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1 Introduction

The detection of gravitational waves (GWs) produced by the inspiral of neutron-star (NS)
binaries [1-3] is a unique probe into the physics of dense nuclear matter inside these stars.
The phasing of the GW signal carries information not only about the binary component’s
masses, but also about their mutual tidal interaction [4]. A NS under the influence of
its companion’s tidal field acquires a quadrupole moment and, depending on the binary’s
orbital frequency, the NS can have its normal modes of oscillation excited. The magnitude
of these two effects depends on star’s mass and on the EOS (see figure 1.) The energy
spent in deforming each star comes at the expense of the binary’s binding energy making
the inspiral dynamics unfold faster. The imprint of tidal interactions in the GW signal was
observed in GW170817 [1] and lead to constraints on the underlying NS EOS [5-8].

NSs feature a number of oscillation modes, and to understand them we can picture a
basic stellar model that consists of the continuity equation (conservation of mass), Euler’s
equation (equation of motion for the fluid elements), Poisson’s equation (that determines
the gravitational force from the matter distribution), and the EOS (that describes how
pressure and density are related). With these elements combined, we can describe a star
in equilibrium, which we can then perturb. The resulting normal modes of oscillation can
be classified as follows [9-13].

The acoustic waves, known as p-modes, arise when the equilibrium state of the star is
homogeneous. The restoring force is due to pressure, hence their name. For p-modes, the
radial component of the fluid perturbations is usually significantly larger than the tangential
component, and these modes are thus sensitive to the compressibility of matter. The gravity



Figure 1. Illustration of the problem. Two neutron stars with masses m,) and radii R, (a = 1,2)
orbit one another. Each star experiences a tidal field due to the gravitational field of its companion.
The tidal field induces a quadrupolar deformation (with magnitude encoded in the tidal Love
number A(g)) and the displacement away from equilibrium of the star’s fluid elements is described
as an harmonic oscillator with angular frequency wy(,), related to the star’s fundamental (f-)mode.
The values of A(,) and wy(,) depend on the star’s mass and internal composition. The conservative
dynamics of this dynamical tidal problem is studied here to second post-Newtonian order using an
effective field theory description.

waves, known as g-modes, arise when the equilibrium state of the fluid is stratified due to
gravity. The buoyancy acting on fluid elements provides the restoring force. For g-modes,
the tangential component of the fluid perturbations is significantly larger than the radial
component. We can distinguish the p- and g-modes by their evolution in the phase diagram
as one approaches from the center to the star’s surface [11, 14]. When the fluid is assumed
to be of constant density, the gravity waves travel only on the surface, and thus do not have
any nodes in the radial direction. These waves are called surface gravity waves and their
frequency depend only on the mean density of star. Therefore, they are approximately
insensitive to the EOS [15, 16].

The lowest frequency surface gravity waves is known as the f-mode, which is one of
the dominant modes in the context of tidal excitation [17]. The relation between orbital
motion and the quadrupolar f-modes was first studied by Cowling [18] in Newtonian gravity
and then in refs. [19-23] in general relativity. The quadrupole f-mode oscillation of a NS
coupled to the external tidal field can be described by the Newtonian Lagrangian (see
ref. [4] or ref. [24], section 2.5)
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where w; is the frequency of the f-mode and X is the tidal deformability.! While this
Lagrangian only describes the f-mode, it phenomenologically provides a very good approx-
imation for the total linear gravitoelectic tidal response, since tidal contributions from other
modes (e.g. p-modes) are typically much smaller. Then Q¥ is the quadrupole moment of the
star and EY = 9;0;®ey is the quadrupolar tidal field given in terms of spatial derivatives
of the external Newtonian gravitational potential ®¢y. In the limit in which w; — oo, the
Lagrangian eq. (1.1) describes adiabatic tides. In this limit, the tidal bulges do not oscillate,
and are instead locked to the external tidal field as Q¥ = —\E% [25-27]. Qualitatively, the
tidal deformability, encoded by the Love numbers, describe how easily a body is deformed in
response to external tidal forces [28]. The value of the Love numbers depend on the body’s
internal composition, and as the compactness of the body increases, the value of the Love
numbers decrease and eventually approaches zero for a black hole [26] (see also ref. [29].)

