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Abstract: In recent years, black-box estimators for robot inverse dynamics have drawn the
attention of the robotics community. This paper compares two recent black-box approaches
that try to improve generalization and data efficiency by embedding the physical laws governing
the system dynamics in two different ways. The so-called Deep Lagrangian Networks (DeLaNs)
impose the structure of the Lagrangian equations but do not constrain the basis functions used
to model the dynamics. Instead, the Gaussian process model based on the recently introduced
Geometrically Inspired Polynomial (GIP) kernel constrains the basis functions of the regression
problem to a physically inspired finite-dimensional space but does not force structural properties
to be guaranteed. We carried out extensive experiments both on simulated and real manipulators
with increasing degrees of freedom (DOF). Our results show that: (i) the accuracy of the DeL.aNs
model deteriorates much more rapidly than the one of the GIP kernel model with the DOF
increase. (ii) the GIP kernel model better estimates the different components of the dynamics,
namely, the inertial, Coriolis, and gravitational torques, despite not directly imposing structural

properties.
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1. INTRODUCTION

Accurate models of the inverse dynamics map, which re-
lates joint trajectories to applied torques, are fundamental
for model based control in a large variety of robotics
applications, ranging from high-precision trajectory track-
ing (Khosla and Kanade, 1988; Siciliano et al., 2009;
Dalla Libera et al., 2021a) to detection and estimation
of contact forces in tasks requiring the interaction with
the environment (Dalla Libera et al., 2019; Haddadin
et al., 2017; De Santis et al., 2008). The derivation of
reliable inverse dynamics models is still an active field
of research. Traditional parametric model-based methods
derive inverse dynamics models from first order princi-
ple of the physics, under the assumption of rigid body
dynamics (Sousa and Cortesao, 2014). However, they re-
quire a precise knowledge of physical parameters and they
could result rather inaccurate in presence of parameter
uncertainties or unconsidered dynamics, such as complex
frictions or flexibilities (Kwon et al., 2021).

In the past years, black-box approaches drew the attention
of the robotics community. Among them, the two main
lines of research rely on Neural Networks (Goodfellow
et al., 2016) and Gaussian process Regression (GPR) (Ras-
mussen, 2003). Within these methods, inverse dynamics
models are derived directly from experimental data, with-

out requiring deep knowledge on the underlying physical
system. This flexibility, however, carries the risk of be-
ing relatively local in nature and data-inefficient: learned
models could generalize only within a neighborhood of the
training trajectories and require huge amounts of data to
be trained. This behavior becomes more and more evident
as the degrees of freedoms (DOF) increase, limiting the
applicability of black-box models in practice.

Several solutions were proposed to overcome the aforemen-
tioned limitations (Polydoros et al., 2015; Rueckert et al.,
2017; Romeres et al., 2020; Rezaei-Shoshtari et al., 2019).
A promising class of solutions proposes to embed insights
from physics as a model prior (Dalla Libera and Carli,
2019; Lutter et al., 2019b; Nguyen-Tuong and Peters, 2010;
Camoriano et al., 2016). Instead of learning the inverse
dynamics in a completely unstructured manner, which
makes the problem unnecessarily hard, geometrical and
physical properties are exploited to improve generalization
and data efficiency.

In the context of neural networks, notable results have
been obtained by the so called Deep Lagrangian Networks
(DeLaNs), presented in (Lutter et al., 2019b). DeLaNs
alm at improving generalization and data efficiency by
constraining the network structure. Two feed-forward net-
works approximate, respectively, the inertia matrix and
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the potential energy. Then the inverse dynamics model is
obtained by combining these two networks and imposing
the Lagrangian Mechanics equations. In this way, DeLaNs
derive a model that respects physical properties, such as
the energy conservation and the symmetry and positive-
ness of the inertia matrix. The network parameters are
optimized in a typical deep learning fashion, minimizing
the squared residual of the predicted torques.

