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Abstract: This work considers the issue of modeling and forecasting electricity prices within the
functional time series approach. As this is often performed by estimating and predicting the different
components of the price dynamics, we study whether jointly modeling the components, able to
account for their inter-relations, could improve prediction with respect to a separate instance of
modeling. To investigate this issue, we consider and compare the predictive performance of four
different predictors. The first two, namely Smoothing Splines-Seasonal Autoregressive (SS-SAR) and
Smoothing Splines-Functional Autoregressive (SS-FAR) are based on separate modeling while the
third one is derived from a single-step procedure that jointly estimates all the components by suitably
including exogenous variables. It is called Functional Autoregressive with eXogenous variables
(FARX) model. The fourth one is a combination of the SS-FAR and FARX predictors. The predictive
performances of the models are tested using electricity price data from the northern zone of the
Italian electricity market (IPEX), both in terms of forecasting error indicators (MAE, MAPE and
RMSE) and by means of the Diebold and Mariano test. The results point out that jointly estimating
the components leads to significantly more accurate predictions than using a separate instance of
modeling. In particular, the MAE, MAPE, and RMSE values for the best predictor, based on the
FARX(3, 0, 4) model, are 4.25, 9.28, and 5.38, respectively. The percentage error reduction is about 20%
with respect to SS-SAR(3, 1) and about 10% with respect to SS-FAR(5). Finally, this study suggests that
the forecasting errors are generally higher on Sunday and Monday, from hours 3 to 6 in the morning
and 14 to 15 in the afternoon, and in June and December. On the other hand, prices are relatively
lower on Wednesday, Thursday, and Friday, from hour 20 to 1 a.m., and in January and February.

Keywords: electricity prices; functional autoregressive model; functional autoregressive with
exgenous variables model; functional principal components; vector autoregressive model

1. Introduction

Electricity price forecasting is an important issue for producers and consumers in
today’s competitive electricity markets. As electricity cannot be efficiently and economically
stored in large quantities using current technologies, a slight shift in demand can result
in a massive change in electricity prices and, hence, pose a significant risk for traders in
the markets. Accurate forecasts empower energy companies to optimize their produc-
tion schedules, mitigate risks, and make informed trading decisions. Moreover, the end
consumers also benefit from improved budgeting and strategic consumption planning.
Meanwhile, electricity price forecasting is a challenging task due to its specific features [1].

It is well known that time series of electricity prices are characterized by both long-
term and periodic (yearly, weekly, and daily) behaviors, calendar effect, spikes and/or
level shifts as well as short-term serial dependence [2,3]. All these components have been
considered in several ways in the literature, but we can divide them into methods con-
sidering some components as deterministic and others as stochastic, and methods that
model all the components as stochastic. In the first case, the usual approach is filtering the
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deterministic components by some procedure, for example, using smoothing spline and
stochastically modeling the residual component [4]. For example, ref. [5] proposed a semi-
parametric component-based model consisting of a non-parametric (smoothing spline)
and a parametric (autoregressive moving average (ARMA) model) component. To capture
different characteristics of day-ahead electricity prices, ref. [6] proposed a model based on
the improved empirical mode decomposition (IEMD), ARMA with exogenous terms (AR-
MAX), exponential generalized autoregressive conditional heteroscedasticity (EGARCH)
and adaptive network-based fuzzy inference system (ANFIS). The non-parametric regres-
sion techniques and semi-functional partial linear models are used by [7] for electricity
demand and price prediction. In this case, the deterministic components are filtered out
first, and then the residual component is modeled with a suitable stochastic process.

In the second case, all components are jointly accounted by a single stochastic model [8–10].
For instance, ref. [11] studied the periodic behavior of the electricity prices using the seasonal
Reg-ARFIMA-GARCH model that explains the conditional mean and variance of electricity
prices. Ref. [12] studied the performance of AR-GARCH models on the Indian spot electricity
price series. Different seasonalities are captured in the model using hourly, weekly, and daily
dummy variables. The conditional mean and conditional variance equations for different
variants of the model are estimated, and the forecasting performance of the calibrated models
is assessed using standard accuracy measures. The study suggested that AR-GARCH and
AR-EGARCH outperform the competitors. Ref. [13] compared the forecasting performance of
different approaches, including transfer function, ARIMA, wavelet, and artificial NN used for
electricity price forecasting. Ref. [14] studied the performance of univariate time series models
for forecasting electricity demand using both components jointly.

Apart from the two approaches described above, researchers used different classical
and machine learning techniques to model and forecast electricity prices [15–17]. For
instance, ref. [18] performed short-term price prediction using regression trees to predict
the electricity price. The results of the proposed method are compared with alternative
methods like ARIMA, exponential smoothing, and neural networks (NN). The empirical
results show that the proposed method performs better than the competitors. Ref. [19] used
a variable-segmented support vector machine-based model (VS-SVM) for day-ahead price
forecasting in Ontario’s electricity market. The author used the heuristic model, simulation
model (Monte Carlo simulation approach), multiple linear regression (MLR), NN model,
neuro-fuzzy, ARIMA, dynamic regression model (DRM), and transfer function model
(TFM) to compare with the proposed hybrid model. The results indicated that the VS-SVM
model outperformed all the other models in terms of MAPE and RMSE. Ref. [20] proposed
a fuzzy neural network-based method for short-term price forecasting for mainland Spain’s
electricity market. The author compared the proposed model with other fuzzy regression
models and hybrid approaches based on NN and fuzzy logic, ARIMA, wavelet-ARIMA,
multi-layer perceptron (MLP) and radial basis function (RBF) neural networks. The results
indicated that the proposed method outperformed other methods in terms of forecasting
accuracy and robustness against outliers and non-stationary behavior of the price series.
The use of these forecasting models is not limited to the electricity market as they are
extensively used in other research fields [21–23]. A summary of previous studies concerning
electricity market forecasting is given in Table 1.

