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Abstract
We state a sufficient condition for a fusion system to be saturated. This is then used to investigate localities with
kernels: that is, localities that are (in a particular way) extensions of groups by localities. As an application of these
results, we define and study certain products in fusion systems and localities, thus giving a new method to construct
saturated subsystems of fusion systems.
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1. Introduction

The problem of showing that a given fusion system is saturated arises in different contexts. For example,
proving that certain subsystems of fusion systems are saturated is one of the major difficulties in
developing a theory of saturated fusion systems in analogy to the theory of finite groups. When studying
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extensions of fusion systems, it is also crucial to understand under which conditions such extensions are
saturated. In this paper, we seek to take up both themes simultaneously in a systematic way. To formulate
and study extension problems, it is common to work with linking systems or, more generally, with
transporter systems associated to fusion systems (see, e.g., [6, 25, 23]). The equivalent framework of
localities (introduced by Chermak [7]) was recently used by Chermak and the second named author of
this paper to construct saturated subsystems of fusion systems, thereby enriching the theory of fusion
systems by some new concepts (compare [10, Theorem C] and [20]).

In the present paper (apart from the appendix), we work with localities rather than transporter systems.
Our first main result is, however, formulated purely in terms of fusion systems. It gives a sufficient
condition for a fusion system to be saturated. The proof generalises an argument used by Oliver [23] to
show that the fusion systems associated to certain extensions of groups by linking systems are saturated.

Our saturation criterion serves us as an important tool for studying kernels of localities as introduced
in Definition 4 below. A kernel of a locality L is basically a partial normal subgroup N such that the
factor locality L/N is a group and N itself supports the structure of a locality. We show in an appendix
that kernels of localities correspond to ‘normal pairs of transporter systems’ (compare Definition A.3).

In Section 6, we prove some results demonstrating that the theory of kernels can be used to construct
saturated subsystems of fusion systems. More precisely, we study certain products in localities that
give rise to ‘sublocalities’ whose fusion systems are saturated. As a special case, if F is a saturated
fusion system over S, one can define a notion of a product of a normal subsystem with a subgroup
of a model for 𝑁F (𝑆) (or equivalently with a saturated subsystem of 𝑁F (𝑆)). In particular, our work
generalises the notion of a product of a normal subsystem with a subgroup of S, which was introduced
by Aschbacher [3]. Our results on products are also used by the second named author of this article [19]
to construct normalisers and centralisers of subnormal subsystems of saturated fusion systems.

For the remainder of this introduction, let F be a fusion system over a finite p-group S.

We will adapt the terminology and notation regarding fusion systems from [2, Chapter 1], except that
we will write homomorphisms on the right-hand side of the argument (similarly as in [2, Chapter 2])
and that we will define centric radical subgroups of F differently, namely as follows.

Definition 1. Define a subgroup 𝑃 ≤ 𝑆 to be centric radical in F if

◦ P is centric: that is, 𝐶𝑆 (𝑄) ≤ 𝑄 for every F-conjugate Q of P; and
◦ 𝑂 𝑝 (𝑁F (𝑄)) = 𝑄 for every fully F-normalised F-conjugate Q of P.

Write F 𝑐𝑟 for the set of subgroups of S that are centric radical in F .

If F is saturated, then our notion of centric radical subgroups of F coincides with the usual notion
(compare Lemma 2.6). However, defining centric radical subgroups as above is crucial if we want to
conclude that the fusion systems of certain localities are saturated.

1.1. A saturation criterion

The following definition will be used to formulate the previously mentioned sufficient condition for a
fusion system to be saturated.

Definition 2. Let Δ be a set of subgroups of S.

◦ The set Δ is called F-closed if Δ is closed under F-conjugacy and overgroup-closed in S.
◦ F is called Δ-generated if every morphism in F can be written as a product of restrictions of
F-morphisms between subgroups in Δ .

◦ F is called Δ-saturated if each F-conjugacy class in Δ contains a subgroup that is fully automised
and receptive in F (as defined in [2, Definition I.2.2]).

Generalising arguments used by Oliver [23], we prove the following theorem.
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Theorem A. Let E be an F-invariant saturated subsystem of F . Suppose F is Δ-generated and
Δ-saturated for some F-closed set Δ of subgroups of S with E𝑐𝑟 ⊆ Δ . Then F is saturated.

1.2. Kernels of localities

The reader is referred to Section 3 for an introduction to partial groups and localities. We say that a
locality (L,Δ , 𝑆) is a locality over F to indicate that F = F𝑆 (L). The set Δ is called the object set of
(L,Δ , 𝑆). It follows from the definition of a locality that the normaliser 𝑁L (𝑃) of any object 𝑃 ∈ Δ is
a subgroup of L and thus a finite group. We will use the following definition.

Definition 3.

◦ A locality (L,Δ , 𝑆) over F is called cr-complete if F 𝑐𝑟 ⊆ Δ .
◦ A finite group G is said to be of characteristic p if 𝐶𝐺 (𝑂 𝑝 (𝐺)) ≤ 𝑂 𝑝 (𝐺).
◦ A locality (L,Δ , 𝑆) is called a linking locality if it is cr-complete and 𝑁L (𝑃) is of characteristic p

for every 𝑃 ∈ Δ .

The slightly nonstandard notion of centric radical subgroups introduced in Definition 1 ensures that
the fusion system F𝑆 (L) of a cr-complete locality (L,Δ , 𝑆) is saturated (compare Proposition 3.18(c)).
If (L,Δ , 𝑆) is a cr-complete locality over F , then it gives rise to a transporter system T associated to
F whose object set is Δ and thus contains the set F 𝑐𝑟 . It follows from [25, Proposition 4.6] that the
p-completed nerve of such a transporter system T is homotopy equivalent to the p-completed nerve of
a linking system associated to F . The results we present next are centred around the following concept.

Definition 4. A kernel of a locality (L,Δ , 𝑆) is a partial normal subgroup N of L such that 𝑃 ∩N ∈ Δ
for every 𝑃 ∈ Δ .

We show in Appendix A that kernels of localities correspond to ‘normal pairs of transporter systems’.
In particular, the results presented below can be translated to results on transporter systems. The reader
is referred to Definition A.3, Proposition A.4, Theorem A.7 and Remark A.8 for details.

If N is a kernel of a locality (L,Δ , 𝑆), then, setting

𝑇 := N ∩ 𝑆 and Γ := {𝑃 ∩N : 𝑃 ∈ Δ},

it is easy to see that (N , Γ, 𝑇) is a locality (compare Lemma 5.2). We also say in this situation that
(N , Γ, 𝑇) is a kernel of (L,Δ , 𝑆).

Suppose now that (N , Γ, 𝑇) is a kernel of (L,Δ , 𝑆). Observe that T is an element of Γ ⊆ Δ , so
𝑁L (𝑇) is a subgroup of L. It follows therefore from [8, Theorem 4.3(b), Corollary 4.5] that L/N �
𝑁L (𝑇)/𝑁N (𝑇) is a group. Thus, L can be seen as an extension of the group L/N by the locality
(N , Γ, 𝑇).

If the kernel (N , Γ, 𝑇) is cr-complete, then the following theorem implies that F𝑆 (L) is saturated.
Its proof uses Theorem A.

Theorem B. Let (N , Γ, 𝑇) be a kernel of a locality (L,Δ , 𝑆). Then (L,Δ , 𝑆) is cr-complete if and only
if (N , Γ, 𝑇) is cr-complete. If so, then F𝑇 (N ) is a normal subsystem of F𝑆 (L).
Theorem C. Let (L,Δ , 𝑆) be a locality with a kernel (N , Γ, 𝑇). Then the following conditions are
equivalent:

(i) (L,Δ , 𝑆) is a linking locality;
(ii) (N , Γ, 𝑇) is a linking locality and 𝑁L (𝑇) is of characteristic p;

(iii) (N , Γ, 𝑇) is a linking locality and 𝐶L (𝑇) is of characteristic p.

We now want to consider special kinds of linking localities. The object set of any linking locality
over F is always contained in the set F 𝑠 of F-subcentric subgroups (defined in Definition 3.19). If F is
saturated, then the existence and uniqueness of centric linking systems imply conversely that for every
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F-closed set Δ of subgroups of F 𝑠 , there is an essentially unique linking locality over F with object set
Δ . Chermak introduced an F-closed set 𝛿(F) ⊆ F 𝑠 , which by [10, Lemma 7.21] can be described as
the set of all subgroups of S containing an element of 𝐹∗(F)𝑠 (where 𝐹∗(F) is the generalised Fitting
subsystem of F introduced by Aschbacher [3]). Notice that there always exists an essentially unique
linking locality over F whose object set is the set 𝛿(F). Such a linking locality is called a regular
locality.

For an arbitrary locality (L,Δ , 𝑆), there is a largest subgroup R of S with L = 𝑁L (𝑅). This subgroup
is denoted by 𝑂 𝑝 (L). Setting Δ̃ := {𝑃 ≤ 𝑆 : 𝑃𝑂 𝑝 (L) ∈ Δ}, the triple (L, Δ̃ , 𝑆) is also a locality (but
with a possibly larger object set). It turns out that (L,Δ , 𝑆) is a linking locality if and only if (L, Δ̃ , 𝑆)
is a linking locality (compare [10, Lemma 3.28]). This flexibility in the choice of object sets makes it
possible to formulate a result similar to Theorem C for regular localities.

Theorem D. Let (L,Δ , 𝑆) be a locality with a kernel (N , Γ, 𝑇). Set

Δ̃ := {𝑃 ≤ 𝑆 : 𝑃𝑂 𝑝 (L) ∈ Δ} and Γ̃ := {𝑄 ≤ 𝑇 : 𝑄𝑂 𝑝 (N ) ∈ Γ}.

Then the following conditions are equivalent:

(i) (L, Δ̃ , 𝑆) is a regular locality;
(ii) (N , Γ̃, 𝑇) is a regular locality and 𝑁L (𝑇) is of characteristic p;

(iii) (N , Γ̃, 𝑇) is a regular locality and 𝐶L (𝑇) is of characteristic p.

Moreover, if these conditions hold, then 𝐸 (L) = 𝐸 (N ).

In an unpublished preprint, Chermak defined a locality (L,Δ , 𝑆) to be semiregular if (in our language)
it has a kernel (N , Γ, 𝑇) that is a regular locality. He observed furthermore that a locality is semiregular
if and only if it is an image of a regular locality under a projection of localities. As a consequence, images
of semiregular localities under projections are semiregular. Moreover, since partial normal subgroups of
regular localities form regular localities, it follows that partial normal subgroups of semiregular localities
form semiregular localities. Thus, the category of semiregular localities and projections might provide
a good framework to study extensions. This is one of our motivations to study kernels of localities more
generally.

Remark. Extensions of partial groups and localities have already been studied by Gonzalez [12]. He
starts by giving important insights into the existence of extensions of partial groups. Basically, Gonzalez
considers partial groups as simplicial sets and uses the concept of a simplicial fibre bundle. Gonzalez
then states some results about extensions of localities in Section 7 of his paper. He calls a locality
‘saturated’ if it is cr-complete in our sense. Under certain conditions, it is shown that extensions of
localities lead to (saturated) localities. To summarise, Gonzalez starts by defining isotypical extensions
(compare [12, Definition 7.1]) and shows that an isotypical extension of a locality (L′′,Δ ′′, 𝑆′′) by a
locality (L′,Δ ′, 𝑆′) leads to a locality (T,Δ , 𝑆) (compare [12, Proposition 7.6]). Slightly more precisely,
we have T ⊆ L for an extension L of the partial group L′′ by the partial group L′.

The situation Gonzalez studies is principally different from ours. However, in [12, Example 7.9,
Corollary 7.10], he considers a setup where L = T (with L and T as above). In this situation, one can
observe easily that (L′,Δ ′, 𝑆′) is a kernel of (L,Δ , 𝑆). Indeed, our Theorem B shows that the assumption
in [12, Corollary 7.10] that Δ ′ contains all F ′-centric subgroups is redundant. It would be the subject of
further research to see how far our results have other interesting applications in the context of Gonzalez’s
work.

1.3. Products in regular localities and fusion systems

We now demonstrate that the theory of kernels can be used to study certain products in regular localities
and thereby construct saturated subsystems of saturated fusion systems.
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We study regular localities rather than arbitrary (linking) localities, mainly because every partial
normal subgroup of a regular locality can be given the structure of a regular locality. To be exact, if
(L,Δ , 𝑆) is a regular locality and N � L, then E := F𝑆∩N (N ) is saturated and (N , 𝛿(E), 𝑆 ∩N ) is a
regular locality.

In localities or, more generally, in partial groups, there is a natural notion of products of subsets.
More precisely, if L is a partial group with product Π : D → L, then for X ,Y ⊆ L, we set

XY := {Π(𝑥, 𝑦) : 𝑥 ∈ X , 𝑦 ∈ Y , (𝑥, 𝑦) ∈ D}.

The product of a partial normal subgroup with another partial subgroup is only in special cases known to
be a partial subgroup. For example, the product of two partial normal subgroups of a locality (L,Δ , 𝑆)
is a partial normal subgroup (and thus forms a regular locality if (L,Δ , 𝑆) is regular). Our next theorem
gives a further example of a product that is a partial subgroup and can be given the structure of a regular
locality.