In the context of GPR, instead, prior information can be
encoded designing an appropriate kernel function. In this
sense, inspired by the property of the inverse dynamics
map of being a polynomial function in an augmented
input space, the authors in (Dalla Libera and Carli,
2019) proposed a black-box polynomial kernel named
Geometrically Inspired Polynomial (GIP) kernel, based on
a novel multiplicative kernel (Dalla Libera et al., 2020).
This kernel aims at improving generalization and data
efficiency by constraining the regression problem into a
finite dimensional space that contains the Lagrangian
equations.

The two aforementioned techniques represent two different
philosophies of embedding a physical prior in black-box
models. DeLaNs impose that the network structure reflects
the one of the Lagrangian equations, but use general basis
functions to model the inertia matrix and the potential
energy. Instead, the GIP kernel constraints the basis func-
tions, but does not guarantee structural properties. In this
paper, we compare these two methods investigating both
their prediction performance and the structural properties
they induce. Our contribution is threefold. First,we review
the GIP kernel and DeLaNs highlighting the different
philosophies behind the two approaches. Second, we test
the prediction capabilities and the structural properties
induced by the two methods by comparing their overall
estimation accuracy and their capabilities of discriminat-
ing the inertial, Coriolis and gravitational components
of the inverse dynamics map. Third, we investigate the
performance decay of the two methods at the increase
of the DOF. We compared the two methods through
numerical and real experiments involving manipulators of
increasing dimension, from 3 up to 6 DOF. Results show
that the GPR model with GIP kernel outperforms Del.aNs
as regards the overall accuracy. The gap between the two
approaches becomes more and more consistent increasing
the manipulator DOF': performance of the DeLL.aNs model
deteriorates rapidly as the number of DOF increases, while
the GIP kernel model returns reliable estimates also in the
6 DOF setup. Surprisingly, the GIP kernel model proved
to be more performing than DeLaNs also when considering
the estimation of the different torques components, despite
DeLaNs imposes structural properties.

2. ROBOT INVERSE DYNAMICS

In this section, we provide the dynamics model of a robotic
arm under the rigid body assumption. Consider a robotic
arm with n 4+ 1 links, connected by n joints (each joint
can be either revolute or prismatic) and let ¢ € R™ be the
vector of joint positions. The inverse dynamics is defined as
the function mapping the robot state « = (q, ¢, §) € R3"
into the vector of generalized torques 7 € R™. Under the
rigid body assumption, the robot dynamics can be derived
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from the Lagrangian mechanics. Let the Lagrangian be the
difference between kinetic energy T and potential energy
V,namely £ = T —V. Then, the system dynamics satisfies
the Euler Lagrange equation, expressed as

doL oL
T=— = . (1)

dt 0q¢ 0q
The kinetic energy has the form T = %(jTM(q)q, where
M(q) € R™™™ is the symmetric, positive definite inertia

matrix. Substituting £ and 7" in (1) yields to the dynamics
equation

.. L. OV
T = M(q)§+C(q,q)q+ 78((1)’ (2)

—— Y q

m(q,q) c(q,9) ~~

g(qa)

where
1 oM(q) \"
. :M . L f.T .

C(q,9) (q9)d 2<q g q) (3)

is the Coriolis matrix. Moreover, m(q, §) represents the
inertial torque, ¢(g,q) accounts for the Coriolis and cen-
tripetal torques while g(g) € R™ is the vector accounting
for the gravity contribution. For a more detailed derivation
of (2) refer to (Siciliano et al., 2009). In the context of
black-box inverse dynamics estimation, the torque map
in (2) is modeled as a generic unknown function, namely
T = f(x) , and it is estimated from experimental data.