In the last years, a promising approach to deal with the complex behavior of electricity
markets time series is that based on functional data analysis. Functional modeling can
handle high-dimensional data and facilitates the transformation of long forecast horizons
into a one-step-ahead functional forecast [24,25]. Considering functional data allows one to
obtain forecasts for ultra-short periods, which is not possible with traditional techniques.
In addition, it is particularly useful to describe daily periodic profiles of some market
variables. In the electricity prices time series literature, when the functional approach has
been involved, the separate estimation has always been used. While a separate estimation
permits to highlight the role of each component, a joint estimation could account for
those inter-relations among components that a separate modeling process usually ignores,
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possibly improving prediction. In this work, we try to fill the gap by suggesting a functional
model that allows for the joint estimation of the components. To investigate the issue, we
consider and compare the predictive performance of different predictors referring to both
the separate and the joint component estimation. In more detail, we consider two models
based on the separate component estimation which use smoothing splines (SS) in the first
step and SARIMA (SS-SAR) models or standard functional autoregressive (SS-FAR) models
in the second step. For the joint estimation, we consider an extension of the standard
FAR model which includes exogenous variables describing the deterministic components
(FARX). A suitable estimation procedure based on principal components is proposed. For a
deeper insight, we also consider a predictor based on a combination of the two approaches.
We test the predictive performances of the models on the hourly electricity prices of the
northern zone of the Italian electricity market (IPEX) and show that, using functional
models, the joint components estimation leads to significantly better prediction than the
separate estimation.

Table 1. Summary of literature review.

No. Authors Market Forecasting Methods Accuracy Measures

1 Marcjasz et al. (2023) [26] Germany Day-ahead DNN MAE, RMSE, CRPS
2 Alberto et al. (2011) [27] Spain Day-ahead double seasonal ARIMA, ES model SSR, MAPE
3 Girish (2016) [12] India Hour-ahead AR-GARCH, ARIMA-EGARCH RMSE, MAE, MAPE
4 Zhang et al. (2019) [5] Spain, Australia Day-ahead IEMD, ARMAX, EGARCH, ANFIS MAE, RMSE, MAPE
5 Aggarwal et al. (2009) [19] Canada Hour-Ahead VS-SVM, MLR, NN, DRM RMSE, MAPE
6 Amjady (2006) [20] Spain Day-ahead ARIMA, Wavelet-ARIMA, MLP, RBF TE, DME
7 Shah et al. (2020) [28] Italy Day-ahead AR, NPAR, FAR, NPFAR MAE, MAPE, R2

8 Vilar et al. (2012) [7] Spain Day-ahead ARIMA,FNP, SFPL DEs, SE
9 Conejo et al. (2005) [29] Spain Day-ahead wavelet transform, ARIMA DEs, HE
10 Dudek (2015) [18] Poland Day-ahead RF, ARIMA, ES, NN RMSE

Distributional Neural Networks (DNN), Exponential Smoothing (ES), Continuous Ranked Probability Score
(CRPS), Sum of Squared Residuals (SSR), Training Error (TE), Daily Mean Error (DME), Functional Non-parametric
(FNP), Semi-Functional Partial Linear (SFPL), Daily Errors (DEs), Seasonal Error (SE), Hourly Error (HE), Random
Forest (RF).

The rest of the paper is structured as follows. The general framework within which
we move is described in Section 2. Section 3 provides a basic introduction to functional
data and the details of the functional models we use. The description of the data, as well as
of our forecasting exercise, are contained in Section 4. Section 5 concludes the paper.

2. General Framework

The general framework within which we move in this work is the following.
Let us denote by Pt,j the time series of the price for day t and load period (hour) h,

t = 1, . . . , n and h = 1, . . . , 24. We assume that its logarithm, log(Pt,j), can be decomposed
in several additive components:

log(Pt,j) = Tt,j + Yt,j + Wt,j + Ct,j + pt,j (1)

where Tt,j represents the long-run (trend component), Yt,j is the annual periodic component,
Wt,j is the weekly cycles, Ct,j is the calendar component describing the effect of bank
holidays and other possible calendar effects. Finally, pt,j = describes the short-run dynamics
of the price series. Note that since expression (1) refers to a given time slot j, the daily
component, due to the periodicity over the hours of the day, is not present. This is why, in
the rest of the work, when not necessary, we will omit the hour subscript j.

Usually, the trend is represented through the sequence 1, 2, . . . , n, the yearly component
by the sequence (1, . . . , 365, 1, . . . , 365, . . .) or by trigonometric functions, the weekly period
by the sequence (1, . . . , 7, 1, . . . , 7, . . .), while bank holidays are described by dummy vari-
ables.

In the literature, these components have been treated in several ways: using different
models or approaches, assuming that the first four components are deterministic while
the residual component is stochastic [30] or treating all components as stochastic [31],
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estimating them separately or jointly. In this work, we compare the predictive performance
of functional models when the components are separately or jointly modeled. To the best
of our knowledge, the joint estimation of the components using functional methods is new
within energy markets.

In the separate approach, the deterministic and the stochastic components are usually
estimated using a two-step procedure. First the deterministic components are estimated,
then the stochastic component is obtained as the residual difference

pt,j = log(Pt,j)− T̂tj, + Ŷt,j + Ŵt,j + Ĉt,j. (2)

The series pt are then modeled following some stochastic approach.
In this work, for each given time period j, we estimate the deterministic components

using the non-parametric additive model:

log(Pt) = f1(Tt) + f2(Yt) + f3(Wt) + δ(Ct) + εt, (3)

where δ is a constant parameter defining the bank holidays effect and fi are functions
describing the relations between log(Pt), which are jointly estimated through smooth-
ing splines.

After the residual component pt,j has been estimated using expression (2), we put
together the series pt,j to convert them in functional time series. To this end, we use B-spline
basis functions, so that we can write

pt(τ) =
K

∑
k=1

Ctkϕtk(τ) (4)

where Ctk are constant parameters, ϕtk(τ) represent the B-spline basis functions, and K is
the number of basis functions used.

