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Abstract: Volterra series is especially useful for nonlinear system identification, also thanks to
its capability to approximate a broad range of input-output maps. However, its identification
from a finite set of data is hard, due to the curse of dimensionality. Recent approaches have
shown how regularization strategies can be useful for this task. In this paper, we propose a new
regularization network for Volterra models identification. It relies on a new kernel given by the
product of basic building blocks. Each block contains some unknown parameters that can be
estimated from data using marginal likelihood optimization or cross-validation. In comparison
with other algorithms proposed in the literature, numerical experiments show that our approach
allows to better select the monomials that really influence the system output, much increasing
the prediction capability of the model. The method immediately extends also to polynomial
NARMAX models.
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1. INTRODUCTION

In many real world applications, linear models are not able
to adequately describe dynamic systems. This can be due
to the presence of saturations, quantizers or static nonlin-
earities at the input and/or the output Ljung (1999)[Sec-
tion 5]. Even if some insight on the nonlinearities can
be available, the formulation of parametric models from
finite data records is a difficult task Haber and Unbehauen
(1990); Lind and Ljung (2008); Sjöberg et al. (1995). In
particular, nonlinear system identification is often seen
as an extended parametric regression where the choice
of regressors and basis functions plays a crucial role. In
this context, Volterra series is especially useful since it
can represent a broad range of nonlinear systems Rugh
(1980); Boyd and Chua (1985); Cheng et al. (2017). When
working in discrete-time, such models correspond to Taylor
expansions of the input-output map. Indeed, a truncated
Volterra series describes the system as the sum of all the
possible monomials in the past inputs and outputs, up to a
certain order. The problem is however the curse of dimen-
sionality: the number of monomials grows quickly w.r.t.
the polynomial degree and the system memory (given e.g.
by the number of past input values that determine the
output). Thus, a careful selection of the relevant compo-
nents to be included in the model is crucial to control the
complexity of the estimator, a problem known as regressors
selection.

Suboptimal solutions are often searched through greedy
approaches like forward/backward subset selection, see for
instance Chen et al. (1989); Billings et al. (1989). These
regressor selection methods have however difficulties in
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handling high-dimensional regression spaces. An interest-
ing option is joint estimation and variable selection. This
can be performed using e.g. the �1-norm regularizer which
leads to the famous LASSO Tibshirani (1996).
More recent approaches proposed to deal with the dimen-
sionality of Volterra models can be found in Birpoutsoukis
et al. (2017); Stoddard et al. (2017). In particular, in
Birpoutsoukis et al. (2017), inspired by ideas developed for
linear system identification in Pillonetto and De Nicolao
(2010), the authors proposed a regularization strategy
suitable for Volterra series with smooth exponential decay.

An alternative route to the approaches mentioned above is
the use of kernel-methods, which lead e.g. to the so called
regularization networks Poggio and Girosi (1990). Here,
an unknown function is determined as the minimizer of
an objective that is sum of two terms: a quadratic loss
and regularizer defined by a positive definite kernel. The
choice of the kernel has a major effect on the quality of
the estimate since it encodes the expected properties of
the function to reconstruct. Just looking at the function
to reconstruct as the unknown system (input-output map),
in recent years kernel-based approaches have been widely
exploited also for nonlinear system identification and pre-
diction, see for instance Espinoza et al. (2005); Hall et al.
(2012).
Another popular model is the polynomial kernel, which has
a deep connection with Volterra series. In fact, it implicitly
encodes all the monomials up to the desired degree r,
a kernel parameter tunable by the user. Regularization
networks for efficient Volterra identification that exploit
this kernel can be found in Franz and Schölkopf (2006).

The approach described in this paper is based on a new
polynomial kernel, named Multiplicative Polynomial ker-
nel (MPK). Similarly to the polynomial kernel, the MPK
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output). Thus, a careful selection of the relevant compo-
nents to be included in the model is crucial to control the
complexity of the estimator, a problem known as regressors
selection.

Suboptimal solutions are often searched through greedy
approaches like forward/backward subset selection, see for
instance Chen et al. (1989); Billings et al. (1989). These
regressor selection methods have however difficulties in
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handling high-dimensional regression spaces. An interest-
ing option is joint estimation and variable selection. This
can be performed using e.g. the �1-norm regularizer which
leads to the famous LASSO Tibshirani (1996).
More recent approaches proposed to deal with the dimen-
sionality of Volterra models can be found in Birpoutsoukis
et al. (2017); Stoddard et al. (2017). In particular, in
Birpoutsoukis et al. (2017), inspired by ideas developed for
linear system identification in Pillonetto and De Nicolao
(2010), the authors proposed a regularization strategy
suitable for Volterra series with smooth exponential decay.

