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a b s t r a c t

Forecast reconciliation is a post-forecasting process that involves transforming a set
of incoherent forecasts into coherent forecasts which satisfy a given set of linear
constraints for a multivariate time series. In this paper, we extend the current state-
of-the-art cross-sectional probabilistic forecast reconciliation approach to encompass
a cross-temporal framework, where temporal constraints are also applied. Our pro-
posed methodology employs both parametric Gaussian and non-parametric bootstrap
approaches to draw samples from an incoherent cross-temporal distribution. To improve
the estimation of the forecast error covariance matrix, we propose using multi-step
residuals, especially in the time dimension where the usual one-step residuals fail.
To address high-dimensionality issues, we present four alternatives for the covariance
matrix, where we exploit the two-fold nature (cross-sectional and temporal) of the
cross-temporal structure, and introduce the idea of overlapping residuals. We assess
the effectiveness of the proposed cross-temporal reconciliation approaches through a
simulation study that investigates their theoretical and empirical properties and two
forecasting experiments, using the Australian GDP and the Australian Tourism Demand
datasets. For both applications, the optimal cross-temporal reconciliation approaches
significantly outperform the incoherent base forecasts in terms of the continuous ranked
probability score and the energy score. Overall, the results highlight the potential of
the proposed methods to improve the accuracy of probabilistic forecasts and to address
the challenge of integrating disparate scenarios while coherently taking into account
short-term operational, medium-term tactical, and long-term strategic planning.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Forecast reconciliation is a post-forecasting process
ntended to improve the quality of forecasts for a system
f linearly constrained multiple time series (Hyndman
t al., 2011, Panagiotelis et al., 2021). There are many
ields where forecast reconciliation is useful, such as when
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forecasting demand in supply chains with product cate-
gories (Punia et al., 2020, Kourentzes & Athanasopoulos,
2021), electricity demand and power generation (Spiliotis
et al., 2020, Ben Taieb et al., 2021), GDP and its compo-
nents (Athanasopoulos et al., 2020), tourist flows across
geographic regions and travel purposes (Kourentzes &
Athanasopoulos, 2019), and more. Moreover, effective
decision-making depends on the support of accurate and
coherent forecasts, making the use of forecast recon-
ciliation methods increasingly popular in recent years
(Athanasopoulos et al., 2023).
ross-temporal probabilistic forecast reconciliation: Methodological and
016/j.ijforecast.2023.10.003.
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Temporal reconciliation is another important aspect of
orecast reconciliation that can help organizations to bet-
er align their forecasting efforts. This approach consists in
econciling forecasts that are generated at different time
orizons, such monthly, quarterly, or annual. For example,
retail company may need to reconcile monthly forecasts
f sales with quarterly forecasts of revenue to ensure that
hey are aligned and consistent.

Classical reconciliation approaches (bottom-up, top-
own, middle-out; see Dunn et al., 1976, Gross & Sohl,
990, Athanasopoulos et al., 2009, respectively) addressed
he issue of incoherent forecasts in a cross-sectional hier-
rchy by forecasting only one level, and using these to
enerate forecasts for the remaining series. All of these
pproaches ignore useful information available at other
evels (Pennings & van Dalen, 2017). Recently, hierarchical
orecasting (Fliedner, 2001) has significantly evolved to
nclude modern least-squares-based reconciliation tech-
iques in the cross-sectional framework (Hyndman et al.,
011, Wickramasuriya et al., 2019, Panagiotelis et al.,
021), later extended to temporal hierarchies (Athana-
opoulos et al., 2017, Nystrup et al., 2020). Obtaining
oherent forecasts across both the cross-sectional and
emporal dimensions (known as cross-temporal coher-
nce) has been limited to sequential approaches that
ddress each dimension separately (Kourentzes & Athana-
opoulos, 2019, Yagli et al., 2019, Punia et al., 2020,
piliotis et al., 2020). Recently, Di Fonzo and Girolimetto
2023a) suggested a unified reconciliation step that takes
nto account both the cross-sectional and temporal di-
ensions, instead of dealing with them separately, uti-

izing the entire cross-temporal hierarchy.
However, these cross-temporal works focus on point

orecasting, and do not consider distributional or proba-
ilistic forecasts (Gneiting & Katzfuss, 2014). In the cross-
ectional and temporal frameworks, there have been some
evelopments towards probabilistic forecasting, includ-
ng Ben Taieb et al. (2017, 2021), Panamtash and Zhou
2018), Jeon et al. (2019), Yang (2020), Yagli et al. (2020),
orani et al. (2021), Corani et al. (2023), Zambon et al.
2022), and Wickramasuriya (2023). Panagiotelis et al.
2023) made a significant contribution by formalizing
ross-sectional probabilistic reconciliation using the geo-
etric framework for point forecast reconciliation of Pana-
iotelis et al. (2021). They show how a reconciled forecast
an be constructed from an arbitrary base forecast when
ts density is available and when only a sample can
e drawn. They also show that in the case of elliptical
istributions, the correct predictive distribution can be
ecovered via linear reconciliation, regardless of the base
orecast location and scale parameters, and derive condi-
ions for this to hold in the special case of reconciliation
ia projection.
In this paper, we extend cross-sectional probabilistic

econciliation to the cross-temporal case, working on
ssues related to the two-fold nature of this framework.
irst, we revise and develop the notation proposed by Di
onzo and Girolimetto (2023a) to generalize the work
f Panagiotelis et al. (2023). This allows us to move
rom cross-temporal point reconciliation to a probabilis-
ic setting through the generalization of definitions and
2

theorems well established in the cross-sectional frame-
work. Second, we propose solutions to draw a sample
from the base forecast distribution according to either
a parametric approach that assumes Gaussianity or a
non-parametric approach that bootstraps the base model
residuals. Third, we propose some solutions to specific
problems that arise when combining the cross-sectional
and temporal dimensions. We propose using multi-step
residuals to estimate the relationships between different
forecast horizons when we deal with temporal levels,
since one-step residuals are not suitable for this pur-
pose. To solve high-dimensionality issues we introduce
the idea of overlapping residuals and consider alternative
forms for constructing the covariance matrix. Fourth, we
propose new shrinkage procedures for reconciliation that
aim to identify a feasible cross-temporal structure. The
algorithms described in this paper are implemented in
the FoReco package (Girolimetto and Di Fonzo, 2023a) for
R (R Core Team, 2022). Furthermore, the online appendix
contains complementary materials on methodological and
practical issues, and supplementary tables and graphs
related to the empirical applications.

The remainder of the paper is structured as follows.
In Section 2, we provide a unified notation for the cross-
sectional, temporal, and cross-temporal point reconcili-
ation. We generalize the cross-sectional definitions and
theorems developed by Panagiotelis et al. (2023) in Sec-
tion 3, and propose both a parametric Gaussian and a non-
parametric bootstrap approach to draw a sample from
the base forecast distribution. In Section 4, we analyze
the structure of the cross-temporal covariance matrix,
proposing four alternative forms, and propose shrinkage
approaches for reconciliation. In addition, we explore
cross-temporal residuals (overlapping and multi-step)
looking at their advantages and limitations. Two empirical
applications using the Australian GDP and the Australian
Tourism Demand datasets are considered in Sections 5
and 6, respectively.1 Finally, Section 7 presents conclu-
sions and a future research agenda on this and other
related topics.