The relativistic version of the (1.1) can be obtained by demanding that the Lagrangian
is invariant under Lorentz transformations and reparametrization of worldlines, as first
proposed in ref. [30],

.z ﬁ d@,,, dQ*
N 4)\w]2c 22 dr dr

LpT - UJ]%Q;WQMV - %E;WQMV ) (1'2)
where (@), is a symmetric trace-free tensor that models the relativistic quadrupole moment
of the star, £/, = —C2Rua,,/3uau6 /2% is the gravitoelectric field,? which is the relativistic
analogue of the Newtonian external tidal field, z = V4?2 is the redshift factor, and 7 is the
proper time, related to the coordinate time ¢ as d7 = ¢ dt. Since @, has 9 degrees of
freedom, whereas the physical quadrupole of the NS has only 5, we also have to impose a
gauge condition

Q,quu =0. (13)

The most notable effects introduced by the relativistic Lagrangian (1.2) are the appearance
of redshift and frame-dragging effects [30]. In the relativistic case the adiabatic limit is
also obtained by taking w; — oo limit. This limit gives us the equation of motion for @,

Quv=—M\Eu, (1.4)
1 1
which substituted back into eq. (1.2) results in the Lagrangian for adiabatic tides

A
Lar = ZZEWE’“’. (1.5)

Similarly, we can also write a Lagrangian for the higher adiabatic multipole moments which
were studied in ref. [31]. See also refs. [26, 27, 32-36]. In general relativity, in addition to the
relativistic gravitoelectric tides, we also get a new sector of gravitomagnetic tides [37—44]
that are coupled to the odd-parity normal modes of the NS, modeled by the current-type

!The tidal deformability is related to the dimensionless electric-type quadrupolar Love number ko of the
body and the radius R of the star as k2 = 3Gy \/(2R°) [4].

*We differ from the action in ref. [30] for the signature of the metric. Therefore, we add a prefactor of —c?
in the definition of E,, so that the leading order contribution matches the required result E;; = 0;0; Pext.



multipole moments. For the adiabatic limit of the gravitomagnetic sector, see ref. [31]. We
note that eq. (1.4) is justified here from the phenomenological observation that the f-mode
contributes the dominant gravitoelectic tidal effect. In a systematic EFT construction of
dynamical tides, further couplings should we included, as outlined in ref. [44] and applied
to gravitomagnetic tides, which we leave for future work.

Why should one care about modelling dynamical tidal effects? Recently, ref. [45]
showed that the higher-order tidal effects, specifically the f-mode dynamical tides, are
important to the inference of the NS EOS with current GW detectors. The absence of dy-
namical tidal effects can lead to substantial biases to the inference of the tidal deformability
which, in turn, translate into an inaccurate inference of the EOS. Moreover, the inclusion
of dynamical tides are also known to improve the agreement between GW models and
numerical relativity simulations [30, 46-48]. Accurate waveform models are also necessary
to fulfill the scientific goals of next generation ground-based GW observatories [49-51].

With these motivations in mind, we examine here how the dynamic tides affect the dy-
namics of a compact binary. To do so, we use effective field theories (EFT) techniques [52]
to analyze the binary’s inspiral, i.e., when the binary components are moving at non-
relativistic velocities and the orbital separation is large. In this regime, we can use a
perturbative approach that involves a series expansion in powers of v/c, where v is the
orbital velocity of the binary and c is the speed of light. The virial theorem requires that
the kinetic to be —1/2 times the potential energies of a bound state system. Hence, we
can perform a post-Newtonian analysis which involves an expansion in two perturbative
parameters: v/c and G, where Gy is Newton’s constant. Terms of order (v/c)™ are said
to be of (n/2)PN order. The PN analysis of the binary dynamics can be divided into two
sectors, namely the conservative sector, where the emitted radiation is neglected and the
orbital separation does not decrease, and the radiative sector, where the emitted radiation
carries away energy and momentum. At higher PN orders, these sectors can mix, as due
to tail effects which originate from radiation being scattered by the orbital background
curvature interacting back onto the orbital dynamics (see, e.g., ref. [53].) Using the EFT
approach, we can determine any observable quantity at any given PN order. By using mod-
ern EFT diagrammatic based methods, first proposed in ref. [52] and modern integration
methods [54, 55], which we recently applied also to account for spin-dependent effects in
refs. [56, 57], the problem is turned into the determination of scattering amplitudes. These
amplitude can be systematically obtained through the calculation of the corresponding
Feynman diagrams. See, e.g., refs. [58-60] for reviews.

The state-of-the-art of the conservative dynamical gravitoelectric tides is the 1PN ef-
fective Hamiltonian computed in refs. [30, 61]. The effects of spin and tides were analyzed
together in refs. [44, 62, 63] for gravitomagnetic tides. In the adiabatic limit, the 2PN
effective Hamiltonian was computed in refs. [31, 36] for both gravitoelectric and gravito-
magnetic tides. Other works in PN theory can be found in refs. [31, 40, 61, 64-66]. In
the post-Minkowskian (PM) expansion, where the perturbative series is controlled by Gy
alone, the adiabatic tidal corrections were studied to 3PM order in refs. [67, 68]. See also
refs. [69-75]. Adiabatic tidal effects where also included to effective-one-body waveform
models [76, 77] in refs. [31, 35, 78-80] and in refs. [30, 46, 62] for the case of dynamical tides.



