
Computer vision approaches for vehicle sideslip
angle estimation

1st Leonardo Serena
Department of Industrial Engineering

University of Padova
Padua, Italy

leonardo.serena@unipd.it

2nd Basilio Lenzo
Department of Industrial Engineering

University of Padova
Padua, Italy

basilio.lenzo@unipd.it

3rd Mattia Bruschetta
Department of Information Engineering

University of Padova
Padua, Italy

mattia.bruschetta@unipd.it

4th Ricardo de Castro
Department of Mechanical Engineering

University of California at Merced
Merced, CA, USA

rpintodecastro@ucmerced.edu

Abstract—Vehicle sideslip angle, defined as the angle between
the longitudinal axis of a vehicle and its velocity vector, is a
crucial parameter in vehicle dynamics. Unfortunately vehicle
sideslip angle is very hard to access directly, therefore a variety
of estimation methods have been developed so far. Such estima-
tion methods are essentially based on model-based approaches
or neural networks. This paper looks at the problem from
a fresh angle, by investigating possible solutions to measure
vehicle sideslip angle via computer vision techniques, harnessing
recent improvements in computer vision algorithms. Preliminary
experiments on a radio-controlled scaled vehicle show promising
results using the “phase correlation” algorithm.

Index Terms—Sideslip, Vehicle dynamics, Computer vision

I. INTRODUCTION

Vehicle safety is a crucial aspect in the development of
advanced driver assistance systems. To implement and deploy
effective vehicle safety systems, including lateral stability
controls, accurate knowledge of relevant vehicle motion pa-
rameters is required. A critical role is played by vehicle
sideslip angle, β, i.e. the angle between vehicle longitudinal
axis and velocity vector at the centre of mass. The literature
generally agrees on the idea that knowledge of β can lead to
significantly improve vehicle safety [1], [2].

Unfortunately, β is not easily accessible: velocity measure-
ments from vehicle onboard sensors (IMUs) are not reliable
enough, GPS methods cannot guarantee a sufficient high-
frequency update and may be unreliable in many situations
due to signal unavailability. Sideslip angle sensors are com-
mercially available, but with too large cost to be implemented
on a passenger car. A possible solution is a state estimator,
either observer-based or neural network-based [3], [4]. By
combining measurements from onboard sensors such as longi-
tudinal and lateral acceleration, angular velocities, and wheel
velocities, it is possible to obtain an estimate of β. Suitable
model-based observers may even be further improved with
GPS measurements where available. This approach requires a
fairly complex model of the vehicle which often represents a
too-high computational burden for the task. Artificial neural

network approaches require fewer resources and allow to fairly
easily relate available sensor measurements to β, without
vehicle models. On the other hand, a typical drawback is
the training procedure, which requires a high amount of data
and must be repeated in case of system changes - not always
feasible.

Recent works that employ image correlation techniques
showed that it is possible to measure the velocity vector of
the vehicle with a camera. For example, [5] used a camera
pointing to the tyre to compute longitudinal slip ratio by
comparing the displacement of the tyre with respect to the
road in subsequent images. In a similar way [6] used a high-
performance camera pointed at the road surface, computing
the velocity vector by comparing subsequent frames of the
footage: i) by employing Shi-Tomasi feature selection [7],
particles of the road surface are detected; ii) Lucas-Kanade
[8] optical flow algorithm is then used to track the features
in the next frame and compute the displacement vector,
related to β. To obtain even more accurate measurements of
the displacement, visual odometry correction techniques were
assessed. A real-time implementation of a similar solution was
presented in [9], where the mentioned visual odometry cor-
rections on the displacement vector were not implemented to
save computational resources, obtaining a less accurate result.
In [10] a Remote Controlled (RC) scaled model of a vehicle
is used to test an image correlation technique to measure
sideslip angle. The camera is positioned on the vehicle front
end, pointing to the road surface. The images are projected
into the road surface plane, where red markers are placed
in order to be detected and tracked with the aforementioned
algorithms. The measurements are combined with a Kalman
filter and compared with measurements from another camera
fixed above the testing surface and used as ground truth.