3. GAUSSIAN PROCESSES FOR ROBOT INVERSE
DYNAMICS

In GPR the inverse dynamics map is learnt directly from
data relying on a probabilistic framework. In particular,
each joint torque is modeled as a single Gaussian Process
(GP) which is assumed to be conditionally independent of
the other given the robot state . Considering the generic
i-th joint, let D) = {X, 4} be a set of N input-output
observations, where X = {x1,...,xzy} contains the N
robot states and y* € RV is the vector collecting the
corresponding N noisy measurements of the i-th torque
component 7. Then the vector y(? is assumed to be
generated by the following probabilistic model

FO () wf?
yO=1 o | =0 @
@] Lo

where w® is i.i.d Gaussian noise with standard deviation
o5, while f®(:) : R® — R is an unknown function,
modeled a priori as a zero-mean GP, namely f(i)(X ) ~
N(0,K®). The elements of the covariance matrix K,
named kernel matriz, are determined by a kernel function
k@ (.,.). Specifically, the element of K in position (A, 5)
is k) (zp, ;). As illustrated in (Rasmussen, 2003), given

the dataset D) and a general input location ., the
posterior distribution of f()(x,) is Gaussian, with mean

FO — O T )
and covariance
VI = kD (@, @) — kO TKD + 02 1) 7R,

where
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kil) = [k(z)(w*’ $1), B k(Z)(w*’ wN)]T’
a® = (KO + o7~y

Since the posterior distribution of £ (z,) is Gaussian, its
maximum a posteriori estimator coincides with its mean
f*l). In the GPR framework the kernel function plays a
fundamental role. Indeed, it determines the correlation
between samples of f(-) on different input locations, and it
encodes prior assumptions on f(+), e.g., its smoothness. An
alternative explanation of the kernel role can be derived
linking GPR and regression problems in Reproducing
Kernel Hilbert Spaces (RKHS). Each positive definite
kernel is related to a unique RKHS, which turns out to
be the hypothesis space where f(-) is searched. For these
reasons, the whole complexity of GPR reduces to the
choice of the correct kernel function for the problem at
hand.

3.1 Geometrically Inspired Polynomial Kernel (GIP)

The GIP kernel is based on the fact that the dynamics
equations in (2) are polynomial functions with respect to
the elements of a suitable transformation of x. In the
following, for completeness, we review the GIP kernel
structure. Let IV, and N, be the number of revolute and
prismatic joints, respectively, where N, + N, = n, and let

I, = {irl,...,irm} and I, = {z‘pl,...,ipr} be the sets

containing, respectively, the revolute and prismatic joints
indexes. Accordingly, we introduce the vectors

; COS (qiT»N )i| € RNT7
q, = |:Sin (qirl) ..., sin (qiwrﬂ S RNT,

N,
> qipr:| e R7r.

In the following, we denote by g., the element in g, associ-
ated to joint iy, , i.e. ¢¢, = cos(qirb) (analogous definitions
hold for ¢, and gp, ). For later convenience we define also
q., € R?*Nr the vector obtained concatenating g, and
q,. Finally, we introduce the vector ¢, which collects the
elements of the set {¢;¢;, 1 <i<n,i<j<n}, that is,
the set containing all the possible pairwise products of
components of . Observe that ¢, € R*(?+1)/2,

Interestingly, in (Dalla Libera and Carli, 2019) it has been
shown that each component of the vector of generalized
torques 7 is a polynomial function defined over the ele-
ments of & = [qc, 45,9y 9o ('j], of degree not greater than
2n+1, such that: (i) each element of q., g, and q,, appear
with degree not greater than 2; (i) each element of q,
and § appear with degree not greater than 1; (iii) in any
monomial of the polynomial, the sum of the ¢., and gs,
degrees is equal or lower than two, that is,

deg (qc,) + deg (gs,) <2 .

To properly embed the previous properties into the GIP
kernel, the authors in (Dalla Libera and Carli, 2019) relies
on the use of the multiplicative kernel (denoted as MPK)
introduced in (Dalla Libera et al., 2021b). Specifically the
MPK kernel of order p is defined as the product of p linear
kernels,

q. = [COS (qi7-1) PRI
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P
Witk (@n,25) =[] (02 + 2 2a)), (5)
s=1
where the ¥, € R%*? are distinct diagonal matrices.
The diagonal elements, together with the parameters o2,
compose the hyperparameters set of the MPK kernel. In
the following, we use the notation &; to indicate that the
elements of the vector & refers to information contained in
state x; and similarly for q. ;, @, ;, Guy ;s Ges, ;- TO comply
with the constraints on the maximum degree of each term
as above reported, the GIP kernel is given by the product
of N, + N, + 1 MPK kernels where

e N, kernels have p = 2 and each of them is defined on
a 2-dimensional input space given by q,.,, = [qc,, s, ],
with b € I,;

e N, kernels have p = 2 and each of them is defined
on a l-dimensional input which is one of the g,
components;

e a single kernel with p = 1 defined on the input vector
qav = [q-’ q"U]