In this paper, we extend the state-of-the art of the analytic calculations of dynamical
gravitoelectric tides in the conservative sector by working to 2PN order, and we discuss
a few physical applications. The paper is organized as follows. In section 2, we review
the description of tidally-interacting binaries in the EFT formalism. Next, in section 3,
we present the algorithm used to compute the 2PN dynamic tidal potential. Our main
result, the effective dynamical tidal Hamiltonian (4.4), is presented in section 4. In sec-
tion 5, we consider the adiabatic limit, and derive an effective adiabatic tidal Hamiltonian.
We scrutinize this result by performing a nontrivial check of the Poincaré algebra and, as
applications, we compute two gauge-independent observables: (i) the binding energy of
a circular binary and (ii) the scattering angle for the hyperbolic encounter of two stars.
Finally, we present our conclusions and avenues for future work in section 6. This work
is supplemented with two ancillary files: Hamiltonian-DT.m, containing the analytic ex-
pression of the Hamiltonian for the dynamic tides and Hamiltonian-AT.m, containing the
analytic expression of the Hamiltonian for the adiabatic tides.

Notation — The mostly negative signature for the metric is employed. Bold-face char-
acters are used for three-dimensional variables, and normal-face font, for four-dimensional
variables. The subscript (a) labels the binary components on all the corresponding vari-
ables, like their position x(,) and quadrupole moment Q,). An overdot indicates the time
derivative, e.g., v(,) = ®(q) is the velocity, a(,) = £, the acceleration and Q = dQ/dt.
The separation between two objects is denoted by r = x(;) — x(2), with absolute value
r = |r| and the unit vector along the separation is n = r/r.

2 An EFT description of dynamical tides

In this section, we introduce the EFT description of dynamical tides in a compact binary,
following closely the presentation in ref. [30]. This section will also serve to fix the notation
that will be used in the remainder of this paper.

We begin by defining three reference frames. These are: (i) the general coordinate
frame (denoted by Greek indices), (ii) the local Lorentz frame (denoted by small Latin
indices), (iii) and the rest frame of the compact objects (denoted by capital Latin indices).
The dynamical quadrupolar variables in the different frames are then given by

Qfy = ¢ac"4Qfe)»  and Qo = BlyaBlypQf) - (2.1)

where e”} is the tetrad that transforms between the general coordinate frame and the local
Lorentz frame. The Lorentz transformation, which boosts between the local Lorentz frame

and the rest frame of the body is given by

u? 8% (Ul + 2(0)08) (Wiaya + 2(a)0%)
a a (a)”A (a) (@)% (a)A (@)?A
By =1 +2 - , 2.2
@474 2 #(a)(%(a) + u"07) 22

where 2, = 1/u%a). The boost operator satisfies the properties: B?a) AB% = n% and
lea)O = u?a) /Z(a)'



To build the EFT description of dynamical tides, we start by modifying the La-
grangian (1.2) by introducing the conjugate momenta P, with respect to the quadrupole
moment, that is,

1 oL c dQ(a),u,

Playw = = U =
(@ co(d ’(‘a)/dT) 2/\w]%z(a) dr

(2.3)

The new Lagrangian (in the Routhian form) obtained after making a Legendre transfor-
mation is given by

aQL .
(a) v (a) v
Lore) = Payw—g ~a) | MW@ e Paw Q(a>Q -~ B Q)

—Routhian

(2.4)

Here the advantage of working with P,,, is that the new Lagrangian will depend only

linearly on the complicated covariant derivative of the quadrupole moment tensor @, [30].

The supplementary condition for the dynamical degrees of freedom (1.3) in the rest frame
of the star becomes [44]:

Q(}g =0, and P(:S) =0, (2.5)

where, we now explicitly see that QAB and P(Af? are spatial tensors that encode only the

physical degrees of freedom. Thus, hereafter, we write the spatial tensor Q 1) A6 QZ )

and P8, 6% = Pl

We can obtain the action for dynamical tides, written explicitly in terms of the physical
degrees of freedom, Qa ) and P(Z), by bringing the dynamical variables to the rest frame of
each body by using the boost operator (2.2) on the various terms in the Lagrangian (2.4).

