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Abstract: Over the past three decades, substantial advancements have occurred in non-invasive
brain stimulation (NIBS). These developments encompass various non-invasive techniques aimed
at modulating brain function. Among the most widely utilized methods today are transcranial
magnetic stimulation (TMS) and transcranial electrical stimulation (TES), which include direct- or
alternating-current transcranial stimulation (tDCS/tACS). In addition to these established techniques,
newer modalities have emerged, broadening the scope of non-invasive neuromodulation approaches
available for research and clinical applications in movement disorders, particularly for Parkinson’s
disease (PD) and, to a lesser extent, atypical Parkinsonism (AP). All NIBS techniques offer the
opportunity to explore a wide range of neurophysiological mechanisms and exert influence over
distinct brain regions implicated in the pathophysiology of Parkinsonism. This paper’s first aim is
to provide a brief overview of the historical background and underlying physiological principles
of primary NIBS techniques, focusing on their translational relevance. It aims to shed light on the
potential identification of biomarkers for diagnostic and therapeutic purposes, by summarising
available experimental data on individuals with Parkinsonism. To date, despite promising findings
indicating the potential utility of NIBS techniques in Parkinsonism, their integration into clinical
routine for diagnostic or therapeutic protocols remains a subject of ongoing investigation and scientific
debate. In this context, this paper addresses current unsolved issues and methodological challenges
concerning the use of NIBS, focusing on the importance of future research endeavours for maximizing
the efficacy and relevance of NIBS strategies for individuals with Parkinsonism.

Keywords: Parkinson’s disease; atypical Parkinsonism; non-invasive brain stimulation; transcranial
magnetic stimulation; transcranial electrical stimulation; clinical neurophysiology

1. Introduction

Parkinson’s disease (PD) and atypical Parkinsonism (AP) impose significant challenges
for individuals and healthcare systems globally, manifesting in a wide-ranging spectrum
of motor and non-motor symptoms that profoundly impact patients’ quality of life [1–3].
From bradykinesia and rigidity and/or tremor to cognitive impairment and autonomic
dysfunction, the complexity of these conditions underscores the multifaceted nature of
their impact on patients’ well-being [1,4,5]. Moreover, the chronic and progressive nature
of PD and AP further exacerbates the burden, necessitating comprehensive approaches
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to diagnosis, management, and care [4,6,7]. In response to these complex challenges,
non-invasive brain stimulation (NIBS) techniques have emerged as potential tools [8,9].
By modulating neural activity without invasive procedures, NIBS offers insights into
the underlying pathophysiology and holds promise for developing targeted therapeutic
interventions for individuals with Parkinsonism [10,11].

This paper aims to comprehensively discuss the current landscape of NIBS techniques
in the context of PD and AP, emphasizing their role in identifying neurophysiological
biomarkers for diagnostic and prognostic purposes [12,13]. Understanding the neural
correlates of disease pathology and progression is essential for refining diagnostic criteria,
predicting disease trajectories, and optimizing treatment strategies [8,10,14]. Furthermore,
this paper seeks to summarize the therapeutic applications of NIBS, particularly assessing
its effectiveness in alleviating motor symptoms in affected individuals [15–18]. However,
the complex and heterogeneous nature of PD and AP underscores the importance of adopt-
ing a personalized and integrated approach to treatment tailored to each patient’s unique
needs and encompassing both pharmacological and non-pharmacological interventions to
optimize therapeutic outcomes [19,20].

This paper endeavours to significantly contribute to our understanding of NIBS
techniques and their implications for managing PD and AP, through an exhaustive analysis
of the latest research findings and clinical advancements. For this purpose, we searched
for references in the PubMed databases without any date restriction. Database searches
were limited to articles published in English. Key terms used to conduct the literature
search were chosen and combined with the following English terms and their equivalents:
“Non-invasive brain stimulation”, “biomarker”, and “Parkinson’s disease”. We reviewed
the selected papers, screened the titles and abstracts, and focused on findings that indicated
potential clinical utility as diagnostic biomarkers and possible therapeutic applications.
We attempted to select primarily those studies that included a large sample of patients or
followed a rigorous methodology, to avoid excessively confusing and uninformative results.

Finally, this paper aims to bridge the gap between scientific knowledge and practical
application in neurodegenerative disorders by providing valuable insights that can inform
future research directions and clinical practice.

2. Overview of Non-Invasive Brain Stimulation

NIBS techniques encompass various methodologies designed to modulate cortical
activity without surgical intervention, offering promising avenues for clinical and re-
search applications [21,22]. The most widely utilized techniques are transcranial magnetic
stimulation (TMS) and transcranial direct current stimulation (tDCS), each with unique
mechanisms and applications [21,23–25].

