)]�[αω−1(y − ξ)], (5.2)
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where φ(·) and �(·) denote the density function and cumulative distribution
function of the standard normal distribution, respectively, while ξ ∈ R, ω ∈ R+
and α ∈ R represent the location, scale and skewness parameters. While direct
interpretation of these parameters might be difficult, the first two moments of
the skew-normal distribution have simple analytical expressions. In particular, the
expectation of the random variable y is

E(y) = ξ + ωδ
√

2/π, (5.3)

whereas its variance is

var(y) = ω2(1 − 2δ2/π), (5.4)

with δ = α(1+α2)−1/2 (Azzalini and Capitanio 2013). The properties of the skew–
normal in equation (5.2) have been studied by Azzalini (1985) and other authors.
One interesting feature is that, when α = 0, equation (5.2) reduces to the density
of a normal, thus allowing inclusion of both asymmetric (α �= 0) and symmetric
(α = 0) shapes in modeling the PASFRS via (5.2).1 Indeed, Mazzuco and Scarpa
(2015) have shown that in Italy the fertility schedule function has moved from a
skewed to a symmetric shape.

Motivated by these considerations, we model PASFRS via a time–varying version
of (5.2) and, taking a Bayesian approach, we allow flexible changes in this curve
via suitable priors for its dynamic parameters ξt , ωt and αt . In this way, we define
a new Bayesian skewed process, which allows forecasting of future PASFRS. As
already mentioned, there is an abundance of models for forecasting of TFRs, while a
coherent approach for PASFRs is still lacking. The method proposed in this chapter
takes a first step toward addressing this important goal.

5.2.1 Model Specification

For every year t = 1, . . . , T and mother i = 1, . . . , nt , our data consist in artificial
random samples of nt women at the age of childbirth, where yit represents the age
of the i-th mother in year t . These artificial data are obtained by sampling, for each
year t , a total of nt age values from a discrete random variable with the proportionate
age–specific fertility rates as probabilities, thereby obtaining a synthetic cohort
generated by the dynamic PASFRS. As clarified in Sect. 5.3, the choice to rely on
synthetic data is due to the computational intractability that would arise under
BSP if the focus were on the full population. In fact, Bayesian inference under
BSP requires sampling methods for multivariate truncated normals of dimension

1Common specifications, such as Hadwiger, Gamma, Gompertz, cannot assume a symmetric
shape.
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∑T
t=1 nt . Nonetheless, we will consider a sufficiently large nt to allow efficient

learning of the model parameters.
To further motivate the above construction, suppose that interest is on estimating

how a fixed number of births nt is distributed across the different ages, while the
total intensity of fertility is kept fixed. This problem can be tackled via a multinomial
distribution with cell counts corresponding to the number of mothers with a specific
age, and a probability of falling in the k-th class (age equal to yk) being proportional
to f (yk; ξ, ω, α)—the PASFR. Sampling from this hypothetical multinomial model
is statistically equivalent to sampling from the discrete distribution mentioned
above. Hence, the observed rates are effectively treated as data by our approach,
and the uncertainty in the estimated parameters regulating the shape of PASFR will
be fully incorporated via the posterior distribution, under our Bayesian approach to
inference.

The aforementioned procedure allows to define a genuine likelihood based on a
skew-normal specification. In fact, recalling the discussion in Sect. 5.2, we assume
that each yit has a skew–normal distribution with location ξt , scale ωt and skewness
parameter αt , thereby obtaining

(yit | ξt , ωt , αt ) ∼ SN(ξt , ωt , αt ), (5.5)

independently for each i = 1, . . . , nt and t = 1, . . . , T . Following a Bayesian
approach to inference, we specify prior distributions for the parameters ξ =
(ξ1, . . . , ξT )ᵀ ∈ R

T , ω = (ω1, . . . , ωT )ᵀ ∈ R
T+ and α = (α1, . . . , αT )ᵀ ∈ R

T

in (5.5) to incorporate temporal interdependence across the fertility rates observed
in the different years. Such priors can be seen as distributions quantifying experts’
uncertainty in the model parameters, and the goal of Bayesian learning is to update
such quantities in the light of the observed data to obtain a posterior distribution
which is used for inference.

