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Figure 1: ASV and AUVs coordinated mission to detect anomalies in offshore infrastructures.

ABSTRACT
Cooperation between Autonomous Underwater Vehicles (AUVs)
and Autonomous Surface Vehicles (ASVs) can greatly enhance their
usefulness in wide-area underwater monitoring tasks for critical
infrastructure such as offshore pipelines. The AUVs can provide
a close-up view of the pipeline and physically interact with it if
any maintenance is needed, while the ASV can act as an offloading
platform for complex computational tasks that are beyond the capa-
bilities of AUV on-board hardware. However, the communication
requirements are significant, and the harsh underwater propaga-
tion environment requires an ASV to move close to AUVs when
they need assistance. In this work, we propose the Interactive Error
Resolution (IER) scheme, which combines multimodal communi-
cation and subsequent interaction rounds to significantly reduce
false alarms, reducing the mission time and the system’s energy
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consumption. We found that the proposed IER protocol outper-
forms the naive Strict Error Response (SER) approach by an order
of magnitude in terms of mission time and energy consumption,
significantly improving the effectiveness of the AUV-ASV team in
the pipeline monitoring task.
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1 INTRODUCTION
Over the last few decades, underwater operations have gained
significant popularity and are increasingly important in both civil
and military activities. Among the various applications in this field,
the inspection of underwater pipelines used for oil, gas, and fluid
transportation stands out. Given the harsh conditions they are
subjected to, regular assessment and monitoring of these pipelines
is of the utmost importance to ensure safe transportation [1].

The use of Autonomous Underwater Vehicles (AUVs) has proven
to be highly effective in addressing this mission, yielding posi-
tive results in both industrial and research activities [1]. AUVs are
compact in size and equipped with intelligent control systems, sen-
sors, cameras, and automatic navigation and localization systems.
Compared to cable-controlled Remotely Operated Vehicles (ROVs),
AUVs are generally easier, faster, and more cost-effective to operate,
making them suitable for long-range missions. Cameras and other
light-sensitive sensors can be mounted on each AUV to enable a
close-by visual inspection of pipelines, as they are highly capable
of surveying underwater sites and can closely approach targets.
However, the computational power of AUVs is often quite limited
due to the restrictions on their hardware, and complex filtering or
even learning-based models are often beyond their capabilities. The
monitoring taskmight require complex or even learning-basedmod-
els [1] due to the presence of noise and other disturbances, making
AUVs alone unsuitable for reliable monitoring of the infrastructure.
For this reason, we can harness the much higher computing power,
communication capabilities, and mobility of Autonomous Surface
Vehicles (ASVs) to provide guidance to multiple AUVs operating
on the seabed.

AUV-ASV cooperation has been studied and applied in various
scenarios. For instance, a model in which ASVs process the data
collected by a swarm of AUVs, moving on the surface according
to the communication requirements of the AUVs, was proposed
in [17]. This concept has also been successfully applied to coral
monitoring [18] and mine search [9]. However, its benefits have
never been exploited in pipeline monitoring.

Mission coordination between AUVs and ASVs requires a stable
and reliable communication link. In contrast with the terrestrial sce-
nario, the use of radio frequency communication devices is mostly
restricted to docking applications [5], due to the severe attenuation
of the underwater electromagnetic channel. Optical communica-
tion, instead, can enable high rate links with capacities on the order
of a few megabits per second at a range of a few tens of meters.
Nowadays, it is the most common broadband communication tech-
nology, but requires alignment between transmitter and receiver
and is affected by turbidity and sunlight noise [20]. Finally, acoustic
communication is the most widely used communication technology
in the underwater scenario. Acoustic waves, in fact, can propagate
for several kilometers, at the cost of a very small bandwidth and a
low datarate, on the order of a few kilobits per second [13].

Research on the communication limits of these approaches has
been minimal so far: pipeline infrastructures can cover large areas,
and deploying a significant number of ASVs is not practical due
to their significantly higher component and operational costs. In
this context, an intelligent adaptive approach can manage to limit
the risk of interference and collisions by transmitting as little as

possible, while still making well-informed decisions to limit the
movements of the ASVs and, consequently, their energy expendi-
ture.