This gives us the effective point-particle (“pp”) action
dr
Sop = D / (@@ + Lrnga) + Luae) + Loow) (2.6)
a=1,2

The first term is simply the action for a point particle, while the remaining terms originate
from the Lagrangian (2.4) as follows. The first term in eq. (2.4) gives rise to,

ij ik ok ] J
B S O O O ORI i rig0gi o)

Lrpw = PRQY) +c

Sl] i d”u,j
Q@) "(@) <a>] 7 (2.7)

Z(a)(Z(a) (a)ég) dr

which describes frame-dragging (“FD”) effects on the quadrupole moment of each binary
component. Here, we introduced the “tidal spin” tensor

" oo
Sow = 2(Q(HPLy — QUL PE), (2.8)
which describes the angular momentum of the dynamical quadrupole moment. The second
term in eq. (2.4) yields,
1

2 % 2J i ij
LyMQa) = ~#() A(a)wf(a)P(j)P( ) 47)\@) Q(i)Q(i) = —2(a)Mo(a) - (2.9)



This term governs the dynamics of the quadrupole moment, which, by the second equality,
can be described a time-dependent effective mass term for quadrupole moment (“MQ”).
The second equality is valid because all dependence on the gravitational field comes only
through the redshift z(,). Thus now Ly;q(,) becomes similar to the point mass terms [first
term in eq. (2.6)], where the mass M) is now time dependent. Finally, the last term in
eq. (2.4) results in,

R(a) ij ij
LEQ(a) = — 9 E(i)Qé). (2.10)

This term acts as a driving source for the quadrupole moment’s dynamics and is induced on
each of the binary components by the gravitoelectric tidal field Eg )= Bga)l.B?a) €€ B
of its companion.

In these equations, the indices contracted to the physical degrees of freedom, QZL ) and

ng), are understood to be in the rest frame of each star. A derivation of eq. (2.6) can be
found in ref. [30].

3 Computational algorithm

Having obtained the effective point-particle action which includes dynamical gravitoelec-
tric quadrupolar dynamical tides, we can now proceed to compute the effective two-body
potential. In this section, we present the computational algorithm to perform this calcula-
tion. This potential will then be used in the next section to obtain the effective two-body
Hamiltonian.

The dynamics of the gravitational field g,, is given by the Einstein-Hilbert action
along with a harmonic gauge fixing term in d 4+ 1 spacetime dimensions,

C4

4
Sp = — q+1 R+_—S / q+1 , THTY 3.1
EH 167Gy / T Vg R+ 327Gy T V9 9 ’ (3.1)

where I''* = T'0_gP?, T') is the Christoffel symbol, R is the Ricci scalar, and g is the metric
determinant. We work with the gravitational constant in (d + 1) spacetime dimensions
written as Gg = (\/4mexp(yg) Ro)? 2 G. We express Gy in this particular form because
later on we will employ the modified minimal subtraction scheme [81], and hence the
appearance of the 47, the Euler-Mascheroni constant vg, and the (arbitrary) lenghtscale Ry.
Since we are interested in the conservative dynamics of the system, we decompose the
metric as g, = N +H,,, where H,,, is the potential graviton is obtained after implement-
ing the method of regions [82] as done in ref. [52]. We then decompose the metric using
the standard Kaluza-Klein parametrization where the 10 degrees of freedom of H,, are
encoded in three fields: a scalar ¢, a three-dimensional vector A and a three-dimensional
symmetric rank two tensor o [83, 84]. In this parametrization, we write the metric as

e20/c” 20/ Aj/02
uv =

ith 1:62 iq 2.
—e20/ Ay c? _e—2¢/<<d—2>c2>%j+e2¢/c2AiAj/C4)’ with i =8 +oiy/c

(3.2)



We can now obtain the effective action for the binary by integrating out the gravita-
tional degrees of freedom as follows,

exp [i /dt Eeﬁ‘:| = /qu) DA;Do;j expli (Ser + Spp)] (3.3)

where the Einstein-Hilbert action is given by eq. (3.1) and the point-particle action is
given by eq. (2.6). To perform this integration, it is convenient to decompose the effective
Lagrangian Le.g as

['cff = Iccff - chf y (34)

where Kog is an effective kinetic term, which does not dependent on any integration of
potential graviton (i.e., it does not depend on integration of ¢, A, and o). We can compute
Keg directly up to the required PN order. Explicitly, we decompose Kog in a point-particle,
a frame-dragging, and a “quadrupole mass” contribution, i.e., Keg = Kpp + Krp + Knq,

B 1, 1., (1\ 1 4 (1 1
ICpp = agljz m(a) |:2’Ua -+ g'U(a) (C2> + E'U(a) (C4>:| —+ O (Cﬁ> 5 (35&)
o - ) 1 /1 3 1 1
o i @ ©j i 7 2
Kep = ;2 {P(a)Q(a> +50() (0 ¥a) {2 <c2> + 5% (64)] } +0 (06) » (3.5D)
1,71\ 1, (1 1
Ko = 3 My |1+ 398 () + ol ()| 0 () (3:5¢)
a=1,2