The discussed preliminary results look promising and are
worth further investigation: other computer vision techniques
can be applied and their operational and technical limits should
be evaluated. For example [11] used a phase correlation tech-

nique and a down-facing camera to reconstruct the trajectory -
not the speed profile - of a Rover. In [12] a phase correlation
solution has been proposed for the same purpose on a passen-
ger car, but the solution has been tested only in laboratory tests.
A similar solution may be assessed to compute the velocity
vector instead. On such basis, the objective of this paper is
to implement an accurate sideslip sensor with a down-facing
camera using image correlation techniques. First, algorithm
candidates, including sparse optical flow and cross-correlation
techniques, are evaluated. The implementation exploits the
OpenCV library [13]. Tests are then carried out on an remote-
controlled (RC) scaled vehicle: footage is recorded and sub-
sequently analyzed and processed.

II. MOTION ESTIMATION

The first objective is to compute the optical flow, i.e. the
apparent motion present in a stream of images when the
camera is moving. By evaluating the displacement of the
camera from two subsequent images it is possible to measure
the velocity vector of the vehicle. There are two main methods
to estimate the optical flow of a moving camera: dense and
sparse optical flow. Dense optical flow methods take into
account the transition of all the pixels in the images, therefore
they are the most accurate methods. Yet, high accuracy reflects
in high computational cost. Sparse optical flow methods aim
to track only a set of specific features in the images instead
of the whole image, therefore the computational cost is far
lower - at the expense of accuracy. In this context the real
time capabilities of the solution are more valuable than high
accuracy, so sparse methods employed in [9] are initially
inspected in paragraphs 1 and 2 below. An interesting solution
based on [12] that takes into account the whole image is
presented in paragraph 3.

1) Shi-Tomasi feature selection: By exploiting the presence
of textured surfaces on the road, it is possible to employ the
Shi-Tomasi algorithm to detect features in images. The aim
is to detect corners in an image. Corners are intended as
interesting regions of an image, i.e. that are easy to track from
frame to frame. Specifically, a corner is a region that produces
large differences in the image when shifted in the x and y
directions, differently from planar surfaces (where changes
cannot be detected) and edges (where changes can only be
detected in one direction). By considering a window W around
a pixel (x,y), for a displacement (∆x,∆y) the algorithm aims
to maximize the auto-correlation function:

E(x, y) =
∑

(xi,yi)∈W

[I(xi, yi)− I(xi +∆x, yi +∆y)]2 (1)

where I(xi, yi) represents the pixel intensity. The argument
can be approximated via Taylor series expansion:

I(xi +∆x, yi +∆y) = I(xi, yi) + Ix∆x+ Iy∆y (2)

where Ix and Iy are partial derivatives on respectively the x
and y direction. This yields:

E ≈
[
∆x ∆y

] [∑
W I2x

∑
W IxIy∑

W IyIx
∑

W I2y

] [
∆x
∆y

]
(3)

where the involved matrix is the auto-correlation matrix Aa ∈
R2. The Shi-Tomasi algorithm evaluates the eigenvalues λ1,
λ2 of Aa, that can be associated with the x and y rate of
change in the image: a large λ1 indicates differences in the
x direction around the selected pixel, and an a high level of
λ2 indicates differences in the y direction around the selected
pixel. If both eigenvalues are nearly zero the selected region is
associated to a plain surface; if only one eigenvalue is nearly
zero the selected region is associated to an edge. Therefore a
pixel is selected as a corner if the score function

R = min(λ1, λ2) (4)

exceeds a predefined positive threshold.
2) Lucas-Kanade feature tracking: Lucas-Kanade (LK) al-

gorithm is a sparse optical flow method that aims to track
selected features among two subsequent images (frames),
computing the velocity vector v = [δxδt ,

δy
δt], where δt is the

interval of time between two subsequent frames. Given that
the velocity vector is evaluated in a discrete time system, the
interval between two subsequent frames is equal to δt = 1,
therefore, to compute the actual velocity of a moving object,
the spatial displacement [δx, δy] must be divided by the
sampling time. Since LK is a sparse method, first a set of
features is selected in a first image and then tracked in the
next one. The algorithm makes three main assumptions: the
displacement between two subsequent frames is not large; the
brightness in two frames is approximately constant; the pixels
around the selected feature move all in the same direction with
the feature itself. While the first assumption can be overcome
with other Computer Vision tools, the two last assumptions are
a key part of the implementation. The assumption of constant
brightness is formalized as:

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (5)

which can be linearized by approximating via Taylor series
expansion:

I(x+δx, y+δy, t+δt) ≈ I(x, y, t)+Ixδx+Iyδy+Itδt (6)

where Ix and Iy and It are partial derivatives respectively
with respect to x, y, and time t. This leads to the optical flow
equation:

0 ≈ Ix
δx

δt
+ Iy

δy

δt
+ It (7)

that is an undetermined equation in the two variables [δx, δy]
recalling the fact that δt is known. Lucas-Kanade algorithm
solves this problem by evaluating a window of n pixels around
the feature: one of the assumptions is that the n pixels around
the selected point move all in the same direction. Therefore it
is possible to solve the optical flow equation for all the pixels
in a selected window W of n pixels. By taking:

A =

Ix(1) Iy(1)
Ix(2) Iy(2)
. .
. .