An alternative route to the approaches mentioned above is
the use of kernel-methods, which lead e.g. to the so called
regularization networks Poggio and Girosi (1990). Here,
an unknown function is determined as the minimizer of
an objective that is sum of two terms: a quadratic loss
and regularizer defined by a positive definite kernel. The
choice of the kernel has a major effect on the quality of
the estimate since it encodes the expected properties of
the function to reconstruct. Just looking at the function
to reconstruct as the unknown system (input-output map),
in recent years kernel-based approaches have been widely
exploited also for nonlinear system identification and pre-
diction, see for instance Espinoza et al. (2005); Hall et al.
(2012).
Another popular model is the polynomial kernel, which has
a deep connection with Volterra series. In fact, it implicitly
encodes all the monomials up to the desired degree r,
a kernel parameter tunable by the user. Regularization
networks for efficient Volterra identification that exploit
this kernel can be found in Franz and Schölkopf (2006).

The approach described in this paper is based on a new
polynomial kernel, named Multiplicative Polynomial ker-
nel (MPK). Similarly to the polynomial kernel, the MPK
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by the number of past input values that determine the
output). Thus, a careful selection of the relevant compo-
nents to be included in the model is crucial to control the
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selection.

Suboptimal solutions are often searched through greedy
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handling high-dimensional regression spaces. An interest-
ing option is joint estimation and variable selection. This
can be performed using e.g. the �1-norm regularizer which
leads to the famous LASSO Tibshirani (1996).
More recent approaches proposed to deal with the dimen-
sionality of Volterra models can be found in Birpoutsoukis
et al. (2017); Stoddard et al. (2017). In particular, in
Birpoutsoukis et al. (2017), inspired by ideas developed for
linear system identification in Pillonetto and De Nicolao
(2010), the authors proposed a regularization strategy
suitable for Volterra series with smooth exponential decay.

An alternative route to the approaches mentioned above is
the use of kernel-methods, which lead e.g. to the so called
regularization networks Poggio and Girosi (1990). Here,
an unknown function is determined as the minimizer of
an objective that is sum of two terms: a quadratic loss
and regularizer defined by a positive definite kernel. The
choice of the kernel has a major effect on the quality of
the estimate since it encodes the expected properties of
the function to reconstruct. Just looking at the function
to reconstruct as the unknown system (input-output map),
in recent years kernel-based approaches have been widely
exploited also for nonlinear system identification and pre-
diction, see for instance Espinoza et al. (2005); Hall et al.
(2012).
Another popular model is the polynomial kernel, which has
a deep connection with Volterra series. In fact, it implicitly
encodes all the monomials up to the desired degree r,
a kernel parameter tunable by the user. Regularization
networks for efficient Volterra identification that exploit
this kernel can be found in Franz and Schölkopf (2006).

The approach described in this paper is based on a new
polynomial kernel, named Multiplicative Polynomial ker-
nel (MPK). Similarly to the polynomial kernel, the MPK

encodes all the monomials up to degree r, but it is defined
by the product of r linear kernels, each one equipped with
a distinct set of hyperparameters. The MPK has some
important features w.r.t. the polynomial kernel used in
Franz and Schölkopf (2006). As already said, the poly-
nomial kernel depends only on the polynomial degree r
and it encodes a number of monomials rapidly increas-
ing with r and the system memory. When plugged in a
regularization network, it induces a penalty that cannot
promote any sparsity in the solution. On the contrary,
the MPK is equipped with an augmented set of hyper-
parameters, which allows promoting the monomials w.r.t.
their maximum relative degree, improving regularization
performance. Tests performed both in simulation and with
data coming from a real system show that the MPK
hyperparameters can be tuned via marginal likelihood
optimization or cross-validation.

The paper is organized as follows. In Section 2 we provide
a brief overview on Volterra series and the main iden-
tification approaches adopted. In Section 3 we highlight
some critical aspects of the standard polynomial kernel,
and we introduce our kernel function, the Multiplicative
Polynomial Kernel, highlighting its regularization capabil-
ities. Finally, in Section 4 we report numerical results, in
which we compare performance of the proposed kernel and
the standard polynomial kernel.