Once the functional time series pt(τ) is available, we model it by means of functional
autoregressive models (FAR).

The final prediction is obtained by summing the individual forecast:

P̂t+1,j = exp
(

f̂1(Tt+1) + f̂2(Yt+1) + f̂3(Wt+1) + δ(Ct+1) + p̂t+1,j

)
. (5)

When the joint estimation approach is considered, both deterministic and stochastic com-
ponents are estimated using a single-step procedure. This helps to account for possible
relationships between deterministic and stochastic components. While joint estimation of
the components is not a novelty, it is new in the energy field using functional models.

For the joint estimation, we consider a functional autoregressive model with suitable
exogenous variables (FARX), allowing us to include the effects of scalar or functional
exogenous drivers. The estimation of such a model is challenging since the computational
burden increases more than linearly with the lag orders of endogenous and exogenous
variables. In addition, in many cases, the estimation is unfeasible due to the unboundedness
of the inverse of covariance operators. Thus, a feasible and adaptable strategy is required.
In this work, we use the principle component analysis (PCA) to reduce the number of
variables while retaining most information included in the endogenous and exogenous
variables. In this case, first log(Pt,j) is converted into a functional time series using the
methodology explained in Section 2 and, then, a suitable FARX model is estimated using
the PCA approach. The estimated model also allows for the series prediction.

3. Functional Data Analysis
3.1. Preliminaries

This section provides a basic introduction to functional data analysis which is essential
to understand the contents of this work. In the following, we will use the mathcal font



Energies 2024, 17, 3461 5 of 18

to denote functional objects, bold fonts for vectors and matrices, and normal fonts for
scalar quantities.

Let Zt(τ) be a time series of functional observations, where τ ∈ [a, b] and t ∈ N.
Usually the interval [a, b] is normalized to [0, 1]. For each t, the observation Zt(τ) belongs
to the Hilbert space H ∈ L2([0, 1], ∥·∥) of square integrable functions which is equipped
with a norm ∥·∥ induced by the inner product ⟨x , z⟩ =

∫
x(t)z(t)dt.

For a generic time series Zt(τ), defined on a probability space (Ω,A,P), with mean
function E[Zt(τ)] = µ(τ), the covariance function C(X ), with x ∈ L2[0, 1], is defined as

C(X ) = E[⟨Zt(τ)− µ , X ⟩Zt(τ)− µ] (6)

The covariance function (6) can also be expressed using the following spectral decomposition:

C(X ) =
∞

∑
k=1

λk⟨ϕk, x⟩ϕk (7)

where ⟨· , ·⟩ is the inner product, {λk}k≥1 is the strictly positive decreasing sequence of
eigenvalues of (6) and{ϕk}k≥1 denotes the corresponding sequence of eigenfunctions which
form an orthonormal basis system for H.

The functional time series Zt(τ) can also be represented using the principal component
approach, based on the Karhunen-Loève representation [32]. If Z∗

t (τ) = Zt(τ)− µ(τ), we
can write:

Z∗
t (τ) =

∞

∑
k=1

yk,tϕk(τ), (8)

where yk,t =
∫
Z∗

t (τ)ϕk(τ)dτ denotes the kth functional principal component score while
ϕk(τ) are the function principal components (FPC). The functional principal component
constitutes an uncorrelated set of random variables with zero mean and variance λk. The
λks are such that λ1 ≥ λ2 ≥ λ3 ≥ . . ..

The main advantage of expansion (8) is it allows dimension reduction as the first
d terms often provide a good enough approximation to the infinite sum and, thus, the
information contained in Z∗

t can be adequately summarized considering only the first d
principal components. The approximated process is given by

Z∗
t (τ) ≈

d

∑
k=1

yk,tϕk(τ), (9)

More details on functional principal components and their practical applications are given
in [33,34].

In practice, all the previously defined quantities have to be estimated starting from an
observed time series, Z∗

1 (τ), . . . ,Z∗
n (τ), representing a finite realization of the underlying

random process. To this end, the following estimators can be used:

µ̂(τ) =
1
n

n

∑
i=1

Zi(τ), (10)

Ĉn(x) =
1
n

n

∑
i=1

⟨Zi(τ) , x⟩(Zi(τ)). (11)

The authors of [35] showed that the estimators (10) and (11) are consistent estimators for
weekly dependent processes. Then, using the KL expansion, the realizations of the random
process Ẑ∗

t (τ) can be written as

Ẑ∗
t (τ) =

d

∑
k=1

ŷk,tϕ̂k(τ) + ϵ̂(τ), i = 1, 2 . . . , N (12)
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where ŷk,t is the kth estimated functional principle component score for the tth observation,
ϕ̂k(τ) is the kth functional principle components and ϵ̂(τ) is an estimated white noise. This
formulation allows us to describe the FAR and FARX models, which will be used to forecast
Z∗

t (τ).

3.2. Functional Autoregressive Models

One of the simplest ways to model a functional time series Zt(τ) is to use a functional
autoregressive model of order p, FAR(p) [36]. A FAR(p) model, which is the generalization
of an AR(p) model to the case of functional objects, is defined as

Zt(τ) =
p

∑
j=1

ΨjZt−j(τ) +Nt(τ) (13)

where Ψj(j = 1, . . . , p) are the functional parameters of the model, Zt−j(τ) are lagged
functional variables and Nt(τ) is a strong H-white noise with zero mean and finite second
moment (E∥Nt(τ)∥2 < ∞). The FAR(p) model can be further generalized by including,
besides Zt−j lagged variables, other exogenous (possibly lagged) regressors. These exoge-
nous variables may be scalars (Xt), vector-valued (Xt) or functional (Xt). The FARX(p, m, r)
model can be defined as

Zt(τ) =
p

∑
j=1

ΨjZt−j(τ) +
m

∑
i=1

BiXi(τ) +
r

∑
k=1

γkXk +Nt(τ) (14)

where Xi(τ) denotes the functional exogenous variables, Xj are the scalar exogenous
variables and Nt(τ) is a strong H-white noise as in (14). Often, the exogenous variables
are previously demeaned. Ψj, (j = 1, . . . , p), Bi, (i = 1, . . . , m) and γk, (j = 1, . . . , r) are
functional (the first two) and scalar (the third one) model parameters.