To address the above goal, while maintaining computational tractability, we
specify independent Gaussian process (GP) priors (Rasmussen and Williams 2006),
with squared exponential covariance functions, for the location and skewness
parameters, thus obtaining

ξ=(ξ1, . . . , ξT )ᵀ ∼ NT (μξ ,�ξ ) and α=(α1, . . . , αT )ᵀ ∼ NT (μα,�α), (5.6)

for any time grid t=1, . . . , T , where [μξ ]j=mξ(tj ), [�ξ ]j l= exp(−κξ ||tj−tl ||22),
[μα]j = mα(tj ), and [�α]j l = exp(−κα||tj − tl ||22). Note also that mξ(·) and mα(·)
denote pre–selected GP mean functions, whereas the covariances in �ξ and �α are
specified so as to decrease with the time lag. Refer to Rasmussen and Williams
(2006) for additional details on Gaussian processes. The priors for the square of the
scale parameters ωt , t = 1, . . . , T are instead specified as independent Inverse–
Gamma distributions

ω2
t ∼ Inv–Gamma(aω, bω), t = 1, . . . , T . (5.7)
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Although the prior in equation (5.7) does not allow for explicit temporal depen-
dence across different values of the scale parameters, we stress that the skewness
parameters αt and the locations ξt have a central role in controlling the mean and
the variance of the random variable yit , as outlined in equations (5.3) and (5.4).
Hence, the GP priors in (5.6) induce temporal dependence also in the expectation
and in the variance of the variable yit , and are arguably sufficient to characterize its
main dynamic evolution.

5.2.2 Joint Likelihood and Posterior Distribution for α

Assume, for the moment, that the parameters ξt and ωt are fixed at ξt = 0 and
ωt = 1 for each t = 1, . . . , T . The focus of this simplifying assumption is to
illustrate the key steps to obtain the joint posterior distribution for the vector α

induced by a Gaussian prior and the model (5.5). Recently, Canale et al. (2016)
showed that the posterior distribution from a Gaussian prior combined with a skew–
normal likelihood is an unified skew–normal (SUN) distribution, which is a family
of distributions that includes the skew–normal one (Arellano-Valle and Azzalini
2006). In the following paragraph, we illustrate the multivariate extension of such a
result, focusing on the analytical form of the resulting posterior distribution and its
associated parameters.

For simplicity of exposition suppose, without loss of generality, that nt = n

for t = 1, . . . , T and let yt = (y1t , . . . , ynt )
ᵀ. Then, incorporating the above

assumptions, the likelihood for α induced by model (5.5) is

L(α) =
T∏

t=1

n∏

i=1

2φ(yit )�(αtyit ) ∝
T∏

t=1

�n(αtyt ; In) = �nT (Yα; InT ), (5.8)

where �nT (Yα; InT ) is the cumulative distribution function of a nT –
variate Gaussian with identity covariance matrix evaluated at Yα. In (5.8),
Y corresponds to a data matrix of dimension nT × T such that Yα =
(y11α1, y21α1, . . . , yitαt , . . . , ynT αT )ᵀ. Such a representation is useful to
express the argument of �nT (·) in equation (5.8) as a linear term in α. The
posterior distribution for α is obtained combining the skew–normal likelihood
in equation (5.8) with the Gaussian process prior. Formally, by applying the Bayes
rule, we obtain f (α | y1, . . . , yT ) ∝ φT (α − μα;�α)�nT (Yα; InT ), with

φT (α − μα;�α)�nT (Yα; InT )

= φT (α − μα;�α)�nT (s−1Yμα + s−1Y(α − μα); s−2),
(5.9)

where s = diag[(Yᵀ
1 �αY1 + 1)1/2, . . . , (Yᵀ

nT �αYnT + 1)1/2]. Recalling recent
results in Durante (2019), equation (5.9) corresponds to the kernel of a SUN

distribution. Specifically,
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(α |y1, . . . , yT)∼SUNT,nT (μα,�α, �̄ασαYᵀs−1, s−1Yμα, s−1(Y�αYᵀ+InT)s−1),

(5.10)

with �̄α a full-rank correlation matrix such that �α = σα�̄ασα . Complete
algebraic derivations to obtain the above result are extensively described in Durante
(2019, Theorem 1).