TMS delivers short current pulses through a coil positioned on the scalp, generating
a transient magnetic field in targeted brain regions and, in turn, producing an electrical
current that causes neuronal depolarization [21,26,27]. Single-pulse TMS is a valuable
tool for exploring cortical excitability and mapping cortical motor areas, thus providing
insights into the brain’s functional organization [28,29]. Paired-pulse TMS allows the
assessment of the excitability of various intracortical circuits, which are sustained by the
activity of inhibitory and excitatory neurotransmitters, including GABA, acetylcholine, and
glutamate [30,31]. Additionally, repetitive TMS (rTMS) enables long-lasting alterations in
neural activity, offering opportunities for assessing brain plasticity mechanisms, including
long-term potentiation (LTP), depression-like plasticity (LTD), and spike-time-dependent
plasticity [32]. Also, by delivering repetitive pulses at specific frequencies or with patterned
protocol designs, rTMS can induce plastic changes in cortical circuits [33]. Accordingly,
research trials have applied repeated stimulation sessions with therapeutic purposes to test
the potential of rTMS in ameliorating motor deficits and cognitive impairments associated
with neurological disorders [14,18,34,35].

tDCS involves administering low-amplitude electrical currents through scalp elec-
trodes, altering neuronal membrane potentials and consequently influencing cortical ex-
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citability patterns [23]. Anodal tDCS typically enhances cortical activity via depolar-
izing neurons, while cathodal tDCS exerts inhibitory effects through hyperpolarizing
neurons [36]. Moreover, tDCS can induce longer-lasting effects than TMS, making it a
promising tool for neurorehabilitation and cognitive enhancement [11,23].

Beyond TMS and tDCS, emerging NIBS techniques such as transcranial alternating
current stimulation (tACS), transcranial random noise stimulation (tRNS), and transcranial
ultrasound stimulation (TUS) offer novel approaches to modulating cortical activity [37].
tACS delivers an alternating current at specific frequencies, entraining neural oscillations
and modulating network dynamics implicated in various cognitive processes [38,39]. In a
different approach, tRNS involves the application of random noise currents to the scalp,
enhancing cortical excitability and promoting synaptic plasticity [40–42]. Finally, TUS can
noninvasively excite or inhibit neural activity in targeted deep brain regions by delivery of
pulsed ultrasonic waves [43–45]. Given its excellent compatibility with non-invasive brain
mapping and neuromodulatory techniques, systemic TUS effects can readily be assessed in
basic and clinical research [44,46–48].

The diverse range of NIBS techniques provides researchers and clinicians with pow-
erful tools to investigate brain function, explore the mechanisms underlying neurologi-
cal disorders, and develop innovative therapeutic strategies. In this context, it is worth
highlighting that numerous studies using NIBS have been carried out on patients with
Parkinsonism [19].

Although the outcomes of these studies have provided variable results, they carry
considerable significance from a translational perspective. This is because the abnormalities
observed in human patients align with those previously demonstrated in experimental
animal studies. For example, there were notable reductions in dendritic spine enlargement
in Parkinsonian animals [49]. Conversely, animals with levodopa-induced dyskinesia
showed increased dendritic spine enlargement [50]. These findings suggest that mal-
adaptive changes in the plasticity of the primary motor cortex (M1) and disruptions in
corticostriatal synaptic transmission play a central role in the pathophysiology of Parkin-
sonian disorders [51–54]. As our understanding of the brain continues to advance, NIBS
holds great promise in shaping the future of neuroscience and clinical neurology, offering
new insights into brain plasticity, cognition, and behaviour.

3. Neurophysiological Biomarkers in Parkinsonism

An essential aspect of research into NIBS involves assessing reliable neurophysiologi-
cal biomarkers for diagnosing, staging, and monitoring disease progression and treatments
in PD and AP.

3.1. Diagnostic Biomarkers

Paired-pulse TMS-derived measures like short-interval intracortical inhibition (SICI)
and short-latency afferent inhibition (SAI) are particularly interesting as diagnostic biomark-
ers; they may prove helpful in differentiating between patients with various forms of
Parkinsonism [12,21,51]. In particular, assessments of intracortical excitability—such as
SICI and SAI—offer insights into underlying GABAergic and cholinergic neurotransmission
changes, respectively [21,55].