For the theorem below to be comprehensible, a few preliminary remarks may be useful. For any
linking locality (L,Δ , 𝑆), one can define the generalised Fitting subgroup 𝐹∗(L) as a certain partial
normal subgroup of L (see [18, Definition 3]). If (L,Δ , 𝑆) is a regular locality, then 𝐹∗(L) is a kernel
of (L,Δ , 𝑆), and thus 𝑇∗ := 𝑆 ∩ 𝐹∗(L) is an element of Δ . In particular, 𝑁L (𝑇

∗) forms a group of
characteristic p. If N � L is a partial normal subgroup of L, then 𝑁N (𝑇∗) is a normal subgroup of
𝑁L (𝑇

∗). Hence, for any subgroup H of 𝑁L (𝑇
∗), the product 𝑁N (𝑇∗)𝐻 is a subgroup of 𝑁L (𝑇

∗).

Theorem E. Let (L,Δ , 𝑆) be a regular locality. Moreover, fix

N � L, 𝑇 := N ∩ 𝑆, E := F𝑇 (N ), 𝑇∗ := 𝐹∗(L) ∩ 𝑆 and 𝐻 ≤ 𝑁L (𝑇
∗).

Then N𝐻 is a partial subgroup of L. Moreover, for every Sylow p-subgroup 𝑆0 of 𝑁N (𝑇∗)𝐻 with
𝑇 ≤ 𝑆0, the following hold:

(a) There exists a unique set Δ0 of subgroups of 𝑆0 such that (N𝐻,Δ0, 𝑆0) is a cr-complete locality
with kernel (N , 𝛿(E), 𝑇).

(b) Let Δ0 be as in (a), and set Δ̃0 := {𝑃 ≤ 𝑆 : 𝑃𝑂 𝑝 (N𝐻) ∈ Δ0}. Then (N𝐻, Δ̃0, 𝑆0) is a regular
locality if and only if 𝑁N (𝑇∗)𝐻 is a group of characteristic p.

If the hypothesis of Theorem E holds and 𝑆 ∩ 𝐻 is a Sylow p-subgroup of H, then

𝑆0 := 𝑇 (𝑆 ∩ 𝐻)

is a Sylow p-subgroup of 𝑁N (𝑇∗)𝐻 that is contained in S (compare Lemma 6.2). Thus, the
cr-complete locality (N𝐻,Δ0, 𝑆0) from Theorem E(a) gives rise to a saturated subsystem F𝑆0 (N𝐻) =
F𝑇 (𝐻∩𝑆) (N𝐻) of F . This leads us to a statement that can be formulated purely in terms of fusion
systems. We use here that, for every regular locality (L,Δ , 𝑆) over F , there is by [10, Theorem A] a
bijection from the set of partial normal subgroups of L to the set of normal subsystems of F given by
N ↦→ F𝑆∩N (N ). By [10, Theorem E(d)], this bijection takes 𝐹∗(L) to 𝐹∗(F). In particular, 𝐹∗(F) is
a fusion system over 𝐹∗(L) ∩ 𝑆.

To formulate the result we obtain, we rely on the fact that every constrained fusion system is realised
by a model: that is, by a finite group of characteristic p. Furthermore, if F is constrained and G is a
model for F , then every normal subsystem of F is realised by a normal subgroup of G. We also use
that, for every saturated fusion system F over S, every normal subsystem E of F and every subgroup R
of S, there is a product subsystem E𝑅 defined (compare [3, Chapter 8] or [13]).

Corollary F. Let F be a saturated fusion system over S and E �F over 𝑇 ≤ 𝑆. Let 𝑇∗, 𝑇0 ≤ 𝑆 such that

𝐹∗(F) is a fusion system over 𝑇∗ and 𝐸 (E) is a fusion system over 𝑇0.
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Then 𝑁F (𝑇∗) is constrained and 𝑁E (𝑇0) � 𝑁F (𝑇∗). Thus we may choose a model G for 𝑁F (𝑇∗) and
𝑁 � 𝐺 with F𝑆∩𝑁 (𝑁) = 𝑁E (𝑇0). Let 𝐻 ≤ 𝐺 with 𝑆 ∩ 𝐻 ∈ Syl𝑝 (𝐻). Set

𝑆0 := 𝑇 (𝑆 ∩ 𝐻) and E𝐻 := 〈𝐸 (E)𝑆0,F𝑆0 (𝑁𝐻)〉.

Then the following hold:

(a) E𝐻 is a saturated fusion system over 𝑆0 with E � E𝐻.
(b) If D is a saturated subsystem of F with 𝐸 (E) � D and F𝑆0 (𝑁𝐻) ⊆ D, then E𝐻 ⊆ D.

For a saturated fusion system F with E � F , it is shown, for example, in [10, Lemma 7.13(a)]
that 𝐸 (E) � F . Hence, it makes sense in the situation above to form the product subsystem 𝐸 (E)𝑆0.
Moreover, part (b) of Corollary F implies the following statement: If D is a saturated subsystem of F
with E � D and F𝑆0 (𝑁𝐻) ⊆ D, then E𝐻 ⊆ D.

Organisation of the paper
We start by proving our saturation criterion (Theorem A) in Section 2. An introduction to partial groups
and localities is given in Section 3. After proving some preliminary results, we study kernels of localities
in Section 5. This is used in Section 6 to prove Theorem E and Corollary F as well as some more detailed
results on products.

2. Proving saturation

Throughout this section, let F be a fusion system over S.
In this section, we prove Theorem A. The reader is referred to [2, Chapter I] for an introduction to

fusion systems. We will adopt the notation and terminology from there with the following two caveats:
firstly, we write homomorphisms on the right-hand side of the arguments similarly as in [2, Chapter II].
Secondly, we define the set F𝑟 of F-radical subgroups differently, namely as in Definition 2.5 below.

Definition 2.1. A subgroup 𝑃 ≤ 𝑆 is said to respect F-saturation if there exists an element of 𝑃F that
is fully automised and receptive in F (as defined in [2, Definition I.2.2]).

If Δ is a set of subgroups of S that is closed under F-conjugacy, then notice that F is Δ-saturated
(as defined in the introduction) if and only if every element of Δ respects F-saturation. On the other
hand, P respects F-saturation if F is 𝑃F -saturated. Observe also that a fusion system is saturated if
every subgroup of S respects F-saturation, or equivalently if F is Δ-saturated, where Δ is the set of all
subgroups of S. Roberts and Shpectorov [26] proved the following lemma, which we will use from now
on, most of the time without reference.

Lemma 2.2. Let C be an F-conjugacy class of F . Then F is C-saturated if and only if the following two
conditions hold:

(I) (Sylow axiom) Each subgroup 𝑃 ∈ C that is fully F-normalised is also fully F-centralised and fully
automised in F .

(II) (Extension axiom) Each subgroup 𝑃 ∈ C that is fully F-centralised is also receptive in F .

Furthermore, if F is C-saturated, then for every fully F-normalised 𝑃 ∈ C and every 𝑄 ∈ 𝑃F , there
exists 𝛼 ∈ HomF (𝑁𝑆 (𝑄), 𝑁𝑆 (𝑃)) such that 𝑄𝛼 = 𝑃.

Proof. If (I) and (II) hold, then every fully F-normalised subgroup 𝑃 ∈ C is fully automised and
receptive, and thus F is C-saturated. On the other hand, if F is C-saturated, it follows from [2, Lemma
I.2.6(c)] that (I) and (II) and the statement of the lemma hold. �

Corollary 2.3. If F is saturated and 𝑃 ≤ 𝑆 is fully F-normalised, then for every 𝑄 ∈ 𝑃F , there exists
𝛼 ∈ HomF (𝑁𝑆 (𝑄), 𝑁𝑆 (𝑃)) such that 𝑄𝛼 = 𝑃.
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Recall that a subgroup 𝑃 ≤ 𝑆 is called F-centric if 𝐶𝑆 (𝑄) ≤ 𝑄 for every 𝑄 ∈ 𝑃F . Write F 𝑐 for the
set of F-centric subgroups of S. We will need the following lemma.

Lemma 2.4. Let F be a fusion system over S, and let 𝑃 ≤ 𝑆 be fully F-centralised. Then P is F-centric
if and only if 𝐶𝑆 (𝑃) ≤ 𝑃.

Proof. If P is F-centric, then clearly 𝐶𝑆 (𝑃) ≤ 𝑃. Suppose now that 𝐶𝑆 (𝑃) ≤ 𝑃. Then for any
𝑄 ∈ 𝑃F , we have 𝐶𝑆 (𝑄) ≥ 𝑍 (𝑄) � 𝑍 (𝑃) = 𝐶𝑆 (𝑃). Hence, as P is fully F-centralised, we have
𝐶𝑆 (𝑄) = 𝑍 (𝑄) ≤ 𝑄 for all 𝑄 ∈ 𝑃F : that is, P is F-centric. �

We recall that 𝑂 𝑝 (F) denotes the largest subgroup of S that is normal in F ([2, Definition I.4.3]).
Moreover, if F is saturated and 𝑂 𝑝 (F) ∈ F 𝑐 , then F is called constrained ([2, Definition I.4.8]). The
Model Theorem for constrained fusion systems [2, Theorem III.5.10] guarantees that every constrained
fusion system F over S has a model: that is, there is a finite group G such that 𝑆 ∈ Syl𝑝 (𝐺), F𝑆 (𝐺) = F
and 𝐶𝐺 (𝑂 𝑝 (𝐺)) ≤ 𝑂 𝑝 (𝐺).

Definition 2.5.

◦ A subgroup 𝑃 ≤ 𝑆 is called F-radical if there exists a fully F-normalised F-conjugate Q of P such
that 𝑂 𝑝 (𝑁F (𝑄)) = 𝑄. We denote by F𝑟 the set of F-radical subgroups of S.

◦ Set F 𝑐𝑟 = F 𝑐 ∩ F𝑟 , and call the elements of F 𝑐𝑟 the F-centric radical subgroups of S.
◦ A subgroup 𝑃 ≤ 𝑆 is called F-critical if P is F-centric and, for every F-conjugate Q of P, we have

Out𝑆 (𝑄) ∩𝑂 𝑝 (OutF (𝑄)) = 1.

As remarked before, our definition of radical subgroups differs from the usual one given, for example,
in [2, Definition I.3.1]. We show in part (b) of our next lemma that, for a saturated fusion system F , the
set F 𝑐𝑟 equals the set of F-centric radical subgroups in the usual definition.

Lemma 2.6.

(a) For every 𝑅 ≤ 𝑆, the following implications hold:

𝑅 ∈ F 𝑐 and 𝑂 𝑝 (AutF (𝑅)) = Inn(𝑅) =⇒ 𝑅 is F-critical =⇒ 𝑅 ∈ F 𝑐𝑟 .

(b) If F is saturated, then we have

F 𝑐𝑟 = {𝑅 ∈ F 𝑐 : 𝑂 𝑝 (AutF (𝑅)) = Inn(𝑅)} = {𝑅 ≤ 𝑆 : 𝑅 is F-critical}.

Proof. If Inn(𝑅) = 𝑂 𝑝 (AutF (𝑅)), then Inn(𝑄) = 𝑂 𝑝 (AutF (𝑄)) = Aut𝑆 (𝑄)∩𝑂 𝑝 (AutF (𝑄)) for every
F-conjugate Q of R, so R is F-critical if in addition 𝑅 ∈ F 𝑐 . This shows the first implication in (a).

Now let 𝑅 ∈ F 𝑐 such that 𝑅 ∉ F𝑟 . If we pick a fully F-normalised F-conjugate Q of R, we have
𝑄 < 𝑄∗ := 𝑂 𝑝 (𝑁F (𝑄)). So Inn(𝑄) < Aut𝑄∗ (𝑄) as 𝑄 ∈ F 𝑐 . Moreover, Aut𝑄∗ (𝑄) is normal in
AutF (𝑄), as by definition of𝑄∗ every element of AutF (𝑄) extends to an element of AutF (𝑄∗). Hence,
Inn(𝑄) < Aut𝑄∗ (𝑄) ≤ Aut𝑆 (𝑄) ∩ 𝑂 𝑝 (AutF (𝑄)). This shows that R is not F-critical, so (a) holds. In
particular,

F 𝑐𝑟 ⊇ {𝑅 ≤ 𝑆 : 𝑅 is F-critical } ⊇ {𝑅 ∈ F 𝑐 : 𝑂 𝑝 (AutF (𝑅)) = Inn(𝑅)}.

For the proof of (b), it is thus sufficient to show that𝑂 𝑝 (AutF (𝑅)) = Inn(𝑅) for every 𝑅 ∈ F 𝑐𝑟 . Now fix
𝑅 ∈ F 𝑐𝑟 . Since the property 𝑂 𝑝 (AutF (𝑅)) = Inn(𝑅) is preserved if R is replaced by an F-conjugate,
we may assume without loss of generality that R is fully F-normalised and 𝑅 = 𝑂 𝑝 (𝑁F (𝑅)). Note that
𝑁F (𝑅) is saturated. So as 𝑅 ∈ F 𝑐 , the subsystem 𝑁F (𝑅) is constrained. Thus, we may choose a model
G for 𝑁F (𝑅). Then 𝑂 𝑝 (𝐺) = 𝑅 = 𝑂 𝑝 (𝑁F (𝑅)) and

AutF (𝑅) � 𝐺/𝐶𝐺 (𝑅) � 𝐺/𝑍 (𝑅).
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Hence, 𝑂 𝑝 (AutF (𝑅)) � 𝑂 𝑝 (𝐺/𝑍 (𝑅)) = 𝑅/𝑍 (𝑅) � Inn(𝑅). Thus 𝑂 𝑝 (AutF (𝑅)) = Inn(𝑅). This
proves that F 𝑐𝑟 ⊆ {𝑅 ∈ F 𝑐 : 𝑂 𝑝 (AutF (𝑅)) = Inn(𝑅)}}, so (b) holds. �

The F-critical subgroups play a crucial role in showing that a fusion system is saturated. This is
made precise in the following theorem, which we restate for the reader’s convenience.