2. Notation and definitions

Let yt = [y1,t , . . . , yi,t , . . . , yn,t ]′ be an n-variate lin-
early constrained time series observed at the most tem-
porally disaggregated level, with a seasonality of period m
(e.g., m = 12 for monthly data, m = 4 for quarterly data,

= 24 for hourly data). Suppose that the constraints
are expressed by linear equations such that (Di Fonzo &
Girolimetto, 2023a)

C csyt = 0(na×1), t = 1, . . . , T , (1)

where C cs is the (na × n) zero-constraints cross-sectional
atrix that can be seen as the coefficient matrix of a

inear system with na equations and n variables.2
An example is a hierarchical time series where se-

ies at upper levels can be expressed by appropriately

1 A complete set of results is available at the GitHub repository
https://github.com/danigiro/ctprob.
2 Hyndman (2022) and Girolimetto and Di Fonzo (2023b) show

that this zero-constrained representation is more general and
computationally efficient.

https://github.com/danigiro/ctprob
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Fig. 1. (a) A simple two-level cross-sectional hierarchy for 3 time series with na = 1 and nb = 2. (b) A temporal hierarchy for a quarterly series
(m = 4 and K = {4, 2, 1}).
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summing part or all of the series at the bottom level.
Fig. 1(a) shows the two-level hierarchical structure for
three linearly constrained time series such that yT ,t =

yX,t + yY ,t , ∀t = 1, . . . , T . Now let yt =
[
u′
t b′

t

]′,
where ut = [y1,t , . . . , yna,t ]

′ is the na-vector of upper-
level time series, and bt =

[
y(na+1),t . . . yn,t

]′ is the
nb-vector of bottom-level time series with n = na + nb.
The upper- and lower-level time series are connected by
the cross-sectional aggregation matrix Acs such that ut =

Acsbt . Following Girolimetto and Di Fonzo (2023b), we can
always construct a zero-constraints cross-sectional matrix
from the aggregation matrix, C cs =

[
Ina −Acs

]
, where Ina

is an identity matrix of dimension na. Finally, the cross-

sectional structural matrix is given by Scs =

[
Acs
Inb

]
,

providing the structural representation (Hyndman et al.,
2011) yt = Scsbt . Considering the hierarchical example in
Fig. 1(a), we have

Acs =
[
1 1

]
, C cs =

[
1 −1 −1

]
and

Scs =

[1 1
1 0
0 1

]
.

In general, there is no reason for ut to be restricted to
simple sums of bt . Therefore, Acs ∈ Rna×nb may contain
any real values, and not only 0s and 1s.

Considering now the temporal framework, we denote
as K = {kp, kp−1, . . . , k2, k1} the set of p factors of m, in
descending order, where k1 = 1 and kp = m (Athana-
sopoulos et al., 2017). For example, for quarterly time
series m = 4, p = 3, and K = {4, 2, 1}. Given a factor k of
m, and assuming that T = Nm (where N is the length of
the most temporally aggregated version of the series), we
can construct a temporally aggregated version of the time
series of a single variable {y i,t}t=1,...,T , through the non-
overlapping sums of its k successive values, which has a

seasonal period equal to Mk =
m
k
: x[k]

i,j =

jk∑
t=(j−1)k+1

yi,t ,

where j = 1, . . . ,Nk, i = 1, . . . , n, Nk =
T
k
, and x[1]

i,j = yi,t .
efine τ as the observation index of the most aggregate
evel kp. For a fixed temporal aggregation order k ∈ K,
e stack the observations in the column vector x[k]

i,τ =

x[k] x[k]
. . . x[k]

]′

, and obtain the
i,Mk(τ−1)+1 i,Mk(τ−1)+2 i,Mkτ a

3

vector for all the temporal aggregation orders xi,τ =[
x[kp]
i,τ x[kp−1]′

i,τ . . . x[1]′
i,τ

]′

, τ = 1, . . . ,N . The structural
representation of the temporal hierarchy (Athanasopoulos

et al., 2017) is then xi,τ = S tex[1]
i,τ , where S te =

[
Ate
Im

]
is the [(m + k∗) × m] temporal structural matrix, Ate =[
1kp I m

kp−1
⊗ 1kp−1 . . . I m

k2
⊗ 1k2

]′

is the (k∗
× m)

temporal aggregation matrix with k∗
=

∑
k∈K\{k1}

Mk, the

number of upper time series of the temporal hierarchy,
1kp is a (kp × 1) vector of all ones, and ⊗ is the Kronecker
product. For each series xi,τ , i = 1, . . . , n, we have also
the zero-constrained representation

C texi,τ = 0[k∗×(m+k∗)],
τ = 1, . . . ,N
i = 1, . . . , n , (2)

where C te = [Ik∗ −Ate] is the [k∗
× (m + k∗)] zero-

constraints temporal matrix. Fig. 1(b) shows the hierar-
chical representation of a quarterly time series, for which
m = 4, K = {4, 2, 1}, and

Ate =

[1 1 1 1
1 1 0 0
0 0 1 1

]
, S te =

[
Ate
I4

]
and

C te =

[1 0 0 −1 −1 −1 −1
0 1 0 −1 −1 0 0
0 0 1 0 0 −1 −1

]
.

hen we temporally aggregate each series, the cross-
ectional constraints for the most temporally disaggre-
ated series (1) hold for all the temporal aggregation
rders such that C csx[k]

j = 0(na×1) for k ∈ K and j =

, . . . ,Nk, where x[k]
j =

[
u[k]′
j b[k]′

j

]′

with u[k]
j =

x[k]
1, j . . . x[k]

na, j

]′

is the na-vector of upper time series,

nd b[k]
j =

[
x[k]
(na+1), j . . . x[k]

n, j

]′

is the nb-vector of
ottom time series in the temporal hierarchy.
To include both cross-sectional and temporal con-

traints at the same time in a unified framework, we stack
he series into a [n× (m+k∗)] matrix X τ , where we recall
hat n, m, and k∗ respectively represent the total number
f time series, the seasonal period, and the number of
pper time series of the temporal hierarchy. The rows

nd columns represent the cross-sectional and temporal
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Fig. 2. Visual representation of the zero-constraints cross-temporal matrix C ct defined in (3) for a system of 3 linearly constrained quarterly time
series (see Fig. 1). The four upper rows describe the cross-sectional constraints (one for each quarter), the remaining rows the temporal constraints
(one for each of the three time series). Colours legend: 0s in white, 1s in black, −1s in red.
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X̂

M
(

dimensions, respectively:

X τ =

⎡⎢⎣x′

1,τ
...

x′
n,τ

⎤⎥⎦ =

[
U [kp]
τ U [kp−1]

τ . . . U [1]
τ

B[kp]
τ B[kp−1]

τ . . . B[1]
τ

]
,

here for any fixed k, U [k]
τ is the (na×Nk) matrix grouping

he upper time series, and B[k]
τ is the (nb × Nk) matrix

rouping the bottom time series. For example, for the
ross-temporal structure of Fig. 1, we have for τ = 1

1 =

⎡⎢⎣ x[4]
T ,1 x[2]

T ,1 x[2]
T ,2 yT ,1 yT ,2 yT ,3 yT ,4

x[4]
X,1 x[2]

X,1 x[2]
X,2 yX,1 yX,2 yX,3 yX,4

x[4]
Y ,1 x[2]

Y ,1 x[2]
Y ,2 yY ,1 yY ,2 yY ,3 yY ,4

⎤⎥⎦ ,
for τ = 2

2 =

⎡⎢⎣ x[4]
T ,2 x[2]

T ,3 x[2]
T ,4 yT ,5 yT ,6 yT ,7 yT ,8

x[4]
X,2 x[2]

X,3 x[2]
X,4 yX,5 yX,6 yX,7 yX,8

x[4]
Y ,2 x[2]

Y ,3 x[2]
Y ,4 yY ,5 yY ,6 yY ,7 yY ,8

⎤⎥⎦ ,
nd so on. Further, C csX τ = 0[na×(m+k∗)] and C teX ′

τ =

0(k∗×n). We can consider the cross-temporal framework
as a generalization of the cross-sectional and tempo-
ral frameworks that simultaneously takes into account
both types of constraints. The cross-sectional reconcili-
ation approach proposed by Hyndman et al. (2011) can
be obtained by assuming m = 1, while the temporal
one (Athanasopoulos et al., 2017) is obtained when n = 1
(with na = 0 and nb = 1).

Di Fonzo and Girolimetto (2023a) show that the cross-
temporal constraints working on the complete set of
observations corresponding to time period τ = 1, . . . ,N
can be expressed in a zero-constrained representation
through the full rank [(n m + nk∗) × n(m + k∗)]
a g

4

zero-constraints cross-temporal matrix C ct , such that

C ct =

[
C∗

In ⊗ C te

]
H⇒ C ctxτ = 0[(nam+nk∗)×1], (3)

where xτ = vec(X ′

τ ) = [x′

1,τ , . . . , x
′
n,τ ]

′, C∗ = [0(nam×nk∗)
Im ⊗ C cs]P ′, P is the commutation matrix (Magnus &
Neudecker, 2019, p. 54) such that Pvec(X τ ) = vec(X ′

τ ),
and the operator vec(·) converts a matrix into a vector.
Fig. 2 shows a visual example for the zero-constraints
cross-temporal matrix. A structural representation can be
considered as well: xτ = Sctb[1]

τ = s(b[1]
τ ), where

Sct = Scs ⊗ S te (4)

is the [n(k∗
+ m) × nbm] cross-temporal summation ma-

trix, s : Rnbm → Rn(m+k∗) is the operator describing
he pre-multiplication by Sct , and b[1]

τ = vec(B[1]′
τ ). In

Fig. 3, we represent Sct for a system of three linearly
constrained quarterly time series (see Fig. 1). In agree-
ment with Panagiotelis et al. (2021), xτ lies in an (nbm)-
dimensional subspace sct of Rn(k∗+m), which we refer to
as the cross-temporal coherent subspace, spanned by the
columns of Sct .