A notable aspect worth highlighting is that, in some instances, neurophysiological
measurements can provide compelling evidence that reflects underlying anatomopatholog-
ical changes. The relationship between neurophysiological measures and the underlying
anatomopathological changes is particularly evident in the case of SICI because it can
mirror the loss of inhibitory interneurons, a hallmark often associated with tau pathology
in various brain regions [56]. This relationship has been demonstrated in animal models
and human studies, particularly in patients diagnosed with progressive supranuclear palsy
(PSP) [56,57]. In these cases, SICI measures appear to correlate with the extent of neurode-
generation and the presence of tau-related lesions [58,59]. Interestingly, SICI is impaired in
PD from the earliest stage of the disease, even in the asymptomatic side of highly asym-
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metric de novo patients [60,61]. This result strengthens the idea that SICI abnormality may
reflect anatomopathological changes occurring even before clinically overt Parkinsonism.
However, another hypothesis is that cortical disinhibition (as indicated by impaired SICI)
represents a compensatory mechanism of cortical motor areas to counteract defective basal
ganglia output and motor symptoms in PD [60,62–64]. This idea is also supported by
recent evidence from NIBS experiments showing that SICI reduction dynamically occurs
in patients who manifest bradykinesia amelioration during tACS [64,65]. These findings
suggest that certain neurophysiological measurements could serve as valuable indicators
of specific pathological processes, opening a pathway for more targeted diagnostic and
therapeutic approaches. However, the clinical applications of neurophysiological biomark-
ers remain limited by the lack of methodological standardization and established cut-offs,
thus preventing integration with validated biomarkers for diagnostic and prognostic pur-
poses [66,67]. As research continues to evolve, SICI and similar metrics may offer a window
into the complex mechanisms of neurodegenerative diseases, providing a bridge between
clinical assessment and underlying brain pathology.

Another important point to consider is that, despite the variability often observed
in TMS measurements, a promising approach involves analyzing multiple intracortical
circuits in the same patient. This method may prove useful in differentiating between
various forms of AP. In one study, the authors identified significant alterations in SICI
among patients with different Parkinsonian disorders: PSP, corticobasal syndrome (CBS),
and dementia with Lewy bodies (DLB) [57]. They also found substantial changes in SAI
among patients with Alzheimer’s disease (AD) and DLB [57]. They constructed a decision
tree analysis using these specific alterations, leading to relatively high diagnostic accuracy,
especially for CBS and PSP [57]. Overall, the study demonstrated that TMS measurements
could play a critical role in the differential diagnosis of AP. Even though there is still no
available data about the performance of such methods in discriminating PD from AP, this
approach is interesting and promising. Indeed, by targeting specific neurophysiological
abnormalities, clinicians may be able to distinguish between various neurodegenerative
disorders with greater accuracy, thereby improving diagnosis and treatment outcomes
for patients with these complex conditions. In this regard, short-interval intracortical
facilitation (SICF), a paired-pulse TMS measure that mainly reflects glutamatergic activity
and is altered in PD [68–70], is normal in PSP patients [71]. Future studies may allow the
upgrade of the current algorithm by adding data on the activity of multiple intracortical
circuits in PD and other AP.

rTMS and tDCS protocols allow the induction and assessment of brain plasticity
mechanisms [32]. Converging evidence from studies that adopted various NIBS protocols
suggests that LTP-like plasticity is impaired in PD, i.e., brain excitability does not increase
after applying the protocol [72–74]. However, there is considerable variability in NIBS
after-effects, possibly due to inter-individual variability, different disease characteristics,
and methodological issues. Moreover, although only limited evidence exists about possible
abnormal plasticity in AP, many studies have highlighted generally impaired LTP-like
plasticity processes, as in multiple system atrophy (MSA), CBS, and PSP [12,75]. Finally,
defective plasticity mechanisms are also known to be present in numerous other neurolog-
ical conditions [76–79]. All these factors prevent using brain plasticity-altered measures
as a reliable disease biomarker in PD or AP. An overview of the main neurophysiological
diagnostic biomarkers in Parkinsonism is summarized in Table 1.
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Table 1. Neurophysiological diagnostic biomarkers in Parkinsonism. TMS: transcranial magnetic
stimulation, rTMS: repetitive TMS, SICI: short-interval intracortical inhibition, SAI: short-latency
afferent inhibition, SICF: short-interval intracortical facilitation, PD: Parkinson’s disease, DLB: de-
mentia with Lewy bodies, PSP: progressive supranuclear palsy, CBS: corticobasal syndrome, MSA:
multiple system atrophy.