Theorem 2.7. Suppose Δ is a set of subgroups of S that is closed under F-conjugacy and contains
every F-critical subgroup. If F is Δ-generated and Δ-saturated, then F is saturated.

Proof. This is a reformulation of [5, Theorem 2.2]. The reader might also want to note that the theorem
follows from Lemma 2.9 below. �

Later, we will need to prove saturation in a situation where it appears impossible to apply Theorem 2.7
directly. We will therefore have a closer look at the arguments used in the proof of that theorem.

Define a partial order � on the set of F-conjugacy classes by writing P � Q if some (and thus every)
element of Q contains an element of P .

Lemma 2.8. Let H be a set of subgroups of S closed under F-conjugacy such that F is H-generated
and H-saturated. Let P be an F-conjugacy class that is maximal with respect to � among those
F-conjugacy classes that are not contained in H.

Write S≥𝑃 ⊇ S>𝑃 for the sets of subgroups of 𝑁𝑆 (𝑃) that contain, or properly contain, an element
𝑃 ∈ P . Then the following hold for every 𝑃 ∈ P that is fully F-normalised:

(a) The subsystem 𝑁F (𝑃) is S>𝑃-generated and S>𝑃-saturated.
(b) If 𝑁F (𝑃) is S≥𝑃-saturated, then F is H ∪ P-saturated.
(c) P is fully F-centralised. Moreover, for every 𝑄 ∈ P , there exists 𝛼 ∈ HomF (𝑁𝑆 (𝑄), 𝑁𝑆 (𝑃)) such

that 𝑄𝛼 = 𝑃.
(d) If 𝐶𝑆 (𝑃) ≤ 𝑃, then P is F-centric, and if Out𝑆 (𝑃) ∩ 𝑂 𝑝 (OutF (𝑃)) = 1, then Out𝑆 (𝑄) ∩

𝑂 𝑝 (OutF (𝑄)) = 1 for all 𝑄 ∈ P . In particular, if 𝐶𝑆 (𝑃) ≤ 𝑃 and Out𝑆 (𝑃) ∩ 𝑂 𝑝 (OutF (𝑃)) = 1,
then P is F-critical.

Proof. Basically, this follows from [5, Lemma 2.4] and its proof. We take the opportunity to point
out the following small error in the proof of part (b) of that lemma: in l.9 on p.334 of [5] it says
‘replacing each 𝜑𝑖 by 𝜒𝑖 ◦ 𝜑𝑖 ◦ 𝜒−1

𝑖 ∈ HomF (𝜒𝑖 (𝑄𝑖), 𝑆)’. However, it should be ‘replacing each 𝜑𝑖 by
𝜒𝑖+1 ◦ 𝜑𝑖 ◦ 𝜒

−1
𝑖 ∈ HomF (𝜒𝑖 (𝑄𝑖), 𝑆)’.

Let us now explain in detail how the assertion follows. By [5, Lemma 2.4(a), (c)], 𝑁F (𝑃) is
S>𝑃-saturated and (b) holds. To prove (a), one needs to argue that 𝑁F (𝑃) is also S>𝑃-generated. If
𝜑 ∈ Hom𝑁F (𝑃) (𝐴, 𝐵), then 𝜑 extends to a morphism �̂� ∈ HomF (𝐴𝑃, 𝐵𝑃) that normalises P. If 𝐴 � 𝑃,
then 𝐴𝑃 ∈ S>𝑃 , and thus 𝜑 is the restriction of a morphism between subgroups in S>𝑃 . If 𝐴 ≤ 𝑃, then
�̂� ∈ AutF (𝑃), and by [5, Lemma 2.4(b)], �̂� (and thus 𝜑) is a composite of restrictions of morphisms in
𝑁F (𝑃) between subgroups in S>𝑃 . Hence, 𝑁F (𝑃) is S>𝑃 generated, and (a) holds.

The following property is shown in the proof of Lemma 2.4 in [5] (see p.333, property (3)).

(*) There is a subgroup �̂� ∈ P fully F-centralised such that, for all 𝑄 ∈ P , there exists a morphism
𝜑 ∈ HomF (𝑁𝑆 (𝑄), 𝑁𝑆 (�̂�)) with 𝑄𝜑 = �̂�.

In particular, there exists 𝜓 ∈ HomF (𝑁𝑆 (𝑃), 𝑁𝑆 (�̂�)) such that 𝑃𝜓 = �̂�. Since P is fully F-normalised,
the map 𝜓 is an isomorphism. In particular, P is fully F-centralised as �̂� is fully F-centralised.
Moreover, if 𝑄 ∈ P , then by (*), there exists 𝜑 ∈ HomF (𝑁𝑆 (𝑄), 𝑁𝑆 (�̂�)) with 𝑄𝜑 = �̂�, and we have
𝛼 := 𝜑𝜓−1 ∈ HomF (𝑁𝑆 (𝑄), 𝑁𝑆 (𝑃)), with 𝑄𝛼 = �̂�𝜓−1 = 𝑃. Hence, (c) holds.

It follows from Lemma 2.4 and the first part of (c) that P is F-centric if 𝐶𝑆 (𝑃) ≤ 𝑃. If 𝑄 ∈ P ,
then the second part of (c) allows us to choose 𝛼 ∈ HomF (𝑁𝑆 (𝑄), 𝑁𝑆 (𝑃)) with 𝑄𝛼 = 𝑃. Notice that
the map 𝛼∗ : AutF (𝑄) → AutF (𝑃), 𝛾 ↦→ 𝛼−1𝛾𝛼 is a group isomorphism with Inn(𝑄)𝛼∗ = Inn(𝑃)
and Aut𝑆 (𝑄)𝛼∗ ≤ Aut𝑆 (𝑃). So 𝛼∗ induces an isomorphism from OutF (𝑄) to OutF (𝑃) that maps
Out𝑆 (𝑄) ∩𝑂 𝑝 (OutF (𝑄)) into Out𝑆 (𝑃) ∩𝑂 𝑝 (OutF (𝑃)). This implies (d). �
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Lemma 2.9. Suppose that H is one of the following two sets:

(i) the set of all subgroups of S respecting F-saturation; or
(ii) the set of all 𝑃 ≤ 𝑆 such that every subgroup of S containing an F-conjugate of P respects

F-saturation.

Assume that F is H-generated. Let P be an F-conjugacy class, which is maximal with respect to �

among the F-conjugacy classes not contained in H. Then the elements of P are F-critical.

Proof. Observe first that H is in either case closed under F-conjugacy and F is H-saturated. Moreover,
note that F is not H ∪P-saturated; this is clear if H is as in (i); if H is as in (ii), then note that because
of the maximal choice of P , F being H ∪ P-saturated would imply that every subgroup containing an
element of P would be either in P or in H and thus respect F-saturation.

Now fix 𝑃 ∈ P fully F-normalised. By Lemma 2.8(a),(b) (using the notation introduced in that
lemma), 𝑁F (𝑃) is S>𝑃 generated and S>𝑃-saturated, but not S≥𝑃-saturated asF is notH∪P-saturated.
Thus, by [5, Lemma 2.5] applied with 𝑁F (𝑃) in place of F , we have Out𝑆 (𝑃) ∩𝑂 𝑝 (OutF (𝑃)) = 1 and
𝑃 ∈ 𝑁F (𝑃)𝑐 . It now follows from Lemma 2.8(d) that P is F-critical. �

Lemma 2.10. Let E be an F-invariant subsystem of F over 𝑇 ≤ 𝑆. Let 𝑃 ≤ 𝑆, and set 𝑃0 := 𝑃 ∩ 𝑇 .
Then the following hold:

(a) If 𝐶𝑆 (𝑃) ≤ 𝑃 and Out𝑆 (𝑃) ∩ 𝑂 𝑝 (OutF (𝑃)) = 1, then 𝐶𝑇 (𝑃0) ≤ 𝑃0 and Out𝑇 (𝑃0) ∩

𝑂 𝑝 (OutE (𝑃0)) = 1.
(b) If E is saturated, 𝑃0 is fully E-normalised and P is F-critical, then 𝑃0 ∈ E𝑐𝑟 .

Proof. Assume that 𝐶𝑇 (𝑃0) � 𝑃0 or Out𝑇 (𝑃0) ∩ 𝑂 𝑝 (OutE (𝑃0)) ≠ 1. Let Q be the preimage of
Out𝑇 (𝑃0) ∩ 𝑂 𝑝 (OutE (𝑃0)) in 𝑁𝑇 (𝑃0). Note that 𝐶𝑇 (𝑃0) ≤ 𝑄, so our assumption implies in any
case that 𝑃0 < 𝑄 and thus 𝑄 � 𝑃. As P normalises 𝑃0, P also normalises Q. Hence, 𝑃𝑄 is a
p-group with 𝑃 < 𝑃𝑄. This yields 𝑃 < 𝑁𝑃𝑄 (𝑃) = 𝑃𝑁𝑄 (𝑃), and thus 𝑁𝑄 (𝑃) � 𝑃. Note that
[𝑃, 𝑁𝑄 (𝑃)] ≤ 𝑃 ∩ 𝑇 = 𝑃0. So 𝑋 := 〈Aut𝑄 (𝑃)AutF (𝑃) 〉 acts trivially on 𝑃/𝑃0. At the same time, by
definition of Q, the elements of Aut𝑄 (𝑃), and thus the elements of X, restrict to automorphisms of 𝑃0
that lie in 𝑂 𝑝 (OutE (𝑃0)) � AutF (𝑃0). Hence, a 𝑝′-element of X acts trivially on 𝑃/𝑃0 and on 𝑃0, and
therefore it is trivial by properties of coprime action (compare [21, 8.2.2(b)] or [2, Lemma A.2]). This
shows that X is a p-group, so Aut𝑄 (𝑃) ≤ Aut𝑆 (𝑃) ∩𝑂 𝑝 (AutF (𝑃)). As 𝑁𝑄 (𝑃) � 𝑃, this implies either
𝐶𝑆 (𝑃) � 𝑃 or 1 ≠ Out𝑄 (𝑃) ≤ Out𝑆 (𝑃) ∩𝑂 𝑝 (OutF (𝑃)). This proves (a).

Assume now that E is saturated, 𝑃0 is fully E-normalised and P is F-critical. The latter condition
implies 𝐶𝑆 (𝑃) ≤ 𝑃 and Out𝑆 (𝑃) ∩ 𝑂 𝑝 (OutF (𝑃)) = 1. So by (a), 𝐶𝑇 (𝑃0) ≤ 𝑃0 and Out𝑇 (𝑃0) ∩
𝑂 𝑝 (OutE (𝑃0)) = 1. As E is saturated and 𝑃0 is fully E-normalised, 𝑃0 is fully E-centralised and
fully E-automised. Hence, 𝑃0 is E-centric by Lemma 2.4 and 𝑂 𝑝 (OutE (𝑃0)) ≤ Out𝑇 (𝑃0). The latter
condition implies 𝑂 𝑝 (OutE (𝑃0)) = 1. Using Lemma 2.6(a), we conclude that 𝑃0 ∈ E𝑐𝑟 . �

The basic idea in the proof of the following theorem is taken from Step 5 of the proof of [23,
Theorem 9]. As we argue afterwards, it easily implies Theorem A. If 𝑃,𝑄 ≤ 𝑆, 𝜑 ∈ HomF (𝑃,𝑄) and
𝐴 ≤ AutF (𝑃), note that 𝐴𝜑 := 𝜑−1𝐴𝜑 ≤ AutF (𝑃𝜑).

Theorem 2.11. Let H be the set of all subgroups 𝑃 ≤ 𝑆 such that every subgroup of S containing an
F-conjugate of P respects F-saturation. Assume that F is H-generated. Suppose furthermore that there
exists an F-invariant saturated subsystem E of F with E𝑐𝑟 ⊆ H. Then F is saturated.

Proof. Let 𝑇 ≤ 𝑆 be such that E is a subsystem of F over T. By H0, denote the set of subgroups of T
that are elements of H. Write H⊥ for the set of subgroups of S not in H and H⊥

0 for the set of elements
of H⊥ that are subgroups of T. If 𝑃 ≤ 𝑆, write 𝑃0 for 𝑃 ∩ 𝑇 , and similarly for subgroups of S with
different names.
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For the proof of the assertion, we will proceed in three steps. In the first two steps, we will argue that
property (2.1) below implies the assertion, and in the third step, we will prove that (2.1) holds.

Let 𝑃 ≤ 𝑆 such that 𝑃0 is an element of H⊥
0 of maximal order. If 𝑃0 is not fully (2.1)

E-normalised, then there exists 𝑃′′ ∈ 𝑃F such that |𝑁𝑇 (𝑃0) | < |𝑁𝑇 (𝑃
′′
0 ) |.

Step 1: We argue that (2.1) implies the following property:

If 𝑃 ≤ 𝑆 such that 𝑃0 is an element of H⊥
0 of maximal order, then there exists an (2.2)

F-conjugate 𝑄 of 𝑃 such that 𝑄0 is fully E-normalised.