The resulting kernel for the i-th component of the vector
of generalized torques 7 is

k(i) (ih)jj) = (6)
kcs (qcs,hv qcs,j) X kp (qp,ha qp,j) X kl(\/}%)K (qau,hv qav,j) )
with

N’V'
kcs (qcs,fw qcs,j) = H kl(\/QI%K (qCSb,h’ qCSb’j) )
b=1

NT‘
2
kp (qp,h, qp,j) = H kﬁﬁax (Gpy,hs Apy i) -
b=1

The GIP kernel induces a finite-dimensional RKHS con-
taining the dynamics in (2). As a consequence, the regres-
sion task is restricted to a limited hypothesis space, specif-
ically tailored to the inverse dynamics problem, leading to
higher accuracy and better data efficiency.

4. DEEP LAGRANGIAN NETWORKS (DELANS)

Deep Neural Networks are function approximation ma-
chines that have become ubiquitous in the recent years
due to their nice property of being universal approxima-
tors (Goodfellow et al., 2016). DeLaNs aim at improv-
ing generalization and data efficiency in the context of
inverse dynamics estimation by encoding known physical
properties of Lagrangian systems. In particular, DeLaNs
model the potential energy V(q) and the inertia ma-
trix M(q) as feed-forward neural networks. In order to
ensure the symmetry of the inertia matrix, rather than
modeling M (q) directly, DeLaNs exploit the Cholesky
decomposition M(q) = L(q)L(q)T and model only the
lower triangular matrix L(q). Thus, M(q) and V(q) are

estimated as M(q) = L(q,¢)L(q,9)",V(q) = V(g;¥) ,
where * represents an approximation, while ¢ and v denote
the network parameters. In order to ensure the positive
definiteness of M(q), the diagonal Ip and off-diagonal I
elements of f/(q) are learned separately. Diagonal elements
are obtained using a non-negative activation function such
as ReLu. Off-diagonal elements, instead, are obtained with
a linear activation function. Moreover, a positive scalar
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Fig. 1. The computational graph of the DeLaN.

€ is added to the diagonal elements, which forces the
eigenvalues of the inertia matrix to be positive. Since both
L and V rely on the same physical system, the network
parameters between them can be shared. In this case, Ip,
lo and V are obtained using three heads with different
activation functions. The corresponding inverse dynamics
map 7 can be obtained from (1) as

. e .1 .TaM.Tﬁ‘A/

T=M{§+ Mg 2<q aqq> + 50 (7)
where the dependency of M and V on q, ¢ and 1 has
been omitted. DeLaNs architecture is shown in Figure
1. The network parameters are learned by minimizing
the squared residual of the Euler-Lagrange differential
equations, which leads to

¢ 0" = agmin £~ Ty +XA00).  (§)
where |-|lyy; denotes a weighted norm with weight matrix
W. The regularization term (¢, 1)), instead, represents
the Lo-norm of the network parameters and it is necessary
due to the ill-posedness of the non regularized problem.
The Euler Lagrange equation (1), indeed, is invariant to
linear transformations and hence the Lagrangian satisfying
(1) is not unique. The addition of a regularization term
helps obtaining a unique solution. Note that the optimiza-
tion problem in (8) imposes the learned model to respect
the Lagrangian Mechanics. Besides that, as suggested in
(Lutter et al., 2019a), it could be interesting to impose
also the energy conservation property. This can be done
by adding to the objective function of (8) the residual of
the estimated instantaneous change in energy. To this aim,
note that total instantaneous change in energy for a La-
grangian system without friction equals the work done by
the actuators, i.e. E = ¢ 7. The estimated instantaneous
energy change, instead, is given by

2 . 1., ov
E:.TM.. 7.TM. .Ti. 9
¢ Mg+ oa Ma+a 5 9)
Including also the energy conservation in (8) leads to
¢ 0" = agmin £~ 7w, + |2 ~ By, + 220, 0).