5.3 Posterior Computation

In the general setting, where ξ and ω are unknown, the joint posterior for (ξ ,ω,α)

does not admit a closed–form expression, and, hence, it is necessary to rely on
MCMC methods. Here, we propose a Metropolis–within–Gibbs algorithm which
combines the results in the previous section and other SUN properties to iteratively
sample values from the full–conditionals of ξ , ω and α. In doing so, MCMC builds
on a Markov chain which produces realizations from the posterior distribution
f (ξ ,ω,α | y1, . . . , yT ) after convergence (Gelfand and Smith 1990). A sufficiently
large sample of values simulated from the joint posterior distribution is then used
to make inference on functionals of the parameters via standard Monte Carlo
integration (Casella and George 1992).

Given the current values of ξ and ω, the full–conditional for α can be obtained
via minor modifications of the results in the previous section. Indeed, if ξt and ωt are
known, the contribution of the generic yit to the likelihood for α is proportional to
�[αt (yit − ξt )/ωt ] = �(αt ȳit ). Hence, replacing each yit with ȳit = (yit − ξt )/ωt

in (5.8)–(5.9), the SUN full–conditional for (α | y1, . . . , yT , ξ ,ω) = (α |
ȳ1, . . . , ȳT ) has the same form of (5.10), with Y replaced by Ȳ. To effectively
use this result in a Metropolis–within–Gibbs algorithm, it is necessary to simulate
from the distribution defined in equation (5.10). The following Lemma describes
a constructive procedure for simulating from a SUN. See Azzalini and Capitanio
(2013) and Durante (2019) for a formal proof.

Lemma 1 If the full-conditional distribution for the skewness parameters com-
prising α is (α | −)∼SUNT ,nT (μα,�α, �̄ασαȲᵀs̄−1, s̄−1Ȳμα, s̄−1(Ȳ�αȲᵀ +
InT )s̄−1), then

(α | −)
d= μα + �α[V0 + Ȳᵀ(Ȳ�αȲᵀ + InT )−1s̄V1],

with V0 ∼ NT (0,�−1
α −Ȳᵀ(Ȳ�αȲᵀ+InT )−1Ȳ) denoting a multivariate Gaussian

and V1 ∼ TNnT [−s̄−1Ȳμα, 0, s̄−1(Ȳ�αȲᵀ + InT )s̄−1] corresponding to a nT –
variate Gaussian distribution with zero mean, covariance matrix s̄−1(Ȳ�αȲᵀ +
InT )s̄−1, and truncation below −s̄−1Ȳμα .

Simulation from the SUN full–conditional distribution defined in Lemma 1 requires
to sample from a nT –variate truncated Gaussian, which is very demanding for
large values of nT . Recent developments in this direction involve slice sampling
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(Liechty and Lu 2010) or Hamiltonian Monte Carlo (Pakman and Paninski 2014),
with minimax tilting being the most efficient routine in moderate dimensions (Botev
2017). Despite these improved approaches, independent sampling from multivariate
truncated Gaussian vectors is still unpractical when the dimension is greater than a
few hundreds (Botev 2017). In these situations, Gibbs–sampling from sub–blocks
of V1 provides an appealing solution (Chopin 2011), since multivariate truncated
Gaussians are closed under conditioning (Horrace 2005), and sampling of sub–
blocks of moderate size—e.g., around 50—can be done efficiently via minimax
tilting (Botev 2017).