This can be seen as follows. If P is as in (2.2) and 𝑃0 is fully E-normalised, then we are done. If not,
then by (2.1), we can pass on to an F-conjugate 𝑃′′ of P such that |𝑁𝑇 (𝑃0) | < |𝑁𝑇 (𝑃

′′
0 ) |. Again, if 𝑃′′

0
is fully E-normalised, then we are done; otherwise, we can repeat the process. Since T is finite, we will
eventually end up with an F-conjugate Q of P such that𝑄0 is fully E-normalised. So (2.1) implies (2.2).

Step 2: We show that property (2.2) implies the assertion. Assume that (2.2) holds andF is not saturated.
Then H⊥ ≠ ∅. By construction, H ⊇ H0 is F-closed. So, for every subgroup 𝑃 ≤ 𝑆, 𝑃0 ∈ H0 implies
𝑃 ∈ H. In particular, as H⊥ ≠ ∅, we can conclude H⊥

0 ≠ ∅. Set

𝑚 := max{|𝑄 | : 𝑄 ∈ H⊥
0 },

M := {𝑃 ∈ H⊥ : |𝑃0 | = 𝑚}.

For any 𝑄 ∈ H⊥
0 with |𝑄 | = 𝑚, we have 𝑄 = 𝑄0, and thus 𝑄 ∈ M. Hence, M ≠ ∅. As T is strongly

closed, M is closed under F-conjugacy. Thus we can choose an F-conjugacy class P ⊆ M such that
the elements of P are of maximal order among the elements of M.

We argue first that P is maximal with respect to � among the F-conjugacy classes contained in H⊥.
For that, let 𝑃 ∈ P and 𝑃 ≤ 𝑅 ≤ 𝑆. We need to show that 𝑅 = 𝑃 or 𝑅 ∈ H. Notice that 𝑚 = |𝑃0 | ≤ |𝑅0 |.
If 𝑚 < |𝑅0 |, then by definition of m, we have 𝑅0 ∈ H0 ⊆ H, and thus 𝑅 ∈ H. If 𝑚 = |𝑅0 |, then 𝑅 ∈ M
or 𝑅 ∈ H. So the maximality of |𝑃 | yields 𝑅 = 𝑃 or 𝑅 ∈ H. Hence, P is maximal with respect to �

among the F-conjugacy classes contained in H⊥. Thus Lemma 2.9 implies that the elements of P are
F-critical. By (2.2), there exists 𝑃 ∈ P such that 𝑃0 is fully E-normalised. Then by Lemma 2.10(b),
we have 𝑃0 ∈ E𝑐𝑟 . Since by assumption E𝑐𝑟 ⊆ H, it follows that 𝑃0 ∈ H, so 𝑃 ∈ H. This contradicts
the choice of P ⊆ M ⊆ H⊥. Hence, (2.2) implies that F is saturated.

Step 3: We complete the proof by proving (2.1). Whenever we have subgroups 𝑄1 ≤ 𝑄 ≤ 𝑆, we set
AutF (𝑄 : 𝑄1) := 𝑁AutF (𝑄) (𝑄1), Aut𝑆 (𝑄 : 𝑄1) := 𝑁Aut𝑆 (𝑄) (𝑄1), 𝑁𝑆 (𝑄 : 𝑄1) := 𝑁𝑆 (𝑄) ∩ 𝑁𝑆 (𝑄1),
and so on. Now let 𝑃 ≤ 𝑆 be such that 𝑃0 is an element of H⊥

0 of maximal order that is not fully
E-normalised. Note that 𝑇 ∈ E𝑐𝑟 ⊆ H and thus 𝑃0 ≠ 𝑇 . Hence, 𝑃0 < 𝑁𝑇 (𝑃0). So the maximality of
|𝑃0 | yields 𝑅 := 𝑁𝑇 (𝑃0) ∈ H0. In particular, every F-conjugate of R respects F-saturation. Since E is
saturated, there exists 𝜌 ∈ HomE (𝑅,𝑇) such that 𝑃′

0 := 𝑃0𝜌 is fully E-normalised. As 𝑅′ := 𝑅𝜌 respects
F-saturation, there exists 𝜎 ∈ HomF (𝑅′, 𝑆) such that 𝑅′′ := 𝑅′𝜎 is fully automised and receptive. Set
𝑃′′

0 := 𝑃′
0𝜎 = 𝑃0𝜌𝜎. As 𝑅′′ is fully automised, by Sylow’s Theorem, there exists 𝜉 ∈ AutF (𝑅′′) such

that

AutF (𝑅′′ : 𝑃′′
0 )

𝜉 ∩ Aut𝑆 (𝑅′′) = Aut𝑆 (𝑅′′ : 𝑃′′
0 𝜉)

is a Sylow p-subgroup of AutF (𝑅′′ : 𝑃′′
0 )

𝜉 = AutF (𝑅′′ : 𝑃′′
0 𝜉). So replacing 𝜎 by 𝜎𝜉, we may assume

Aut𝑆 (𝑅′′ : 𝑃′′
0 ) ∈ Syl𝑝 (AutF (𝑅′′ : 𝑃′′

0 )).

Notice that Aut𝑆 (𝑅 : 𝑃0)
𝜌𝜎 and Aut𝑆 (𝑅′ : 𝑃′

0)
𝜎 are p-subgroups of AutF (𝑅′′ : 𝑃′′

0 ). Hence, again by
Sylow’s Theorem, there exist 𝛾, 𝛿 ∈ AutF (𝑅′′ : 𝑃′′

0 ) such that Aut𝑆 (𝑅 : 𝑃0)
𝜌𝜎𝛾 and Aut𝑆 (𝑅′ : 𝑃′

0)
𝜎𝛿
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are contained in Aut𝑆 (𝑅′′ : 𝑃′′
0 ). This implies 𝑁𝑆 (𝑅 : 𝑃0) ≤ 𝑁𝜌𝜎𝛾 and 𝑁𝑆 (𝑅

′ : 𝑃′
0) ≤ 𝑁𝜎𝛿 . Hence,

as 𝑅′′ is receptive, the map 𝜌𝜎𝛾 ∈ HomF (𝑅, 𝑅′′) extends to 𝜑 ∈ HomF (𝑁𝑆 (𝑅 : 𝑃0), 𝑆), and similarly
𝜎𝛿 ∈ HomF (𝑅′, 𝑅′′) extends to 𝜓 ∈ HomF (𝑁𝑆 (𝑅

′ : 𝑃′
0), 𝑆). Notice that

𝑃0𝜑 = 𝑃0𝜌𝜎𝛾 = 𝑃′′
0 𝛾 = 𝑃′′

0 and 𝑃′
0𝜓 = 𝑃′

0𝜎𝛿 = 𝑃
′′
0 𝛿 = 𝑃

′′
0 .

Moreover, since 𝑃0 = 𝑃∩𝑇 , 𝑅 = 𝑁𝑇 (𝑃0) and T is strongly closed, we have 𝑃 ≤ 𝑁𝑆 (𝑃0) = 𝑁𝑆 (𝑅 : 𝑃0).
Hence

𝑃′′ := 𝑃𝜑

is a well-defined F-conjugate of P, for which we have indeed that 𝑃′′ ∩ 𝑇 = 𝑃𝜑 ∩ 𝑇 = (𝑃 ∩ 𝑇)𝜑 =
𝑃0𝜑 = 𝑃′′

0 as our notation suggests. So it only remains to show that |𝑁𝑇 (𝑃0) | < |𝑁𝑇 (𝑃
′′
0 ) |. We will

show this by arguing that

|𝑁𝑇 (𝑃0) | = |𝑅 | < |𝑁𝑇 (𝑅
′ : 𝑃′

0) | ≤ |𝑁𝑇 (𝑃
′′
0 ) |. (2.3)

Recall that 𝑃0 is by assumption not fully E-normalised, whereas 𝑃′
0 = 𝑃0𝜌 is fully E-normalised.

Therefore, we have 𝑅′ = 𝑅𝜌 = 𝑁𝑇 (𝑃0)𝜌 < 𝑁𝑇 (𝑃
′
0). Thus 𝑅′ < 𝑁𝑁𝑇 (𝑃′

0)
(𝑅′) = 𝑁𝑇 (𝑅

′ : 𝑃′
0). As

|𝑅 | = |𝑅′ |, this shows the first inequality in (2.3). As 𝑃′
0𝜓 = 𝑃′′

0 and T is strongly closed, we have
𝑁𝑇 (𝑅

′ : 𝑃′
0)𝜓 ≤ 𝑁𝑇 (𝑃

′′
0 ). Since 𝜓 is injective, this shows the second inequality in (2.3). So the proof

of (2.1) is complete. As argued in Steps 1 and 2, this proves the assertion. �

Proof of Theorem A. WriteH for the set of all subgroups 𝑃 ≤ 𝑆 such that every subgroup of S containing
an F-conjugate of P respects F-saturation. Since Δ is F-closed and F is Δ-saturated, it follows that
Δ ⊆ H. Hence, as F is Δ-generated, F is also H-generated. Moreover, E𝑐𝑟 ⊆ Δ ⊆ H. Thus the
assertion follows from Theorem 2.11 above. �

3. Partial groups and localities

In this section, we introduce some basic definitions and notations that will be used in the remainder of the
paper. We refer the reader to [8] for a more comprehensive introduction to partial groups and localities.

3.1. Partial groups

Following the notation introduced in [8], we will write W(L) for the set of words in a setL. The elements
of L will be identified with the words of length one, and ∅ denotes the empty word. The concatenation
of words 𝑢1, 𝑢2, . . . , 𝑢𝑘 ∈ W(L) will be denoted 𝑢1 ◦ 𝑢2 ◦ · · · ◦ 𝑢𝑘 .

Definition 3.1 [8, Definition 1.1]. Suppose L is a nonempty set and D ⊆ W(L). Let Π : D −→ L be a
map, and let (−)−1 : L −→ L be an involutory bijection, which we extend to a map

(−)−1 : W(L) −→ W(L), 𝑤 = (𝑔1, . . . , 𝑔𝑘 ) ↦→ 𝑤−1 = (𝑔−1
𝑘 , . . . , 𝑔

−1
1 ).

Then L is called a partial group with product Π and inversion (−)−1 if the following hold for all words
𝑢, 𝑣, 𝑤 ∈ W(L):
◦ L ⊆ D and

𝑢 ◦ 𝑣 ∈ D =⇒ 𝑢, 𝑣 ∈ D.

(So in particular, ∅ ∈ D.)
◦ Π restricts to the identity map on L.
◦ 𝑢 ◦ 𝑣 ◦ 𝑤 ∈ D =⇒ 𝑢 ◦ (Π(𝑣)) ◦ 𝑤 ∈ D, and Π(𝑢 ◦ 𝑣 ◦ 𝑤) = Π(𝑢 ◦ (Π(𝑣)) ◦ 𝑤).
◦ 𝑤 ∈ D =⇒ 𝑤−1 ◦ 𝑤 ∈ D and Π(𝑤−1 ◦ 𝑤) = 1, where 1 := Π(∅).
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For the remainder of this section, let L always be a partial group with product Π : D → L. As
above, set 1 := Π(∅).

If 𝑤 = ( 𝑓1, . . . , 𝑓𝑛) ∈ D, then we sometimes write 𝑓1 𝑓2 · · · 𝑓𝑛 for Π( 𝑓1, . . . , 𝑓𝑛). In particular, if
(𝑥, 𝑦) ∈ D, then 𝑥𝑦 denotes the product Π(𝑥, 𝑦).

Notation 3.2.
◦ For every 𝑓 ∈ L, write D( 𝑓 ) := {𝑥 ∈ L : ( 𝑓 −1, 𝑥, 𝑓 ) ∈ D} for the set of all x such that the conjugate
𝑥 𝑓 := Π( 𝑓 −1, 𝑥, 𝑓 ) is defined.

◦ By 𝑐 𝑓 , denote the conjugation map 𝑐 𝑓 : D( 𝑓 ) → L, 𝑥 ↦→ 𝑥 𝑓 .
◦ For 𝑓 ∈ L and X ⊆ D( 𝑓 ), set X 𝑓 := {𝑥 𝑓 : 𝑥 ∈ X }.
◦ Given X ⊆ L, set

𝑁L (X ) := { 𝑓 ∈ L : X ⊆ D( 𝑓 ) and X 𝑓 = X }

and

𝐶L (X ) := { 𝑓 ∈ L : 𝑥 ∈ D( 𝑓 ) and 𝑥 𝑓 = 𝑥 for all 𝑥 ∈ X }.

◦ For X ,Y ⊆ L, define 𝑁Y (X ) = Y ∩ 𝑁L (X ) and 𝐶Y (X ) = Y ∩ 𝐶L (X ).

We call 𝑁Y (X ) the normaliser of X in Y and 𝐶Y (X ) the centraliser of X in Y .

Definition 3.3.
◦ A subset H ⊆ L is called a partial subgroup of L if ℎ−1 ∈ H for all ℎ ∈ H, and moreover Π(𝑤) ∈ H

for all 𝑤 ∈ D ∩ W(H).
◦ A partial subgroup H of L is a called a subgroup of L if W(H) ⊆ D(L).
◦ By a p-subgroup of L, we mean a subgroup S of L such that |𝑆 | is a power of p.
◦ Let N be a partial subgroup of L. Then we call N a partial normal subgroup of L (and write

N � L) if 𝑛 𝑓 ∈ N for all 𝑓 ∈ L and all 𝑛 ∈ N ∩ D( 𝑓 ).
◦ A partial subgroup H of L is called a partial subnormal subgroup of L if there exists a series
H = H0 �H1 � · · · �H𝑘 = L of partial subgroups of L.