Ix(n) Iy(n)

 , b =

−It(1)
−It(2)

.

.
−It(n)

 (8)

then the displacement vector v = [δxδt ,
δy
δt] is computed as the

least square solution of:

ATAv = AT b (9)

that results in:[∑
W I2x

∑
W IxIy∑

W IyIx
∑

W I2y

]
v = −

[∑
W IxIt∑
W IxIt

]
(10)

that can be solved by inverting ATA. It should be noted that
when the same window is considered, ATA corresponds to
the auto-correlation matrix of the Shi-Tomasi method, Aa. So,
ATA in eq. 9 is invertible and well-conditioned by properly
selecting the eigenvalues’ threshold (eq. 4), i.e. by selecting
the features to be tracked with the Shi-Tomasi method. In the
OpenCV implementation, pixels near the center are weighted
with a window function in order to increase their impact with
respect to pixels in the edges.

3) Phase correlation (PC): This method exploits the shift
property of the Fourier transform to compute the displacement
between two images. Recall the shifting property of the Fourier
transform: a shift in the time domain correspond to a phase
shift in the frequency domain. Therefore by evaluating the
phase shift between two subsequent images it is possible to
obtain their spatial displacement. The idea is that by applying
the Fourier transform to a first frame Imt(x, y) at time t:

F{Imt(x, y)} = Gt(p, q) (11)

and applying the same transform to the subsequent image
Imt+1(x+δx, y+δy) where v = [δx, δy] is the displacement
vector:

F{Imt+1(x+ δx, y + δy)} = Gt+1(p, q)

= Gte
2πi(pδx+qδy)

(12)

where p and q in the Fourier domain correspond to x and y
in the time domain. The phase shift between images can be
evaluated by computing the normalized cross-power-spectrum:

R =
Gt ·G∗

t+1

|Gt ·G∗
t+1|

=
Gt ·G∗

t e
2πi(pδx+qδy)

|Gt ·G∗
t |

= e2πi(pδx+qδy)

(13)

where · is the element-wise multiplication and ∗ is the com-
plex conjugate operator. From (13) it is possible to obtain
v = [δx, δy] by inverse transforming R. In fact the inverse
transform of the exponential function result in an impulse
located in the displacement position: the location of the
maximum value of F−1(R) corresponds to the velocity vector.
In the proposed scenario every pixel carries information about
the velocity vector of the vehicle, therefore this method allows
a very accurate estimate of the displacement. This method
is also naturally robust to white noise. Since every pixel of
the image is evaluated, this method is more computationally
expensive with respect to the ones presented in the above
paragraphs 1 and 2, however, well-known algorithms may be
exploited to speed up the Fourier transformation process.

Fig. 1. Homography representation: the same camera is pointing to a group
of co-planar features from two different points (F1, F2), x and x′ are the
projection coordinates of the features

III. SIDESLIP ANGLE COMPUTATION

As pointed out in [6] [14], estimating the velocity vector
of the vehicle with a computer vision approach can lead
to erroneous measurements in case of significant angular
velocities of the vehicle body. This problem can be solved
by camera pose estimation, that is the determination of the
camera position and orientation with respect to an object (in
this case the detected features). This is a known problem
in computer vision and can be solved by computing the
fundamental matrix, which completely describes the geometric
relationship between tracked points in two different images
and the camera. Since the detected features lay on a surface,
the camera pose estimation problem can be simplified with a
homography transformation (Fig. 1). The homography relates
features located in the same planar surface and the camera
by mapping their respective projection coordinates from one
frame to the other, i.e. x′ = h(x). The homography function
is embedded in the homography matrix H ∈ R3×3 with 8
degrees of freedom, since one entry represents a scaling factor
that can be neglected. In order to estimate H at least 4 points
are needed (2 sets of coordinates to estimate 8 entries). For
each tracked point it is [15]:

x′ = Hx (14)

which can be rewritten as:

x′ ×Hx = 0 (15)

Equation (15) is reformulated into:

Ah = 0 (16)

where h represents the 9 entries of the homography matrix and
is in the null space of matrix A, therefore it can be obtained
via singular value decomposition (SVD). In order to obtain a
robust solution, the Random Sample Consensus (RANSAC)
algorithm is used [16]. RANSAC is an iterative method used
to estimate a model (the matrix H) rejecting outliers. The
algorithm randomly samples data points to produce a model.
The model is then evaluated over the whole dataset, labeling
data points that do not fit the model as outliers, while the
remaining are labeled as inliers. If the number of inliers

satisfies a selected threshold, the model is recomputed taking
into account only inliers, to improve accuracy.