(10)
The resulting optimization problem is solved using stan-
dard gradient-based optimization techniques with back-
propagation. We refer to (Lutter et al., 2019b) for a deeper
explanation on how the derivatives involved in (7) and (9)
can be efficiently computed.

Remark: DeLaNs propose to model in a black-box fashion
only the system energy, rather than the entire inverse
dynamics map, and then derive the inverse dynamics
imposing the Lagrangian mechanics equations. Moreover,
the structure of the neural networks used to model the
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system energy is designed to impose known physical prop-
erties, such as the positiveness and symmetry of the in-
ertia matrix. This approach allows obtaining a physically
consistent model, which assures energy conservation and
can be used to describe both the forward and the inverse
dynamics, being the inertia matrix non-singular by design.
However, no assumptions are made on the basis functions
exploited to model the system energy. As a result, the re-
gression problem is defined in a very general search space.
In contrast, the GPR model with GIP kernel does not
impose the structure of the inverse dynamics, but properly
selects the basis functions used to model the unknown
torque, which restricts the problem to a finite dimensional
space where the inverse dynamics is contained. The result-
ing model is not guaranteed to be physically consistent,
but has high data efficiency and generalization capabilities
(Dalla Libera and Carli, 2019; Giacomuzzo et al., 2022).

5. TORQUE DECOMPOSITION ESTIMATION

Besides the overall torque, in several practical applications
we are interested in computing also its single components.
In this section we describe a possible way to obtain the
different torque contributions from a black-box estimator
of (2). In particular, let f(-) be the outcome of the esti-
mator representing the overall torque. We are interested
in computing the corresponding decomposition, namely
the inertial torque (g, §), the coriolis and centripetal
torque ¢(q, q) and the gravitation torque g(q), which can
be evaluated as follows:

e Gravitational contribution g(q) accounts for all terms
that depend only on g, as shown in (2). We can thus
obtain the estimate of g(q) by setting ¢ =0, § = 0,

which leads to g(q) = f(q,0,0).

e Inertial contribution m(q,§) can be obtained from
(2) by setting ¢ = 0 and then subtracting the gravity
contribution previously computed, namely m(q, §) =

f(qaoaq') - f(q7070)
e Coriolis and centripetal contribution ¢(q,q) can be
obtained setting § = 0 and then subtracting the

gravity term, namely ¢(q, §) = f(g,¢,0) — f(q,0,0).
6. EXPERIMENTS

To assess the performance of the approaches we illustrated,
we performed extended experiments on simulated and
real setups. In both the cases, we considered a Franka
Emika Panda robot, which is a 7 DOF collaborative
manipulator with only revolute joints. The experiments
presented in this section aim to investigate three aspects:
(i) the generalization, namely the prediction accuracy
on unseen trajectories; (ii) the accuracy of the torque
decomposition; (iii) the performance degradation at the
increase of the complexity of the manipulator. To this aim
we considered 4 versions of the Panda robot, each one
obtained by locking the last 7 — k joints while leaving the
first k joints free to move, with k € [3,6]. Within all the
considered experiments we compare the performance of the
GIP and DeLaN estimators. For the seek of completeness,
we include as baselines the performance of a feedforward
deep neural network (DNN) and a vanilla GP with Radial
Basis Function (RBF), kernel which is defined as
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Fig. 2. Summary of the results obtained on the simulation experiments described in section 6.1. (a) shows the boxplots
of the torque nMSE on each single joint, for the 6 DOF setup. (b) shows the boxplots of the MSE on torque
decomposition averaged over all the joints, for the 6 DOF setup. (c) shows the boxplots of the torque nMSE
averaged over all the joints, for the four different configurations of the Panda robot considered (from 3 to 6 DOFs).