In this work, we propose a model for AUV-ASV cooperation
that exploits multimodal optical and acoustic communication to im-
prove task performance, minimize mission time, and avoid useless
energy consumption. The scenario is shown in Fig. 1: the AUVs
roam the bottom and follow the pipeline, visually inspecting it for
anomalies and potential issues [2]. If an anomaly requires main-
tenance operations [7], the ASV then moves to that location and
lowers a small ROV to be within 10 meters of the AUV1. This estab-
lishes a short-range, high-bandwidth optical link with the AUV to
further inspect the damage, obtaining a detailed scan that can aid
in planning for future maintenance interventions. However, false
alarms are time-consuming, as they require the AUV to wait for
the ASV and perform the detailed scan, and energy-intensive, as
the ASV needs to physically move. We then consider an iterative
decision process that can help reduce false alarms: whenever an
AUV detects a potential anomaly, it transmits a compressed image
to the ASV through its long-range acoustic modem, then waits for
a reply. If the information is sufficient to make a decision, the ASV
then either signals a false alarm or moves to the AUV to fix the
issue; however, the image might not be enough to make a decision
on one side or the other [7]. In these uncertain cases, the AUV then
takes more pictures from different points of view and transmits
them, providing more elements for the ASV to decide before it
starts moving. We consider a realistic simulation in a simple system
with a single ASV and 4 AUVs, showing that the proposed adaptive
strategy can ensure lower energy consumption and reduce mission
duration by significantly reducing false alarms even in this simple
case. The proposed Interactive Error Resolution (IER) system out-
performs the Strict Error Response (SER) baseline strategy, which
considers all possible anomalies as worthy of investigation, with
an improvement by an order of magnitude in terms of mission
duration and energy efficiency.

The rest of this paper is structured as follows. In Sec. 2, we
describe the state of the art. The system model and simulation
architecture are presented in Sec. 3 and Sec. 4, respectively. The
simulation results are discussed in Sec. 5, and we provide our con-
cluding remarks in Sec. 6.

2 RELATEDWORK
Detecting targets underwater, whether through computer vision or
other technologies, has become crucial for transitioning from ROVs,
restricted in their range and movement by the connection cable, to
fully untethered AUVs. However, achieving practical and reliable
outcomes with computer vision in underwater environments poses
significant challenges. Factors such as insufficient light, scattering,
absorption phenomena, and other underwater conditions contribute
to these difficulties [15].

It is evident that underwater applications of deep learning tech-
niques have not yet attained the same level of success as their
surface counterparts, which include tasks like classification, analy-
sis, and segmentation [12], due to the more specialized nature of the

1The concept of ASV-carried ROV is well established, and dimonstrated in the RoboVaas
project: https://www.youtube.com/watch?v=ZseCsm1kWmE.
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task and the limited availability of usable data. Despite these chal-
lenges, data-driven methods, particularly those based on deep learn-
ing using Convolutional Neural Networks (CNNs), have emerged
as the forefront tools for underwater image analysis [15]. It is thus
important to consider the energy consumption limitations of deep
learning algorithms on AUVs, as they may impose restrictions on
their usage, especially during long-duration missions, and other
hardware limitations that constrain AUV computational capabilities.
Therefore, the development of efficient error recognition algorithms
is crucial in order to address these limitations and ensure optimal
performance in underwater target detection and analysis tasks.

Researchers are actively exploring various solutions, with the
majority focusing on improving algorithms to enhance image qual-
ity through deep learning or other methods. Another promising
avenue is the collaboration between AUVs and ASVs. Although it
has not yet been applied to this specific problem, building upon the
results obtained in other projects, this collaborative approach shows
great potential. For instance, a smart tactic that quickly rules out or
confirms the existence of a target was presented in [17]. In highly
suspected areas, ASV and AUV collaborate closely to validate or
dismiss the presence of a target, thereby minimizing unnecessary
movements for the AUV. This collaborative system achieved a re-
markable 25% reduction in searching time and similar total energy
consumption savings. A similar approach has been used in [9] for
mine detection. In this scenario, ASV mission trajectory is based
on sensor data, and at any point during the patrol mission, the ASV
can ask the collaborative AUV to perform a close-up identification.
The data collected by both vehicles are merged and analyzed to
achieve higher precision and reduce mission risks.