The terms that are obtained after performing the integral given in equation (3.3) are
collectively denoted by the potential V.g. These terms are computed by summing over the
connected Feynman diagrams without graviton loops, as shown below,

_ ®
el P (1) —2(2))

. dip
e o w

where p is the linear momentum transferred between the two bodies. To calculate (3.6), we

(1)

first generate all the topologies that correspond to graviton exchanges between the world-
lines of the two compact objects. There is one topology at tree-level (G ), two topologies
at one-loop (G%), and nine topologies at two-loop (G%/). We then insert these topolo-
gies with the Kaluza-Klein fields ¢, A and o. The number of diagrams® appearing in
the point-particle sector is given in table la, whereas that in the tidal sector are given in
tables 1b, 1c and 1d. We then compute these Feynman diagrams by means of an in-house
code that uses tools from EFTofPNG [85] and xTensor [86], for the tensor algebra manipu-
lation, and LiteRED [87], for the integration-by-parts reduction. This reduction recasts the
Feynamn diagrams in terms of two point massless master integrals [55] as shown in figure 2.
Once the exact expressions for the master integrals are substituted, we perform a Fourier
transform to obtain the position-space effective potential Veg. The details of the algorithm
and the expressions for the master integrals up to two loops can be found in ref. [56].

3The diagrams which can be obtained from the change in the label 1 > 2, are not counted as separate
diagrams.



Order | Diagrams | Loops | Diagrams Order | Diagrams | Loops | Diagrams
0PN 1 1 0PN 1 1
0 3 0 3
1PN 4 1PN 4
1 1 1 1
0 6 0 6
2PN 21 1 10 2PN 26 1 12
2 5 2 7
(a) Point particle sector. (b) EQ sector.
Order | Diagrams | Loops | Diagrams Order | Diagrams | Loops | Diagrams
1PN 2 0 2 1PN 1 0 1
0 5 0 3
2PN 13 2PN 4
1 8 1 1

(c¢) FD sector. (d) MQ sector.

Table 1. Number of Feynman diagrams contributing different sectors.

Multi-loop
Diagrams

Gravity
Diagrams

—

Figure 2. The diagrammatic correspondence between the four-point EFT-Gravity graphs and the
two-point quantum-field-theory (QFT) graphs.

After carrying out all these steps, the effective potential can be decomposed into a
point-particle and a dynamical tide contribution, i.e., Veg = Vpp + Vb1, Where

1 1 1
Vpp = VN + <c2> VipN + (04) VopN + O (06> ,

2
I\" /. E M 1
Vor =) <CQ> (VnF?N +VypN T VnP?\T) +0 (cG) ;

n=0

(3.7a)

(3.7b)

and we remark that Vpr has contributions due to the driving source, the “quadrupole-
mass” and the frame-dragging terms.

The potential Vg is now a function of the dynamical variables @(q), Q 4, and Sg(q)
and My, through egs. (2.8) and (2.9) as well, with higher order time derivatives included.
The first and higher-order time derivatives of Q(4), Sq(a), and Mg, can be removed using
integration by parts, while second and higher-order time derivatives of x(,) are removed



using a coordinate transformation T(y) = T(a) T 5cc(a). This coordinate transformation
changes the Lagrangian as

oL
7
L (a)

where x4 is chosen such that it removes the undesirable terms from our final Lagrangian.

oL =

5 5%( ) + O(éw%a)) y (38)

In our case, since we work up to 2PN order, the process of removing the higher order
time derivatives using a coordinate transformation is equivalent to the substitution of the
equation of motion for the acceleration a,) and its higher order time derivatives back into
the Lagrangian. In the end, this procedure distils the Lagrangian into a final form which
depends only on x(,), v(4), and Q)

4 The effective Hamiltonian for dynamical tides

In this section, we present the result of the effective two-body Hamiltonian with dynamical
gravitoelectric tides. This Hamiltonian H is computed from the Lagrangian obtained in
the previous section using a Legendre transformation

H(:Bup7 Q) = Z (pz(a) PU)Q(a) ) - E((l?, ’U, Q) . (41)

a=1,2
To express this Hamiltonian in a compact form we introduce a few variables. The total mass
of the binary is denoted by M = m ) + m(g), the reduced mass by u = mymo)/M, the
mass ratio by ¢ = mq)/m(g), the symmetric mass ratio by v = /M, and the antisymmetric
mass ratio § = (m(y) — m(g))/M, which are related to each other by,
mWme) _ B q (1-4%)

i 7l i e (4.2)

We express the results in the center-of-mass (COM) frame of reference and define the
momentum in the COM frame as p = p1) = —p(2). In the COM frame, the orbital
angular momentum is defined as L = r x p. Hence, we can write p?> = p? + L?/r?, where
pr=p-n,p=|p| and L = |L|. We rescale all the variables to express the Hamiltonian in
terms of dimensionless quantities, which we denote by a tilde as follows