NIBS Methods Results Major References

Paired-pulse—SICI Reduced in PD, DLB, PSP, CBS. [12,21,51,56,57,59–61]

Paired-pulse—SAI Normal or reduced in PD. [21]
Reduced in DLB. [57]

Paired-pulse—SICF Increased in PD. [68–70]
Normal in PSP. [71]

rTMS protocols—plasticity measures Impaired LTP-like plasticity processes
in PD, MSA, CBS, and PSP. [12,51,73,75]

3.2. Staging and Progression Biomarkers

NIBS techniques offer valuable insights into both the staging and progression of Parkin-
sonian disorders. A large cross-sectional study on PD showed that SICI remained altered
regardless of disease stage, thus questioning its potential utility as a biomarker of disease
progression [60]. Similarly, the loss of LTP-like plasticity is a neurophysiological feature
present from the early stages of PD and does not worsen as the disease advances [72–74].
However, SICF emerges as a more stage-dependent neurophysiological abnormality. SICF
is abnormally enhanced in the early stages of PD, and it becomes increasingly altered as
the disease progresses [68].

This alteration is particularly pronounced in patients who develop levodopa-induced
dyskinesia (LID), a common complication in advanced PD [80]. Studies have shown that
SICF levels are higher in patients with LID than those without and that these changes
correlate with the severity of LID [69]. Also, modifications in LID severity over time are
related to changes in the excitability of SICF-dependent circuits. This supports the evidence
observed in animal models, where changes in glutamatergic pathways were connected
to similar patterns of dyskinesia [50,81,82]. Moreover, these data suggest a link between
SICF alterations and the progression of motor symptoms and complications [83]. Another
possible neurophysiological biomarker of LID is the loss of bidirectional plasticity [84,85].
This phenomenon can be tested in humans by measuring the ability of the M1 to return to
baseline excitability levels after applying an LTP-like plasticity protocol (‘depotentiation’).
In PD, the TBS-induced LTP-like effects can be depotentiated by a specific rTMS protocol
only in patients without LID, while patients with LID are ‘resistant’ to depotentiation [52].
Further emphasizing the possible specificity of this abnormality for LID pathophysiology,
subtle depotentiation deficits have even been found to predict LID onset in PD patients [86].

Recent studies have also used kinematic analysis techniques to explore the relation-
ship between neurophysiological changes and specific movement alterations [51,61,87].
These studies suggest that neurophysiological parameters can act as indirect biomarkers
for the severity of bradykinesia in PD and other neurodegenerative diseases, providing
valuable information on disease progression [51,77,87]. However, the reliance on indirect
evidence limits this approach. Longitudinal studies offer a complementary perspective,
allowing researchers to track changes over time. One study demonstrated that plasticity
alterations in the M1 evolved in parallel with the worsening of motor symptoms in PD,
indicating a dynamic progression of the underlying pathophysiology [53]. The challenge
with longitudinal studies, however, lies in their complexity and the risk of participant
dropout, which can affect the continuity and reliability of the data. These collective findings
underscore the potential of TMS measures as tools for understanding and monitoring the
progression of Parkinsonian disorders [53]. By combining cross-sectional and longitudinal
approaches, researchers can gain a more comprehensive view of the neurophysiologi-
cal changes associated with these diseases, ultimately leading to better diagnostic and
therapeutic strategies.
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3.3. Estimating and Monitoring the Effects of Anti-Parkinsonian Drugs

Several studies have used single- and paired-pulse TMS to assess the cortical effects
of anti-Parkinsonian drugs. Despite the cardinal pharmacological treatment for PD being
levodopa, its effects on neurophysiological M1 abnormalities are variable [51,88]. Converg-
ing evidence suggests that the abnormally increased overall corticospinal excitability, as
estimated according to the input–output (I-O) curve steepness using single-pulse TMS,
is reduced by levodopa administration in PD [51,69,88]. This parameter might thus be
applied to verify the responsiveness to levodopa in patients with Parkinsonism. However,
to date, no study has specifically tested whether cortical responsiveness to levodopa may
predict the drug’s clinical effectiveness in individual PD and AP cases. We believe this
could be an interesting topic to address in future studies.

In contrast to the overall corticospinal excitability, defective GABA-A-ergic, and en-
hanced glutamatergic intracortical activity, as assessed via SICI and SICF, respectively, are
scarcely responsive to oral levodopa intake in PD [51,53,68–70,89,90]. This aspect limits
the possible use of SICI and SICF as NIBS biomarkers to monitor the effect of levodopa
intake in patients. Interestingly, a recent study showed that, unlike oral intake, levodopa–
carbidopa intestinal gel (LCIG) infusion therapy, which ensures continuous dopaminergic
stimulation [91], significantly improves the altered SICI in advanced PD patients. Moreover,
changes in the levels of SICI are correlated with clinical improvements in dyskinesia and
motor fluctuations [54]. SICI could thus be used as a biomarker to estimate and monitor
the clinical effects of LCIG over time.