In this context, the camera motion is constrained to a
planar motion and the road surface can be reduced to a plane,
therefore the subsequent frame motion can be approximated
by an affine transformation (rotation, translation and scaling).
The camera pose estimation can be reconstructed by an affine
matrix M ∈ R2×3 instead of a homography matrix. This
simplifies the pose estimation since only 3 points are needed
to compute the matrix, leading to a less complex model to
be evaluated by the RANSAC algorithm in order to obtain a
valid solution. This approximation takes into account vertical
movements - given that estimating the Affine matrix includes
a scaling factor - as well as rotation on the z-axis, but neglects
the image deformation possibly caused by vehicle rolling or
pitching. The error introduced by this approximation can be
reduced by means of Kalman filtering.

For example, a Kalman Filter based on a kinematic model
of the vehicle can be used. The choice of the kinematic
model is motivated by the fact that accurate knowledge of
the parameters of the dynamic model is not needed [3]. The
main equations are:

ax = v̇x − vyr (17)

ay = v̇y + vxr (18)

where ax and ay are the vehicle longitudinal and lateral
acceleration, respectively, vx and vy are the longitudinal and
lateral components of the vehicle speed at the centre of mass,
r is the yaw rate. The state of the discretized system is:

x(k) = [vx(k) vy(k)]
T (19)

with input:
u(k) = [ax(k) ay(k)]

T (20)

The discrete state and input matrices are:

A =

[
0 rδt

−rδt 0

]
B =

[
1
1

]
δt (21)

and the output variable y is described by:

y = Hx =

[
1 0
0 1

]
x (22)

where r is assumed to not vary too much between samples
(spaced by δt). The actual y is reconstructed by the camera
sensor: in the proposed configuration the displacement vector
extracted by either the affine matrix or the phase correlation
peak represents the scaled velocity vector of the vehicle.

IV. PRELIMINARY VALIDATION

A first set of tests have been conducted on non-vehicle-
related footage. The footage was taken with a smartphone
camera equipped with a Sony IMX363 sensor (12 MP 1/2.55”
sensor, f/1.7 aperture lens), recording a normal walk. The
camera pointed downwards to a feature-rich pavement. Videos
can be accessed here: https://bit.ly/walk240223, where the

0 50 100 150 200 250 300 350

frame

-40

-30

-20

-10

0

10

20

30

 (
°)

Sideslip angle

LK

LK+AFF

PC

Fig. 2. Measured sideslip angle from walk video: the proposed algorithms are
compared (Lucas-Kanade, Lucas-Kanade with Affine transformation, Phase
Correlation)

displayed angle - specified in degrees with respect to the
longitudinal axis of the smartphone - was computed with the
Lucas-Kanade method with the Affine transformation correc-
tion. The reference system used to compute β is attached to the
camera, with the x-axis pointing to the direction of movement
along the longitudinal axis of the smartphone and the z-axis
pointing upwards. The y-axis direction comes from the right-
hand rule. The angle is then computed as β = arctan(δyδx).
In Fig. 2 the proposed algorithms are compared: in the LK
algorithm β is computed as the mean of all the angles of
the tracked features; the same features are processed with
RANSAC algorithm to compute the Affine transformation
correction; eventually the PC algorithm has been evaluated.
The algorithms yield comparable results. Further investigations
are carried out with an RC car, using other sensor information:
in a first implementation, the estimated longitudinal velocity
will be compared with readings from wheel encoders.

V. RESULTS

In this section the performance of the algorithms is assessed
by comparing the longitudinal velocity computed with com-
puter vision algorithms with the longitudinal velocity returned
by onboard vehicle sensors. Tests have been performed on a
customized 1:12 scale RC vehicle [17]. The RC car is powered
by 4 electric motors with a maximum speed around 18 km/h,
controlled by a Teensy 4.1 micro-controller. It features Hall
sensors in each wheel to measure wheel angular velocity, and
a 9 Degrees-of-freedom Inertial Measurement Unit (IMU).
Within this work, the available vehicle has been equipped
with a Raspberry PI 3B along with a PI Camera V2 to record
footage and analyze it offline. The camera has been mounted
on a custom support set on the rear axle of the vehicle so
that the camera was pointing downwards as in Fig. 3. The
Raspberry PI has been set to start the recording when the
micro-controller started logging signals from the vehicle’s
sensors.