3.3. Building FAR(p) and FARX(p, m, r) Models

Building FAR and FARX models requires one to identify the orders p, m and r as well
as to estimate the model parameters. A partial theoretical estimation procedure for FAR(p)
is given in [36]. This is based on the Shibata-Mourid [37] statistics; however, practical
estimation issues are completely ignored by the author. The procedure works in the case of
FAR(1); however, it is not clear how to apply it to real data for generic FAR(p) models. In
the case of FAR(1), the PCs’ use is useful since the covariance operator behaves erratically
due to the unboundedness of its inverse, and thus, the data are projected onto a suitable
finite-dimensional subspace, generally spanned by the first few largest eigenvectors.

In this work, we estimate the FAR(p) and FARX(p, m, r) using the principle components
approach. This ensures a fair model estimation as well as computational efficiency since
most of the variation in the endogenous and exogenous variables is summarized by the
first PCs. Clearly, in this case, the identification step requires the selection of the lag orders
(p, m, r) and the number of FPCs (d) used in the approximation. To this end, to select p and
d, the following algorithm is used

1. (a) For a demeaned functional dataset Zt(τ), fix a dimension d and, using (8),

compute the vector Ŷt = (ŷ1,t, . . . , ŷd,t)
′
, containing the first d FPC scores.

(b) For each functional exogenous variables fix the value of m and use the data

Xi(τ) to compute the vector Âi =
(

Âk,1, . . . , Âk,m
)′

, containing the first m FPC
scores of the exogenous variable lag matrix.

(c) combine all the exogenous variables vectors into a single vector, B̂ = (Âi, Xk)
′
,

2. Using Ŷ1, . . . , Ŷt and B̂, consider an appropriate multivariate model, for example
vector autoregressive model,Yt = ∑

p
j=1 ΨjYt−j + ϵt, to obtain a one-step ahead forecast

for Yt+1 as
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Ŷt+1 = (ŷt+1,1, . . . , ŷt+1,d)
′
.

Choose the order p and d using Section 3.4 and obtain Yt+1 for the optimal p and d.
3. Use the KL expansion to compute the one-step-ahead forecast

Ẑt+1 = µ̂(t) + ŷt+1,1ϕ̂1 + · · ·+ ŷt+1,dϕ̂d.

3.4. Selection of Orders p, m, r and Number of PCs d

The performance of functional models FAR(p) and FARX(p, m, r) crucially depends on
the appropriate selection of the order p, m, r and of the suitable number of PCs d. In this
section, we show that they can be jointly estimated using the functional final prediction
error (FFPE) criterion.

We start by considering the mean squared error (MSE). Since the eigenfunctions ϕi are
orthogonal and the PCs yk,t are uncorrelated, it can be written as

E
{∥∥∥Zt+1(τ)− Ẑt+1(τ)

∥∥∥2
}

= E


∥∥∥∥∥ ∞

∑
k=1

yt+1,kϕk −
d

∑
k=1

ŷt+1,kϕk

∥∥∥∥∥
2


= E
{∥∥Zt+1 − Ẑt+1

∥∥2
}
+

∞

∑
k=d+1

λk .

Here, the usual L2 Euclidean norm of vectors is represented by ∥.∥2. Assuming the station-
arity of the process Zt, a d-variate VAR(p) has the form

Zt+1 = Ψ1Zt + Ψ2Zt−1+, . . . ,+ΨpZt−p+1 + ζt+1

where ζt is a white noise process such that [38]

√
t(ρ̂ − ρ)

D→ NNNp∗d2(0, Σζ ⊗ ∆−1
p ) (15)

where ρ̂ = vec [Ψ̂1, . . . , Ψ̂P]
′

is the least squares estimator of ρ = vec [Ψ1, . . . , ΨP]
′
, and

∆p= Var[vec(Z1, . . . , Zp)] and Σζ = E[ζ1, ζ
′
1]. Suppose that the ρ̂ are estimated from inde-

pendent training sample (R1, . . . , Rt)
D
= (Z1, . . . , Zt) . It follows then

E
{∥∥Zt+1 − Ẑt+1

∥∥2
}

= E
{∥∥Zt+1 − (Ψ̂1Zt + · · ·+ Ψ̂PZt−p+1)

∥∥2
}

= E
{
∥ζt+1∥2

}
+ E

{∥∥(Ψ1 − Ψ̂1)ZZZt + · · ·+ (Ψp − Ψ̂p)Zt−p+1
∥∥2

}
= trace

{
Σζ

}
+ E

{∥∥∥[Ip ⊗ (Z
′
t, . . . , Z

′
t−p+1)](ρ − ρ̂)

∥∥∥2
}

(16)

The independence of ρ̂ and (Z1, . . . , Zt) yields that

E
{∥∥∥[Ip ⊗ (Z

′
t, . . . , Z

′
t−p+1)](ρ − ρ̂)

∥∥∥2
}

= E
[
trace

{
(ρ − ρ̂)

′[
Ip ⊗ Γp

]
(ρ − ρ̂)

}]
= trace

[
Ip ⊗ Γp

]
E[
(

ρ − ρ̂)(ρ − ρ̂)
′]

By using (15), the last term can be approximated as

1
t

(
trace

[
Σζ ⊗ Ipd

]
+ o(1)

)
∼ pd

t
trace

(
Σζ

)
.