In recent years, SICF has been proven a potentially useful NIBS measure to assess,
monitor, and possibly predict the clinical–neurophysiological effects of safinamide, a
monoamine oxidase-type B (MAO-B) inhibitor that also blocks voltage-gated sodium chan-
nels and glutamate release when used at high dosage [69,83,92,93]. Indeed, in PD patients
with LID, safinamide reduced the abnormally enhanced SICF in a dose-dependent manner,
normalizing this alteration at a high dosage [69]. This effect, reflecting a downregulation
of overactive intracortical glutamatergic activity, was already present after 2 weeks of
treatment and persisted after 1 year of chronic therapy [69,83]. Furthermore, the level
of SICF reduction was related to the beneficial effects of safinamide on dyskinesia sever-
ity over time [83]. These data led to the hypothesis that SICF could be a biomarker of
neurophysiological and clinical response to safinamide in PD patients.

4. Therapeutic Applications of Non-Invasive Brain Stimulation

Beyond their utility in biomarker discovery, NIBS techniques offer promising thera-
peutic avenues for individuals with Parkinsonism. Among these techniques, rTMS has
garnered considerable attention as a potential treatment modality for ameliorating mo-
tor symptoms such as tremors and bradykinesia, which are hallmark features of PD and
AP [10,17,19,94]. However, the outcomes of studies investigating the efficacy of rTMS in
motor symptom management have been heterogeneous, with varying degrees of success
reported across different trials. While some clinical trials reported significant improvements
in motor function following rTMS interventions, others yielded inconclusive findings or
demonstrated only modest benefits [18,95]. These discrepancies may have stemmed from
differences in study design, patient populations, and stimulation protocols [96,97]. Addi-
tionally, the underlying pathophysiological mechanisms of PD and AP are complex and
multifaceted, further complicating the interpretation of treatment outcomes [73]. Overall,
to date, the most effective therapeutic rTMS paradigm for ameliorating cardinal motor
symptoms in PD is high-frequency, i.e., excitatory, rTMS on the M1, which, however, is
not FDA-approved [10,18]. Regarding rTMS in AP, neurophysiological studies involving
multiple stimulation sessions are difficult to conduct since these diseases are rare and more
severe than PD. Accordingly, large randomized controlled trials are still lacking in the
literature [95]. Traditional transcranial electrical stimulation techniques, i.e., tDCS, have
been repeatedly applied over motor cortical areas to improve motor disturbances in PD.
Anodal tDCS on the M1 is the protocol that has generally produced better results, but the
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conclusions of different studies have generally been highly variable [98]. In line with this
idea, a meta-analysis that only considered the outcomes of randomized controlled trials
showed no superiority of real tDCS over sham stimulation in terms of Movement Disorders
Society-sponsored version of the Unified Parkinson Disease Rating Scale (MDS-UPDRS)
part III scores [99]. tDCS application in AP suggested possible beneficial effects on specific
motor symptoms, like gait in MSA and language disturbances in PSP patients [100,101];
however, the very low number of studies limits these promising results [17,24]. A com-
parison between rTMS and tDCS was recently performed in a meta-analysis investigating
the effect of these two techniques on walking and balance ability in PD, targeting mostly
the M1 and the dorsolateral prefrontal cortex (DLPFC). Both techniques demonstrated an
improvement in MDS-UPDRS-III scores and variables associated with the ability to walk,
such as step width, cadence, six-minute walking test (6 MWT), and the timed up-and-go
test (TUGT), with a more significant result with rTMS rather than tDCS [102].

Recent studies have explored innovative applications of NIBS in ameliorating the
key motor symptoms of PD by targeting the M1. In two experiments, researchers investi-
gated the therapeutic potential of tACS in this area using different stimulation frequencies.
They found that beta-frequency stimulation led to a decline in motor performance, while
gamma-frequency stimulation had the opposite effect, indicating potential motor improve-
ment [64,65]. The positive effects of gamma-tACS were related to the modulation of SICI.
This aligns with the idea that GABAergic mechanisms play a pivotal role in this con-
text [65,103]. These studies suggest that SICI could be a biomarker to predict patients’
responsiveness to tACS, offering a personalized approach to treatment [60,104]. tACS has
also been applied to the M1 to suppress rest tremor in PD. Indeed, from a pathophysiologi-
cal point of view, tremor is thought to be generated by a central pathologically oscillating
network where the M1 is a crucial node [105]. In a seminal study, M1-tACS was applied at
the tremor frequency and at a specific phase lag from the ongoing tremor, individualized
for each patient. This approach resulted in a 21–53% reduction in tremor amplitude across
patients [106]. Unfortunately, other groups have not replicated these data so far.