To obtain conjugacy in the full–conditional for the locations ξ , we rely instead on
the additive representation of the skew–normal distribution. Indeed, as a particular
case of Lemma 1, we recall that if z ∼ N(0, 1) and w ∼ N(0, 1) independently, then
y = ξ + ω[δ|z| + (1 − δ2)1/2w] ∼ SN(ξ, ω, α), with α = δ(1 − δ2)−1/2. Hence, it
is possible to recast the skew–normal likelihood in terms of a conditional Gaussian
likelihood, given a set of latent variables zit . More specifically, if yit is marginally
distributed as a SN(ξt , ωt , αt ), by introducing latent observations zit , we obtain

zit ∼ TN1(0, 0, 1) and (yit | zit ) ∼ N[ξt + ωtδt zit , ω
2
t (1 − δ2

t )],

with δt = αt (1 + α2
t )

−1/2, thereby allowing conditionally conjugate updates for ξ

and a simple Metropolis step for ω. The complete Metropolis–within–Gibbs sampler
algorithm for posterior computation iterates among the steps outlined below. Refer
to the Appendix for detailed derivations.

[1] Latent variables z: Update every latent variable zit from the truncated
Gaussian full–conditional distribution

(zit | −) ∼ TN1[0, δt (yit − ξt )/ωt , (1 − δ2
t )], i = 1, . . . , n, t = 1, . . . , T .

[2] Location vector ξ : Given the current value of the latent variables zit and of the
parameters αt and ωt , we can recast our formulation as a regression model for
transformed Gaussian data y∗

it = yit − ωtδt zit , i = 1, . . . , n, t = 1, . . . , T .
Hence, letting ȳ∗ = (n−1 ∑n

i=1 y∗
i1, . . . , n

−1 ∑n
i=1 y∗

iT )ᵀ, the full–conditional
for ξ can be derived via Gaussian–Gaussian conjugacy and coincides with

(ξ | −) ∼ NT [(�−1
ξ

+ nV ξ )
−1(�−1

ξ
μξ + nV ξ ȳ∗), (�−1

ξ
+ nV ξ )

−1],

where V ξ = diag[1/ω2
1(1 − δ2

1), . . . , 1/ω2
T (1 − δ2

T )].
[3] Scale vector ω: For every time t = 1, . . . , T , update ωt independently with a

Metropolis–Hasting step.

[4] Skewness vector α: Update α from the full–conditional SUN distribution,
replacing yit with the transformed value (yit − ξt )/ωt in (5.10) and using
Lemma 1.
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Coherently with a Bayesian specification, forecasts for years T + 1, . . . , T + q

are obtained by treating the future observations yT +1, . . . , yT +q as missing
data in the MCMC (Gelman et al. 2013). At each iteration, the parameters
(ξT +1, ωT +1, αT +1), . . . , (ξT +q, ωT +q, αT +q) are updated jointly with (ξ ,ω,α),
after imputing the missing data yT +1, . . . , yT +q with values sampled from the
conditional skew–normals in equation (5.5).

5.4 Forecasting Italian Fertility Rates

We apply the model defined in Sects. 5.2–5.3 to the proportionate age–specific
Italian fertility rates from 1991 to 2014, creating an artificial population of n = 500
women for each year based on data at https://www.humanfertility.org/cgi-bin/main.
php.

In performing posterior inference and forecasting, the GP priors for α and ξ have
been centered around 0 and 30 respectively, setting mα(tj ) = 0 and mξ(tj ) = 30.
These values define our prior guess on the shape of the curve and on the average
age at childbirth. The prior GP covariance parameters κα and κξ are instead fixed at
100 to induce modest dependence across years. Finally, we set aω = 10 and bω =
300 to obtain prior means and standard deviations for the scales around 30 and 10,
respectively. These values were elicited by inspecting the variance of the historical
data, and centering the priors around this value, while inducing sufficient variability
to deviate from this assumption, if required. We also conducted sensitivity analyses
obtaining similar results under many hyper–parameters’ settings. Posterior inference
relies on 5000 MCMC samples after a burn–in period of 2000. These choices were
sufficient for convergence, whereas mixing was not perfect, but still satisfactory.