The idea considered in this work is to iteratively transmit data
from different points of view, so as to disambiguate more difficult
cases before the ASV needs to move at all; this reduces false alarms,
making the mission quicker and more efficient. This approach takes
inspiration from the field of semantic communication [19]: the
ASV does not need to take a detailed scan of every location, as
it can discriminate whether an anomaly is present with limited
data. This type of approach also has significant parallels with the
remote source coding problem [10], in which the transmitter has
access to observations correlated to an underlying source. The ob-
jective is then to infer a random variable correlated with the source
signal, i.e., the presence of an anomaly. Joint source and channel
coding approaches [3] combine the awareness of the communica-
tion medium with the knowledge of which data is needed for a task,
but the complexity of the problem requires the use of deep learning
networks.

In underwater applications, a heuristic iterative solution that
only requires the AUV to gather more observations, rather than
optimally compress them based on complex patterns, can overcome
computational limitations and provide a simple but solid semantic
approach to the cooperative monitoring problem. Another learning
paradigm that can be useful to our approach is active learning, in
which a learning agent can actively query for more data: this is
commonly designed in terms of data points, i.e., asking for new
labeled samples to improve the model, but some studies [14] also
consider the problem of partial features. These models [8] can be
used to request additional features dynamically and only when they
are needed, and even considering multiple exit structures for neural
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Figure 2: AUV trajectories in the map.

networks [24], which may be designed to request the additional
features only if the classification with the basic feature set fails.

3 SYSTEM MODEL
We consider a scenario with a single ASV aiding 4 AUVs, each
inspecting a quadrant of the seabed area. Fig. 2 illustrates the trajec-
tory followed by the AUVs, that are deployed at a depth of 100 m,
during a simulation. The ASV initially transmits the mission way-
points, and the AUVs follow a direct line towards the next waypoint.
Once reached, they turn towards the next waypoint in the queue.
The ASV’s initial position is in the center of the map, and it remains
stationary until one of the AUVs detects a potential anomaly. If the
anomaly is confirmed, the ASV will then proceed to the location of
the AUV, where it will lower a small ROV equipped with optical
modem to establish a high rate optical link with the AUV. This
will allow the AUV to transmit a detailed scan of the anomaly to
the ASV, gathering data for future maintenance operations, before
going back to its pre-determined monitoring path.

Each AUV moves at a velocity of 0.5 m/s and performs a scan
of the infrastructure every 60 seconds. The nature of this measure-
ment can vary based on the specific application being implemented,
and our method is fully agnostic to the specific type of measure-
ment. In all cases, the obtained information is subject to a certain
level of noise due to water conditions and other disturbances such
as marine life or cloud cover. We then expand the most common
statistical model of anomalies, which considers the presence of
an anomaly to be an independent Bernoulli random variable with
probability 𝜀, to extend it to a more general state definition that can
simulate the output of error identification algorithms. We consider
the continuous interval [0, 1] as a state space, with 𝑥 ≤ 𝜀 if an
anomaly is present. We then model the state of each location as an
independent random variable 𝑥 ∼ U(0, 1), drawn from a uniform
distribution. In fact, in this scenario, the output is often continuous,
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instead of binary, to express the confidence level of the solution.
The data transmitted from the AUV is then processed by the ASV,
obtaining a value 𝑦1 = 𝑥 +𝑤1, where 𝑤1 is an additive Gaussian
noise with variance 𝜎2. This Gaussian noise represents the errors
due to disturbances in the water, and we assume the value of 𝜎
and 𝜀 to be known to the ASV. This modeling choice is relatively
simple, but the use of Gaussian outputs to represent uncertainty
is common in Bayesian frameworks for computer vision [11], as
Gaussian distributions represent the sum of large numbers of po-
tential disturbances relatively well. The main idea of this work is
also relatively robust to different distributions of potential errors,
as long as the statistics of the error are known or easy to estimate.