Replacing trace(Σζ) by t
t−pd trace(Σ̂ζ), 16 can be written as

E
∥∥Yt+1 − Ŷt+1

∥∥2 ≈ t + pd
t − pd

trace (Σ̂ζ) + ∑
k>d

λk
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Thus, the order p and the number of components d are simultaneously selected by mini-
mizing the functional final perdition error criterion as

FFPE(p, d) =
t + pd
t − pd

trace(Σ̂ζ) + ∑
k>d

λk. (17)

The use of FFPE makes the forecasting procedure completely data-driven and does not
require any subjective specification of parameters (see [39] for more technical details).

A flowchart of the proposed modeling framework using a separate or joint estimation
approach is given in Figure 1. It explains that model estimation is a two-step procedure in
the separate modeling approach, while all the components are modeled and forecasted in a
single step in the joint approach.

Data: log(Pt,j)

Model: log(Pt,j) = Tt,j + Yt,j + Ct,j + pt,j

Separate estimation Joint estimation

Deterministic component
(T̂t,j, Ŷt,j, Ĉt,j)

Smoothing splines (SS)

Stochastic component
p̂t,j

SAR FAR

SS-SAR SS-FAR

(T̂t,j, Ŷt,j, Ĉt,j, p̂t,j)

Functional multi-
variate method

FARX

Figure 1. Flowchart of the general modeling framework.
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4. Modeling and Forecasting IPEX Price for Northern Zone
4.1. Data

For an empirical investigation of the proposed methods, we consider the time series
of the prices for the northern zone of the Italian electricity market (IPEX). The IPEX market
is divided into zones, which are portions of the power grid where, for system security
purposes, there are physical limits to transfers of electricity to/from other zones. They
can be both geographical zones and virtual zones. In the period covered by the series,
there were six geographical zones (see Figure 2) and the most important was the northern
one (From the 1 January 2021, there are seven zones but the northern one is still the most
important). The northern zone covers a wide range of geographical locations in Italy, so
that it is difficult to exactly define longitude and latitude. However, roughly, longitude
ranges from 7°00′ to 13°40′ east, while latitude from 44°25′ to 47°00′ north.

Figure 2. The six geographical zones of the IPEX market and the virtual zone of Rossano.

The data cover a period of five years ranging from 1 January 2015 to 31 December
2019. The data are plotted in Figure 3, where the purple line divides the in-sample period
from the out-of-sample period. More precisely, data from 1 January 2015 to 31 December
2018 are used for model identification and estimation, while the whole year of 2019 is used
for one-day-ahead out-of-sample forecasting.
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Figure 3. Electricity prices series for the northern Italian electricity market (a) and its autocorre-
lation function (b). The purple line distinguishes between model estimation and out-of-sample
forecasting periods.
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Some basic descriptive statistics for the data are listed in Table 2. The mean price is
52.34 EUR/MWh. Notably, the distribution appears to be slightly positively skewed, as
suggested by the mean being higher than the median (50.16). Moreover, the standard devia-
tion of 16.36 points out a non-negligible level of variability around the mean. Additionally,
the first quartile at 41.36 EUR/MWh and the third quartile at 61.00 EUR/MWh help us
understand where half of the values cluster within the dataset.

Table 2. Descriptive statistics for electricity prices data.

Min. Q1 Median Mean Q3 SD Max.

1.05 41.36 50.16 52.34 61.00 16.36 206.12

Figure 4 shows the daily functional trajectories, Zt(τ) (t = 1, 2, · · · , 1826), of our
time series. Here, each functional datum (curve) is evaluated at 24 points corresponding
to hours of a day. Note that each day represents a single functional datum, facilitating
us to evaluate them on a finer grid when required. This will lead us to obtain forecasts
for ultra-short periods when needed. From the figure, it is quite clear that the daily price
profiles show a considerable variation across time.

5 10 15 20

0
50

10
0

15
0

20
0

Hour

P
ric

e

Figure 4. Functional daily trajectories Zt(τ) for the original electricity prices.

4.2. Models Identification and Estimation

Since this work considers the model defined in (1), this section describes the model
identification and estimation procedure in the cases of separate and joint estimation of the
components described in Section 2.

Within the separate approach, the first step involved estimating the deterministic
components. More specifically, the long-term and the periodic components were thought
as deterministic functions of time, defined using cubic smoothing splines (SS). For calendar
effects, instead, dummy variables were used. All these deterministic components were
estimated by ordinary least squares methods, through the back-fitting algorithm. The
weekly component Wt,j was found to be non-significant and, therefore, was not included
in the final model. This first step was performed separately for each univariate daily
time series of the price of a specific load period. Once the deterministic components were
estimated, the residual stochastic component, pt,j (see Figure 5 as an example), was modeled
and predicted in two ways: using SARIMA models and FAR models. Figure 5 gives an
example of the residual stochastic time series for the load period 10.
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Figure 5. Stochastic component pt,10 (a) and its ACF for load hour 10 (b).

The final prediction is then obtained, according to the formula (5), by summing
all the specific components. To fit the FAR model, the series pt,j (j = 1, . . . , 24) are first
converted to functional data using (4). As concerns SS-SARIMA, not all the series pt,j had
the same autocorrelation structure. For most of them, the appropriate specification was a
SARIMA(3, 0, 0)(1, 0, 0)7 or, more shortly, SAR(3, 1)7 model; thus, we used it for all load
periods. Note that the weekly component, which was not significant in the original data, is
instead present in the residual component. Since both smoothing splines and the SARIMA
model are used in this case, we refer to it as the SS-SARIMA model.

When the FAR model is applied, the series pt,j are first converted to functional objects
using (4). The algorithm described in Section 3.3 was used to obtain the optimal values
of the autoregressive order p and of the number of components d leading to white noise
errors. We refer to this model as SS-FAR in order to stress the use of smoothing splines in
the first step and of the FAR model in the second step.

In our case, the optimal values resulted to be p = 5 and d = 10. Thus, a FAR(5) model,
based on 10 PCs, is used for out-of-sample forecasting.