In addition to the M1, other areas are being explored as therapeutic targets in PD and
AP. For example, continuous theta burst stimulation (cTBS), a specific form of patterned
rTMS delivered over the cerebellum, has been tested for its effects on rest tremor in PD,
with mixed results [107]. Although initial trials found no significant reduction in tremor
severity, more recent neuroimaging studies suggest that the cerebello–thalamo–cortical
circuit may be crucial in generating rest tremors in PD [108,109]. This raises the possibility
that cerebellar NIBS could be effective as an add-on therapy in some patients [110]. Cerebel-
lar cTBS has also been proven effective in reducing LID, another challenge in PD treatment
that has only limited pharmacological approaches [111]. In a previous study, a 2-week
course of cerebellar cTBS induced persistent clinical beneficial effects for up to 4 weeks after
the end of the stimulation period [112]. Other possible applications of cerebellar TBS in PD
are currently being defined, exploiting the cerebellum’s role in several clinical features of
the disease [113–115]. Only a few studies have investigated the effect of cerebellar rTMS in
patients with AP, focusing particularly on PSP, in which cerebellar stimulation improved
patients’ stability and speech [116,117].

Another promising NIBS target in PD is the pre-supplementary motor area (pre-SMA).
Research shows that levodopa can cause overactivation of the pre-SMA in patients with
peak-of-dose dyskinesia, and low-frequency, i.e., inhibitory, rTMS aimed at this region
was demonstrated to be effective in reducing dyskinesia severity in a recent study [16].
Interestingly, the modulation of pre-SMA activity induced by rTMS, as measured using
functional magnetic resonance imaging (fMRI), was linearly related to improving dyski-
nesia severity [16,52,118,119]. This again underscores the potential role of neuroimaging
biomarkers in guiding NIBS therapy.

In summary, despite their potential, the interpretation of each technique/target area
combination remains quite enigmatic, presenting promising results in some studies and
inconclusive results in others. The combinations of the main NIBS techniques and prin-
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cipal targets are summarized in Table 2. This inconsistency’s prime sources are various
methodological challenges, including heterogeneous TMS settings, variability in stimu-
lation parameters, and small sample sizes in many studies [96]. A major obstacle in the
clinical application of rTMS for PD and AP is the lack of a clear rationale for choosing
specific cortical stimulation sites [13,120]. Additional complicating factors include technical
variations in stimulation frequency and intensity, train durations, inter-train intervals, and
session counts [21,27,96]. Moreover, potential drug interactions and inconsistent TMS
dosages can affect outcomes [30]. Another critical aspect is our limited understanding of
the underlying mechanisms by which rTMS affects humans.

Table 2. Therapeutic applications of non-invasive brain stimulation (NIBS) techniques and possible
stimulation targets in Parkinsonism. rTMS: repetitive transcranial magnetic stimulation, tDCS:
transcranial direct current stimulation, tACS: transcranial alternating current stimulation, cTBS:
continuous theta burst stimulation, M1: primary motor cortex, pre-SMA: pre-supplementary motor
area, DLPFC: dorsolateral prefrontal cortex, PD: Parkinson’s disease, AP: atypical Parkinsonism, PSP:
progressive supranuclear palsy, MSA: multiple system atrophy, LID: levodopa-induced dyskinesia.

NIBS Methods/Target Area Results Major References

rTMS/M1 Excitatory rTMS improved motor symptoms, i.e., bradykinesia and rest
tremor, in PD patients. [10,18,19,94,121]

Not conclusive in AP patients. [17,95]

rTMS/pre-SMA Inhibitory rTMS improved dyskinesia severity in PD patients with
peak-of-dose dyskinesia. [16,52,118,119]

rTMS/Cerebellum Cerebellar continuous theta burst stimulation (cTBS), a specific form of
patterned rTMS, reduced rest tremor and LID in PD patients. [107,111,112]

Cerebellar rTMS improved patients’ stability and speech in PSP. [116,117]

tDCS/M1
Mild improvement in walking and balance ability in PD patients. [99,102]

tDCS improved gait in MSA and language disturbances in PSP patients. [100,101]
tDCS/DLPFC Mild improvement in walking and balance ability in PD patients. [99,102]

tACS/M1 tACS gamma-frequency stimulation of the M1 improved bradykinesia
in PD patients. [64,65]

tACS at the tremor frequency and a specific phase lag from the ongoing
tremor reduced tremor amplitude in PD patients. [106]