The focus of inference is on the time–varying mean ξt + ωtδt

√
2/π , variance

ω2
t (1−2δ2

t /π) and skewness parameter αt of the age at childbirth under (5.5)—with
δt = αt (1+α2

t )
−1/2. The posteriors for these quantities can be easily computed from

the MCMC samples of (ξt , ωt , αt ) and some key summaries are reported in Fig. 5.1.
According to the upper panel, our empirical findings suggest that the average age at
childbirth has increased in the last decades—a result which was expected and well
investigated in the literature. This average age has moved from a minimum close to
28 years in 1991 to a maximum close to 31 years in 2010 and following years. The
middle panel summarizes, instead, the posterior distribution for αt , suggesting that
the fertility rates have actually become symmetric in recent years and demonstrating
the ability of the model to capture both symmetric and asymmetric shapes. Finally,
the posterior distributions for the variance, reported in the bottom panel of Fig. 5.1,
suggest a stable variability across the temporal window considered. Also these
results are in line with the findings of Mazzuco and Scarpa (2015).

To validate the above results, Fig. 5.2 compares the histograms of the proportion-
ate age–specific fertility rates, computed from the synthetic data, with the posterior
distribution of f (yk; ξt , ωt , αt ) in equation (5.2), for each age yk , summarized
via a pointwise posterior mean and the 95% credible intervals. Since the value of
f (yk; ξt , ωt , αt ) is a functional of model parameters, the posterior distribution for

https://www.humanfertility.org/cgi-bin/main.php
https://www.humanfertility.org/cgi-bin/main.php
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Fig. 5.1 Summaries of the posterior distribution for the mean, skewness parameter and variance
of the skewed process for yit . Dashed lines denote 95% credible intervals. Yellow vertical lines
denote the last observed year
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Fig. 5.2 For each year from 1991 to 2014, histograms of the proportionate age–specific fer-
tility rates computed from the synthetic data, and summaries of the posterior distribution for
f (yk; ξt , ωt , αt ) in (5.2), for each age yk . Black continuous line indicates pointwise posterior
mean, while 95% credible intervals are denoted as dotted lines
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(ξt , ωt , αt ) induces a posterior also for f (yk; ξt , ωt , αt ), for each age yk . Results
suggest a satisfactory fit, with the rates arising from the artificial samples being
close to the pointwise estimates. To summarize, posterior inference suggests that
PASFRS have experienced a change in the last decade, which has impacted the
location and shape of the curve while leaving variability stable. The goodness of
fit of the proposed approach, in terms of adequacy with the empirical distribution of
the artificial data, is satisfactory.

The results in terms of goodness of fit illustrated above motivate forecasts for the
Italian PASFRS, producing these predictions for the 16 years after the last observed
time. According to Fig. 5.1, forecasts for the posterior mean of the age at childbirth
under the BSP model show a stable trend, which is coherent with the Italian fertility
rates observed in the recent years. Also the forecasts for the variance and the
skewness parameter of the age at childbirth are substantially stable.

We also compare our forecasting accuracy with the results from a default
implementation of the approach proposed by Ševčíková et al. (2016) and available
via the R library bayesPop (Ševčíková and Raftery 2016). The main routines of
this library compute predictions for the TFR and life expectancies, and then obtain
the cohort–specific fertility rates via post–processing of the MCMC output. We also
highlight that the method available in bayesPop does not provide fertility rates for
all the ages, but only for 5 years age groups. To compare these predictions with the
results obtained from BSP, we represent the former as a step function with constant
values within each age interval.