If H is a partial subgroup of L, notice that H is itself a partial group with product Π |W(H)∩D. If H is
a subgroup of L, then H forms a group with binary product defined by 𝑥 · 𝑦 := Π(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ H.
In particular, every p-subgroup of L forms a p-group. The following definition will be crucial in the
definition of a locality.

Definition 3.4. Let L be a partial group, and let Δ be a collection of subgroups of L. Define DΔ to be
the set of words 𝑤 = (𝑔1, . . . , 𝑔𝑘 ) ∈ W(L) such that there exist 𝑃0, . . . , 𝑃𝑘 ∈ Δ with 𝑃𝑖−1 ⊆ D(𝑔𝑖)
and 𝑃𝑔𝑖𝑖−1 = 𝑃𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 . If such w and 𝑃0, . . . , 𝑃𝑘 are given, then we also say that 𝑤 ∈ DΔ via
𝑃0, 𝑃1, . . . , 𝑃𝑘 , or just that 𝑤 ∈ DΔ via 𝑃0.

Lemma 3.5. Let L be a partial group and N � L.

(a) If 𝑓 ∈ L and 𝑃 ⊆ D( 𝑓 ), then (𝑃 ∩N ) 𝑓 = 𝑃 𝑓 ∩N .
(b) Let S be a subgroup of L and Γ a set of subgroups of N ∩ 𝑆. Set

Δ := {𝑃 ≤ 𝑆 : 𝑃 ∩N ∈ Γ}.

Then DΓ = DΔ .

Proof. (a) Notice that (𝑃 ∩N ) 𝑓 ⊆ 𝑃 𝑓 ∩N as N � L. Since (𝑐 𝑓 )
−1 = 𝑐 𝑓 −1 by [8, Lemma 1.6(c)], we

have (𝑃 𝑓 ) 𝑓
−1

= 𝑃. So, similarly, (𝑃 𝑓 ∩N ) 𝑓
−1

⊆ 𝑃 ∩N , and thus 𝑃 𝑓 ∩N ⊆ (𝑃 ∩N ) 𝑓 . This shows
(𝑃 ∩N ) 𝑓 = 𝑃 𝑓 ∩N as required.

(b) As Γ ⊆ Δ , we have DΓ ⊆ DΔ . Conversely, if 𝑤 = ( 𝑓1, . . . , 𝑓𝑛) ∈ DΔ via 𝑃0, 𝑃1, . . . , 𝑃𝑛 ∈ Δ ,
then (a) yields that 𝑤 ∈ DΓ via 𝑃0 ∩N , 𝑃1 ∩N , . . . , 𝑃𝑛 ∩N . Thus DΔ ⊆ DΓ, implying DΓ = DΔ . �
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3.2. Localities

Definition 3.6. Let L be a partial group, and let S be a p-subgroup of L. For 𝑓 ∈ L, set

𝑆 𝑓 := {𝑥 ∈ 𝑆 : 𝑥 ∈ D( 𝑓 ) and 𝑥 𝑓 ∈ 𝑆}.

More generally, if 𝑤 = ( 𝑓1, . . . , 𝑓𝑘 ) ∈ W(L), then write 𝑆𝑤 for the set of 𝑠 ∈ 𝑆 such that there exists a
sequence 𝑠 = 𝑠0, . . . , 𝑠𝑘 of elements of S with 𝑠𝑖−1 ∈ D( 𝑓𝑖) and 𝑠 𝑓𝑖𝑖−1 = 𝑠𝑖 for 𝑖 = 1, . . . , 𝑘 .

Definition 3.7. Let L be a finite partial group with product Π : D → L, let S be a p-subgroup of L, and
let Δ be a nonempty set of subgroups of S. We say that (L,Δ , 𝑆) is a locality if the following hold:

1. S is maximal with respect to inclusion among the p-subgroups of L;
2. D = DΔ ;
3. Δ is closed under passing to L-conjugates and overgroups in S; that is, Δ is overgroup-closed in S

and 𝑃 𝑓 ∈ Δ for all 𝑃 ∈ Δ and 𝑓 ∈ L with 𝑃 ⊆ 𝑆 𝑓 .

If (L,Δ , 𝑆) is a locality, then Δ is also called the set of objects of (L,Δ , 𝑆).
As argued in [16, Remark 5.2], Definition 3.7 is equivalent to the definition of a locality given by

Chermak [8, Definition 2.7]. We will use this fact throughout.

For the remainder of this subsection, let (L,Δ , 𝑆) be a locality.

Lemma 3.8 (Important properties of localities). The following hold:

(a) 𝑁L (𝑃) is a subgroup of L for each 𝑃 ∈ Δ .
(b) Let 𝑃 ∈ Δ and 𝑔 ∈ L with 𝑃 ⊆ 𝑆𝑔. Then 𝑄 := 𝑃𝑔 ∈ Δ , 𝑁L (𝑃) ⊆ D(𝑔), and

𝑐𝑔 : 𝑁L (𝑃) → 𝑁L (𝑄)

is an isomorphism of groups.
(c) Let 𝑤 = (𝑔1, . . . , 𝑔𝑛) ∈ D via (𝑋0, . . . , 𝑋𝑛). Then

𝑐𝑔1 ◦ · · · ◦ 𝑐𝑔𝑛 = 𝑐Π (𝑤)

is a group isomorphism 𝑁L (𝑋0) → 𝑁L (𝑋𝑛).
(d) 𝑆𝑔 ∈ Δ for every 𝑔 ∈ L. In particular, 𝑆𝑔 is a subgroup of S. Moreover, 𝑆𝑔𝑔 = 𝑆𝑔−1 , and 𝑐𝑔 : 𝑆𝑔 → 𝑆

is an injective group homomorphism.
(e) For every 𝑤 ∈ W(L), 𝑆𝑤 is a subgroup of S. Moreover, 𝑆𝑤 ∈ Δ if and only if 𝑤 ∈ D.
(f) If 𝑤 ∈ D, then 𝑆𝑤 ≤ 𝑆Π (𝑤) .

Proof. Properties (a),(b) and (c) correspond to the statements (a),(b) and (c) in [8, Lemma 2.3] except
for the fact stated in (b) that 𝑄 ∈ Δ , which is however clearly true if one uses the definition of a locality
above. Property (d) holds by [8, Proposition 2.5(a), (b)], and property (e) is stated in [8, Corollary 2.6].
Property (f) follows from (e) and (c). �

We use from now on without further reference that 𝑐𝑔 : 𝑆𝑔 → 𝑆 is an injective group homomorphism
for all 𝑔 ∈ L. By F𝑆 (L), we denote the fusion system over S generated by all maps of this form. More
generally, we have the following definition.

Definition 3.9. Let H be a partial subgroup of L. Write F𝑆∩H (H) for the fusion system over 𝑆 ∩ H
generated by the injective group homomorphisms of the form 𝑐ℎ : 𝑆ℎ ∩H → 𝑆 ∩H with ℎ ∈ H.

Lemma 3.10. Let H be a partial subgroup of L and 𝑃 ∈ Δ with 𝑃 ≤ 𝑆 ∩H. Set D := F𝑆∩H (H). Then
the following hold:

(a) For every 𝜑 ∈ HomD (𝑃, 𝑆 ∩H), there exists ℎ ∈ H with 𝑃 ≤ 𝑆ℎ and 𝜑 = 𝑐ℎ .
(b) 𝑁D (𝑃) = F𝑁𝑆∩H (𝑃) (𝑁H (𝑃)).
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Proof. For part (a), see [18, Lemma 3.11(b)]. Set 𝑇 := 𝑆 ∩H. Clearly, F𝑁𝑇 (𝑃) (𝑁H (𝑃)) ⊆ 𝑁D (𝑃) and
𝑁D (𝑃) is a fusion system over 𝑁𝑇 (𝑃). If 𝜑 ∈ Hom𝑁D (𝑃) (𝑋,𝑌 ), where 𝑋,𝑌 ≤ 𝑁𝑇 (𝑃) is a morphism
in 𝑁D (𝑃), then we may assume that 𝑃 ≤ 𝑋 ∩ 𝑌 and 𝑃𝜑 = 𝑃. As 𝑃 ∈ Δ , we have 𝑋,𝑌 ∈ Δ . Hence, by
(a), there exists ℎ ∈ H such that 𝑋 ≤ 𝑆ℎ and 𝜑 = 𝑐ℎ |𝑋 . As 𝑃𝜑 = 𝑃, it follows ℎ ∈ 𝑁H (𝑃), and thus 𝜑
is a morphism in F𝑁𝑇 (𝑃) (𝑁H (𝑃)), as required. �

Definition 3.11. If (L,Δ , 𝑆) is a locality, then set

𝑂 𝑝 (L) :=
⋂

{𝑆𝑤 : 𝑤 ∈ W(L)}.

Lemma 3.12. If (L,Δ , 𝑆) is a locality, then 𝑂 𝑝 (L) is the unique largest p-subgroup of L that is a
partial normal subgroup of L. Moreover, a subgroup 𝑃 ≤ 𝑆 is a partial normal subgroup of L if and
only if 𝑁L (𝑃) = L.

Proof. This is proved as [18, Lemma 3.13] based on [8, Lemma 2.13]. �

We will use the characterisation of 𝑂 𝑝 (L) given in Lemma 3.12 most of the time from now on
without further reference.

Lemma 3.13. Let (L,Δ , 𝑆) be a locality, N � L and 𝑇 := N ∩ 𝑆. Then for every 𝑔 ∈ L, there exist
𝑛 ∈ N and 𝑓 ∈ 𝑁L (𝑇) such that (𝑛, 𝑓 ) ∈ D, 𝑔 = 𝑛 𝑓 and 𝑆𝑔 = 𝑆 (𝑛, 𝑓 ) .

Proof. By the Frattini Lemma [8, Corollary 3.11], there exist 𝑛 ∈ N and 𝑓 ∈ L such that (𝑛, 𝑓 ) ∈ D,
𝑔 = 𝑛 𝑓 and f is ↑-maximal (in the sense of [8, Definition 3.6]). By [8, Proposition 3.9] and then [8,
Lemma 3.1(a)], every ↑-maximal element is in 𝑁L (𝑇). Moreover, the Splitting Lemma [8, Lemma 3.12]
gives 𝑆𝑔 = 𝑆 (𝑛, 𝑓 ) . �

Definition 3.14. Let (L+,Δ+, 𝑆) be a locality with a partial product Π+ : D+ −→ L+. Suppose that
∅ ≠ Δ ⊆ Δ+ such that Δ is F𝑆 (L+)-closed. Set

L+|Δ := { 𝑓 ∈ L+ : 𝑆 𝑓 ∈ Δ}.

Note that D := DΔ ⊆ D+ ∩ W(L+|Δ ) and, by Lemma 3.8(c), Π+(𝑤) ∈ L|Δ for all 𝑤 ∈ D. We call
L := L+|Δ together with the partial product Π+|D : D −→ L and the restriction of the inversion map on
L+ to L the restriction of L+ to Δ .

With the hypothesis and notation as in the preceding definition, it turns out that the restriction of
L+ to Δ forms a partial group and the triple (L+|Δ ,Δ , 𝑆) is a locality (see [7, Lemma 2.21(a)] and [17,
Lemma 2.23(a), (c)] for details). It might be worth pointing out that in the definition of the restriction,
𝑆 𝑓 and DΔ are a priori formed inside of L+, but as argued in [17, Lemma 2.23(b)], it does not matter
whether one forms 𝑆 𝑓 and DΔ inside of L+ or inside of the partial group L+|Δ .

3.3. Homomorphisms of partial groups and projections

Definition 3.15. Let L and L′ be partial groups with products Π : D → L and Π′ : D′ → L′, respec-
tively. Let 𝛼 : L → L′, 𝑓 ↦→ 𝑓 𝛼 be a map.

◦ Write 𝛼∗ for the induced map:

𝛼∗ : W(L) → W(L′), ( 𝑓1, . . . , 𝑓𝑛) ↦→ ( 𝑓1𝛼, . . . , 𝑓𝑛𝛼).

◦ We call 𝛼 a homomorphism of partial groups if D𝛼∗ ⊆ D′ and Π(𝑤)𝛼 = Π′(𝑤𝛼∗).
◦ The map 𝛼 is called a projection of partial groups if 𝛼 is a homomorphism of partial groups and

D𝛼∗ = D′.
◦ A bijective projection of partial groups is called an isomorphism of partial groups and an isomorphism

from L to itself is called an automorphism of L. Write Aut(L) for the set of automorphisms of L.
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◦ If 𝛼 : L → L′ is a homomorphism of partial groups and 1′ denotes the identity in L′, then
ker(𝛼) := { 𝑓 ∈ L : 𝑓 𝛼 = 1′} is called the kernel of 𝛼.

If L′ is a partial group, then L′ ⊆ D′. Hence, a projection of partial groups L → L′ is always
surjective.

If 𝛼 : L → L′ is a homomorphism of partial groups, then ker(𝛼)�L by [8, Lemma 1.14]. If (L,Δ , 𝑆)
is a locality and N �L, then conversely, one can construct a partial group L′ and a projection of partial
groups L → L′ with kernel N . Namely, define a coset of N in L to be a subset of the form

N 𝑓 := {Π(𝑛, 𝑓 ) : 𝑛 ∈ N , 𝑓 ∈ L such that (𝑛, 𝑓 ) ∈ D}.