2. BACKGROUND

2.1 Volterra series

Let uk and zk be the one dimensional input and out-
put signals at time k. When modeling the system re-
sponse with a discrete time Volterra series of order r
the noisy output yk is assumed to be the sum of mea-
surement noise and r + 1 contributions acting on the
lagged inputs uk, uk−1, uk−2 . . . . Assume that the sys-
tem has finite memory m, and define the input vector
uk = [uk . . . uk−m]. Then we have

yk = zk + ek = h0 +

r∑
i=1

Hi(uk) + ek , (1)

where ek ∼ N
(
0, σ2

n

)
is the measurement noise, h0 is a

constant accounting for the zero-order Volterra contribu-
tion, while the Hi are the i -th Volterra contributions. In
particular, each Hi is defined as the convolution between
uk and a Volterra map hi, namely,

Hi(uk) =

m∑
τ1=0

· · ·
m∑

τi=0

hi (τ1, . . . , τi)

τi∏
τ=τ1

uk−τ . (2)

In this paper, we consider symmetric Volterra series, i.e.,
given a set of lags τ1, . . . , τi, the value of hi is independent
on the lags order. For instance, with i = 2 we have
h2 (τ1, τ2) = h2 (τ2, τ1).
Alternatively, each Hi term in (1) can be rewritten more
compactly as an inner product. Let φi(uk) be a vector
collecting all the distinct monomials with degree i in the
components of uk. We have

Hi(uk) = φT
i (uk)wi,

where wi is the vector collecting the distinct hi coefficients
ordered in accordance with φi, and opportunely scaled to
account for repetitions due to symmetry. More precisely,

the wi entry associated to the monomial
∏m

j=0 u
dj

k−j is the
product between the correspondent hi coefficient scaled by
the multinomial coefficient

(
i

d0,...,dm

)
. Based on the above

definitions, (1) can be rewritten as

yk = φ (uk)
T
w + ek, (3)

where

φ (uk) =
[
h0 φ

T
1 (uk) . . . φ

T
r (uk)

]T
, (4)

w (uk) =
[
w0 w

T
1 . . . wT

r

]T
. (5)

The authors in Birpoutsoukis et al. (2017) have proposed
to learn the input-output relations by directly estimating
the elements of w. This estimation is performed by solving
a least square problem defined by (3), given a data set of
input-output measurements D = {(uk, yk) , k = 1, . . . T}.
It is worth stressing that the applicability of algorithms
based on a least-square approach is strongly limited by
the high computational and memory requirements related
to the dimension of w. Indeed, the number of Volterra
coefficients grows rapidly with the system memory m and
the Volterra order r. More precisely, assuming that the
Volterra maps are symmetric, we have thatwi is composed
of Ni =

(
m+i
i

)
elements, leading to a total number of

N = 1 +
∑r

i=1 Ni parameters to be estimated.

2.2 Polynomial kernel and Volterra series

An alternative solution to accomplish the Volterra series
identification has been proposed in Franz and Schölkopf
(2006). Instead of formulating the identification problem
directly w.r.t. w, the authors rely on kernel based tech-
niques. The input-output map f is assumed to belong
to a reproducing kernel Hilbert space (RKHS) Scholkopf
and Smola (2001), defined by a kernel function k(uk,uj).
Given an input-output dataset D like that previously

introduced, f̂ , the estimate of f , is obtained solving the
following problem,

argmin
f∈H

T∑
t=1

(yt − z(ut))
2
+ γ2||f ||2H , (6)

where the first term of the loss function accounts for the
adherence to experimental data, while the second is the
regularization term, given by the squared RKHS norm
of f ; the balance between these two contributions can be
controlled tuning the hyperparameter γ. According to the

representer theorem, f̂ is expressed in closed form as

f̂(uk) = ẑk =

T∑
t=1

αtk(uk,ut), (7)

where α = [α1, . . . , αT ]
T

is equal to (K + γ2IT )
−1y,

y = [y1, . . . , yT ]
T

denotes the vector containing all the
output measurements, and K is the Kernel matrix, i.e. its
(k, j) entry is Kk,j = k(uk,uj).
For our future use, it is also useful recalling the following
fundamental facts regarding RKHS theory. Under mild
assumptions, a kernel function admits an expansion (pos-
sibly infinite) in terms of basis functions φq, namely,