_ 1p _ A r ~ c L ~ 1H
= — — = — L = — = ——
p cp’ " Gy M’ Gy Mp’ 7 2u’
5 ¢ Qu g 0 o 1 M)
Q(a) = Gi%vMQIUI, SQ(a) = GiN M'LL 5 and MQ(a) = ? " . (43)
The total EFT Hamiltonian in the dimensionless parameters is given by
712 = ﬁpp + HNDT 5 (44)
where
1 1 1
Hp—HOPN+< >H1PN+< >H2PN+O< ), (4.5a)
. 2 1\ 1
Hor =) <02) (HnPN + Hpbx + HnPN) +0 (66> : (4.5b)

n=0

~10 -



The point particle Hamiltonian till 2PN is presented in the same gauge in appendix C.1
of ref. [56], and the tidal sector of the Hamiltonian is known till 1PN [30]. The new result
for the tidal Hamiltonian at 2PN is presented here for the first time to the best of our

knowledge.

The leading order contribution at OPN order is given as

~B T v 13v
K- @) (- 5) 0

HOPN -

The next-to-leading order terms at 1PN order are
i = 312 3v 9 3%\ 15v

1 =izj 2(_ _2 52 — el

HlPN a (Q(l)r " ) {L ( 477 W) G (4?5 7 ) + 476
~ 32 9 v 32 6v
2 R B N B bv
( 477 4%7)+p7"<4?5 = >+?6

~ij i 3wt 1 (3% 3v
1] = 7 ~
Jr(Q(l)rL)pr[2?5+q(2?5+2175>]+(1H2),

(@) (5

(4.7a)

(4.7b)

(4.7¢)

And finally the novel contributions of the next-to-next-to-leading order terms at 2PN order

are

3 2 3 2 2
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+1 T4 ﬂ_ﬁ 722 371/_377/2 +371/ +~23l+~4 3:_37,/2 v
g \8F* 47 Prigm™om ) Tom | TPy TP\ g T Ty | T
+(162). (4.8¢)

Equations (4.8), together with the previously known results (4.6) and (4.7), complete the
description of the conservative dynamics of gravitoelectric dynamical quadrupolar tidal
interaction in a nonspinning compact binary at 2PN order.

We remark that Steinhoff et al. [30], who worked to 1PN order, had observed that HEQ
and HFP are similar to the next-to-leading order spin-induced quadrupole and leading-order
spin-orbit Hamiltonians [88] respectively, upon applying certain replacements. Here, we
have derived egs. (4.7) and (4.8) from first principles, starting from the effective action (2.6).
As an additional confirmation of our result, we used the analogy identified in ref. [30], to
find a canonical transformation from the spin-induced quadrupole Hamiltonian up to next-
to-next-to-leading order [57] to 7-[EQ, and from the spin-orbit Hamiltonian up to next-
to-leading order [56] to HYP. The effective Hamiltonian in a general reference frame is
provided by us in the ancillary file Hamiltonian-DT.m.

5 The adiabatic limit

In this section, we specialize our results to the limit of adiabatic tides, that is, we take the
wy — oo limit of the Hamiltonian (4.4). This eliminates the dependence of Hamiltonian
on the variables Q ), Sq(a) and M((,), and hence simplifies our further calculations. We
then compute the Poincaré algebra to validate the result of adiabatic Hamiltonian. Finally,
we compute the binding energy and scattering angle using the adiabatic Hamiltonian and
compare these against known results in the literature.

The adiabatic limit physically refers to the quadrupole mode being locked to the ex-
ternal tidal field induced by the binary companion. This is obtained by taking wy — oo in
the Hamiltonian given in eq. (4.4). In this limit, the equation of motion of Qa ) is given by,

OH Z(a) OHEqQ
0= i Q a)ij
0Ql, 2\ @

0

(5.1)
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Here, to make the physical interpretation more clear, we define the tidal field in terms of the
dynamic Hamiltonian itself, which leads to the following equation of motion for the Qz(fl )

9 g
a)—aHEJQ = Ao E (5.2)
%) 0Q(,

Qay = —N( (a)

We then compute the above equation of motion up to 2 PN order and substitute it in the
Hamiltonian (4.4) to obtain the effective Hamiltonian for adiabatic tides.

We remark that we could also have derived the adiabatic Hamiltonian starting from
the action (1.5). Following this route, we would have to do a three-loop computation to
obtain the 2PN adiabatic effective Hamiltonian. However, one can easily show that all the
Feynman diagrams appearing in the calculation would be factorizable due to the E? term.
This means that all Feynman integrals that would appear in this calculation would also
be factorizable into two-loop master integrals. This reveals an advantage of computing
the adiabatic limit from the dynamical case: we have to compute one less loop integral to
obtain the same result at a given PN order.