Despite the advances, the influence of existing treatments on NIBS outcomes requires
careful consideration. NIBS is typically used as an add-on therapy, and the interaction
between orally administered medications and TMS measures can lead to non-linear ef-
fects [11]. For example, tDCS has shown promise as an adjunctive therapeutic intervention
for individuals with PD and AP. tDCS can modulate cortical excitability and potentially
alleviate motor symptoms by delivering low-amplitude electrical currents to targeted
brain regions [122–124]. However, when combined with conventional pharmacotherapy or
physical or cognitive training, tDCS may offer synergistic effects, enhancing the efficacy
of standard treatment regimens [125,126]. A paradigmatic example in this regard comes
from a recent study where bilateral M1 tDCS was combined with a 4-week rehabilitation
program for treating Pisa syndrome in PD, and this combined approach led to much greater
improvements in postural alterations compared with rehabilitation alone [127]. Similarly, a
double-blind, randomized, sham-controlled study demonstrated that high-frequency rTMS
delivered over the M1 leg area associated with treadmill training could boost the training
effects, improving gait parameters for up to 3 months post-intervention [128].

Further complicating matters, current data on neurophysiological effects in advanced
PD stages are limited, necessitating more research on how deep brain stimulation (DBS)
and other treatments might alter cortical excitability and plasticity [129,130]. These findings
highlight the challenges and potential pathways for using NIBS in treating PD and related
movement disorders. As research continues to evolve, a clearer understanding of the
mechanisms, optimal stimulation parameters, and interaction with other treatments will be
critical in realizing the full therapeutic potential of NIBS in clinical practice.
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The optimization of stimulation parameters and the delineation of optimal target
regions for NIBS interventions remain areas of active investigation and debate within the
scientific community. Factors such as the intensity, duration, and frequency of stimulation
and the precise localization of target brain areas can significantly influence treatment
outcomes. Moreover, individual variability in treatment response and disease progression
further complicates the development of standardized protocols for NIBS-based therapies.

Despite these challenges, ongoing research efforts continue to refine our understanding
of the therapeutic potential of NIBS techniques in PD and AP. By elucidating the underlying
mechanisms of action and optimizing treatment protocols, researchers aim to maximize
the clinical benefits of NIBS interventions for individuals affected by these debilitating
neurological disorders. Through collaborative research endeavours and rigorous clinical
trials, the field of NIBS holds promise for delivering innovative and effective treatments
that improve the quality of life for patients with PD and AP.

5. Challenges and Future Directions

Despite the burgeoning interest in NIBS techniques for PD and AP, several challenges
limit their widespread adoption and clinical efficacy. These obstacles represent critical
areas for improvement to maximize the potential of NIBS as a therapeutic modality for
individuals with these debilitating neurological disorders.

One significant challenge is the interindividual variability in treatment response to
NIBS interventions. While some patients may exhibit substantial improvements in motor
symptoms or cognitive function following NIBS treatment, others may show minimal
or negligible responses [96]. This variability can be attributed to many factors, including
differences in disease severity, underlying neuropathology, and individual neuroanatomical
variability. Moreover, demographic factors such as age, sex, and genetic predisposition
may further influence treatment outcomes [21,131]. Addressing this variability requires
a comprehensive understanding of the factors contributing to individual differences in
treatment response and the development of personalized treatment strategies tailored to
each patient’s unique profile.

Another challenge is the lack of standardized protocols for NIBS interventions in PD
and AP. Variation in stimulation parameters, such as intensity, duration, and frequency,
across different studies, makes it challenging to compare results and draw definitive
conclusions about treatment efficacy. Establishing consensus guidelines for NIBS pro-
tocols, informed by rigorous preclinical and clinical research, is essential for ensuring
the reproducibility and reliability of findings across studies. Standardized protocols will
also facilitate the replication of successful interventions and the identification of factors
contributing to treatment response variability.

Furthermore, there remains an incomplete understanding of the underlying neurobio-
logical mechanisms mediating the effects of NIBS in PD and AP. While NIBS can induce
changes in cortical excitability and neural network connectivity, the specific mechanisms
by which these changes translate into clinical improvements remain poorly understood.
Future perspectives to address this issue should include the execution of new studies adopt-
ing a multimodal assessment of patients, i.e., not only limited to NIBS measures but also
recording behavioural data (e.g., kinematic analysis of movement or quantitative indexes of
cognitive performance), neuroimaging, and biological markers. Future research endeavours
should also prioritize elucidating the broader neurobiological effects of NIBS, including
its possible impact on neurotransmitter systems, synaptic plasticity, neuroinflammatory
processes, misfolded protein aggregation, and neurodegeneration [33,132]. Interestingly,
preliminary research suggests an intricate landscape where NIBS can influence various
neurobiological processes, including glial cell activity [14,133,134]. In this regard, one recent
study in experimental animal models of Parkinsonism demonstrated how TBS can modify
astrocyte function [135]. This finding suggests that the benefits of NIBS may extend beyond
neuronal circuits, affecting other cellular components that play crucial roles in maintaining
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brain health and function. Researchers can develop more targeted and effective NIBS
interventions for PD and AP by understanding these mechanisms more deeply.