k(uk,uj) =
∑
q

λqφq(uk)φq(uj), (8)
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encodes all the monomials up to degree r, but it is defined
by the product of r linear kernels, each one equipped with
a distinct set of hyperparameters. The MPK has some
important features w.r.t. the polynomial kernel used in
Franz and Schölkopf (2006). As already said, the poly-
nomial kernel depends only on the polynomial degree r
and it encodes a number of monomials rapidly increas-
ing with r and the system memory. When plugged in a
regularization network, it induces a penalty that cannot
promote any sparsity in the solution. On the contrary,
the MPK is equipped with an augmented set of hyper-
parameters, which allows promoting the monomials w.r.t.
their maximum relative degree, improving regularization
performance. Tests performed both in simulation and with
data coming from a real system show that the MPK
hyperparameters can be tuned via marginal likelihood
optimization or cross-validation.

The paper is organized as follows. In Section 2 we provide
a brief overview on Volterra series and the main iden-
tification approaches adopted. In Section 3 we highlight
some critical aspects of the standard polynomial kernel,
and we introduce our kernel function, the Multiplicative
Polynomial Kernel, highlighting its regularization capabil-
ities. Finally, in Section 4 we report numerical results, in
which we compare performance of the proposed kernel and
the standard polynomial kernel.

2. BACKGROUND

2.1 Volterra series

Let uk and zk be the one dimensional input and out-
put signals at time k. When modeling the system re-
sponse with a discrete time Volterra series of order r
the noisy output yk is assumed to be the sum of mea-
surement noise and r + 1 contributions acting on the
lagged inputs uk, uk−1, uk−2 . . . . Assume that the sys-
tem has finite memory m, and define the input vector
uk = [uk . . . uk−m]. Then we have

yk = zk + ek = h0 +

r∑
i=1

Hi(uk) + ek , (1)

where ek ∼ N
(
0, σ2

n

)
is the measurement noise, h0 is a

constant accounting for the zero-order Volterra contribu-
tion, while the Hi are the i -th Volterra contributions. In
particular, each Hi is defined as the convolution between
uk and a Volterra map hi, namely,

Hi(uk) =

m∑
τ1=0

· · ·
m∑

τi=0

hi (τ1, . . . , τi)

τi∏
τ=τ1

uk−τ . (2)

In this paper, we consider symmetric Volterra series, i.e.,
given a set of lags τ1, . . . , τi, the value of hi is independent
on the lags order. For instance, with i = 2 we have
h2 (τ1, τ2) = h2 (τ2, τ1).
Alternatively, each Hi term in (1) can be rewritten more
compactly as an inner product. Let φi(uk) be a vector
collecting all the distinct monomials with degree i in the
components of uk. We have

Hi(uk) = φT
i (uk)wi,

where wi is the vector collecting the distinct hi coefficients
ordered in accordance with φi, and opportunely scaled to
account for repetitions due to symmetry. More precisely,

the wi entry associated to the monomial
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j=0 u
dj

k−j is the
product between the correspondent hi coefficient scaled by
the multinomial coefficient

(
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d0,...,dm

)
. Based on the above

definitions, (1) can be rewritten as

yk = φ (uk)
T
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where
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h0 φ

T
1 (uk) . . . φ
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, (4)

w (uk) =
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T
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]T
. (5)

The authors in Birpoutsoukis et al. (2017) have proposed
to learn the input-output relations by directly estimating
the elements of w. This estimation is performed by solving
a least square problem defined by (3), given a data set of
input-output measurements D = {(uk, yk) , k = 1, . . . T}.
It is worth stressing that the applicability of algorithms
based on a least-square approach is strongly limited by
the high computational and memory requirements related
to the dimension of w. Indeed, the number of Volterra
coefficients grows rapidly with the system memory m and
the Volterra order r. More precisely, assuming that the
Volterra maps are symmetric, we have thatwi is composed
of Ni =

(
m+i
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)
elements, leading to a total number of

N = 1 +
∑r

i=1 Ni parameters to be estimated.