CAMERA

Fig. 3. RC car with custom camera support

0 5 10 15 20 25

time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

v
x
 (

m
/s

)

Longitudinal velocity

LK+AFF

PC

Hall sensor

Fig. 4. Camera and Hall sensor measurements of the longitudinal velocity

A. Longitudinal dynamics

The longitudinal velocity of the vehicle is computed from
the Hall sensors measurements with:

vHALL
x =

1

4

4∑
i=1

ωi ·R (23)

where ωi is the angular velocity of the ith wheel and R
is the wheel radius. This measurement is compared to the
longitudinal velocity computed with the proposed algorithms
(PC and LK). The computed displacement in pixel has been
mapped to real world coordinates by exploting the PI Camera
Field of View (FoV) dimensions in real world coordinates and
knowing the frequency of acquisition (150 FPS). To correctly
represent results, both data sources have been sampled at 50
Hz.

In Fig. 4 the measurements of the longitudinal velocity
from the wheel Hall sensors and the proposed computer
vision algorithms are compared. The velocity measurement
from the Hall sensors shows some peaks due to the sensor
not properly detecting the magnet present in the wheel. The
computer vision solutions shows very high correlation with the

Fig. 5. Vehicle and camera reference frames

0 5 10 15 20 25

time (s)

0

2

4

v
x
 (

m
/s

)

Longitudinal velocity

PC

Hall sensor

0 5 10 15 20 25

time (s)

-0.5

0

0.5

v
y
 (

m
/s

)

Lateral velocity

0 5 10 15 20 25

time (s)

-10

0

10

 (
°)

Sideslip angle at rear axle

0 5 10 15 20 25

time (s)

-2

0

2

r
(r

a
d

/s
)

Yaw rate

Fig. 6. First test: camera (orange) and on-board sensors (hall sensors and
gyroscope, blue) measurements

wheel sensor measurement. The Lucas-Kanade results show
inconsistent results, i.e., the LK method does not provide a
reliable measurement for the whole duration of the test. This
is likely due to the very low quality of the videos captured by
the PI camera, making it hard to track specific details present
in the asphalt surface. On the other hand the Phase Correlation
algorithm shows high robustness, providing consistent results
among different environments and light conditions.

B. Lateral dynamics

In this paragraph the lateral velocity of the vehicle is
assessed. Only the Phase Correlation algorithm is herein
considered. The lateral velocity at the rear axle of the vehicle,
vRR
y , is obtained by computing:

vRR
y = vCAM

y + d · r (24)

where vCAM
y is the velocity measured by the camera and d

is the distance between camera and rear axle, i.e. 4 cm in our
case.

In Fig. 6 and Fig. 7 the longitudinal and lateral velocities
obtained by the PC algorithm are compared to other on-
board sensors. The sideslip angle at the rear axle is computed
using (24). The lateral velocity vRR

y is expected to be zero

0 5 10 15 20 25

time (s)

0

2

4

v
x
 (

m
/s

)

Longitudinal velocity

PC

Hall sensor

0 5 10 15 20 25

time (s)

-0.4

-0.2

0

0.2

v
y
 (

m
/s

)

Lateral velocity

0 5 10 15 20 25

time (s)

-15

-10

-5

0

5

 (
°)

Sideslip angle at rear axle

0 5 10 15 20 25

time (s)

-1

0

1

2

r
(r

a
d

/s
)

Yaw rate

Fig. 7. Second test: camera (orange) and on-board sensors (hall sensors and
gyroscope, blue) measurements

(i.e., no slip angle at the rear axle) except when the vehicle
is performing a turning maneuver [2]. The lateral velocity
measurement shows a small bias that is motivated by the
presence of a slight tilt in the camera housing. The promising
results on the longitudinal dynamics, along with these prelim-
inary results for the vehicle lateral dynamics, suggest that the
proposed computer vision approach is a promising solution to
the problem of measuring sideslip angle.