5.1 The effective Hamiltonian for adiabatic tides

Similar to the dynamical case, we first rescale all the variables to write the expressions for
the Hamiltonian in terms of the dimensionless parameters given in eq. (4.3) and we also
introduce

Ny = =28 (5.3)
N

The adiabatic effective Hamiltonian in the dimensionless form can be written as*

where
_ ~ 1\ ~ 1\ ~ 1
Hpp = Hopn + <62> Hipn + (04) Hopn + O (CG) , (5.5&)
~ ~ 1\ ~ 1\ ~ 1

1At leading order, adiabatic tides contributes at 5PN which can be easily seen writing the Hamiltonian
in the form of the dimensional Love number as shown in eq. (5.3). We show here the relative scaling with
respect to the 5PN order contribution.

~13 -



The point particle result is known and is also presented in the same gauge in ref. [56]. The
tidal sector of the Hamiltonian is given as

HioN = M) 2 <—2?;6) + (14 2), (5.6a)
il =2 {5+ (3% ) + I (—3%)

+(1] [22;7_2{7/+ﬁg <£,6—§;.> + L2 (—;8—4;2)”“1@2), (5.6b)
- {22 (137 1) o (- 1)

21y 165 [ 1502 8lv 27 o (812 v 9
o078 4 P\ T T T ) TP\ 1676 T 48 1670

_|_E2 52 _45V2_97V+i _371/2_*_61_1_@
P78 "o TEs) T T 4

LT 272 2Ty 45
16710 4710 16710

1
q

} +(12). (5.6¢)

This Hamiltonian in a general reference frame is provided by us in the ancillary file
Hamiltonian-AT.m. We were also able to find a canonical transformation from the Hamil-
tonian in the generic frame in eq. (5.4) to the Hamiltonian found in ref. [36], which validates
our result.

5.2 The Poincaré algebra

In this section, we validate the adiabatic effective Hamiltonian (5.4) by deriving the com-
plete Poincaré algebra [89, 90]. This amounts to computing all the generators of the
Poincaré algebra given by

{P,u’ PV} — 0’ (57&)
(Ph) = oy, 1)
{JH JP7Y = =P JHT 4 P JVT 4 pho JPY — TV JHP (5.7¢)

where P* is the linear momentum and J#” is the angular momentum. These Poisson
brackets can be decomposed into spatial and temporal parts. For later convenience, we
separate them into two sets,

(P H}=0, {J H}=0, {J P}=e*P" {J PI}=5"H, {J J}=c*gk,

(5.8)
and
{JZ,G]}:GZ]ka, {GZ7P]}26761]H7 {GZ,'H}:Pk, {Gl,G]}:—gewak,
(5.9)

— 14 —



where P’ are spatial components of the linear momentum, J* are spatial components
of the angular momentum, H is the Hamiltonian, and the boost generator is written as
K' = G' — tP?, where G* is the COM vector.

We begin by writing the linear momentum and angular momentum of the system as
P = p’@) + p’@) , and J'= eijkwgl)pgl) + eijk${2)p?2) . (5.10)

This ensures that the first set of Poisson brackets in eq. (5.8) is satisfied. Now our goal is
to come up with an expression for the COM vector G* such that the second set of Poisson
brackets (5.9) is also satisfied. To do so, we use the first two Poisson brackets in eq. (5.9),
ie., {J, G/} = €9*GF and {G?, P’} = (1/c*)0"H, to make an ansatz for G. This suggests
that we should make the following ansatz for the COM vector,
i INH i i i
G = (c2> E(m(l) +x(y)) +hr' + Y, (5.11)
where h is antisymmetric in 1 <> 2, while Y is symmetric in 1 <> 2. We can now fix
uniquely the above ansatz, in other words, we can determine h and Y, by using the third
Poisson bracket of eq. (5.9), i.e., {G',H} = P*. Once we have the ansatz is uniquely
fixed, we can check its validity by verifying that it does satisfy the last Poisson bracket
in eq. (5.9), i.e., {G',GI} = —(1/c?)e* J*. Following this procedure, we can determine
uniquely h and Y appearing in the COM vector G, up to 2PN order:

2 2 2 4
_ M 1) P 23 (1) ™M Py
h= 2 + (02 { dm ) HAa | =¢ 476 + ct G 4r2 16m?

)
(1) 4r7 2m 116 4m?2, r6
(1) (1)
2 .2 )2 2
L Ime)(Pa)Pe) B P +9(p<2> n)® 9t (o2 (5.12)
2mqyr6 8m%1)7“6 276 476 ’ '
and 1 1
Y'= a [—4G(P(2) 'n)ﬂu)} + (1 2). (5.13)

The existence of this unique vector G provides us with a stringent consistency check on
the adiabatic tidal Hamiltonian we derived.