2.2 Polynomial kernel and Volterra series

An alternative solution to accomplish the Volterra series
identification has been proposed in Franz and Schölkopf
(2006). Instead of formulating the identification problem
directly w.r.t. w, the authors rely on kernel based tech-
niques. The input-output map f is assumed to belong
to a reproducing kernel Hilbert space (RKHS) Scholkopf
and Smola (2001), defined by a kernel function k(uk,uj).
Given an input-output dataset D like that previously

introduced, f̂ , the estimate of f , is obtained solving the
following problem,

argmin
f∈H

T∑
t=1

(yt − z(ut))
2
+ γ2||f ||2H , (6)

where the first term of the loss function accounts for the
adherence to experimental data, while the second is the
regularization term, given by the squared RKHS norm
of f ; the balance between these two contributions can be
controlled tuning the hyperparameter γ. According to the

representer theorem, f̂ is expressed in closed form as

f̂(uk) = ẑk =

T∑
t=1

αtk(uk,ut), (7)

where α = [α1, . . . , αT ]
T

is equal to (K + γ2IT )
−1y,

y = [y1, . . . , yT ]
T

denotes the vector containing all the
output measurements, and K is the Kernel matrix, i.e. its
(k, j) entry is Kk,j = k(uk,uj).
For our future use, it is also useful recalling the following
fundamental facts regarding RKHS theory. Under mild
assumptions, a kernel function admits an expansion (pos-
sibly infinite) in terms of basis functions φq, namely,
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where λq are positive scalars. It can then be proved that
any function in the RKHS induced by the above kernel has
the representation

f(uk) =
∑
q

cqφq(uk), (9)

for suitable coefficients cq. In addition, if all the basis
functions φq are linearly independent, one also has

||f ||2H =
∑
q

c2q
λq

. (10)

This last relation shows how the λq coefficients are related
to each φq in determining the regularization term present
in (6). In particular, small values of λq entail high penal-
ization of φq.

As far as the kernel function is concerned, in Franz and
Schölkopf (2006) the authors considered the polynomial
kernel. In particular, we discuss the inhomogeneous poly-
nomial kernel, defined as

k(r)(uk,uj) =
(
1 + uT

k uj

)r
, (11)

where r is a tunable hyperparameter corresponding to the
degree of the polynomial kernel. As showed in Scholkopf
and Smola (2001), the polynomial kernel in (11) admits
an expansion in the monomials in uk, with degree up to
r. Namely, referring to (8) and (10), we have that the φq

corresponds to the elements of the φ vector defined in (4);
accordingly, 1/λq then defines the penalty assigned to the
relative monomial.

We conclude this subsection with a computational note.

The computation of f̂ involves the inversion of a T ×
T matrix, see (7). The number of operations so scales
with the cube of the data set size, and there is no direct
dependence on N , the dimensions of φ, allowing the use
of high-order Volterra models.

3. PROPOSED KERNEL

The Volterra series learning strategy we propose is based
on a novel polynomial kernel, called Multiplicative Polyno-
mial Kernel (MPK). Compared to the standard polyno-
mial kernel reported in (11), our kernel is equipped with
a set of parameters which allows to assign suitable priors
to the different basis functions of the RKHS, thus leading
to better performance in terms of estimation and general-
ization. Before describing the proposed kernel function we
highlight some critical issues of standard inhomogeneous
polynomial kernel.

3.1 Penalties induced by (11)

As stated in Rasmussen and Williams (2006) (Chapter
4.2.2), polynomial kernels are not widely used in regression
problems, since they are prone to overfitting, in particular,
in presence of high dimensional inputs and when the degree
is greater than two. Indeed, in the kernel formulation
given in (11) there are not parameters that allow to weigh
differently the monomials composing the RKHS.

To clarify this concept we consider a simple example, a
third order Volterra series with m = 1 defined as follow

f(uk) = u3
k + u2

kuk−1 + 0.5. (12)

We compute the λq obtained with the standard polynomial
kernel expanding (11), and comparing the result with (8).
For the sake of clarity, we will denote with λd0,...,dm the

penalty coefficient associated to the monomial
∏m

τ=0 u
dτ

k−τ .
The kernel expansion is

k(3)(ui,uj) = u3
iu

3
j + u3

i−1u
3
j−1

+ 3u2
iui−1u

2
juj−1 + 3uiu

2
i−1uju

2
j−1

+ 3u2
iu

2
j + 3u2

i−1u
2
j−1 + 6uiui−1ujuj−1

+ 3uiuj + 3ui−1uj−1 + 1.

Then, by inspection, we obtain

λ3,0 = λ0,3 = 1, λ2,1 = λ1,2 = 3,

λ2,0 = λ0,2 = 3, λ1,1 = 6,

λ1,0 = λ0,1 = 3, λ0,0 = 1.