We can then use the value of 𝑦1 to compute the estimated state
𝑥 , which is equal to 𝑦1 if we only have one measurement. If we
have multiple measurements, the maximum likelihood value 𝑥 is
the mean of the measurements, as they all have the same noise
variance. The estimated anomaly probability in that location is:

𝑝𝑒 (𝑥) = 𝑄

(
𝑥 − 𝜀

𝜎

)
, (1)

where𝑄 (·) is the Gaussian Cumulative Distribution Function (CDF).
We can then define a threshold 𝜃 to consider the state to be normal:
if 𝑝𝑒 (𝑥) ≤ 𝜃 , the ASV decides that there is no anomaly, and the
AUV goes to the next location on the map. On the other hand, if
𝑝𝑒 (𝑥) ≥ 1−𝜃 , we can be reasonably certain that there is an anomaly,
and the ASV then moves towards the AUV to obtain a detailed scan.

However, there may be a significant gray area: as Fig. 3 shows,
when 𝑝𝑒 (𝑥) ∈ (𝜃, 1 − 𝜃 ), the ASV is uncertain whether there is an
anomaly in a specific location. In the figure, the estimated prob-
ability of having an anomaly is low, but we cannot entirely rule
it out. We can then consider two methods to resolve the uncer-
tainty, including a classical, more conservative one that will act as a
benchmark, and our proposed cooperative error resolution method.

Strict Error Response (SER). The SER method takes a conservative
approach, basing its decision on the measurement obtained from
the AUV: whenever an anomaly cannot be ruled out, i.e., whenever
𝑝𝑒 (𝑥) > 𝜃 , the ASV confirms the anomaly and moves towards the
AUV to obtain a detailed scan. In the meantime, the AUV stands
still and waits for the ASV’s arrival. This method ensures that the
probability of undetected anomalies is extremely small, but the ASV
must deal with a potentially large number of false alarms.

Interactive Error Resolution (IER). The IER method tries to solve
the false alarm problem by considering an iterative approach, in
which the ASV and AUV cooperate to determine whether the anom-
aly is present. Whenever the ASV is uncertain, it will ask the AUV
for more information. The AUV will then get another measurement
from a different point of view and transmit it to the ASV, giving
it another data point 𝑦2, with an independent noise𝑤2. By taking
the maximum likelihood estimation, we have:

𝑥 =
1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 . (2)

We can then reduce the variance of the estimate by a
√
𝑁 factor:

𝑝𝑒 (𝑥 ;𝑁 ) = 𝑄

(√
𝑁 (𝑥 − 𝜀)

𝜎

)
. (3)
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Figure 3: Error model representation.

As the absolute value of the argument of the Gaussian CDF tends
to increase with the number of measurements, the belief over the
anomaly will improve, tending towards either 0 or 1 as the number
of measurements grows to infinity. The idea of the IER scheme is
then simple: whenever the situation is uncertain, the ASV keeps
requesting new packets from the involved AUV until it can defini-
tively rule out the possibility of an anomaly, i.e., 𝑝𝑒 (𝑥 ;𝑁 ) ≤ 𝜃 , or
the anomaly is confirmed, i.e., 𝑝𝑒 (𝑥 ;𝑁 ) ≥ 1 − 𝜃 . Throughout this
operation, the ASVmaintains its position and is capable of receiving
packets and analyzing data from all four AUVs. Once the anomaly
is confirmed, the ASVmoves towards the error location to resolve it.
Upon reaching its location, the ASV informs the AUV that the error
has been resolved. If, after gathering additional information, the
ASV decides that there is no anomaly, it informs the AUV, which
can then resume moving and continue with the mission.

4 SIMULATION SETUP
The system model described above has been implemented using
DESERT Underwater [6], an open source underwater network sim-
ulator and experimentation framework developed by the University
of Padova and publicly available online.2

Both underwater acoustic and optical transmissions are sim-
ulated. The acoustic transmission is simulated using the model
presented in [21]: we assumed a central frequency of 20 kHz and a
bandwidth of 10 kHz, with a bitrate of 4.8 kbps. The transmission
power was set to 175 dB re 1 𝜇Pa; we also assumed some faraway
shipping activities, a wind speed of 5 m/s, and practical spreading.
With this configuration and the model in [21], we ensure that the
area depicted in Fig. 2 is fully convered. The underwater optical
transmission has been modeled according to [4], assuming trans-
missions with blue wavelength in coastal water with an attenuation
coefficient of 0.4 m−1, a transmission power of 50W, and a bitrate of
1 Mbps. No sunlight noise is considered, as we assume the mission
to take place during the night: with these conditions, the optical
range is approximately 13 m. Each simulation lasts 150000 seconds,

2https://github.com/signetlabdei/DESERT_Underwater.git

https://github.com/signetlabdei/DESERT_Underwater.git
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(a) AUV protocol stack.
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(b) ASV protocol stack.