In the case of joint estimation, we refer to the FARX model (14). The first step is
to convert the original (log-)prices log(Pt,j) into a functional object using (4). Again, the
algorithm defined in Section 3.3 allows us to obtain p and d. For our data, the selected
values were p = 3 and d = 8. We then used the deterministic components in their scalar
form as exogenous variables. We could have also considered their functional specification
but, being deterministic functions of time, forecasting results remain the same in both cases.
This setting implies to fix r = 4 and bypasses the need of fixing the lag m or, equivalently,
to fix m = 0. We denote this model as SS-FARX.

The ACFs and PACFs of the final residuals of the SS − SAR(3, 1)7, SS − FAR(5) and
FARX(3, 0, 4) are shown in Figure 6. All models produce basically uncorrelated residuals
but the FARX(3, 0, 4) model is clearly the best.
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Figure 6. ACF and PACF for the final errors using models (a,b) SS-SAR(3, 1)7 (c,d), SS-FAR(5), and
(e,f) FARX(3, 0, 4).

4.3. Out-of-Sample Forecasting

This section illustrates the forecasting performance of the models previously identified
to make one-day-ahead price predictions. The comparison will be based both on descriptive
indicators as well as using the Diebold and Mariano (1995) test, in order to assess the
significance of the results.

More specifically, starting from 31 December 2018, we make k = 365 one-day-ahead
predictions considering expanding windows. The models’ specifications are those identified
in the in-sample period and are kept fixed while the models’ parameters are re-estimated
day-by-day. All the variables were significant except the weekly component, Wt, which
does not enter the models. In the separate modeling approach, the prediction is given by

P̂t+1,j = exp
(

f̂1(Tt+1) + f̂2(Yt+1) + δ(Ct+1) + p̂t+1,j

)
. (18)

Predictions of the trend and of the yearly and weekly components, as well as of the bank
holidays effect, are straightforward as soon as functions fi and the parameter δ have been
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estimated. The predictions p̂t+1(j) were obtained using the SARIMA and FAR models. In
the joint approach, predictions are directly made for the series of the price. In addition,
we consider a fourth predictor obtained by combining the SS-FAR and the FARX models
by means of a simple average of their forecasts [40,41]. For comparison purposes, two
naïve models are also computed. The first model is called Naïve 1, which assumes that the
next-day prices are equal to the current day, i.e., P̂t+1,j = Pt,j. The second model, Naïve
2, computes the next-day-ahead forecasts by assuming that tomorrow’s electricity prices
are the same as that of the previous week same day, i.e., P̂t+1,j = Pt−7,j, allowing for the
incorporation of possible weekly periodicity in the forecasts [42].

To measure the forecasting error, we consider the mean absolute error (MAE), (1/k)∑(|Pt,j −
P̂t,j|), the mean absolute percentage error (MAPE), (1/k)∑(|(Pt,j − P̂t,j)/Pt,j|) and the root
mean square error (RMSE) [(1/k)∑(Pt,j − P̂t,j)

2]1/2, with k = 365 number of one-day-ahead
predictions.

The forecasting results are summarized in Table 3, listing the predictive performance
of the four models and two naïve benchmarks over the whole out-of-sample period, i.e., the
year 2019. For all error measures, the best results are obtained by joint estimation through
the FARX model. The second best result is that of the combination, which outperforms
both the SS-SAR model and the SS-FAR model. From Table 3, it is also clear that models
based on the functional approach perform better than the univariate SS-SAR model. More
in detail, the MAE, MAPE, and RMSE values for the FARX(3, 0, 4) model are 4.25, 9.28, and
5.38. The percentage error reduction is about 20% with respect to SS-SAR(3, 1) and about
10% with respect to SS-FAR(5). The indicators for FARX(3, 0, 4) and the combined predictor
are quite similar. As the former model always gives better results, we attribute the good
performance of the combined predictor to the contribution of the FARX model. Finally, the
two benchmarks perform the worst compared to the four predictors, indicating the good
performance of our models.

Table 3. One-day-ahead error measures for electricity price forecasting errors using the SS-SAR(3, 1)7

model, the SS-FAR(5) model, the FARX(3) model, the combined predictor and two naïve models.

Model MAE MAPE RMSE
SS-SAR(3, 1)7 5.12 11.51 6.99
SS-FAR(5) 4.57 10.17 6.23
FARX(3,0,4) 4.25 9.28 5.38
Combination 4.27 9.49 5.43
Naïve 1 8.39 18.75 11.41
Naïve 2 6.89 16.91 9.48

To assess the significance of the results listed in Table 3, the Diebold and Mariano
(1995) test is applied to each couple of predictors. It has been applied to the squared errors
to avoid the issues pointed out by [43]. The p-values of the tests are listed in Table 4. They
refer to a hypothesis system whose null hypothesis assumes no difference in the accuracy
of the forecasters in the row/column versus the alternative hypothesis that the forecaster in
the row is more accurate than the forecaster in the column. The obtained p-values suggest
that functional models are significantly more accurate than the univariate model. Within
the functional approach, the FARX(3, 0, 4) produces statistically more accurate forecasts
than the FAR(5) model but it is statistically equivalent to the combined predictor. However,
as both the combination and FARX are significantly better than SS-FAR, as before, again we
conclude that the contribution of the FARX model is crucial.
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Table 4. p-values for the Diebold and Mariano test. The null hypothesis assumes equal prediction
accuracy for the model in row and column, while the alternative hypothesis assumes the model in
the row is more accurate than the model in the column.