VI. CONCLUSIONS

In this work, new methods to measure the sideslip angle
with computer vision techniques have been proposed, analyzed
and tested. The algorithms have been tested employing a
scaled vehicle customized with a down-facing camera: the
camera measurements are compared to the on board sensors
of the vehicle. The LK algorithm showed some limitations
since it requires high quality images in order to provide
reliable results. The PC algorithm returned consistent results
in different scenarios, showing high robustness to noise with
respect to the LK solution. The camera measurements provided
an accurate longitudinal velocity measurement, consistent with
the sensors available on the vehicle. Future work will focus
on the validation of the lateral velocity measurement on a
real vehicle and the real time implementation of the proposed
algorithm.

VII. ACKNOWLEDGEMENTS

This work was supported in part by the Italian Ministry of
Foreign Affairs and International Cooperation, grant number
PGR01170.

REFERENCES

[1] J. Liu, Z. Wang, L. Zhang, and P. Walker, “Sideslip angle estimation
of ground vehicles: a comparative study,” IET Control Theory &
Applications, vol. 14, no. 20, pp. 3490–3505, 2020.

[2] B. Lenzo, “Torque vectoring control for enhancing vehicle safety and
energy efficiency,” in Vehicle Dynamics: Fundamentals and Ultimate
Trends. Springer, 2022, pp. 193–233.

[3] D. Chindamo, B. Lenzo, and M. Gadola, “On the vehicle sideslip angle
estimation: A literature review of methods, models, and innovations,”
vol. 8, no. 3, p. 355. [Online]. Available: http://www.mdpi.com/2076-
3417/8/3/355

[4] M. Viehweger, C. Vaseur, S. van Aalst, M. Acosta, E. Regolin, A. Ala-
torre, W. Desmet, F. Naets, V. Ivanov, A. Ferrara et al., “Vehicle state
and tyre force estimation: demonstrations and guidelines,” Vehicle system
dynamics, vol. 59, no. 5, pp. 675–702, 2021.

[5] T. R. Botha and P. S. Els, “Tire longitudinal slip-ratio measurement
using a camera,” in Volume 3: 16th Int. Conf. on Advanced
Vehicle Technologies. ASME, p. V003T01A043. [Online]. Available:
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings/IDETC-
CIE2014/46346/Buffalo,%20New%20York,%20USA/257281

[6] ——, “Digital image correlation techniques for measuring tyre-
road interface parameters: Part 1 – side-slip angle measurement
on rough terrain,” vol. 61, pp. 87–100. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0022489815000488

[7] J. Shi and Tomasi, “Good features to track,” in 1994 Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–
600.

[8] B. Lucas and T. Kanade, “An iterative image registration technique with
an application to stereo vision (IJCAI),” vol. 81.

[9] D. K. Johnson, T. R. Botha, and P. S. Els, “Real-
time side-slip angle measurements using digital image
correlation,” vol. 81, pp. 35–42. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S002248981730263X

[10] C. Kuyt and M. Como, “Mixed kinematics and camera
based vehicle dynamic sideslip estimation for an RC scaled
model,” in 2018 IEEE Conference on Control Technology and
Applications (CCTA). IEEE, pp. 1216–1221. [Online]. Available:
https://ieeexplore.ieee.org/document/8511487/

[11] T. Kazik and A. H. Goktogan, “Visual odometry based on
the fourier-mellin transform for a rover using a monocular
ground-facing camera,” in 2011 IEEE International Conference
on Mechatronics. IEEE, pp. 469–474. [Online]. Available:
http://ieeexplore.ieee.org/document/5971331/

[12] M. Birem, R. Kleihorst, and N. El-Ghouti, “Visual odometry
based on the fourier transform using a monocular ground-
facing camera,” vol. 14, no. 3, pp. 637–646. [Online]. Available:
http://link.springer.com/10.1007/s11554-017-0706-3

[13] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of SW Tools,
2000.

[14] T. R. Botha and P. Schalk Els, “Digital image correlation techniques
for measuring tyre–road interface parameters: Part 2 – longitudinal tyre
slip ratio measurement,” vol. 61, pp. 101–112. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0022489815000683

[15] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. USA: Cambridge University Press, 2003.

[16] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, p. 381–395,
jun 1981. [Online]. Available: https://doi.org/10.1145/358669.358692

[17] S. Lovato, G. Righetti, A. Canton, B. Lenzo, and M. Massaro, “Devel-
opment of a remote-controlled scaled multi-actuated vehicle,” in Pro-
ceedings of I4SDG Workshop 2023, V. Petuya, G. Quaglia, T. Parikyan,
and G. Carbone, Eds. Cham: Springer Nature Switzerland, 2023, pp.
270–277.