Figure 4: Protocol stack of AUV (a) and ASV (b).

and each AUV follows a predefined set of fixed waypoints. Results
are analyzed averaging over 30 simulation runs to obtain statistical
accuracy, and presented with the 95% confidence interval. Since
packets are transmitted periodically, to avoid synchronized trans-
missions between AUVs, the random listen time of CSMA-ALOHA
used with the acoustic modem is set to be at least as long as the
maximum propagation time, i.e., 3.7 s.

The access protocol employed in the system is CSMA-ALOHA,
as illustrated in Fig. 4. Additionally, a multitraffic controller has
been installed, enabling the system to switch between acoustic
and optical transmission based on the distance to the destination
device. This ensures that the most appropriate communication
mode is used, depending on the proximity of the devices. At the
application layer, there is a control application. From the ASV side,
this application sends the destination points to the AUVs. On the
AUV side, the application manages incoming packets and sets the
next destination for the vehicle. Additional application modules,
namely Module/UW/AUV/ERR and Module/UW/AUV/CER, have
been incorporated into the system. The first module is installed on
the AUVs. It initializes the error state and allows the vehicles to
resume movement once the error has been resolved. The second
module, installed on the ASV, receives and analyzes error packets,
computes the estimate 𝑥 and the error probability 𝑝𝑒 (𝑥 ;𝑁 ), and
decides the appropriate action based on the type of error and fol-
lowing the IER procedure. In this simulation, we did not consider
the ASV model of the scenario, and simply drew a value 𝑦𝑛 at each
transmission following the noise model from the previous section.
We also designed the application modules Module/UW/AUV/ERB

Table 1: Simulation Parameters

Parameter Value

Simulation runs 30
Duration 150000 s
Period 60 s
UW/AUV - CTR Packet size 5 B
UW/AUV/ERR - CER Packet size 125 B
Anomaly probability 𝜀 0.01
Estimation error 𝜎 0.01
AUV number 4
AUV speed 0.5 m/s
ASV speed 1.5 m/s
Acoustic bitrate 4800 bps
Optical bitrate 1 Mbps
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Figure 5: Precision: number of true anomalies identified di-
vided by the total number of reported anomalies (including
false positives).

and Module/UW/AUV/CEB, which implement the same actions as
the previous modules following the SER method instead of IER. A
lightweight transport layer, named Module/UW/UDP, ensures that
packets are delivered to the correct application, while all nodes are
in range: the routing table of the networking module is then trivial,
and just sets the next hop equal to the final destination.

5 RESULTS
The results of the simulation mentioned above have been collected
with a fixed anomaly probability 𝜀 = 0.01 and 𝜎 = 0.01. The accu-
racy threshold 𝜃 has been varied within the range of 0.001 to 0.25.
The mission duration was set to 150000 s, almost 2 days, which is
consistent with AUV battery capacities. Table 1 provides a summary
of the parameters used in our case study.
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Figure 6: Recall: number of true anomalies identified divided
by the total number of true anomalies (including false nega-
tives).