Models SS-SAR(3,1)7 SS-FAR(5) FARX(3,0,4) Combination Naïve 1 Naïve 2
SS-SAR(3, 1)7 - >0.99 >0.99 >0.99 <0.01 <0.01
SS-FAR(5) <0.01 - >0.99 >0.99 <0.01 <0.01
SS-FARX(3) <0.01 <0.01 - 0.14 <0.01 <0.01
Combination <0.01 <0.01 0.86 - <0.01 <0.01
Naïve 1 >0.99 >0.99 >0.99 >0.99 - >0.99
Naïve 2 >0.99 >0.99 >0.99 >0.99 <0.01 -

Finally, the day-specific forecasting error indicators for the considered models are
listed in Table 5. Looking at the table, we can see that Monday and Sunday typically have
larger errors compared to other days of the week. On the contrary, Wednesday, Thursday,
and Friday show lower forecasting errors, suggesting that prices are less erratic on these
days. The FARX(3) model yields the lowest MAPE value of 7.85 on Thursday and the
highest MAPE score of 12.32 on Saturday. Again, the FARX(3) model leads to uniformly
better results over the days of the week. Analogous results for each month and each load
period are listed in Tables A1 and A2 in the Appendix A. The results suggest that forecasting
error depends on the load period, with peaks and lows at different times of the day. For
example, the forecasting errors are particularly high from hour 3 to hour 6 in the morning
and from 14 to 15 in the afternoon. On the other hand, errors are relatively lower from
hour 20 to 1 a.m. Once again, the forecasting performance of the FARX(3) model produces,
almost always, lower forecasting errors than the competitor models. In terms of monthly
indicator the highest forecasting errors correspond to the months of June and December,
while lower errors occur in January and February.

Table 5. Out-of-sample day-specific MAPE, MAE, RMSE for electricity price for SS-SAR(3, 1)7 model,
SS-FAR(5) model, FARX(3, 0, 4) model, combination model, and two naïve benchmarks.

Day of the Week
Model Mon Tues Wednes Thurs Fri Satur Sun
SS-SAR(3, 1)7

MAE

6.09 5.37 5.14 4.57 4.47 4.89 5.21
SS-FAR(5) 5.07 4.82 4.77 4.32 4.40 4.11 4.54
FARX(3,0,4) 4.72 4.38 4.20 4.10 4.26 3.92 4.13
Combination 4.70 4.42 4.31 4.02 4.16 3.95 4.26
Naïve 1 6.52 7.05 9.44 8.36 5.88 10.59 10.94
Naïve 2 7.02 6.45 6.61 8.32 6.66 5.89 7.27
SS-SAR(3, 1)7

MAPE

15.87 10.77 10.20 8.32 8.50 11.92 15.76
SS-FAR(5) 13.44 10.37 9.04 8.02 8.16 9.82 13.28
FARX(3,0,4) 12.32 9.67 8.15 7.85 8.07 8.96 10.84
Combination 12.57 9.75 8.34 7.64 7.85 9.27 11.91
Naïve 1 12.61 15.78 24.65 17.79 11.05 27.62 21.72
Naïve 2 13.32 14.19 23.14 23.17 12.38 16.45 15.45
SS-SAR(3, 1)7

RMSE

8.13 7.66 7.29 6.34 6.00 6.31 6.81
SS-FAR(5) 6.72 7.07 6.67 5.79 5.77 5.35 6.04
FARX(3,0,4) 5.87 5.51 5.42 5.23 5.32 5.05 5.15
Combination 5.86 5.69 5.57 5.12 5.21 5.05 5.40
Naïve 1 7.97 8.34 11.13 9.88 7.32 12.59 13.10
Naïve 2 8.32 7.45 7.85 9.88 8.01 7.14 8.71

4.4. Computational Complexity

Finally, we compare the computational cost for each model used in our study. For
the analyses, the programming environment R (I), a statistical computing language, is
used to implement the models [44]. In the comparison, all the computations have been
performed using an Intel(R)-Core(TM) i7-4770 CPU running at 3.40 GHz.

Table 6 provides the average time required for a one-day-ahead forecast for the dif-
ferent models. Using as a baseline the SS-SAR(3, 1)7 model, the average time required
for a one-day-ahead forecast is 0.21 s, whereas the SS-FAR(5) and SS-FARX(3,0,4) models
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take 0.72 and 0.77 s, respectively, for the same task. This means that SS-FAR(5) and SS-
FARX(3,0,4) require 3.43 and 3.67 times more time needed compared to SS-SAR(3, 1)7. The
combination model time is comparatively higher as both the models, SS-FAR(5) and SS-
FARX(3,0,4), have to be computed. It is important to note that, except for the combination
model, the models required less than a second to produce a one-day-ahead forecast, which
suggests the models are quite computationally efficient.

To model and forecast the deterministic components when using a separate modeling
approach, the GAM library in R was used [45]. The forecast library in R was used for the
SAR model [46]. To estimate and forecast FAR(p) and FARX(p) models, the authors wrote
their own code, which also used the R library fda [47]. The documentation provided by the
packages provides in-depth details on the particular algorithms utilized in the estimation.

Table 6. Average time in seconds for a one-day-ahead forecast.

Average Time SS-SAR(3, 1)7 SS-FAR(5) FARX(3,0,4) Combination

Time (s) 0.21 0.72 0.77 1.52
Relative time 1 3.43 3.67 7.24

5. Conclusions

In this work, we faced the issue of modeling and forecasting electricity prices within the
functional approach. As this is often conducted by estimating and predicting the different
components of the price dynamics, we wondered if a joint modeling of the components
could improve prediction with respect to a separate modeling process. The basic idea
is that a joint estimation could consider those inter-relations among components that a
separate modeling usually ignores. To investigate this issue, we compared the predictive
performance of four different predictors: the first two are based on separate modeling, the
third is based on joint modeling, and the fourth one is a combination of the two approaches.

In particular, the first two models use smoothing splines to estimate the deterministic
components and SARIMA (SS-SAR) and FAR (SS-FAR) models to describe the dynamics of
the stochastic component. The third model, the FARX model, follows a one-step procedure
to jointly estimate all the components by suitably including exogenous variables. For
empirical analysis, electricity price data from the northern zone of the Italian electricity
market, from January 2015 to December 2019, are used. The first four years are used
for model estimation, and the entire year 2019 is used for one-day-ahead out-of-sample
forecasts. Forecasting performances are evaluated in terms of MAE, MAPE, and RMSE and
statistically assessed by means of the Diebold and Mariano test.