2.1. Optimal point forecast reconciliation

For h = 1, . . . ,H , let

h =

⎡⎢⎣̂x′

1,h
...

x̂′

n,h

⎤⎥⎦ =

[
Û [m]

h . . . Û [k]
h . . . Û [1]

h

B̂[m]

h . . . B̂[k]
h . . . B̂[1]

h

]
,

be the h-step-ahead base forecasts, where Û [k]
h is the (na×

k) matrix grouping the upper time series, B̂[k]
h is the

nb × Mk) matrix grouping the bottom time series for a

iven temporal aggregation order k, and H is the forecast
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orizon for the most temporally aggregated time series.
ased on the example in Fig. 1 for H = 1, we have that

1 =

⎡⎢⎣ x̂[4]
T ,1 x̂[2]

T ,1 x̂[2]
T ,2 ŷT ,1 ŷT ,2 ŷT ,3 ŷT ,4

x̂[4]
X,1 x̂[2]

X,1 x̂[2]
X,2 ŷX,1 ŷX,2 ŷX,3 ŷX,4

x̂[4]
Y ,1 x̂[2]

Y ,1 x̂[2]
Y ,2 ŷY ,1 ŷY ,2 ŷY ,3 ŷY ,4

⎤⎥⎦ .
The matrix X̂h contains incoherent forecasts, such as
ct̂xh ̸= 0[(nam+nk∗)×1] with h = 1, . . . ,H and x̂h =

vec(X̂ ′

h). In this framework, the definition for forecast
reconciliation in the cross-sectional framework given by
Panagiotelis et al. (2021) can be generalized as follows:

Definition 2.1. Forecast reconciliation adjusts the base
forecast x̂h by finding a mapping ψ : Rn(m+k∗)

→ s such
that x̃h = ψ (̂xh), where x̃h ∈ s is the vector of the
reconciled forecasts.

For a given forecast horizon h = 1, . . . ,H , the mapping
ψ may be defined as a projection onto s given by (Pana-
giotelis et al., 2021, Di Fonzo & Girolimetto, 2023a):

xh = ψ (̂xh) = Mx̂h, (5)

where M = In(m+k∗) − ΩctC ′

ct

(
C ctΩctC ′

ct

)−1 C ct for a pos-
itive definite matrix Ωct , and x̃h = vec(X̃ ′

h). Wickrama-

suriya et al. (2019) showed that the minimum variance i

5

linear unbiased reconciled forecasts satisfying the unbi-
asedness condition E(̃xh − xh) = 0 has solution (5) when
Ωct = Var(̂xh − xh).

Alternatively, the cross-temporal reconciled forecasts
Xh may be found according to the structural approach
proposed by Hyndman et al. (2011) for the cross-sectional
framework, yielding x̃h = SctGx̂h for some matrix G . Wick-
amasuriya et al. (2019) showed that this leads to a
olution equivalent to the cross-temporally reconciled
orecasts in (5), given by

h = ψ (̂xh) = (s ◦ g) (̂xh) = SctGx̂h, (6)

here G = (S ′

ctΩ
−1
ct Sct )−1S ′

ctΩ
−1
ct , and M = SctG . In

his case, ψ is the composition of two transformations,
ay s ◦ g , where g : Rn(m+k∗)

→ Rnbm is a continuous
unction. In Online Appendix A, we report some cross-
ectional, temporal, and cross-temporal approximations
or the covariance matrix to be used in (5) and (6).

.2. Cross-temporal bottom-up forecast reconciliation

The classic bottom-up approach (Dunn et al., 1976,
angerfield & Morris, 1992) consists in simply summing
p the base forecasts of the most disaggregated level

n the hierarchy to obtain forecasts of the upper-level
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eries. To reduce the computational cost involved in op-
imal cross-temporal reconciliation, we may be inter-
sted in applying a reconciliation along only one di-
ension (cross-sectional or temporal) and reconstructing

he cross-temporal structure using a partly bottom-up
pproach (Di Fonzo & Girolimetto, 2022a, 2023b, Sanguri
t al., 2022).
Fig. 4 provides a visual representation of partly

ottom-up in a two-step cross-temporal reconciliation
pproach. On the left (Fig. 4(a)), we first compute the
ross-sectionally reconciled forecasts at the highest fre-
uency (k = 1) and then apply temporal bottom-up to
btain coherent cross-temporal forecasts. On the right
Fig. 4(b)), we first compute temporally reconciled fore-
asts for the most disaggregated cross-sectional level, and
hen apply the cross-sectional bottom-up. We respec-
ively denote these two-step reconciliation approaches
s ct(recte, bucs) and ct(reccs, bute), where ‘recte’ and ‘reccs’
enote a forecast reconciliation approach in the temporal
nd cross-sectional dimensions, and ‘bucs’ and ‘bute’ de-
ote using bottom-up in the cross-sectional and temporal
imensions, respectively. It is worth noting that the sim-
le cross-temporal bottom-up approach corresponds to
t(bucs, bute) = ct(bute, bucs) = ct(bu).

. Probabilistic forecast reconciliation

To introduce the idea of coherence and probabilistic
orecast reconciliation, we adapt the notations and the
ormal definitions introduced in Wickramasuriya (2023)
nd Panagiotelis et al. (2023) for the cross-sectional prob-
bilistic case. These definitions can also be generalized to
he cross-temporal framework by following the approach
eveloped by Corani et al. (2023) for count data. However,
n this paper we only focus on the continuous case.

Our aim is to extend these definitions to cross-temporal
oherent probabilistic forecasts and cross-temporal prob-
bilistic forecast reconciliation. Let (Rnbm,FRnbm , ν) be a

probability space for the bottom time series b[1]
τ , where

Rnbm is the Borel σ -algebra on Rnbm. Then a σ -algebra Fs

an be constructed from the collection of sets s(B) for all
∈ FRnbm .

efinition 3.1 (Cross-Temporal Coherent Probabilistic Fore-
asts). Given the probability space (Rnbm,FRnbm , ν), we de-

ine the coherent probability space as the triple (s,Fs, ν̆) 2

6

satisfying the following property: ν̆(s(B)) = ν(B), ∀B ∈

FRnbm .

Let (Rn(m+k∗),FRn(m+k∗) , ν̂) be a probability space refer-
ring to the incoherent probabilistic forecast (̂xh) for all the
n series in the system at any temporal aggregation order
k ∈ K.

efinition 3.2 (Cross-Temporal Probabilistic Forecast Rec-
onciliation). The reconciled probability measure of ν̂ with
respect to ψ is a probability measure ν̃ on s with σ -
lgebra Fs satisfying

˜ (A) = ν̂(ψ−1(A)), ∀A ∈ Fs, (7)

here ψ−1(A) = {x ∈ Rn(m+k∗)
: ψ(x) ∈ A} denotes the

re-image of A.

The map ψ may be obtained as the composition s ◦ g ,
s for the cross-temporal point reconciliation (6).

heorem 3.1 (Cross-Temporal Reconciled Samples). Sup-
ose that (̂x1, . . . , x̂L) is a sample drawn from a (cross-
emporal) incoherent probability measure ν̂. Then
x̃1, . . . , x̃L), where x̃ℓ = ψ (̂xℓ), and ℓ = 1, . . . , L, is a sam-
le drawn from the (cross-temporal) reconciled probability
easure ν̃ defined in (7).

roof. See Theorem 4.5 in Panagiotelis et al. (2023) using
efinition 3.2. □

Theorem 3.1 is the cross-temporal extension of The-
rem 4.5 in Panagiotelis et al. (2023), valid only for the
ross-sectional case. It means that a sample from the
econciled distribution can be obtained by reconciling
ach member of a sample from the incoherent distribu-
ion. With this result, we can separate the mechanism
sed to generate the base forecasts samples from the
econciliation phase.