Call a coset maximal if it is maximal with respect to inclusion among all cosets of N in L. Write L/N
for the set of maximal cosets of N in L. By [8, Proposition 3.14(d)], L/N forms a partition of L. Thus
there is a natural map

𝛼 : L → L/N

that sends every element 𝑓 ∈ L to the unique maximal coset containing f. It turns out that the set L/N
can be (in a unique way) given the structure of a partial group such that the map 𝛼 above is a projection
of partial groups (compare [8, Lemma 3.16]). We therefore call the map 𝛼 the natural projection from
L to L/N . The identity element of this partial group is the maximal coset N = N 1. In particular, N
is the kernel of the natural projection.

Given a locality (L,Δ , 𝑆) and N � L, we will sometimes write L for the set L/N . We mean then
implicitly that we use a kind of ‘bar notation’ similar to the way it is commonly used for groups.
Namely, if X is an element or subset of L, then 𝑋 denotes the image of X under the natural projection
𝛼 : L → L. Later, we will consider cases where N ∩ 𝑆 = 1. Since N equals the kernel of 𝛼, the
restriction 𝛼 |𝑆 : 𝑆 → 𝑆 is then a bijection. Thus we will be able to identify S with 𝑆.

Definition 3.16. Let (L,Δ , 𝑆) and (L′,Δ ′, 𝑆′) be localities, and let 𝛼 : L → L′ be a projection of
partial groups. We say that 𝛼 is a projection of localities from (L,Δ , 𝑆) to (L′,Δ ′, 𝑆′) if the set
Δ𝛼 := {𝑃𝛼 | 𝑃 ∈ Δ} equals Δ ′.

If 𝛼 is a projection of localities from (L,Δ , 𝑆) to (L′,Δ ′, 𝑆′), then notice that 𝛼 maps S to 𝑆′, as S
and 𝑆′ are the unique maximal elements of Δ and Δ ′ respectively.

3.4. Localities with special properties

The following definition was partly introduced in the introduction. Recall that a finite group G is of
characteristic p if 𝐶𝐺 (𝑂 𝑝 (𝐺)) ≤ 𝑂 𝑝 (𝐺).

Definition 3.17. Let (L,Δ , 𝑆) be a locality.

◦ We call (L,Δ , 𝑆) cr-complete if F𝑆 (L)𝑐𝑟 ⊆ Δ .
◦ A locality (L,Δ , 𝑆) is said to be of objective characteristic p if 𝑁L (𝑃) is of characteristic p for every
𝑃 ∈ Δ .

◦ A locality is called a linking locality if it is cr-complete and of objective characteristic p.

Proposition 3.18. Let (L,Δ , 𝑆) be a locality.

(a) F𝑆 (L) is Δ-generated and Δ-saturated.
(b) If every F𝑆 (L)-critical subgroup is an element of Δ , then F𝑆 (L) is saturated and (L,Δ , 𝑆) is

cr-complete.
(c) If (L,Δ , 𝑆) is cr-complete, then F𝑆 (L) is saturated. Hence, the fusion system of a linking locality is

saturated.
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Proof. The fusion system F𝑆 (L) is Δ-generated by definition and Δ-saturated by [8, Lemma 2.9] and
[18, Lemma 3.27]. Thus Theorem 2.7 implies that F𝑆 (L) is saturated if Δ contains every F𝑆 (L)-critical
subgroup. Part (b) follows now from Lemma 2.6(b) and part (c) from Lemma 2.6(a). Alternatively, (c)
is proved in [18, Theorem 3.26]. �

It is of crucial importance that cr-complete localities (and thus linking localities) lead to saturated
fusion systems. This fact was first observed by Chermak. Conversely, it follows from the existence and
uniqueness of centric linking systems (see [7, 24, 11]) that there is a linking locality attached to every
saturated fusion system. In this context, the following definition plays a crucial role.

Definition 3.19 [16, Definition 1, Lemma 3.1]. Let F be a saturated fusion system. A subgroup 𝑃 ≤ 𝑆
is called F-subcentric if 𝑁F (𝑄) is constrained for every fully F-normalised F-conjugate Q of P. We
denote by F 𝑠 the set of F-subcentric subgroups of S.

It can be shown that for every F-closed set Δ of subgroups of S with F 𝑐𝑟 ⊆ Δ ⊆ F 𝑠 , there exists an
(essentially unique) linking locality over F with object set Δ . Moreover, F 𝑠 is F-closed, and thus there
is an (essentially unique) linking locality over F with object set F 𝑠, which can be seen as the ‘largest’
linking locality over F . The reader is referred to [16, Theorem A] for a precise statement of these results.

3.5. Regular localities

Regular localities were introduced by Chermak [9], but we will refer to the treatment of the subject
in [18]. If (L,Δ , 𝑆) is a linking locality over a saturated fusion system F , then there is the generalised
Fitting subgroup 𝐹∗(L) of L defined as a certain partial normal subgroup of L (compare [18, Definition
3]). It turns out that the set {𝑃 ≤ 𝑆 : 𝑃∩𝐹∗(L) ∈ F 𝑠} depends only on F and not on the linking locality
(L,Δ , 𝑆) (see [18, Lemma 10.2]). Thus the following definition makes sense.

Definition 3.20. If F is a saturated fusion system and (L,Δ , 𝑆) is a linking locality over F , then set

𝛿(F) := {𝑃 ≤ 𝑆 : 𝑃 ∩ 𝐹∗(L) ∈ F 𝑠}.

A linking locality (L,Δ , 𝑆) is called a regular locality if Δ = 𝛿(F).

For every saturated fusion system F , the set 𝛿(F) is F-closed, and thus there exists a regular locality
over F (compare [18, Lemma 10.4]).

It turns out that regular localities have particularly nice properties. To describe these, suppose that
(L,Δ , 𝑆) is a regular locality. If H is a partial normal subgroup of L or, more generally, a partial
subnormal subgroup of L, then by [18, Theorem 3, Corollary 10.19], E := F𝑆∩H (H) is saturated and
(H, 𝛿(E), 𝑆 ∩ H) is a regular locality over E . This leads to a natural notion of components of L (see
[18, Definition 11.1]) and to a theory of components of regular localities that mirrors results from finite
group theory (see [18, Chapter 11]). In particular, the product 𝐸 (L) of components of L forms a partial
normal subgroup with 𝐹∗(L) = 𝐸 (L)𝑂 𝑝 (L).

If (L,Δ , 𝑆) is a regular locality over F (or, more generally, a linking locality over F with 𝛿(F) ⊆ Δ),
then it is shown in [10, Theorem A] that the assignment N ↦→ F𝑆∩N (N ) defines a bijection Φ from the
set of partial normal subgroups of L to the set of normal subsystems of F . This bijection sends 𝐹∗(L)
to 𝐹∗(F) and 𝐸 (L) to 𝐸 (F). Moreover, in the case that (L,Δ , 𝑆) is regular, we have 𝐶L (N ) � L and
Φ(𝐶L (N )) = 𝐶F (Ψ(N )) (see [18, Theorem 3] and [10, Proposition 6.7]). We refer the reader here to
[3, p.3] or [10, Definition 7.2] for the definitions of 𝐹∗(F) and 𝐸 (F), and to [3, Chapter 6] or [15] for
a definition of the centraliser 𝐶F (E) of a normal subsystem E .

The results we just summarised are used to prove our next lemma, which collects most of the
information we need in Section 6. It will be convenient to use the following notation.

Notation 3.21. If F is a fusion system over S and E is a subsystem of F over 𝑇 ≤ 𝑆, then we set
E ∩ 𝑃 := 𝑇 ∩ 𝑃 for every subgroup 𝑃 ≤ 𝑆.
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Lemma 3.22. Let (L,Δ , 𝑆) be a regular locality over F and N � L. Set 𝑇 := N ∩ 𝑆, E := F𝑇 (N ),
𝑇∗ := 𝐹∗(L) ∩ 𝑆, 𝑇0 := 𝐸 (N ) ∩ 𝑆 and 𝑅 := 𝐸 (𝐶L (N )) ∩ 𝑆. Then the following hold:

(a) 𝑁L (𝑇
∗) = 𝑁L (𝑇0) ∩ 𝑁L (𝑅) and 𝑁N (𝑇∗) = 𝑁N (𝑇0).

(b) We have 𝑇0 = 𝐸 (E) ∩ 𝑆 and 𝑅 = 𝐸 (𝐶F (E)) ∩ 𝑆.
(c) 𝑁E (𝑇0) = F𝑇 (𝑁N (𝑇0)).
(d) 𝛿(E) is closed under passing to L-conjugates in S.

Proof. By [18, Theorem 3], we have 𝐶L (N ) � L; moreover, (N , 𝛿(E), 𝑇) is a regular locality over E ,
and 𝐶L (N ) can also be given the structure of a regular locality. In particular, 𝐸 (N ) and 𝐸 (𝐶L (N )) are
well-defined.

(a) By [18, Lemma 11.13], 𝐸 (N )�L and similarly 𝐸 (𝐶L (N ))�L. Moreover, by [18, Lemma 11.16],
𝐸 (L) = 𝐸 (N )𝐸 (𝐶L (N )), which by [14, Theorem 1] implies 𝑇0𝑅 = 𝐸 (L) ∩ 𝑆 ≤ 𝑇∗. In particular,
𝑁L (𝑇

∗) normalises 𝑇0 = 𝑇∗ ∩𝐸 (N ) and 𝑅 = 𝑇∗ ∩𝐸 (𝐶L (N )). On the other hand, by [18, Lemma 11.9],
we have 𝑇∗ = (𝐸 (L) ∩ 𝑆)𝑂 𝑝 (L), so 𝑁L (𝑇0) ∩ 𝑁L (𝑅) ≤ 𝑁L (𝑇

∗). Thus, 𝑁L (𝑇
∗) = 𝑁L (𝑇0) ∩ 𝑁L (𝑅).

As 𝑅 ⊆ 𝐶L (N ), it follows from [18, Lemma 3.5] that N ⊆ 𝐶L (𝑅) ⊆ 𝑁L (𝑅). Hence, we can conclude
that 𝑁N (𝑇0) = N ∩ 𝑁L (𝑇0) ∩ 𝑁L (𝑅) = N ∩ 𝑁L (𝑇

∗) = 𝑁N (𝑇∗). This proves (a).
(b) By [10, Proposition 6.7], we have F𝐶𝑆 (N ) (𝐶L (N )) = 𝐶F (E). This means

(𝐶L (N ), 𝛿(𝐶F (E)), 𝐶𝑆 (N )) is a regular locality over 𝐶F (E). Recall also that (N , 𝛿(E), 𝑇) is a regular
locality over E . Hence, [10, Theorem E(d)] yields (b).

(c) By [18, Corollary 11.10], 𝑇0 ∈ 𝛿(E). Hence, (c) follows from Lemma 3.10(b) applied with
(N , 𝛿(E), 𝑇) in place of (L,Δ , 𝑆).

(d) The set 𝛿(E) is E-closed by [18, Lemma 10.4]. Moreover, it follows from [18, Theorem 10.16(f)]
that 𝛿(E) is closed under passing to 𝑁L (𝑇)-conjugates. By Lemma 3.13, for every 𝑔 ∈ L, there exist
𝑛 ∈ N and 𝑓 ∈ 𝑁L (𝑇) such that (𝑛, 𝑓 ) ∈ D, 𝑔 = 𝑛 𝑓 and 𝑆𝑔 = 𝑆 (𝑛, 𝑓 ) . Now (d) follows using Lemma
3.8(c),(e). �

4. Some additional lemmas

4.1. Lemmas on groups

Lemma 4.1. Let G be a finite group, 𝑆 ∈ Syl𝑝 (𝐺) a Sylow p-subgroup of G and 𝑁 � 𝐺 a normal
subgroup of G. If 𝐻 ≤ 𝐺 is such that 𝑆 ∩ 𝐻 ∈ Syl𝑝 (𝐻), then

(𝑆 ∩ 𝑁) (𝑆 ∩ 𝐻) ∈ Syl𝑝 (𝑁𝐻).

Proof. Notice that 𝑃 := (𝑆 ∩ 𝑁) (𝑆 ∩ 𝐻) ≤ 𝑆 ∩ 𝑁𝐻 and |𝑃 | = |𝑆∩𝑁 | |𝑆∩𝐻 |
|𝑆∩𝑁∩𝐻 |

. By assumption, 𝑆 ∩ 𝐻 ∈

Syl𝑝 (𝐻). As 𝑁 � 𝐺 and 𝑁 ∩ 𝐻 � 𝐻, it follows that 𝑆 ∩ 𝑁 ∈ Syl𝑝 (𝑁) and 𝑆 ∩ 𝑁 ∩ 𝐻 ∈ Syl𝑝 (𝑁 ∩ 𝐻).
The assertion follows now from |𝑁𝐻 | = |𝑁 | |𝐻 |

|𝑁∩𝐻 |
. �

Recall that a finite group G is said to be of characteristic p if 𝐶𝐺 (𝑂 𝑝 (𝐺)) ≤ 𝑂 𝑝 (𝐺).