Results are reported in Fig. 5.3, with yellow curves referred to predictions from
the BSP model and black step functions from bayesPop. The 90% credible inter-
vals are illustrated as dotted lines. Direct comparison among the two approaches
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Fig. 5.3 Forecasted distribution for the BSP model (yellow) against those obtained under the
package bayesPop. Dotted lines denote 90% credible intervals
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suggests very similar results in terms of predicted probabilities, with both strategies
assigning the highest probability of childbirth in the interval (30−34]. The credible
intervals from BSP are wider than the competitor, likely due to the uncertainty in
the dynamic components. This is not surprising, due to the assumptions made by
Ševčíková et al. (2016) which may lead to under–coverage of the credible intervals
when they are not met in practice.

5.5 Discussion

In this work we have proposed to model PASFRS via a Bayesian skewed process. Our
specification incorporates symmetric and asymmetric shapes, while characterizing
temporal dependence through the skew–normal parameters.

This approach takes a first step towards direct forecasting of PASFRS using
Bayesian models. In facts, also Ševčíková et al. (2016) use a Bayesian framework
to forecast PASFRS over time, but this is done within a hierarchical model applied to
all countries which are further assumed to converge to a global pattern. The method
proposed in this article provides, instead, single–country forecasts, borrowing
information only from past PASFRS and not from other countries’ patterns, nor from
hypothetical global schedules. Results are comparable with Ševčíková et al. (2016),
with a reasonably higher uncertainty of the forecasts.

Future extensions include methodological developments to allow joint modeling
of multiple countries via a mixture of BSPs. This could also facilitate clustering
of countries with respect to similarities in fertility patterns, thereby providing
insights on important social aspects of developed countries. Also the inclusion of
more complex dependence patterns among PASFRS and TFR could further improve
predictions.

Another key improvement includes the reduction of the computational cost
associated with posterior inference for BSP. The simulation of the nT –variate
truncated Gaussian involved in the SUN can be demanding in high dimensions. An
option to overcome this issue is to rely on approximate Bayesian inference.
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Appendix

Here, we derive the key quantities involved in the algorithm described in Sect. 5.3.
Full conditional for zit . Recall that zit ∼ TN1(0, 0, 1), and (yit | zit ) ∼ N[ξt +

ωtδt zit , ω
2
t (1 − δ2

t )]. Hence, the full conditional for zit is proportional to
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f (zit )f (yit |zit ) ∝ 1(zit > 0) exp(−0.5z2
it ) exp[−(yit−ξt−ωtδt zit )

2/2ω2
t (1−δ2

t )].

Focusing on the two terms in the exponents and applying classical Gaussian results,
we obtain the kernel of a normal distribution with mean δt (yit −ξt )/ωt and variance
(1 − δ2

t ). Including the indicator function within such a kernel, we obtain

f (zit | −) ∝ exp

[

− 1

2(1 − δ2
t )

(
zit − δt (yit − ξt )

ωt

)2
]

1(zit > 0).

Hence (zit | −) ∼ TN1[0, δt (yit −ξt )/ωt , (1−δ2
t )], for i = 1, . . . , n, t = 1, . . . , T .

Full conditional for ξ . Recall that y∗
it = yit − ωtδt zit and let y∗

i =
(y∗

i1, . . . , y
∗
iT )ᵀ denote the T -dimensional vector of scaled observations. Since

(y∗
i | −) ∼ N(ξ ,V −1

ξ
), with V ξ = diag[1/ω2

1(1 − δ2
1), . . . , 1/ω2

T (1 − δ2
T )], and

ξ ∼ NT (μξ ,�ξ ), by Gaussian–Gaussian conjugacy we obtain

(ξ | −) ∼ NT (S−1
ξ mξ , S−1

ξ ), Sξ = �−1
ξ

+ nV ξ , mξ = �−1
ξ

μξ + nV ξ ȳ∗,

with ȳ∗ = (n−1 ∑n
i=1 y∗

i1, . . . , n
−1 ∑n

i=1 y∗
iT )ᵀ.
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Ševčíková, H., & Raftery, A. E. (2016). Bayespop: Probabilistic population projections. Journal
of Statistical Software, 75, 1–29.
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