These values show that (11) assigns penalties based on the
monomial degree, and promoting mixed terms. This trend
might not be representative of the Volterra kernel, leading
to the need of more training data to obtain accurate
estimates. For instance, consider the function reported in
(12). It is evident that the λ values obtained with (11)
do not describe properly the contributions of the different
monomials, since, for example, the higher values of λ are
assigned to monomials that are not present.

3.2 Multiplicative Polynomial Kernel

The kernel function we propose to model the r order
Volterra series is given by the product of r linear kernels,
and it is formally defined as

k(r)(uk,uj) =

r∏
i=1

(
σ0i + (uk)

TΣiuj

)
, (13)

where the matrices Σi ∈ R(m+1)×(m+1) are diagonal. In

particular, for each i we have Σi = diag
([

σ
(i)
0 , . . . , σ

(i)
m

])
,

with the diagonal elements greater of equal than zero.
Exploiting the kernel properties it can be easily shown
that the function defined in (13) is a well-defined kernel
function, since it is the product of several valid kernel
functions, see Rasmussen and Williams (2006).

3.3 Penalties induced by the MPK

In this subsection we analyze the advantages of the pro-
posed kernel function, focusing on the role played by the
kernel parameters. To this aim, we consider the example
analyzed in the previous subsection, that is, the identi-
fication of the input-output behavior of a Volterra series
with r = 3 and m = 1. Starting from the kernel definition
given in (13), through standard algebraic computations,
we can derive the penalties coefficients as functions of the
MPK parameters. In particular, the penalties assigned to
monomials of degree three are

λ3,0 =

3∏
j=1

σ
(j)
0 , λ0,3 =

3∏
j=1

σ
(j)
1 ,

λ2,1 =

3∑
j=1

σ
(j)
1

∏
l �=j

σ
(l)
0 , λ1,2 =

3∑
j=1

σ
(j)
0

∏
l �=j

σ
(l)
1 ,

the ones assigned to monomials of degree two are

λ2,0 =

3∑
j=1

σ0j

∏
l �=j

σ
(l)
0 , λ0,2 =

3∏
j=1

σ0j

∏
l �=m

σ
(l)
1 ,

λ1,1 =
3∑

j=1

σ0j

∑
l1 �=l2 �=j

σ
(l1)
0 σ

(l2)
1 ,

and, finally, the ones assigned to monomials of degree one
and zero are

λ1,0 =

3∑
j=1

σ
(j)
0

∏
l �=j

σ0l , λ0,1 =

3∑
j=1

σ
(j)
1

∏
l �=j

σ0l ,

λ0,0 =

3∏
j=1

σ0j ,

Some interesting insights can be obtained from the pre-
vious penalties expressions. Notice that the MPK param-
eters allow penalizing the monomials w.r.t. their relative
degree. For instance, consider the penalties assigned to
monomials that contains uk, namely, λ3,0, λ2,1, λ1,2, λ2,0,

λ1,1, and λ1,0, as function of σ
(j)
0 , with j = 1, 2, 3. Ana-

lyzing these expression we can appreciate that to promote
monomials in which uk appears with degree i at least i of

the λ
(j)
0 parameters need to be significantly greater than

zero. On the contrary, to penalize monomials in which uk

appears with relative degree greater than i we need to set

to zero r−i of the σ
(j)
0 elements. Thus, referring to the test

function in (12), where the maximum relative degree of uk

and uk−1 are, respectively, 3 and 1, we can exclude part
of the monomials that do not influence the input-output
defining

σ01 = 1 ,
[
σ
(1)
0 σ

(1)
1

]
= [1 1] ,

σ02 = 1 ,
[
σ
(2)
0 σ

(2)
1

]
= [1 0] ,

σ03 = 1 ,
[
σ
(3)
0 σ

(3)
1

]
= [1 0] , (14)

which determine the following penalties,

λ3,0 = 1, λ2,1 = 1, λ0,3 = λ1,2 = 0,

λ2,0 = 2, λ0,2 = 0, λ1,1 = 2,

λ1,0 = 2, λ0,1 = 1, λ0,0 = 1. (15)

The hyperparameters tuning can be accomplished relying
on empirical methods, like cross validation, or optimizing
a given loss function, like Marginal Likelihood (ML).