Lemma 4.2. Let G be a finite group of characteristic p. Then the following hold:

(a) 𝑁𝐺 (𝑃) and 𝐶𝐺 (𝑃) are of characteristic p for all nontrivial p-subgroups 𝑃 ≤ 𝐺.
(b) Every subnormal subgroup of G is of characteristic p.
(c) If N is a normal subgroup of G of p-power index, then G is of characteristic p if and only if N is of

characteristic p.

Proof. Let P be a p-subgroup of G. By [22, Lemma 1.2(a), (c)], every subnormal subgroup of G is of
characteristic p, and 𝑁𝐺 (𝑃) is of characteristic p. In particular, 𝐶𝐺 (𝑃) � 𝑁𝐺 (𝑃) is of characteristic p.

Now let N be as in (c). By [22, Lemma 1.3], G is of characteristic p if and only if 𝑂 𝑝 (𝐺) is
of characteristic p. Similarly, N is of characteristic p if and only if 𝑂 𝑝 (𝑁) is of characteristic p. As
𝑂 𝑝 (𝑁) = 𝑂 𝑝 (𝐺), this implies (c). �
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Lemma 4.3. Let G be a finite group, and let N be a normal subgroup of G with Sylow p-subgroup T.
Then the following are equivalent:

(i) G is of characteristic p.
(ii) N and 𝑁𝐺 (𝑇) are of characteristic p.

(iii) N and 𝐶𝐺 (𝑁) are of characteristic p.
Proof. It follows from Lemma 4.2 that (i) implies (ii). As N is normal in G, 𝐶𝐺 (𝑁) is also normal
in G. Notice that 𝐶𝐺 (𝑁) ≤ 𝐶𝐺 (𝑇) ≤ 𝑁𝐺 (𝑇). Thus 𝐶𝐺 (𝑁) is a normal subgroup of 𝑁𝐺 (𝑇). So by
Lemma 4.2(b), 𝐶𝐺 (𝑁) has characteristic p if 𝑁𝐺 (𝑇) has characteristic p. Hence, (ii) implies (iii).
Assume now that (iii) holds. It follows from [21, 6.5.2] that every component of G is a component either
of N or of 𝐶𝐺 (𝑁). As N and 𝐶𝐺 (𝑁) do not have any components, it follows that 𝐸 (𝐺) = 1. Moreover,
[𝑁,𝑂 𝑝′ (𝐺)] ≤ 𝑁 ∩ 𝑂 𝑝′ (𝐺) = 𝑂 𝑝′ (𝑁) = 1. Thus 𝑂 𝑝′ (𝐺) ≤ 𝐶𝐺 (𝑁), so 𝑂 𝑝′ (𝐺) = 𝑂 𝑝′ (𝐶𝐺 (𝑁)) = 1.
Hence, (i) holds, and the proof is complete. �

4.2. Some properties of fusion systems

It will be convenient to use the following definition.
Definition 4.4. Suppose F and F̃ are fusion systems over S and 𝑆, respectively.
◦ If 𝛼 : 𝑆 → 𝑆 is a group isomorphism, then 𝛼 is said to induce an isomorphism from F to F̃ if

{𝛼−1𝜑𝛼 : 𝜑 ∈ MorF (𝑃,𝑄)} = MorF̃ (𝑃𝛼,𝑄𝛼) for all 𝑃,𝑄 ≤ 𝑆.
◦ We say that 𝛼 ∈ Aut(𝑆) induces an automorphism of F if 𝛼 induces an isomorphism from F to F .

Write Aut(F) for the set of all 𝛼 ∈ Aut(𝑆) that induce an automorphism of F .
Lemma 4.5. Let F be a fusion system over S, and let E be an F-invariant subsystem of F . Then E𝑐 ,
E𝑟 and E𝑐𝑟 are closed under F-conjugacy. Similarly, the set of E-critical subgroups is closed under
F-conjugacy.
Proof. Let 𝑇 ≤ 𝑆 be such that E is a subsystem over T. Let Γ be one of the sets E𝑐 , E𝑟 , E𝑐𝑟 or the set
of E-critical subgroups. It follows directly from the definition of these sets that Γ is closed under E-
conjugacy. By the Frattini condition for F-invariant subsystems [2, Definition I.6.1], it is thus sufficient
to argue that Γ is AutF (𝑇)-invariant. The definition of F-invariant subsystems implies, moreover, that
every element of AutF (𝑇) induces an automorphism of E . Therefore, 𝛼 ∈ AutF (𝑇) maps E-conjugacy
classes to E-conjugacy classes and fully E-normalised subgroups to fully E-normalised subgroups.
Moreover, if 𝑃 ≤ 𝑇 with 𝐶𝑇 (𝑃) ≤ 𝑃, then 𝐶𝑇 (𝑃𝛼) ≤ 𝑃𝛼. So E𝑐 is AutF (𝑇)-invariant. Notice also that
𝛼 |𝑁𝑇 (𝑄) induces an isomorphism from 𝑁E (𝑄) to 𝑁E (𝑄𝛼) for every 𝑄 ≤ 𝑇 . Hence, 𝛼 maps E-radical
subgroups to E-radical subgroups. So E𝑟 and E𝑐𝑟 = E𝑐 ∩E𝑟 are AutF (𝑇)-invariant. For𝑄 ≤ 𝑇 , the map
AutE (𝑄) → AutE (𝑄𝛼), 𝜑 ↦→ 𝛼−1𝜑𝛼 is an isomorphism that takes Inn(𝑄) to Inn(𝑄𝛼) and Aut𝑇 (𝑄) to
Aut𝑇 (𝑄𝛼). Hence, the set of E-critical subgroups is AutF (𝑇) invariant. This proves the assertion. �

For the remainder of this subsection, let F be a saturated fusion system over a p-group S.

In the proofs of the following two lemmas, we cite [1]. It should be pointed out that normal subsystems
in the sense of [1, Definition 1.18] correspond to weakly normal subsystems in the language of [2] (i.e.,
in the language that we are using in this paper).
Lemma 4.6. Let E be a weakly normal subsystem of F over T. If 𝑅 ∈ F 𝑐𝑟 , then 𝑅 ∩ 𝑇 ∈ E𝑐𝑟 .
Proof. This is [1, Lemma 1.20(d)] but also follows easily from the results stated before. Namely, by
Corollary 2.3, there exists 𝛼 ∈ HomF (𝑁𝑆 (𝑅 ∩ 𝑇), 𝑆) such that (𝑅 ∩ 𝑇)𝛼 is fully normalised. Since
𝑅 ≤ 𝑁𝑆 (𝑅 ∩ 𝑇), the subgroup 𝑅𝛼 is well-defined. As T is strongly closed, 𝑅𝛼 ∩ 𝑇 = (𝑅 ∩ 𝑇)𝛼. By
Lemma 4.5, E𝑐𝑟 and F 𝑐𝑟 are closed under F-conjugacy. So, replacing R by 𝑅𝛼, we may assume that
𝑅 ∩ 𝑇 is fully F-normalised. If Q is an E-conjugate of 𝑅 ∩ 𝑇 , then by Corollary 2.3, there is an F-
morphism mapping 𝑁𝑆 (𝑄) into 𝑁𝑆 (𝑅 ∩ 𝑇) and thus 𝑁𝑇 (𝑄) into 𝑁𝑇 (𝑅 ∩ 𝑇). Hence, 𝑅 ∩ 𝑇 is fully
E-normalised. Now the claim follows from Lemma 2.6(b) and Lemma 2.10. �
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Lemma 4.7. Let E be an F-invariant (not necessarily saturated) subsystem of F over 𝑇 ≤ 𝑆. Let P be
an E-critical subgroup of T such that P is fully F-normalised. Then there exists 𝑅 ∈ F 𝑐𝑟 with 𝑅∩𝑇 = 𝑃.

Proof. This is a special case of [1, Lemma 1.19]. �

We will now look at some properties of the set 𝛿(F) introduced in Subsection 3.5. As shown in [10,
Lemma 7.21], 𝛿(F) can be characterised as the set of subgroups of S containing an element of 𝐹∗(F)𝑠.
The reader is referred to [3] or [10, Definition 7.2] for the definition of the generalised Fitting subsystem
𝐹∗(F) and the layer 𝐸 (F) of F . Recall Notation 3.21.

Lemma 4.8. Let 𝑃 ≤ 𝑆 with 𝑂 𝑝 (F) ≤ 𝑃. Then 𝑃 ∈ 𝛿(F) if and only if 𝐸 (F) ∩ 𝑃 ∈ 𝐸 (F)𝑠.

Proof. We use that 𝐹∗(F) = 𝐸 (F) ∗F𝑂𝑝 (F) (𝑂 𝑝 (F)) by [10, Theorem 7.10(e)]. In particular, 𝐹∗(F) ∩

𝑆 = (𝐸 (F) ∩ 𝑆)𝑂 𝑝 (F). As 𝑂 𝑝 (F) ≤ 𝑃, a Dedekind Argument yields thus 𝐹∗(F) ∩ 𝑃 = (𝐸 (F) ∩

𝑃)𝑂 𝑝 (F). It is shown in [10, Lemma 7.21] that 𝑃 ∈ 𝛿(F) if and only if 𝐹∗(F) ∩ 𝑃 ∈ 𝐹∗(F)𝑠. The
assertion follows now from [18, Lemma 2.14(g)]. �

Lemma 4.9. Let E be a normal subsystem of F and 𝑂 𝑝 (F) ≤ 𝑃 ≤ 𝑆. Then the following hold:

(a) If 𝐸 (F) = 𝐸 (E), then 𝑃 ∈ 𝛿(F) if and only if E ∩ 𝑃 ∈ 𝛿(E).
(b) Suppose 𝐸 (𝐶F (E)) ∩ 𝑆 ≤ 𝑃. Then

𝑃 ∈ 𝛿(F) ⇐⇒ 𝐸 (E) ∩ 𝑃 ∈ 𝐸 (E)𝑠 ⇐⇒ E ∩ 𝑃 ∈ 𝛿(E).

Proof. By Lemma 4.8, we have 𝑃 ∈ 𝛿(F) if and only if 𝐸 (F) ∩ 𝑃 ∈ 𝐸 (F)𝑠. As 𝑂 𝑝 (E) ≤ 𝑂 𝑝 (F) ≤ 𝑃
by [16, Lemma 2.12(b)], it follows similarly that E ∩ 𝑃 ∈ 𝛿(E) if and only if 𝐸 (E) ∩ 𝑃 ∈ 𝐸 (E)𝑠 .
This implies (a). By [10, Lemma 7.13(c)], 𝐸 (F) = 𝐸 (E) ∗ 𝐸 (𝐶F (E)). As 𝑅 := 𝐸 (𝐶F (E)) ∩ 𝑆 ≤ 𝑃,
we have 𝐸 (F) ∩ 𝑃 = (𝐸 (E) ∩ 𝑃)𝑅. Notice that 𝑅 ∈ 𝐸 (𝐶F (E))𝑠. Hence, by [18, Lemma 2.14(g)],
𝐸 (F) ∩ 𝑃 ∈ 𝐸 (F)𝑠 if and only if 𝐸 (E) ∩ 𝑃 ∈ 𝐸 (E)𝑠 . This implies (b). �

Remark 4.10. If E is a normal subsystem of F defined over 𝑇 ≤ 𝑆 and R is a subgroup of S, then
there is a unique saturated subsystem D of F over 𝑇𝑅 with 𝑂 𝑝 (D) = 𝑂 𝑝 (E). It is denoted by (E𝑅)F
(or sometimes simply by E𝑅). This was first shown by Aschbacher [3, Chapter 8]. The result was
revisited in [13], where a concrete description is given.

We conclude this section with the following lemma, which was first proved by Aschbacher [4, 1.3.2].
We give a new proof using localities.

Lemma 4.11. Let E be a normal subsystem of F over 𝑇 ≤ 𝑆. Then F = 〈E𝑆, 𝑁F (𝑇)〉.

Proof. By [16, Theorem A], there exists a linking locality (L,Δ , 𝑆) over F with Δ = F 𝑠 . Moreover,
by [10, Theorem A], there exists a partial normal subgroup N of L with 𝑇 = 𝑆 ∩N and E = F𝑇 (N ).
Now, by [10, Corollary 4.10], we have E𝑆 = F𝑆 (N 𝑆). As F = F𝑆 (L) is generated by maps of the form
𝑐𝑔 : 𝑆𝑔 → 𝑆 with 𝑔 ∈ L, it is sufficient to prove that such maps are in 〈E𝑆, 𝑁F (𝑇)〉. Let 𝑔 ∈ L. By
Lemma 3.13, there exist 𝑛 ∈ N and 𝑓 ∈ 𝑁L (𝑇) such that (𝑛, 𝑓 ) ∈ D, 𝑔 = 𝑛 𝑓 and 𝑃 := 𝑆𝑔 = 𝑆 (𝑛, 𝑓 ) .
Hence, 𝑐𝑔 = (𝑐𝑛 |𝑃) (𝑐 𝑓 |𝑃𝑛 ). Notice that 𝑐𝑛 |𝑃 ∈ F𝑆 (N 𝑆) = E𝑆 and that 𝑐 𝑓 |𝑃𝑛 is a morphism in 𝑁F (𝑇).
This shows the assertion. �

5. Kernels of localities

In this section, we investigate the properties of kernels of localities. In particular, we prove Theorems B,
C and D. Recall the following definition.