5.3 Binding energy for circular binaries

In this section, we compute the binding energy in the COM frame for circular orbits. The
gauge invariant relation between the binding energy and the orbital frequency for circular
orbits (p, = 0) is obtained by eliminating the dependence on the radial coordinate. For
circular orbits we have OH (7, L) /07 = 0. We then proceed as follows. First, we invert this
relation to express 7 as a function of L. Next, we substitute L, written as a function of the
orbital frequency & = OH(L)/8L, in the Hamiltonian (5.4). Following this procedure we
obtain the binding energy F as,

E(z, May) = Epp(@) + Ear(z, X)) , (5.14)
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where we introduced = = @*/3, E,, can be found in ref. [56], and

- 9~ 33 121 55
EAT(:L‘,)\(CL)) = I6 (2>\(+)) + $7 [(—41/ + > )\(+) < ) 5)\( )] (5.15)
91 2717 20865\ ~ 715 11583
8 2 -
o {(16” 2 VT o; >A(+)+< 157 90 >5A( )}
where m m
X @5 13
Ay = —2 Xy £ —2 X, 5.16
® = gy O F g, (5.16)

This expression for the binding energy agrees with the previously known result of ref. [36],
eq. (6.5b), derived using classical PN techniques [91, 92].

5.4 Scattering angle for hyperbolic encounters

As a second application, we now compute the scattering angle x in the COM frame for
the hyperbolic encounter of two stars. To do this calculation we as follows. First, we re-
express the Hamiltonian H (which is a function of p,, L and r) to obtain p, = p.(H, L, 7).
Next, we use relation between the Lorentz factor v and the total energy per total rest mass
[ =H/(Mc?) given by

1 -1
1+ , (5.17)

T \/1—112/62: 2v

where v = || is the relative velocity of the compact objects, and the total angular mo-

mentum L and the impact parameter b are related by L = (uyvb)/I'. This allows us to
exchange H for v and L for b. Put together, we can then write the scattering angle as

8pT v, b r)
dr —. 5.18
x(w.b) =1 / (5.18)

Performing this procedure with the Hamiltonian (5.4) yields the scattering angle com-
puted in the COM frame, which we write as

X(v,0) = xpp(v,b) + xar(v,b), (5.19)

with the following adiabatic tidal contribution
2 2 02 4
XAT v ' GNM) {45 135 (v 1575 (o* }
r M Ay A {”( v2b H Ty \@) T ase |
3 1 732/5 3073
+ (GN M) as M+ |20 () 4 2
v?b 0 12 02 35 | 503
(GNM>4 315 |1| 315 b1 —2v| (o2 15 |5331 — 274v
tr (=) (| |+ — |+ —
v2b 8 o 64 5 c? 128 1383 c4

+0 (GN, :) , (5.20)
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where we introduced

m(2) m(1)

and xpp is reported in ref. [56], section 6.2. Notice that we use a matrix notation in
eq. (5.20) to make the expression shorter. Equation (5.20) agrees to 3PM (i.e., G%;) with
the result reported by refs. [67, 68], obtained using techniques of worldline QFT [93] and
the EFT developed for PM calculations [69], respectively.

6 Conclusions

In this work, we derived an effective Hamiltonian that describes the dynamical gravito-
electric tidal interaction between two nonspinning compact objects up to the 2PN order.
We also computed the effective Hamiltonian in the adiabatic limit, which we used to cal-
culate two gauge-invariant quantities, namely, the binding energy of a circular binary and
the scattering angle for a hyperbolic scattering. These result extend previous results in
the literature and agree in their particular limits. We expect our result to be used to
improve accuracy of gravitational waveform models, for applications to present and future
ground-based GW observatories.

Our work can be extended in several directions. One possibility is to compute the
next higher-order corrections to the dynamic and adiabatic Hamiltonians. This would
be important to further improve GW models for NS binaries. Here, we focused on the
dynamical gravitoelectric quadrupolar tides, but our framework is general enough to be
extended to obtain higher-order corrections for the dynamical gravitomagnetic tides [44,
63], as well as to incorporate higher order multipolar tides. It could also be interesting
to work at lower PN order, but including additional physics to the model. For example,
the coupling of the oscillation modes of the NS with other degrees of freedom, such as its
spin [22, 62, 94], or other oscillation modes [95-100] could also be incorporated to improve
the model’s level of physical realism. Finally, we could follow refs. [30, 46] and add our
2PN Hamiltonians into time-domain effective-one-body waveform models to improve their
agreement with numerical relativity simulations.
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