.1. Parametric framework: Gaussian reconciliation

It is possible to obtain a reconciled probabilistic fore-
ast analytically for some parametric distributions, such
s the multivariate normal (Corani et al., 2021, Eckert
t al., 2021, Panagiotelis et al., 2023, Wickramasuriya,

023). In the cross-sectional framework, Panagiotelis et al.
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˜

e

Fig. 5. Overview of cross-temporal forecast reconciliation in the Gaussian framework: two different but equivalent ways of obtaining reconciled
forecast samples, as described in Section 3.1. The acronyms R.F. and B.F. stand for Reconciled and Base Forecasts, respectively. HF-BTS stands for
High Frequency Bottom Time Series.
(2023) show that, starting from an elliptical distribution
for the base forecasts, the reconciled forecast distribution
is also elliptical. Using the results shown in Section 2,
we extend3 this result to the cross-temporal case. To
obtain a reconciled forecast using the multivariate normal
distribution, we start with a base forecast distributed as
N (̂x,Ω), where x̂ is the mean vector and Ω is the covari-
ance matrix of the base forecasts. Using standard results
for the Gaussian case, the reconciled forecast distribution
is given by N (̃x, Ω̃), where

x = Mx̂ and Ω̃ = MΩM ′, (8)

and where M is the projection matrix defined in (5).
Note that if we assume that Ω = Ωct (see the projec-
tion matrices in (5) and (6)), then the covariance matrix
in (8) simplifies to Ω̃ = MΩct . In the cross-temporal
case, sensibly estimating the covariance matrix Ω can be
difficult because we need to consider the temporal and
cross-sectional structures simultaneously. This requires
estimating many parameters, which can be challenging
in practice. Additionally, naively using one-step residuals
to estimate the cross-temporal correlation structure can
lead to an inappropriate estimate of the covariance ma-
trix.4 These challenges are explored in more depth in the
following sections.

Focusing on the computational aspect,5 we can take
several steps to reduce the time required to obtain sim-
ulations from the reconciled forecast distribution. For
example, when dealing with a genuine hierarchical struc-
ture, it is not necessary to simulate from a normal dis-
tribution with a defined covariance matrix for the entire

3 We assume H = 1 and simplify the notation by removing the h
suffix without loss of generality.
4 In particular, some temporal covariances are fixed to zero (see

Online Appendix C for more details).
5 We use two R packages to sample from the base forecast Gaussian

distribution: MASS (Venables & Ripley, 2002) and Rfast (Papadakis
t al., 2022) in Sections 5 and 6, respectively.
7

structure. Instead, we can utilize the properties of ellip-
tical distributions to simulate from the high-frequency
bottom time series and then obtain the complete sim-
ulation through the Sct matrix. Furthermore, we do not
need to calculate the reconciled mean and variance and
generate a new sample if we already have a sample from
the normal distribution of the base forecasts; we can sim-
ply apply the point forecast reconciliation (5), as outlined
in Theorem 3.1. Fig. 5 shows two different but equiva-
lent ways of obtaining reconciled forecast samples: the
former from the base distribution through Theorem 3.1,
and the latter from the reconciled distribution through
the high-frequency bottom time series forecasts b̃[1]

only.
The two rectangles represent the base and reconciled
forecast distributions, respectively. Enclosed within cir-
cles are the distribution parameters involved in the point
forecast reconciliation process, transforming x̂ into x̃, and
Ω into Ω̃. The wave-like arrows represent the simulation
processes, generating both base and reconciled forecast
samples. Finally, the bold double arrow ‘⇒’ illustrates
the generation of the reconciled forecast distributions, as
described in Theorem 3.1.

3.2. Non-parametric framework: Bootstrap reconciliation

Analytical expressions for the base and reconciled fore-
cast distributions are sometimes challenging to obtain.
Furthermore, parametric assumptions can be restrictive
and unrealistic. We propose a procedure called cross-
temporal joint (block) bootstrap (ctjb) to generate samples
from the base forecast distributions that preserve cross-
temporal relationships. This approach involves drawing
samples of all series simultaneously from the most tem-
porally aggregated level, and using the most temporally
aggregated level to determine the corresponding time
indices for the other levels.

Let Ê[k]
be the (n × Nk) matrix of the residuals for

k ∈ K. Fig. 6 (on the left) provides a visualization of these
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Fig. 6. Example of bootstrapped residuals for 3 linearly constrained quarterly time series (see Fig. 1). On the left there are the residual matrices
ith 4 years of data (N = 4): the green, blue, red and black colors correspond, respectively, to years 1, 2, 3 and 4. On the right the bootstrapped
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atrices and how they are related to each other for the
xample in Fig. 1. It is assumed that the residuals cover
our years (N = 4): the green color corresponds to the
irst year, blue to the second year, and so on. Further,
et Mi be the model used to calculate the base forecasts
nd residuals for the ith series. Assuming H = 1, τ

is a random draw with replacement from 1, . . . ,N , and
the ℓth bootstrap incoherent sample is x̂[k]

i,ℓ = fi(Mi, ê[k]
i ),

where fi(·) depends on the fitted model Mi. That is, x̂[k]
i,l

is a sample path simulated for the ith series with error
approximated by the corresponding block bootstrapped
sample residual ê[k]

i , the ith row of

E[k]
τ =

⎡⎢⎣̂e[k]
1,Mk(τ−1)+1 . . . ê[k]

1,Mkτ
...

. . .
...

ê[k]
n,Mk(τ−1)+1 . . . ê[k]

n,Mkτ

⎤⎥⎦ k ∈ K.

Fig. 6 (on the right) shows Ê[k]
τ for the quarterly cross-

temporal hierarchy in Fig. 1.
One of the main advantages of the cross-temporal joint

bootstrap is that it allows us to accurately account for
the dependence between the different levels of temporal
aggregation and not only the cross-sectional dependen-
cies. By sampling residuals from the most temporally
aggregated level and using it to determine the indices for
the other levels, we can ensure that the bootstrap sample
reflects the underlying data distribution. Additionally, the
cross-temporal joint bootstrap is easy to implement for
many forecasting models, making it a practical and effi-
cient tool. Furthermore, this approach is easily scalable in
order to utilize multiple computing power simultaneously
for each individual series. This can be especially useful
when dealing with large datasets or when trying to speed
up the analysis process.

4. Cross-temporal covariance matrix estimation

As the covariance matrix Ω is unknown in practice,

a natural estimate is the empirical sample covariance

8

matrix of the base forecasts Ω̂. In this section, our focus is
exclusively on the cross-temporal framework. This means
that we have to estimate r = n(k∗

+ m)[n(k∗
+ m) − 1]/2

ifferent parameters. A possible solution to estimating
any parameters when we have fewer observations than
is to construct a shrinkage estimator (Efron, 1975, Efron
Morris, 1975, 1977) using a convex combination of Ω̂

nd a diagonal target matrix Ω̂D = Ω̂ ⊙ In(k∗+m), such
hat Ω̂G = λΩ̂D + (1 − λ)Ω̂, where ⊙ is the Hadamard
roduct, λ ∈ [0, 1] is the shrinkage intensity parame-
er that can be estimated using the unbiased estimator
roposed by Ledoit and Wolf (2004) (see Schäfer & Strim-
er, 2005). The linear combination involving these two
atrices is referred to as global shrinkage (G), where
ll off-diagonal elements are shrunk towards zero. Ω̂G
orresponds to the matrix used by the reconciliation ap-
roach oct(shr) (Di Fonzo & Girolimetto, 2023a). However,
hrinking all off-diagonal elements to zero when we know
hat the covariance matrix has a cross-sectional and/or
emporal structure results in information loss. Therefore,
e propose to estimate a smaller matrix, and to use
he cross-sectional and/or temporal structure to obtain a
etter estimator for the covariance matrix of the entire
ystem. Given that Sct = Scs ⊗ S te, it is possible to express
the actual covariance matrix in terms of three smaller
matrices, such that

Ω = SctΩhf−btsS ′

ct

= (In ⊗ S te)Ωhf (In ⊗ S te)
′

= (Scs ⊗ Im+k∗)Ωbts (Scs ⊗ Im+k∗)
′ ,

(9)

where Ωhf−bts is the (nbm × nbm) covariance matrix for
the bottom time series at the temporal aggregation level
k = 1 (the highest-frequency bottom time series), Ωhf is
the (nm × nm) covariance matrix related to all the high-
frequency time series, and Ωbts is the [nb(k∗