12
kRBF(CD, Cl:/) = )\e—Hm—m ”E’l, (11)

where A and ¥ are the kernel hyperparameters. In partic-
ular, A is a scaling factor, while ¥ is a positive definite
matrix, often chosen as diagonal, with the diagonal ele-
ments named lengthscales. Regarding the DeLaN model,
we considered the same architecture introduced in (Lutter
and Peters, 2021). In particular, the network involved to
learn the mass matrix and potential energy is composed
by two hidden layers of 64 neurons each and SoftPlus
as activation function. The feedforward DNN, instead, is
composed by two hidden layers of 512 neurons each and
Sigmoid as activation function. DeL.aN models are trained
minimizing the loss function in (10), while the feedforward
DNN is trained minimizing the torque Mean Squared Error
(MSE). The hyperparameters of the GP kernels, instead,
are optimized by marginal likelihood maximization (Ras-
mussen, 2003). All the optimization problems are solved
applying Stochastic Gradient Descent using Adam as op-
timizer (Kingma and Ba, 2014). In order to speed up the
algebraic computations involved, all the presented estima-
tors are implemented with the Python library PyTorch
(Paszke et al., 2019). The section is organized as follows:
in subsections 6.1 and 6.2 we present the results obtained
in simulation and with the real Panda robot, respectively.

6.1 Simulation experiment

Experiments have been carried out in SymPyBotics
(Sousa, 2014), simulating the 4 versions of the Panda
robot. In order to obtain statistically relevant results,
for each version of the robot, we tested the regression
performance of the two families of models with a Monte
Carlo (MC) analysis consisting of 50 experiments. Each
experiment consists in generating one training trajectory
and 50 test trajectories. The training and test trajectories
are obtained by imposing to each joint a random position
path, composed of the sum of 50 sinusoids. In details, the
reference position of the i-th joint is defined as

50

a b
ql(t) = Z m sin(wylt) — m cos(wylt),
I=1

(12)

with wy = 0.02rad/s, while a and b are sampled from a
uniform distribution ranging in [—e¢, ¢], with ¢ chosen in
order to respect the robot limits on joint position, velocity
and acceleration. A zero-mean Gaussian noise with stan-
dard deviation 0.01 N m was added to the resulting torques
of the training dataset, in order to simulate measurement
noise. All the generated datasets are composed of 500
samples. Each inverse dynamics estimator is trained on the
noisy training dataset and then tested on each noiseless
test datasets. We compared the prediction performance
evaluating the normalized Mean Squared Error (nMSE)
of the estimated torques on the test sets, which is the
ratio between the mean squared error and the variance
of the corresponding joint torque. On the same test tra-
jectories, we compare also the ability to reconstruct the
different torque components, namely the inertia torque
m(q, q), the Coriolis and centripetal torque ¢(q,q) and
the gravitational torque g(q), in terms of Mean Squared
Error (MSE)!. Figures 2a and 2b report respectively the
nMSE distributions on the torque estimates for each joint,
and the joints average MSE distribution on the torques
decomposition estimates for the 6 DOF simulated robot.
Figure 2c instead shows the average torque nMSE over all
the joints with the increase of DOF for the manipulator.
As expected, one can see that, in general, the GIP kernel
outperforms the RBF kernel, while DeLaN outperforms
the feedforward DNN. That is, within each family of
models, the approach that exploits knowledge of physics
yields better accuracy both estimation of torque and re-
construction of its components. It is worth noticing that,
while the overall torque model is learned in a supervised
fashion, the measurements of the single torque components
are not exploited during the training phase, and thus the
decomposition is learned completely unsupervised. The

1 With the considered robot structure, the gravity term of the first
joint is identically null, which prevents the use of the nMSE score.
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Fig. 3. Summary of the results obtained on the real experiments described in section 6.2. (a) boxplots of the absolute
torque error on each single joint, for the 6 DOF setup. (b) boxplots of the absulute error on torque decomposition
averaged over all the joints, for the 6 DOF setup. (c) boxplots of the absolute torque prediction error averaged over
all the joints, for the four different configurations of the Panda robot considered (from 3 to 6 DOFs).

better performance of GIP kernel suggests that it induces,
in the resulting model, better structural properties. This
intuition is confirmed also considering the evolution of the
normalized errors at the rise of the robot complexity. If the
number DOF's are increased, indeed, the GIP based esti-
mator remains reasonably accurate, while the performance
of DeLaN model deteriorates.