Moreover, developing personalized treatment approaches grounded in neurophys-
iological biomarkers holds promise for optimizing therapeutic outcomes in PD and AP
populations. In the last decade, significant advances have been made in understanding
the pathophysiology of many signs and symptoms of PD and AP [105,136,137]. Therefore,
future perspectives should include applying pathophysiologically driven NIBS approaches.
For instance, modulating cortical oscillations instead of brain excitability should be ad-
vised when the targeted symptom is known to relate to altered oscillations rather than
hypo/overactive brain regions. In addition, biomarkers, such as neuroimaging measures,
electrophysiological parameters, and genetic and biological markers, can provide valuable
insights into individual disease trajectories and treatment responses [138–140]. By incorpo-
rating these biomarkers into treatment algorithms, clinicians can tailor NIBS interventions
to each patient’s needs, maximizing therapeutic efficacy and minimizing adverse effects.
Possible future approaches to apply in this context include modulating the target choice
based on the prevailing pathological node of the altered network (similar to what has been
recently tested in Alzheimer’s disease [141]) or choosing the NIBS modality based on the
individual patient profile.

6. Conclusions

One of the primary strengths of NIBS lies in its ability to offer insights into the in-
tricate pathophysiological mechanisms underlying PD and AP. NIBS techniques allow
researchers to probe neural circuits and elucidate various abnormalities associated with
these disorders by modulating cortical activity non-invasively. Through neuroimaging,
electrophysiological recordings, and other advanced techniques, NIBS studies have pro-
vided valuable translational evidence, showing a range of M1 abnormalities, including
(i) decreased GABAergic and increased glutamatergic neurotransmission and (ii) maladap-
tive or disrupted bidirectional plasticity. Such findings offer the potential for developing
new disease biomarkers that could aid in diagnosis, staging, and monitoring the response
to therapeutic interventions. A summary of possible neurophysiological biomarkers in
Parkinsonism is illustrated in Figure 1.
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stimulation, TMS: transcranial magnetic stimulation, SICF: short-interval intracortical facilitation,
LTP: long-term potentiation, I-O curve: input–output curve.

Additional studies are needed to confirm the reliability of these biomarkers across dif-
ferent stages of disease progression and in diverse patient populations. Furthermore, efforts
to standardize experimental protocols and measurement techniques could help address
concerns regarding the reproducibility of these biomarkers across different research settings.
Again, NIBS holds great promise as a therapeutic modality for PD and AP, although several
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challenges must be addressed to realize its full potential. For example, variability in treat-
ment response among individuals, methodological inconsistencies across studies, and gaps
in our understanding of the long-term effects of NIBS interventions represent critical areas
for further investigation. By addressing interindividual variability in treatment response,
standardizing protocols, advancing our understanding of neurobiological mechanisms,
and incorporating personalized treatment approaches, we can enhance the clinical utility
of NIBS and improve outcomes for individuals living with PD and AP.
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(DLB), dorsolateral prefrontal cortex (DLPFC), depression-like plasticity (LTD), functional magnetic
resonance imaging (fMRI), input–output curve (I-O curve), levodopa-induced dyskinesia (LID),
levodopa-carbidopa intestinal gel (LCIG), long-term potentiation (LTP), monoamine oxidase-type
B (MAO-B), multiple system atrophy (MSA), Movement Disorders Society-sponsored version of
the Unified Parkinson Disease Rating Scale (MDS-UPDRS), non-invasive brain stimulation (NIBS),
Parkinson’s disease (PD), pre-supplementary motor area (pre-SMA), primary motor cortex (M1),
progressive supranuclear palsy (PSP), repetitive transcranial magnetic stimulation (rTMS), short-
interval intracortical facilitation (SICF), short-interval intracortical inhibition (SICI), short latency
afferent inhibition (SAI), six-minute walking test (6 MWT), timed up-and-go test (TUGT), transcranial
alternating current stimulation (tACS), transcranial direct current stimulation (tDCS), transcranial
electrical stimulation (TES), transcranial magnetic stimulation (TMS), transcranial random noise
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