3.4 Parametrization of the Σi matrices

Notice that the MPK is given by the product of r equal
blocks. Consequently, permuting the Σi matrices we obtain
different configurations of the MPK hyperparameters asso-
ciated to the same set of penalties. For instance, referring
to the test case analyzed in the previous subsection, the
configuration reported in (14) and the following configu-
ration are associated to the same set of penalties, i.e. (15),

σ01 = 1 ,
[
σ
(1)
0 σ

(1)
1

]
= [1 0] ,

σ02 = 1 ,
[
σ
(2)
0 σ

(2)
1

]
= [1 1] ,

σ03 = 1 ,
[
σ
(3)
0 σ

(3)
1

]
= [1 0] .

When optimizing the hyperparameters by ML, this fact
could lead to undesired behaviors, due to the presence of
several local maxima. To avoid such behaviors, we propose
an iterative parametrization of the Σi diagonal elements.
More specifically, the Σi, are defined by a backward
iteration as follows,

Σr = diag
([

a
(r)
0 , . . . , a(r)m

])
, (16)

Σi = Σi+1 + diag
([

a
(i)
0 , . . . , a(i)m

])
,

where the a
(i)
j elements are greater of equal than zero.

We conclude by emphasizing the relation between the
proposed re-parameterization and the relative degree with

which each term appears. Notice that increasing a
(i)
j we

promote simultaneously all the monomials in which uk−j

appears with relative degree up to i. Moreover, to penalize
monomials in which uk−j appears with relative degree

greater than i we need to set to zero the a
(l)
j with l > i.

4. EXPERIMENTAL RESULTS

4.1 Simulated environment

In this set of experiments we test the performance of the
MPK in a simulated environment, the benchmark system
introduced in Spinelli et al. (2005), i.e. a third order
Volterra series described by the following equation

zk = uk + 0.6uk−1 + 0.35(uk−2 + uk−4)− 0.25u2
k−3

+ 0.2(uk−5 + uk−6) + 0.9uk−3 + 0.25ukuk−1 + 0.75u3
k−2

− uk−1uk−2 + 0.5(u2
k + ukuk−2 + uk−1uk−3). (17)

The MPK-based estimator is compared with the one
based on the polynomial kernel reported in (11), hereafter
denoted with PK; both for Pk and MPK we considered
r = 3. Input signals are 1000 samples obtained from
a realization of Gaussian noise. Concerning mtr

u , mts
u ,

σtr
u and σts

u , respectively, the input mean and standard
deviation of the training and test samples, we consider
four different scenarios:

• Experiment 1 : mtr
u = mts

u = 0, σtr
u = σts

u = 4;
• Experiment 2 : mtr

u = mts
u = 0, σtr

u = σts
u = 2;

• Experiment 3 : mtr
u = −12, mts

u = 12, σtr
u = σts

u = 4;
• Experiment 4 : mtr

u = −12, mts
u = 12, σtr

u = σts
u = 2.

In all the experiments the noise standard deviation is
σn = 4. The PK and MPK hyperparameters have been
trained optimizing the ML of the training samples. As con-
cerns the optimization, we used standard gradient descent
algorithm, with adaptive learning rate. The two estima-
tors are implemented in PyTorch Paszke et al. (2017), to
exploit automatic differentiation functionalities.
The four experiments can be grouped in two sets. Gen-
eralization properties are stressed more in Experiment
3 and Experiment 4 since mtr

u �= mts
u , and hence the

training and test input signals are significantly different
with each other; in particular, the mean values are such
that with high probability the test inputs are outside the
3σ of training inputs distribution. In Experiment 1 (resp.
Experiment 3 ) and Experiment 2 (resp. Experiment 4 ) we
considered different values of the input standard deviation
in order to analyze the estimators behaviors with different
system excitations.
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trained optimizing the ML of the training samples. As con-
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Fig. 1. Boxplots of the 100 test set Fit% obtained in the different scenarios considered.

For each experiment we performed a Monte Carlo of 100
simulations. In each simulation the same training and test
data sets have been used to implement and test the MPK
and PK based estimators. Results are reported in Figure
1. Performance is measured by the percentage fit (Fit%),
defined as

100%

(
1− ||z − ẑ||1

||z − z̄||1

)
,

where z and ẑ are the vectors collecting the real and
estimated system output, while z̄ is the mean of z.