6.2 Real experiment

We tested the considered approaches on the physical
Panda robot, using the ROS (Koubéaa et al., 2017) interface
provided by Franka Emika. We collected a training and
test trajectory for the 4 versions of the manipulator with
incremental DOFs (from 3 to 6), using the same tra-
jectory generation procedure described in (12), but with
75 sinusoids instead of 50. The robot is equipped with
torque sensors, therefore we use their measurements as
targets of the inverse dynamics estimators. Joints position
and velocities are also provided by the robot’s interface,
while joint accelerations are computed through numer-
ical differentiation. The robot’s interface also provides
the inertial matrix together with the coriolis and the
gravitational torque components. Each collected dataset
accounts for about 2900 samples collected at 48 Hz, the
training datasets are downsampled to provide 500 samples,
in order to reduce the computational burden required by
the optimizations. The physically inspired models, namely
the GIP and DeLaN estimators, cannot be used directly on
real data due to the presence of friction. Both the models,
indeed, are designed to catch only the rigid body dynamics
and they must be adapted to incorporate the action of non
conservative forces. The literature addresses the modeling
of actuator friction with several approaches. Most of them
consider the motor friction to depend only on the joint
velocity g,. In particular, in this work we consider a friction
model obtained as combination of Coulomb and viscous
frictions, namely 7;; = F_sign(q,;) + F\,qg;. This model
can be easily implemented in the DeLaN architecture by

augmenting the standard output with an additional term,
linear with respect to the joint velocities and their sign.
Accordingly, the loss function of (10) can be updated by
adding the estimated energy dissipated by the friction
component to (9). The GP model with GIP kernel is
instead extended by summing, for each joint estimator, a
linear kernel with features equal to the i-th joint velocity
and its sign. When estimating the components of the
torque with the approach described in sec. 5, it is necessary
to remove the friction contribute from the total torque
estimate. This can be done in a natural way both for the
DeLaN and GIP models, due their structural properties,
but it is not possible with the baseline models, since
they are completely black-box. Figures 3a and 3b show
respectively the absolute error distributions on the torque
estimates for each joint, and the joints average absolute
error distributions on the test trajectory for the real Panda
robot with its last joint locked (6 DOF). Figure 3c instead
shows the average torque absolute error over all the joints
with the increase of DOF for the manipulator. The results
presented in this section confirm the considerations of
Sec. 6.1: physics-informed machine learning approaches
perform better than their respective baseline. Moreover,
results show that the GP model with GIP kernel is superior
than DeLaN in both estimation of torque and reconstruc-
tion of the single torque components.

7. CONCLUSIONS

In this paper, we compared DeLaNs with the GP model
equipped with GIP kernel. The two recent black-box ap-
proaches follow two alternative routes to improve gener-
alization and data efficiency by embedding the system
dynamics’ physical laws. DeLaNs impose the structure
of the Lagrangian equations but do not constrain the
basis functions used. Instead, the GIP kernel constrains
the basis functions of the regression problem to a physi-
cally inspired finite-dimensional space but does not impose
structural properties. We compared the two strategies on
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manipulators of increasing degrees of freedom (DOF) both
in simulated and real setups. Results show that: (i) the
exploitation of knowledge of physics in black-box estima-
tor can improve regression performances. (ii) the DeLaNs
accuracy deteriorates rapidly with the DOF increase. For
instance, on the 6-DOF setup, DeLaNs predictions are
inaccurate, while the GIP kernel model still performs well.
(iii) the GIP kernel model better estimates the different
components of the dynamics despite not directly imposing
structure. Our results suggest that the regularization pro-
vided by basis functions selection is particularly powerful
in black-box inverse dynamics identification. On the other
hand, the derivation of physically consistent models is cru-
cial in several applications, such as control and simulation
tasks. We think that merging the GIP kernel with the
DeLaNs is an interesting research line worth of further
future investigation.
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