The results suggest that the functional modeling approach is efficient in predicting
electricity prices as it produces lower forecasting errors than the non-functional model used
in the study, i.e., the SS-SAR model. Within the functional models, the FARX model, which
jointly estimates all the components, significantly outperforms its competitors except the
combined predictor. The last one, however, seems mainly affected by the good performance
of the FARX model and gives numerical results worse than those of the FARX model.

Finally, this study’s findings suggest that the forecasting errors are generally higher on
(a) Sunday and Monday, (b) from hours 3 to 6 in the morning and 14 to 15 in the afternoon,
and (c) June and December. On the other hand, prices are relatively lower on (a) Wednesday,
Thursday, and Friday, (b) from hour 20 to 1 a.m., and (c) January and February.
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Appendix A

Table A1. Day-ahead price forecasting error indicators by month using the SS-SAR(3, 1)7, SS-FAR(5)
and FARX(3,0,4) models.

Month SS-SAR SS-FAR FARX Month SS-SAR SS-FAR FARX

Jan
MAE 5.63 5.78 4.77

Jul
MAE 5.44 4.31 4.33

MAPE 8.76 8.99 7.37 MAPE 10.85 8.59 8.65
RMSE 8.14 8.02 5.90 RMSE 6.96 5.51 5.51

Feb
MAE 4.76 3.97 3.91

Aug
MAE 5.05 3.96 3.96

MAPE 9.20 7.67 7.07 MAPE 10.43 8.41 8.82
RMSE 6.19 5.24 4.77 RMSE 7.33 5.49 5.19

Mar
MAE 4.70 4.33 4.14

Sep
MAE 4.70 4.33 4.14

MAPE 9.21 8.38 8.02 MAPE 9.21 8.38 8.02
RMSE 6.15 5.66 5.31 RMSE 6.15 5.66 5.31

Apr
MAE 5.78 5.86 4.53

Oct
MAE 5.46 4.88 4.26

MAPE 12.74 12.59 9.50 MAPE 10.97 9.34 8.30
RMSE 8.66 8.53 5.65 RMSE 7.15 6.58 5.50

May
MAE 4.31 3.99 4.05

Nov
MAE 4.69 4.42 4.19

MAPE 9.00 8.18 8.41 MAPE 11.40 10.47 9.35
RMSE 5.63 5.30 5.24 RMSE 6.26 5.87 5.30

June
MAE 5.34 4.70 4.52

Dec
MAE 4.73 4.45 4.26

MAPE 14.29 12.24 11.11 MAPE 22.36 20.79 18.63
RMSE 7.05 6.02 5.54 RMSE 6.33 5.76 5.29

Table A2. Day-ahead price forecasting error indicators by load period using the SS-SAR(3, 1)7,
SS-FAR(5) and FARX(3,0,4) models.

Hour SS-SAR SS-FAR FARX Hour SS-SAR SS-FAR FARX

1
MAE 4.21 3.53 3.28

13
MAE 4.84 4.67 4.47

MAPE 10.35 8.86 7.59 MAPE 10.42 9.78 9.53
RMSE 5.62 4.78 4.26 RMSE 6.48 6.02 5.64

2
MAE 4.28 3.41 3.26

14
MAE 5.49 4.96 4.58

MAPE 11.86 9.95 9.16 MAPE 13.31 11.74 10.85
RMSE 5.72 4.72 4.23 RMSE 7.62 6.64 5.80

3
MAE 4.38 3.57 3.43

15
MAE 6.48 5.74 4.61

MAPE 14.71 12.32 11.10 MAPE 15.73 13.59 10.30
RMSE 5.96 5.02 4.49 RMSE 8.90 7.90 5.72

4
MAE 4.49 3.84 3.64

16
MAE 6.32 5.84 4.89

MAPE 17.53 15.33 13.98 MAPE 13.66 12.26 9.98
RMSE 6.13 5.31 4.69 RMSE 8.55 7.88 6.07

5
MAE 4.43 3.85 3.64

17
MAE 6.09 5.55 5.14

MAPE 17.67 15.83 14.59 MAPE 11.52 10.37 9.69
RMSE 5.99 5.31 4.72 RMSE 8.24 7.45 6.47

6
MAE 4.17 3.68 3.34

18
MAE 5.69 5.16 4.85

MAPE 13.86 12.87 10.33 MAPE 10.20 9.18 8.73
RMSE 5.79 5.24 4.21 RMSE 7.58 6.77 6.03

7
MAE 5.14 4.17 4.00

19
MAE 5.41 5.09 4.90

MAPE 12.37 9.84 8.73 MAPE 9.25 8.53 8.45
RMSE 6.92 5.84 5.03 RMSE 7.14 6.47 6.02

8
MAE 5.68 4.69 4.34

20
MAE 5.00 4.81 4.62

MAPE 11.59 9.27 8.85 MAPE 8.24 7.85 7.66
RMSE 7.46 6.24 5.39 RMSE 6.59 6.28 5.67

9
MAE 6.99 5.79 4.85

21
MAE 4.64 4.68 4.58

MAPE 13.23 10.65 9.08 MAPE 7.89 7.92 7.79
RMSE 9.24 7.93 5.95 RMSE 6.04 5.94 5.62

10
MAE 6.59 5.46 5.17

22
MAE 4.21 4.40 4.12

MAPE 12.41 10.05 9.44 MAPE 7.53 7.85 7.42
RMSE 8.61 7.27 6.28 RMSE 5.63 5.68 5.09

11
MAE 5.86 5.07 4.85

23
MAE 3.44 3.37 3.33

MAPE 11.04 9.36 9.31 MAPE 6.86 6.70 6.70
RMSE 7.75 6.71 5.89 RMSE 4.73 4.64 4.45

12
MAE 5.89 5.28 4.76

24
MAE 3.12 3.38 3.45

MAPE 11.56 10.10 9.39 MAPE 7.01 7.65 7.83
RMSE 7.88 6.97 5.82 RMSE 4.05 4.43 4.48
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