In Figure 1, we visualized the results obtained through
some boxplots. The estimator based on the MPK out-
performs the standard polynomial kernel, since in all the
tests the Fit% obtained with MPK are higher than the
ones obtained with PK. Besides improving the estima-
tion accuracy, the MPK parametrization improves also
the generalization performance. Indeed, comparing results
obtained in Experiment 1 and Experiment 3, we can appre-
ciate how the penalties learned by the MPK estimator by
optimizing ML provides robustness to variations of the in-
puts distribution; more specifically, the MPK performance
decreases less than the PK performance when the test
input locations that are far from the training inputs.
As far as variations of the system excitation, comparing
results obtained in Experiment 3 and Experiment 4, we can
observe how not sufficiently exciting training samples can
lead to a bad identification of the MPK parameters. Notice
how from Experiment 3 to Experiment 4, the variance of
MPK based estimator grows up more that the one of the
PK based, highlighting the importance of using sufficiently
exciting input trajectories.

4.2 Identification of the Silverbox system

In this subsection we test the estimators based on MPK
and PK with data collected on a real system, the Silverbox
Wigren and Schoukens (2013). The Silverbox is an electri-
cal system that simulates a mass-spring-damper system.
The spring exhibits nonlinear behaviors, and the system
is described by the following differential equation

mz̈(t) + dż(t) + k1z(t) + k3z
3(t) = u(t),

where z and u are, respectively, the mass displacement and
the input force applied to the mass, while d, k1, and k3 are
the parameters of the damper and the nonlinear spring.
We used the MPK and PK based estimators to learn the
evolution of the mass displacement, modeling the unknown
target function with a third order polynomial. We consid-
ered as input of the model the past m = 5 u and y, namely,
at time k, the model input and output are, respectively,
[uk . . . uk−m zk−1 . . . zk−m] and zk. Notice that, due to the
dependence on zk−1 . . . zk−m, this input-output model is a
polynomial NARMAX model. The original training and
test dataset are publicly available 1 . The training dataset
accounts approximately for 80000, obtained inputting to
the system an odd random phase multisine signal, while
the test set accounts for approximately 40000 samples,
collected exciting the system with filtered Gaussian noise.
To further stress generalization properties, we derived and
trained the estimators using just the first 200 samples of
the training dataset. Besides testing the one-step-ahead
prediction performance, we measured also the simula-
tion performance: given an initial state of the system we
simulate its evolution evaluating iteratively the function
learned for the one-step-ahead problem, inputting to the
estimator the past predicted output instead of the mea-
sured output. In this context, we noticed that optimizing
the hyperparameters through cross-validation increases
the simulation performance. To deal with the consider-
able number of parameters, we adopted a gradient-based
strategy. Specifically, we randomly select 5 partitions of
the training data. Each partition accounts for two sets,
composed of 100 samples. As loss function we considered
the sum of the mean squared errors (MSEs) in validation.
Namely, for each partition, we derive the estimator based
on the first set, and we compute the MSE of the second
set. The loss function is the sum of the MSEs. The kernel
hyperparameters are updated minimizing the loss though
a gradient-based procedure, iterated until convergence of
the loss.
Performance is reported in Table 1. As before, we compare
the one-step-ahead performance using the Fit%. Simula-
tion performance are measured both with Fit% and root

1 http://www.nonlinearbenchmark.org/

Table 1. One-step-ahead (Pred.) and simulation
(Sim.) performance of the PK and MPK based es-

timators obtained in the Silverbox test dataset.

Pred. (Fit%) Sim. (Fit%) Sim. (RMSE [mV])

PK 97.79 81.13 17.2213

MPK 99.70 98.67 0.8862
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Fig. 2. Evolution of the test output together with the
simulation errors ePK and eMPK .

mean squared error (RMSE). The MPK outperforms the
standard polynomial kernel, both in one-step-ahead pre-
diction and simulation. The gap is particularly evident in
simulation, where MPK significantly outperforms PK; see
Figure 2 to compare the evolution of the simulation errors.
Despite we used just the first 200 training samples to
derive the model, and hyperparameters optimization was
focused on optimizing the one-step-ahead performance,
the MPK performance is close to the best results obtained
in this benchmark.

5. CONCLUSIONS

In this paper we have introduced the MPK. Compared
to the standard polynomial kernel, the MPK is equipped
with a set of parameters that allows to better select the
monomials that really influence the system output. As
proven by numerical results, this fact entails improvements
in terms of accuracy and generalization.
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