5.1 Precision and Recall
Fig. 5 and Fig. 6 depict the precision and recall performance of
the two uncertainty resolution methods. Precision measures the
portion of true anomalies correctly identified and resolved by the
ASV out of the total number of instances recognized as anomalies,
while recall determines the fraction of real anomalies correctly
identified as such. We can note that the more conservative behavior
of SER results in a far larger number of false alarms: while IER can
keep the number of false alarms below 20% in most circumstances,
SER has 5 to 10 false alarms for every real detected anomaly, due to
its extremely conservative policy of identifying potential anomalies
as real ones. On the other hand, SER manages to catch almost all
real anomalies, while a significant fraction of anomalies may go
undetected with IER. By varying the accuracy threshold, we can
change the sensitivity of the two methods to uncertainty: SER will
tend to mark fewer doubtful cases as anomalies if 𝜃 is larger, while
IER will request more packets before committing to an action. If
we increase 𝜃 significantly, most decisions will be based on a small
number of packets, leading to generally higher communication
performance and fewer collisions. The optimal performance in
terms of precision and recall can be obtained by using IER with a
low value of 𝜃 , which leads the ASV to request multiple packets
beforemaking a decision, reducing both false alarms and undetected
anomalies at the cost of more transmissions.

5.2 Energy Consumption
The distance covered by the ASV and the number of times that
the ROV is lowered, have a crucial impact on the total energy
consumption. In fact, the energy expended during these movements
can be considerable, highlighting the importance of reducing false
alarms to conserve energy resources. The total energy consumption
is the sum of the energy expended by the ASV and the ROV to move,
𝐸mov, and the additional energy spent by the AUVs to transmit, 𝐸tx.
To model energy consumption of the AUV, the approach described
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Figure 7: ASV energy consumption due to movement.

in [22] was utilized, along with data from [16], which references
the Lutra Prop boat. The energy consumption calculation assumes
a linear trajectory approximation, without accounting for rotation,
acceleration, or deceleration. To model the energy consumption of
the ROV, the average consumption of a BLUEROV2, as computed
in [23], was employed. As the speed of the ASV is limited, the drag
force can be safely neglected [22]. A faster ASVmay be able to reach
the AUV in a shorter time, but it would also consume significantly
more energy due to the non-linear relationship between velocity
and energy in high-velocity cases.

Fig. 7 demonstrates the significant energy consumption reduc-
tion of the IER method compared to the SER method. These energy
savings can be attributed to the more efficient error resolution pro-
cess of the IER method, which reduces unnecessary movements
and false alarms, ultimately leading to lower energy consumption
by the ASV. Conversely, Fig. 8 highlights the correlation between
the threshold 𝜃 , which affects the number of transmitted packets,
and the corresponding energy consumption. A larger value of 𝜃 ,
which leads IER to send fewer packets before resolving an uncertain
situation, may save some energy, but the effect on the total energy
consumption is negligible, as 𝐸tx is smaller than 𝐸mov by orders
of magnitude. The IER method then maintains a much lower total
energy consumption when compared to the SER method.

5.3 AUV performance
From theAUV’s perspective, Fig. 9 shows the improvement achieved
by the IER method in terms of the number of true inspected anom-
alies. Over a simulation run, each AUV solves more anomalies than
with SER, as there is no waste of time to go after false alarms. In-
terestingly, the maximum number of solved anomalies is achieved
for a value of 𝜃 that leads to a relatively low recall (around 60%):
depending on the severity of undetected anomalies, it might be
more prudent to set a lower value of 𝜃 and accept a lower efficiency
to increase the system’s reliability and safety.

On the other hand, we can see an interesting trend when we
consider the total covered distance for each AUV: as Fig. 10 shows,
the distance increases with 𝜃 when using both methods. This is
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Figure 8: ASV energy consumption due to transmission.
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Figure 9: True anomalies inspected by an AUV during a mis-
sion.

due to the fact that the SER and IER methods become less strict
when using a lower value of 𝜃 , classifying more samples as normal,
leading to lower waiting times and fewer inspections.

6 CONCLUSION
The results obtained demonstrate the superior performance of the
IERmethod compared to the simpler SER approach. The IERmethod
not only achieves higher precision and recall in error resolution,
but also contributes to significant energy savings for the ASV. Ad-
ditionally, it enhances AUV productivity by reducing downtime
and increasing the total inspected distance. However, further in-
vestigation is required to assess the overall quality of performance
for the IER method in wider areas and with different error models.
Its potential benefits in terms of accuracy, energy efficiency, and
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Figure 10: Distance inspected by a single AUV during the
whole mission duration.

productivity make it a valuable area of research and development
for underwater inspection systems.
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