+m)×nb(k∗
+

m)] covariance matrix related to bottom time series at any
temporal aggregation. Eq. (9) offers three decompositions
of the covariance matrix Ω̃, each characterized by well-

defined structures: Sct capturing cross-temporal, In ⊗ S te
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Fig. 7. Representation of four types of covariance matrices that can be obtained from the cross-temporal hierarchical structure (example based on
he quarterly series of Fig. 1) for two different values of λ ∈ {0, 1}, the shrinkage parameter. The entries in black are not modified by shrinkage, the
entries in light blue are those actively involved in the shrinkage phase, while the entries in darker blue are derived directly from the cross-sectional
and/or temporal structure and hence are not estimated. Additionally, for λ = 1, the white entries correspond to a zero value.
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emporal, and Scs ⊗ Im+k∗ cross-sectional relationships. At
he same time, each involves smaller covariance matrices
s Ωhf−bts, Ωhf , and Ωbts. Starting from these representa-
ions, we propose three different approaches (HB, H, and
, respectively) to approximate Ω̃.
Therefore, we can apply the idea of Stein-type shrink-

ge (Efron & Morris, 1977) to Ωhf−bts, Ωhf , and Ωbts by
using the corresponding empirical base forecasts residu-
als estimation. We obtain the following expressions (see
Online Appendix B for details):

• High-frequency bottom time series shrinkage matrix
(HB):

Ω̂HB = λSctΩ̂hf−bts,DS ′

ct + (1 − λ)SctΩ̂hf−btsS ′

ct;

• High-frequency shrinkage matrix (H):

Ω̂H = λ(In ⊗ S te)Ω̂hf ,D(In ⊗ S te)′+
(1 − λ)(In ⊗ S te)Ω̂hf (In ⊗ S te)′;

• Bottom time series shrinkage matrix (B):

Ω̂B = λ (Scs ⊗ Im+k∗) Ω̂bts,D (Scs ⊗ Im+k∗)
′
+

(1 − λ) (Scs ⊗ Im+k∗) Ω̂bts (Scs ⊗ Im+k∗)
′
;

here Ω̂l,D = Inbm ⊙ Ω̂j, l = {hf − bts, hf , bts}, and λ is
he shrinkage parameter. These matrices are not full rank,
eaning their inverses, needed to compute the projection

o the coherent subspace, do not exist. To address this, a
idge regularization of the form Ω̂+ωI is used (Marquardt,
970), where ω is chosen to make the matrix invertible
ithout introducing excessive bias. Fig. 7 gives some vi-
ual insights on the covariance matrices obtainable with

= 0 and λ = 1, respectively, for a simple cross-
emporal hierarchical structure with three time series and
= {4, 2, 1} (see Fig. 1).
 s

9

Another important aspect is the number of parame-
ers to be estimated through the residuals of the base
orecasts. In Table 1 we report the number of different pa-
ameters for the two forecasting experiment: Australian
DP (see Section 5), and Australian Tourism Demand (see
ection 6). In addition, we calculate the percentage reduc-
ions in the number of parameters compared to the global
pproach. As we can see, G involves a considerably large

number of parameters compared to other estimators. HB
leads to the largest decrease of around 85%, whereas
approaches H and B lie somewhere between G and HB.
In general, as m and n increase, using H requires the
estimation of fewer parameters than B.

It is worth noting that when using the HB covari-
ance matrix, we make the assumption that the base error
covariance matrix is coherent. This assumption is valid
provided that the base forecasts also approximately fulfill
constraints (3), which is expected for any reasonable set
of forecasts. In addition, with this covariance matrix, the
computational complexity of the reconciliation phase is
reduced. Specifically, Theorem 4.1 extends Theorem 1
in Hyndman et al. (2011), showing that reconciling using a
coherent covariance matrix simplifies to the ols approach.

Theorem 4.1. Let Ω̂hf−bts be a [(nbm) × (nbm)] p.d.
atrix. Then, using Ωct = SctΩ̂hfbtsS ′

ct in the reconciliation
ormulae (5) and (6) is equivalent to using Ωct = In(m+k∗)
ols approach).

roof. See Online Appendix B. □

In the forecasting experiments that follow (and in the
imulation in Online Appendix C), we closely analyze
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Table 1
Number of different parameters that need to be estimated for the Australian GDP (see Section 5) and
the Australian Tourism Demand (see Section 6) forecasting experiments. The percentage reductions in
the number of parameters compared to the global approach G are reported in parentheses.
Method # of different parameters GDP Tourism

G r =
n(k∗

+ m)[n(k∗
+ m) − 1]

2
221 445 108 052 350

B rHB <
nb(k∗

+ m)[nb(k∗
+ m) − 1]

2
< r 94 395 (57%) 36 231 328 (66%)

H rHB <
nm[nm − 1]

2
< r 72 390 (67%) 19 848 150 (82%)

HB rHB =
nbm[nbm − 1]

2
< r 30 876 (86%) 6 655 776 (94%)
these different constructions with a dual purpose. In par-
ticular, we use the full covariance matrix (λ = 0) of
the base forecasts to obtain base forecast samples of the
linearly constrained time series under Gaussianity. We
also use the shrinkage versions as approximations of the
covariance matrix to be used for reconciliation (excluding
HB; see Theorem 4.1). This allows us to better understand
the properties and abilities of each parameterization.

4.1. Multi-step residuals

Model residuals may be used to estimate the covari-
ance matrix in cross-temporal forecast reconciliation. In
time series analysis, it is common to use residuals cor-
responding to one-step-ahead forecasts. However, due to
the temporal dimension in our setting, residuals corre-
sponding to different forecast horizons are required. Thus,
we define multi-step residuals as e[k]

i,h,j = x[k]
i,j+h − x̂[k]

i,j+h|j,
where i = 1, . . . , n, j = 1, . . . ,Nk, and x̂[k]

i,j+h|t is the h-
step fitted value, calculated as the h-step-ahead forecast
using data up to time j. In general, these residuals are
autocorrelated, except when h = 1.

Following Di Fonzo and Girolimetto (2023a), we use
a matrix organization of the residuals similar to the one
for the base forecasts in Section 2.1. Specifically, let N be
the total number of observations for the most temporally
aggregate time series. Then, the Nk-vectors of multi-step
residuals for the temporal aggregation k and the series i,
e[k]
i,h =

[
e[k]
i,h,1 e[k]

i,h,2 . . . e[k]
i,h,Nk

]′

with h = 1, . . . ,Mk,
can be organized in matrix form as

E[k]
i =

⎡⎢⎣ e[k]
i,1,1 e[k]

i,2,2 . . . e[k]
i,Mk,Mk

...
...

...

e[k]
i,1,Nk−Mk+1 e[k]

i,2,Nk−Mk+2 . . . e[k]
i,Mk,Nk

⎤⎥⎦ .
Let E i =

[
E[m]

i . . . E[1]
i

]
. Then the [N×n(m+k∗)] cross-

temporal residual matrix is given by E =

[
E1 . . . En

]
.

To better understand the properties of the proposed
alternatives, a simulation study was performed (the re-
sults are shown in Online Appendix C). We studied the
effect of combining cross-sectional and temporal aggre-
gations using a simple hierarchy, where the small size
and nature of the data generating process make it possible
to calculate the true cross-temporal covariance structure
exactly, thus providing insights into the nature of the time

series data involved in the forecast reconciliation process.

10
We find that simulating base forecasts from multi-step
residuals allows for a more accurate estimation of the co-
variance matrix and that reconciliation further improves
the forecast accuracy.

4.2. Overlapping residuals

Another issue that arises in the case of cross-temporal
reconciliation is the low number of available residuals,
especially for the higher orders of temporal aggregation.
A possible solution is to use residuals calculated using
overlapping series by allowing the year to have a varying
starting time. To better explain how to calculate over-
lapping residuals, assume we have a single series y =

[y1 y2 y3 . . . yT−1 yT ]′. We can construct k non-
overlapping series such that

x[k],s
=

{
x[k],s
j

}Nk−s

j=1
, where x[k],s

j =

jk−s∑
t=(j−1)k+s+1

yt ,

with s = 0, . . . , (k − 1). For example, suppose we have
a semi-annual series with k = 2 and T = 6. Then we
can construct two annual time series depending on which
time is deemed the start of the year:

x[2],0
=

[
x[2],0
1 x[2],0

2 x[2],0
3

]′

=

[
y1 + y2 y3 + y4 y5 + y6

]′

,

and

x[2],1
=

[
x[2],1
1 x[2],1

2

]′

=

[
y2 + y3 y4 + y5

]′

.

To calculate overlapping residuals, we propose the follow-
ing steps:

1. Fit a model to x[k],0 (i.e., select an appropriate model
and estimate the model parameters using the avail-
able data) and calculate the residuals.

2. Apply the same model in Step 1 to x[k],s for s =

1, . . . , k− 1 without re-estimating the parameters,
and calculate the residuals.

The resulting residuals can be used to estimate the co-
variance matrix in cross-temporal forecast reconciliation.
This increases the number of available residuals, partic-
ularly when working with higher-frequency observations
such as monthly or daily data. It is important to note that
this approach assumes that the model used in Step 1 is
appropriate for all the different series x[k],s. Some seasonal

models will not be appropriate, as the seasonal pattern
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Table 2
Cross-temporal reconciliation approaches for the Australian GDP (see Section 5) and the Australian Tourism Demand (see
Section 6) forecasting experiments. All the reconciliation procedures are available in FoReco (Girolimetto and Di Fonzo, 2023a).
Label Description

ct(shrcs, bute) Partly bottom-up (Section 2.2) starting from cross-sectional reconciled forecasts using the shr
approach.

oct( · ) Optimal cross-temporal reconciliation for the struc , wlsv and bdshr approaches. One-step residuals
were used with wlsv and bdshr .

octh( · ) Optimal cross-temporal reconciliation with multi-step residuals (see Section 4.1) for the approaches
presented in Section 4: hshr for high-frequency shrinkage, and bshr for bottom time series
shrinkage.

octo( · ) Optimal cross-temporal reconciliation with overlapping residuals (see Section 4.2) for the wlsv and
bdshr approaches.

octoh(hshr) Optimal cross-temporal reconciliation with overlapping and multi-step residuals (see Section 4.1
and 4.2) for the hshr (high-frequency shrinkage) approach presented in Section 4.
will be shifted for different values of s. However, this will
not affect seasonal ARIMA models, as the seasonality is
defined in terms of lags which are unaffected by the value
of s.

5. Forecasting Australian GDP

The Australian Quarterly National Accounts (QNA)
dataset has been widely studied in the literature on fore-
cast reconciliation (Athanasopoulos et al., 2020, Di Fonzo
& Girolimetto, 2023a). Building on these results, we now
consider cross-temporally reconciled probabilistic fore-
casts.

We use univariate ARIMA models6 to obtain quarterly
base forecasts for the n = 95 QNA time series, span-
ning the period 1984:Q4–2018:Q1, defining GDP from
both the Income and Expenditure sides. We perform a
rolling forecast experiment with an expanding window:
the first training sample spans the period 1984:Q4 to
1994:Q3, and the last ends in 2017:Q1, for a total of 91
forecast origins. For the temporal aggregation dimension,
we aggregate the quarterly data to both semi-annual and
annual. We obtain four-, two-, and one-step-ahead base
forecasts from the quarterly, semi-annual, and annual
frequencies, respectively; i.e., K = {4, 2, 1}.

The base forecast samples in the Gaussian case are
obtained using the sample covariance matrices with the
global (G) and high-frequency (H) parameterizations (Sec-
tion 4), since it is not possible to identify a unique rep-
resentation for the other cases.7 We compare the results
obtained using multi-step residuals with and without
overlapping, in order to measure the benefit of obtain-
ing overlapping residuals. In the non-parametric case,
we use the cross-temporal joint bootstrap (ctjb) pre-
sented in Section 3.2. Finally, to reconcile the resulting
(1000) base forecasts samples, we applied the following
techniques8 (see Table 2): ct(shrcs, bute), ct(wlscs, bute),
octo(wlsv), octo(bdshr), and octoh(hshr).

6 We use the auto.arima function from the R package
forecast (Hyndman et al., 2023).
7 When simultaneously considering hierarchies from the Income

and Expenditure sides, the result is a general linearly constrained time
series, where bottom and upper time series are not uniquely defined,
such that the cross-sectional bottom-up reconciliation approach is
unfeasible (Girolimetto & Di Fonzo, 2023b).
8 The results with shrunk covariance matrices are available in

Online Appendix D.2, where we also report the results obtained using
other reconciliation approaches.
11
The accuracy of the probabilistic forecasts is evalu-
ated using the continuous ranked probability score (CRPS;
see Matheson &Winkler, 1976, Gneiting & Katzfuss, 2014),
which is an index that considers the single series and
provides us with a marginal evaluation of the approaches.
In addition, we employ the energy score (ES; see Gneiting
& Katzfuss, 2014), which is the CRPS extension to the
multivariate case, to evaluate the forecasting accuracy for
the whole system (Panagiotelis et al., 2023, Wickrama-
suriya, 2023). In particular, we consider the geometric
mean of the relative CRPS (Fleming & Wallace, 1986) and
the relative ES:

RelCRPS
[k]
j,s =

(
n∏

i=1

CRPS[k]
i,j,s

CRPS[k]
i,0,0

) 1
n

and

RelES[k]
j,s =

ES[k]
j,s

ES[k]
0,0

,

(10)

where j denotes the reconciliation approach, and s indi-
cates the approach used to simulate the base forecasts. As
a reference approach (s = 0 and j = 0), we consider the
base forecasts produced by the bootstrap approach. If we
consider all the temporal aggregation orders (i.e. ∀k ∈ K),
the overall accuracy indices are given by

RelCRPSj,s =

⎛⎜⎝ ∏
i=1,...,n
k∈K

CRPS[k]
i,j,s

CRPS[k]
i,0,0

⎞⎟⎠
1

n(k∗+m)

and

RelESj,s =

(∏
k∈K

ES[k]
j,s

ES[k]
0,0

) 1
(k∗+m)

.

(11)

5.1. Results

Forecasting accuracy indices based on the CRPS and
ES are presented in Table 3. As a benchmark approach,
we use the base forecasts calculated using the bootstrap
method. For base forecasts, we find that using a para-
metric approach with the normal distribution performs
better than the non-parametric bootstrap approach. This
is likely due to the limited number of residuals available
for bootstrapping, which does not allow for sufficient ex-
ploration of the data. Directly specifying diagonal covari-
ance matrices seems to be more effective than shrinking
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Table 3
RelCRPS and ES ratio indices defined in (10) and (11) for the Australian QNA dataset. Approaches performing worse
than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold,
and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.
Reconciliation
approach

Base forecasts’ sample approach

ctjb Gaussian approacha ctjb Gaussian approacha

Gh Hh Goh Hoh Gh Hh Goh Hoh

RelCRPS
∀k ∈ {4, 2, 1} k = 1

base 1.000 0.979 0.995 0.968 0.976 1.000 0.988 0.988 0.971 0.971
ct(shrcs, bute) 0.937 0.956 0.956 0.976 0.976 0.992 1.008 1.008 1.029 1.029
ct(wlscs, bute) 0.930 0.917 0.917 0.898 0.898 0.986 0.974 0.975 0.956 0.956
octo(wlsv) 0.926 0.911 0.912 0.896 0.895 0.984 0.971 0.970 0.954 0.954
octo(bdshr) 0.978 0.964 0.946 0.952 0.930 1.034 1.016 1.003 1.005 0.989
octoh(hshr) 1.006 0.983 1.009 0.974 1.001 1.068 1.046 1.059 1.034 1.061

k = 2 k = 4
base 1.000 0.984 0.993 0.968 0.976 1.000 0.966 1.004 0.964 0.981
ct(shrcs, bute) 0.949 0.966 0.966 0.987 0.987 0.874 0.896 0.896 0.914 0.914
ct(wlscs, bute) 0.942 0.928 0.928 0.909 0.909 0.866 0.853 0.853 0.834 0.834
octo(wlsv) 0.938 0.921 0.923 0.907 0.906 0.860 0.847 0.848 0.832 0.830
octo(bdshr) 0.991 0.974 0.957 0.964 0.942 0.914 0.905 0.883 0.892 0.865
octoh(hshr) 1.021 0.996 1.021 0.987 1.016 0.934 0.912 0.951 0.904 0.931

ES ratio indices
∀k ∈ {4, 2, 1} k = 1

base 1.000 0.970 0.988 0.960 0.970 1.000 0.977 0.977 0.965 0.965
ct(shrcs, bute) 0.897 0.944 0.944 0.973 0.973 0.964 1.001 1.001 1.033 1.033
ct(wlscs, bute) 0.886 0.880 0.880 0.860 0.860 0.954 0.944 0.945 0.928 0.928
octo(wlsv) 0.891 0.879 0.881 0.864 0.864 0.958 0.945 0.945 0.931 0.931
octo(bdshr) 0.940 0.928 0.910 0.918 0.895 1.004 0.986 0.971 0.980 0.961
octoh(hshr) 0.986 0.968 0.999 0.959 0.992 1.053 1.034 1.049 1.024 1.055

k = 2 k = 4
base 1.000 0.972 0.985 0.959 0.969 1.000 0.959 1.000 0.957 0.976
ct(shrcs, bute) 0.915 0.961 0.960 0.991 0.991 0.818 0.874 0.874 0.899 0.900
ct(wlscs, bute) 0.904 0.896 0.896 0.877 0.877 0.807 0.805 0.805 0.782 0.783
octo(wlsv) 0.908 0.895 0.898 0.881 0.882 0.812 0.802 0.806 0.786 0.786
octo(bdshr) 0.960 0.947 0.929 0.938 0.915 0.860 0.856 0.836 0.841 0.816
octoh(hshr) 1.007 0.988 1.017 0.979 1.014 0.904 0.888 0.934 0.881 0.913

a The Gaussian method employs a sample covariance matrix: Gh and Hh use multi-step residuals and Goh and Hoh use
overlapping and multi-step residuals.
to a target covariance matrix. Among all the procedures,
ct(wlscs, bute) and octo(wlsv) show the greatest relative
gains. In contrast, octoh(hshr) does not show much im-
provement. Furthermore, the greatest improvements are
observed for higher temporal aggregation levels.

We utilize the non-parametric Friedman test and the
post hoc multiple-comparison-with-the-best (MCB)
Nemenyi test (Koning et al., 2005, Kourentzes & Athana-
sopoulos, 2019, Makridakis et al., 2022, Kourentzes, 2022)
to determine whether the forecasting performances of
the different techniques are significantly different from
one another. Fig. 8 presents the MCB using the CRPS. The
probabilistic forecasts from ct(wlscs, bute) and octo(wlsv)
are significantly better than the base forecasts at any level
of aggregation. Unlike the application on the Australian
Tourism Demand dataset (see Section 6), in this case, one
of the partly bottom-up approaches is not significantly
worse than the optimal approach.

Overall, we find that using overlapping residuals al-
most always leads to a greater improvement in terms of
both the ES and CRPS. Forecasts at the most aggregated
level (year) seem to benefit the most from reconcilia-
tion, and using one-step overlapping residuals appears
to be sufficient to improve forecasts if the generation of
the base forecasts sample paths takes into account the
multi-step structure.
12
6. Forecasting Australian Tourism Demand

The Australian Tourism Demand dataset (Wickrama-
suriya et al., 2019) measures the number of nights Aus-
tralians spent away from home. It includes 228 monthly
observations of Visitor Nights (VNs) from January 1998
to December 2016, and has a cross-sectional grouped
structure based on a geographic hierarchy crossed by pur-
pose of travel. The geographic hierarchy comprises seven
states, 27 zones, and 76 regions, for a total of 111 nested
geographic divisions. Six of these zones are each formed
by a single region, resulting in 105 unique nodes in the hi-
erarchy. The purpose of travel comprises four categories:
holiday, visiting friends and relatives, business, and other.
To avoid redundancies (Di Fonzo & Girolimetto, 2022b),
24 nodes are not considered, resulting in an unbalanced
hierarchy of 525 unique nodes instead of the theoretical
555 with duplicated nodes. The dataset includes the 304
bottom series, which are aggregated into 221 upper time
series. Table 4 omits duplicated entries and updates the
information in Table 7 from Wickramasuriya et al. (2019).
The data can be temporally aggregated into two, three,
four, six, or 12 months (K = {12, 4, 3, 2, 1}).

We perform a rolling forecast experiment with an
expanding window. The process begins by using the first
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Fig. 8. MCB Nemenyi test for the Australian QNA dataset using CRPS at different temporal aggregation levels for the Gaussian (using overlapping and
multi-step residuals, H) and non-parametric bootstrap approaches. In each panel, the Friedman test p-value is reported in the lower-right corner.
The mean rank of each approach is shown to the right of its name. Statistically significant differences in performance are indicated if the intervals
of two forecast reconciliation procedures do not overlap. Thus, approaches that do not overlap with the blue interval are considered significantly
worse than the best, and vice versa.
Table 4
Grouped time series for the Australian Tourism Demand
dataset.

Number of series

GD PT Tot.

Australia 1 4 5
States 7 28 35
Zonesa 21 84 105
Regions 76 304 380

Total 105 420 525
a Six Zones with only one region are included in ‘Regions’.
‘GD’: geographic division; ‘PT’: purpose of travel.

10 years, from January 1998 to December 2008, to gen-
erate forecasts for the entire following year (2009). Then,
the training set is increased by one month. This process is
repeated until the last training set is used (January 1998
to December 2015) with a total of 85 different test sets.
For the temporal aggregation dimension, we aggregate
the monthly data up to annual data. We obtain twelve-,
13
six-, four-, three-, two-, and one-step-ahead base fore-
casts from the monthly data and the aggregation over 2, 3,
4, 6, and 12 months. ETS models selected by minimizing
the AICc criterion (Hyndman et al., 2023) are fitted to
the log-transformed data, with the resulting base fore-
casts being back-transformed to produce non-negative
forecasts (Wickramasuriya et al., 2020).

The (1000) base forecast samples are obtained using
the Gaussian approach with sample9 covariance matrices
(Section 4) using multi-step residuals10 and the boot-
strap approach (Section 3.2). For reconciliation, six differ-
ent approaches are adopted (see Table 2): ct(shrcs, bute),
oct(struc), oct(wlsv), oct(bdshr), octh(bshr), and octh(hshr).

Negative forecasts may be produced during the rec-
onciliation phase (Wickramasuriya et al., 2020, Di Fonzo

9 The results with shrunk covariance matrices are available in
Online Appendix E.2, where we also report the results obtained using
other reconciliation approaches.
10 We do not include overlapping, as we are unable to correctly
determine the residuals for the overlapping series using ETS models
(see Section 4.2).
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Table 5
RelCRPS and ES ratio indices defined in (10) and (11) for the Australian Tourism Demand dataset. Approaches performing
worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked
in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.
Reconciliation
approach

Base forecasts’ sample approach

ctjb Gaussian approacha ctjb Gaussian approacha

G B H HB G B H HB

RelCRPS
∀k ∈ {12, 6, 4, 3, 2, 1} k = 1

base 1.000 0.971 0.971 0.973 0.973 1.000 0.972 0.972 0.972 0.972
ct(shrcs, bute) 1.057 0.974 0.969 0.974 0.969 0.976 0.963 0.962 0.963 0.962
oct(struc) 0.982 0.962 0.961 0.961 0.959 0.970 0.963 0.963 0.963 0.963
oct(wlsv) 0.987 0.959 0.959 0.958 0.957 0.952 0.957 0.957 0.957 0.957
oct(bdshr) 0.975 0.956 0.953 0.952 0.951 0.949 0.955 0.953 0.954 0.954
octh(bshr) 0.994 1.018 1.020 1.016 1.019 0.988 1.007 1.013 1.006 1.012
octh(hshr) 0.969 0.993 0.993 0.990 0.991 0.953 0.977 0.977 0.979 0.979

k = 3 k = 12
base 1.000 0.971 0.971 0.972 0.973 1.000 0.968 0.967 0.969 0.969
ct(shrcs, bute) 1.041 0.977 0.974 0.977 0.974 1.163 0.977 0.965 0.977 0.965
oct(struc) 0.986 0.967 0.966 0.966 0.965 0.982 0.951 0.949 0.947 0.943
oct(wlsv) 0.983 0.963 0.962 0.962 0.962 1.025 0.954 0.953 0.949 0.947
oct(bdshr) 0.972 0.960 0.958 0.957 0.957 1.002 0.950 0.944 0.939 0.935
octh(bshr) 0.999 1.021 1.022 1.018 1.022 0.987 1.024 1.021 1.021 1.019
octh(hshr) 0.971 0.994 0.994 0.992 0.993 0.978 1.003 1.005 0.996 0.997

ES ratio indices
∀k ∈ {12, 6, 4, 3, 2, 1} k = 1

base 1.000 0.956 0.955 0.958 0.951 1.000 0.952 0.950 0.952 0.950
ct(shrcs, bute) 1.243 0.886 0.879 0.886 0.879 1.098 0.929 0.928 0.930 0.927
oct(struc) 1.085 0.917 0.915 0.916 0.912 1.027 0.943 0.942 0.943 0.942
oct(wlsv) 1.132 0.933 0.929 0.931 0.927 1.050 0.951 0.949 0.950 0.949
oct(bdshr) 1.047 0.904 0.897 0.897 0.891 1.009 0.936 0.933 0.934 0.931
octh(bshr) 0.931 0.867 0.866 0.863 0.860 0.965 0.927 0.927 0.925 0.923
octh(hshr) 1.081 0.935 0.931 0.935 0.927 1.028 0.952 0.951 0.952 0.950

k = 3 k = 12
base 1.000 0.961 0.958 0.960 0.955 1.000 0.942 0.947 0.951 0.937
ct(shrcs, bute) 1.245 0.911 0.904 0.911 0.904 1.326 0.779 0.767 0.777 0.766
oct(struc) 1.096 0.939 0.936 0.938 0.933 1.077 0.826 0.822 0.823 0.818
oct(wlsv) 1.142 0.953 0.949 0.951 0.946 1.149 0.851 0.845 0.847 0.840
oct(bdshr) 1.060 0.926 0.920 0.921 0.915 1.021 0.808 0.796 0.796 0.787
octh(bshr) 0.954 0.895 0.895 0.892 0.887 0.833 0.741 0.741 0.737 0.735
octh(hshr) 1.093 0.955 0.951 0.956 0.949 1.066 0.851 0.846 0.848 0.838

a The Gaussian method employs a sample covariance matrix and includes four techniques (G, B, H, HB) with multi-step
residuals.
& Girolimetto, 2022b, 2023b), thus generating unreason-
able values (e.g., a negative forecast for tourism demand
makes no sense). To overcome this limitation, we ap-
plied the simple heuristic proposed by Di Fonzo and
Girolimetto (2022a, 2023b). Following Theorem 3.1, we
are thus able to obtain reconciled samples respecting
non-negativity constraints starting from an incoherent
sample simulated from a Gaussian distribution. Finally,
to evaluate the performance, we employ the continuous
ranked probability score (CRPS), the energy score (ES), and
the multiple-comparison-with-the-best (MCB) Nemenyi
test, introduced in Sections 5 and 5.1.

6.1. Results

The CRPS and ES indices are shown, respectively, in
Table 5 for monthly, quarterly and annual forecasts. These
tables are divided by different temporal levels and each
column uses a different approach to calculate the base
forecasts, referred to as ‘base’. The bootstrap method is

used as a benchmark to calculate the accuracy indices.

14
Base forecasts using a Gaussian approach are better in
terms of both the CRPS and ES compared to the boot-
strap approach (the benchmark). Assumptions of trun-
cated Gaussianity (Gaussian with negative values set to
zero) may seem strict, but given the limited number of
residuals, it can lead to improved forecasts in terms of
CRPS and ES. Bootstrap forecasts suffer from the limited
number of available residuals, leading in general to lower
forecast accuracy. The Gaussian approach overcomes this
limitation and provides better results. Regarding the dif-
ferent covariance matrix estimates for Gaussian base fore-
casts, there are no big differences. For this reason, using
only the high-frequency bottom time series can be useful
to estimate fewer parameters and reduce the initial high
dimensionality.

In the Gaussian case, partly bottom-up techniques like
ct(shrcs, bute) lead to better results than the benchmark
(bootstrap base forecasts). However, it is not always guar-
anteed that the improvement is higher than the starting

base forecasts (by comparing the value of each column).
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(

Fig. 9. MCB Nemenyi test for the Australian Tourism Demand dataset using the CRPS at different temporal aggregation levels for the Gaussian
multi-step residuals, HB) and the non-parametric bootstrap approaches. In each panel, the Friedman test p-value is reported in the lower-right
corner. The mean rank of each approach is shown to the right of its name. Statistically significant differences in performance are indicated if
the intervals of two forecast reconciliation procedures do not overlap. Thus, approaches that do not overlap with the blue interval are considered
significantly worse than the best, and vice versa.
This is particularly true for higher levels of temporal ag-
gregation. Overall, oct(bdshr) is almost always the best
in terms of the CRPS. The shrinkage approach octh(hshr)
performs well in the bootstrap case: it is competitive with
oct(bdshr) at a lower temporal frequency (k ∈ {2, 1})
and it is able to improve for k ≥ 3. In terms of the ES,
oct(bdshr) is still competitive, although it does not always
show the best relative performance, like octh(bshr). It is
also worth noting that oct(struc), which does not make
use of residuals, proves to be competitive by consistently
improving on the base forecasts in terms of both the CRPS
and ES.

Fig. 9 shows the MCB using the CRPS for the Gaus-
sian approach using multi-step residuals (HB) and the
non-parametric bootstrap approach. In general, the partly
bottom-up procedure improves with respect to the base

forecasts at the monthly level, but optimal cross-temporal

15
procedures are always better. In the bootstrap framework,
we can identify a group of three procedures—oct(bdshr),
oct(hshr), and oct(struc)—that are almost always in the
group of best approaches (denoted by the blue dot). In the
Gaussian framework, oct(wlsv), oct(struc), and oct(bdshr)
are always significantly better than the base forecasts
and equivalent in terms of the results for temporal ag-
gregation orders greater than two. For monthly series,
oct(bdshr) is always significantly better than all other
approaches.

7. Conclusion

In this paper, we extended the probabilistic recon-
ciliation setting developed by Panagiotelis et al. (2023)
for the cross-sectional case to the cross-temporal frame-

work. Through appropriate notation, we showed how
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theorems and definitions valid for the cross-sectional case
can be reinterpreted and extended. The general nota-
tion proposed can help investigate extensions following
different probabilistic approaches, such as those in Jeon
et al. (2019), Ben Taieb et al. (2021), and Corani et al.
(2023). We proposed a Gaussian and a bootstrap ap-
proach to simulate the base forecasts that takes into
account both cross-sectional and temporal relationships
simultaneously, opening the way for further research into
cross-temporal probabilistic forecasting.

Moreover, we analyzed the use of residuals, show-
ng that one-step residuals fail to capture the tempo-
al structure, and proposed multi-step residuals that can
ully capture the cross-temporal relationships. Due to the
igh-dimensionality of the cross-temporal setting when
ealing with covariance matrices, we proposed four al-
ernative forms to reduce the number of parameters to
e estimated, showing that the overlapping residuals may
educe the high-dimensionality burden by increasing the
umber of available residuals. These ideas warrant further
nvestigation in future works.

Finally, we performed empirical applications on two
atasets commonly used in forecast reconciliation re-
earch: Australian GDP from Income and Expenditure
ides and Australian Tourism Demand. We found that
n both cases, optimal cross-temporal reconciliation ap-
roaches significantly improved on base forecasts. We
lso compared these with partly bottom-up techniques
hat use uni-dimensional reconciliation (either
ross-sectional or temporal) and confirmed that simul-
aneously exploiting both dimensions in reconciliation
roduces better results, especially at higher levels of tem-
oral aggregation. This was more evident in the Australian
ourism Demand application, where the involved tempo-
al hierarchies are richer, allowing the regression-based
orecast reconciliation approaches to capture and exploit
ore features of the data through the available tem-
oral aggregation levels (Kourentzes et al., 2014, 2017,
ourentzes & Petropoulos, 2016) compared to the partly
ottom-up approach. In these two datasets, oct(wlsv)

and oct(bdshr) appeared as the two best performing ap-
proaches in terms of improving both forecast accuracy
and computational efficiency (see the online appendix),
thus corroborating the results of Di Fonzo and Girolimetto
(2023a) for point forecast reconciliation.

In conclusion, cross-temporal forecast reconciliation is
an important tool to improve the accuracy of forecasts
while simultaneously ensuring their coherency in both
space and time. Furthermore, these techniques can be
customized to suit the specific needs of an organization,
allowing for the incorporation of relevant domain-specific
knowledge (e.g., non-negative constraints) and expertise,
ensuring that the resulting forecasts are not only accurate
but also coherent and more reliable for decision-making
purposes.
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