Definition 5.1. Let (L,Δ , 𝑆) be a locality. A kernel of L is a partial normal subgroup N of L such that
𝑃 ∩N ∈ Δ for every 𝑃 ∈ Δ .
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Lemma 5.2. Let N be a kernel of a locality (L,Δ , 𝑆). Set F = F𝑆 (L), 𝑇 := 𝑆 ∩N , E = F𝑇 (N ) and
Γ := {𝑃 ∈ Δ : 𝑃 ≤ 𝑇} = {𝑃 ∩ 𝑇 : 𝑃 ∈ Δ}. Then the following hold:

(a) (N , Γ, 𝑇) is a locality over E , and Γ is closed under F-conjugacy.
(b) For every 𝑓 ∈ 𝑁L (𝑇), L = D( 𝑓 ), 𝑐 𝑓 ∈ Aut(L) and 𝑐 𝑓 |N ∈ Aut(N ).
(c) 𝑂 𝑝 (N ) = 𝑂 𝑝 (L) ∩N � L.
(d) The subsystem E is F-invariant.

Proof. (a,b) It follows from [18, Lemma 3.29(b), (c)] and the definition of E that (N , Γ, 𝑇) is a
locality over E and that (b) holds. Since Δ is closed under passing to L-conjugates in S, N � L and
Γ = {𝑃 ∈ Δ : 𝑃 ⊆ N }, it follows that Γ is closed under passing to L-conjugates in S. So Γ is closed
under F-conjugacy, and (a) holds.

(c) Notice that𝑂 𝑝 (N ) is invariant under conjugation by elements of 𝑁L (𝑇) as the elements of 𝑁L (𝑇)
induce automorphisms of N . Since 𝑂 𝑝 (N ) � N , it follows from [8, Corollary 3.13] that 𝑂 𝑝 (N ) � L
and thus 𝑂 𝑝 (N ) ≤ 𝑂 𝑝 (L). Clearly, 𝑂 𝑝 (L) ∩N ≤ 𝑂 𝑝 (N ), so (c) holds.

(d) As AutF (𝑇) is generated by maps of the form 𝑐 𝑓 |𝑇 with 𝑓 ∈ 𝑁L (𝑇) and these maps induce auto-
morphisms of E by [18, Lemma 3.29(d)], it follows that the elements of AutF (𝑇) induce automorphisms
of E . Now (d) is a consequence of [18, Lemma 3.28]. �

Definition 5.3. We say that (N , Γ, 𝑇) is a kernel of (L,Δ , 𝑆) to indicate that N is a kernel of (L,Δ , 𝑆),
𝑇 = 𝑆 ∩N and Γ = {𝑃 ∈ Δ : 𝑃 ≤ 𝑇} = {𝑃 ∩ 𝑇 : 𝑃 ∈ Δ}.

The following lemma can be seen as a converse to Lemma 5.2(a).

Lemma 5.4. Suppose we are given a finite partial group L with product Π : D → L. Let S be a
maximal p-subgroup of L and N � L. Set 𝑇 := N ∩ 𝑆, let Γ be a set of subgroups of T, and set
Δ := {𝑃 ≤ 𝑆 : 𝑃 ∩ 𝑇 ∈ Γ}. Suppose the following hold:

◦ Γ is closed under passing to overgroups and L-conjugates that lie in T.
◦ D = DΓ.

Then (L,Δ , 𝑆) is a locality with kernel (N , Γ, 𝑇).

Proof. If (L,Δ , 𝑆) is a locality, then clearly (N , Γ, 𝑇) is a kernel of (L,Δ , 𝑆). By Lemma 3.5(b), we
have DΔ = DΓ = D. Recall that S is a maximal p-subgroup of L by assumption. As Γ is overgroup-
closed in T, it follows that Δ is overgroup-closed in S. Hence, it remains to show that Δ is closed under
passing to L-conjugates in S.

Let 𝑃 ∈ Δ and 𝑓 ∈ L with 𝑃 ⊆ D( 𝑓 ) and 𝑃 𝑓 ⊆ 𝑆. Observe that 𝑄 := 𝑃 ∩N ∈ Γ is normal in P and
𝑄 𝑓 ∈ Γ by assumption. Hence, if 𝑥, 𝑦 ∈ 𝑃, then 𝑢 := ( 𝑓 −1, 𝑥, 𝑓 , 𝑓 −1, 𝑦, 𝑓 ) ∈ D = DΓ via 𝑄 𝑓 . Thus, by
the axioms of a partial group, 𝑥 𝑓 𝑦 𝑓 = Π(𝑢) = Π( 𝑓 −1, 𝑥, 𝑦, 𝑓 ) = (𝑥𝑦) 𝑓 , so 𝑐 𝑓 : 𝑃 → 𝑆, 𝑥 ↦→ 𝑥 𝑓 is a
group homomorphism. Therefore, 𝑃 𝑓 is a subgroup of S. By Lemma 3.5(a), 𝑃 𝑓 ∩𝑇 = 𝑃 𝑓 ∩N = 𝑄 𝑓 ∈ Γ,
so 𝑃 𝑓 ∈ Δ . �

We will use from now on without further reference that, by Lemma 5.2(a), (N , Γ, 𝑇) is a locality if
(N , Γ, 𝑇) is a kernel of a locality (L,Δ , 𝑆). In particular, it makes sense to say that a kernel (N , Γ, 𝑇)
is cr-complete.

Proposition 5.5. Let (L,Δ , 𝑆) be a locality with kernel (N , Γ, 𝑇). Then (L,Δ , 𝑆) is cr-complete if and
only if (N , Γ, 𝑇) is cr-complete.

Proof. Set E := F𝑇 (N ) and F := F𝑆 (L). By Lemma 5.2(a),(d), (N , Γ, 𝑇) is a locality and E is F-
invariant.

Assume first that (L,Δ , 𝑆) is cr-complete. Then in particular, F is saturated by Proposition 3.18(c).
We show:

If 𝑄 ≤ 𝑇 is E-critical, then 𝑄 ∈ Γ. (5.1)
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For the proof, let Q be an E-critical subgroup of T. Then there exists a fully F-normalised F-conjugate
P of Q, which by Lemma 4.5 is also E-critical. Hence, Lemma 4.7 implies the existence of an element
𝑅 ∈ F 𝑐𝑟 with 𝑅 ∩ 𝑇 = 𝑃. As F 𝑐𝑟 ⊆ Δ and (N , Γ, 𝑇) is a kernel of (L,Δ , 𝑆), it follows that 𝑃 ∈ Γ.
Hence, Lemma 5.2(a) yields𝑄 ∈ Γ, and thus equation (5.1) holds. Proposition 3.18(b) implies now that
E is saturated and (N , Γ, 𝑇) is cr-complete.

To prove the other implication, assume that (N , Γ, 𝑇) is cr-complete. Then by Proposition 3.18(c),
E is saturated. Observe also that E𝑐𝑟 ⊆ Γ ⊆ Δ . As F is Δ-saturated and Δ-generated by Proposition
3.18(a), it follows now from Theorem A that F is saturated. In particular, E is weakly normal in F . So
Lemma 4.6 gives 𝑅 ∩ 𝑇 ∈ E𝑐𝑟 ⊆ Γ ⊆ Δ for every 𝑅 ∈ F 𝑐𝑟 . As Δ is overgroup-closed, this implies that
(L,Δ , 𝑆) is cr-complete. �

Lemma 5.6. Let (N , Γ, 𝑇) be a kernel of a locality (L,Δ , 𝑆). Set F := F𝑆 (L) and E := F𝑇 (N ).
Suppose 𝐶N (𝑇) ≤ 𝑇 . Then the following hold:
(a) 𝑁N (𝑇) ⊆ 𝑁N (𝑇𝐶𝑆 (𝑇)).
(b) If E and F are saturated, then E is normal in F .
Proof. (a) Notice that 𝑇 ∈ Γ ⊆ Δ , and thus 𝑁L (𝑇) is a group. The assumption 𝐶N (𝑇) ≤ 𝑇 yields that
𝑁N (𝑇) is of characteristic p.

Let 𝑔 ∈ 𝑁N (𝑇), and set 𝑃 := 𝑆𝑔. Then 𝑇 ≤ 𝑃, so 𝑃𝑔 = 𝑃 by [8, Lemma 3.1(b)]. Hence,
𝑔 ∈ 𝐾 := 𝑁N (𝑃). Note that 𝑁L (𝑃) ≤ 𝑁L (𝑇), so 𝐾 = 𝑁𝑁N (𝑇 ) (𝑃) ≤ 𝑁L (𝑇). Calculating inside the
group 𝑁L (𝑇), we have

[𝐾, 𝑁𝐶𝑆 (𝑇 ) (𝑃)] ≤ N ∩ 𝐶L (𝑇) = 𝐶N (𝑇) ≤ 𝑇,

where the last inclusion holds by assumption. Thus [𝑔, 𝑁𝐶𝑆 (𝑇 ) (𝑃)] ≤ 𝑇 , so 𝑁𝐶𝑆 (𝑇 ) (𝑃) ≤ 𝑆𝑔 = 𝑃.
Therefore, we have 𝑁𝑃𝐶𝑆 (𝑇 ) (𝑃) = 𝑃𝑁𝐶𝑆 (𝑇 ) (𝑃) = 𝑃. As 𝑃𝐶𝑆 (𝑇) is a p-group, this implies 𝐶𝑆 (𝑇) ≤ 𝑃
and thus g acts on T and 𝐶𝑆 (𝑇). Hence, (a) holds.

(b) Notice that part (a) implies [𝑇𝐶𝑆 (𝑇), 𝑁N (𝑇)] ≤ (𝑇𝐶𝑆 (𝑇))∩N = 𝑇 . Since AutF (𝑇) is generated
by maps of the form 𝑐 𝑓 |𝑇 , with 𝑓 ∈ 𝑁L (𝑇), the extension condition as stated in [2, Definition I.6.1]
follows. Now (b) follows from Lemma 5.2(b). �

Lemma 5.7. A projection from a locality (L∗,Δ∗, 𝑆∗) to a locality (L,Δ , 𝑆) sends every kernel of
(L∗,Δ∗, 𝑆∗) to a kernel of (L,Δ , 𝑆).
Proof. Let 𝜑 : L∗ → L be a projection of localities, and let N ∗ be a kernel of L∗. Then N := (N ∗)𝜑
is a partial normal subgroup of L by [20, Lemma 2.5]. Let 𝑃 ∈ Δ . Then 𝑃 = (𝑃∗)𝜑 for some 𝑃∗ ∈ Δ∗

since Δ∗𝜑 = Δ . Since N ∗ is a kernel of L∗, we have N ∗ ∩ 𝑃∗ ∈ Δ∗. Hence

N ∩ 𝑃 = (N ∗)𝜑 ∩ 𝑃∗𝜑 ≥ (N ∗ ∩ 𝑃∗)𝜑 ∈ Δ∗𝜑 = Δ .

As Δ is overgroup-closed, it follows that N ∩ 𝑃 ∈ Δ , and thus N is a kernel of L. �

For the next lemma, the reader might want to recall Definition 3.14. By E𝑞 , we denote the quasicentric
subgroups of a saturated fusion system E ; for the definition, see [2, Definition III.4.5].
Lemma 5.8. Let (L,Δ , 𝑆) be a locality over F with cr-complete kernel (N , Γ, 𝑇). Set E := F𝑇 (N ). Let
E𝑐𝑟 ⊆ Γ0 ⊆ Γ∩ E𝑞 such that Γ0 is E-closed and AutF (𝑇)-invariant, and let Δ0 be the set of overgroups
in S of the elements of Γ0. Set

L0 := L|Δ0 , N0 := N ∩ L0 and Θ =
⋃

𝑃∈Γ0

𝑂 𝑝′ (𝑁N (𝑃)).

Then the following hold:
(a) (L0,Δ0, 𝑆) is a cr-complete locality over F with cr-complete kernel (N0, Γ0, 𝑇). Moreover,

N0 = N |Γ0 and F𝑇 (N0) = E .
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(b) Θ is a partial normal subgroup of L0 with Θ ∩ 𝑆 = 1. In particular, setting L0 = L0/Θ and using
the ‘bar notation’ as usual, S and T are naturally isomorphic to 𝑆 and 𝑇 via the restriction of the
natural projection map L0 → L0.

(c) Identify 𝑆 and 𝑇 with S and T. Then the following conditions hold:
◦ (L0,Δ0, 𝑆) is a locality over F .
◦ (N 0, Γ0, 𝑇) is a kernel of (L0,Δ0, 𝑆), which is a linking locality over E .

Proof. (a) Recall from Lemma 5.2(d) that E is F-invariant. As Γ0 is AutF (𝑇)-invariant and closed
under E-conjugacy, it follows from the Frattini condition for F-invariant subsystems (compare [2,
Definition I.6.1]) that Γ0 is closed under F-conjugacy. Thus, Δ0 is F-closed, L0 is well-defined, and
(L0,Δ0, 𝑆) is a locality. It is easy to observe that N0 is a partial normal subgroup of L0. It follows from
the definition of Δ0 that (N0, Γ0, 𝑇) is a kernel of (L0,Δ0, 𝑆) and N0 = N |Γ0 (see also Lemma 3.5).
As E𝑐𝑟 ⊆ Γ0, we can conclude from Lemma 4.6 that F 𝑐𝑟 ⊆ Δ0 ⊆ Δ . In particular, F and E are
saturated, by Proposition 3.18(c). Note furthermore that for all 𝑃 ∈ Δ , 𝑁L (𝑃) = 𝑁L0 (𝑃), and thus, by
Lemma 3.10(a), AutF (𝑃) = AutF𝑆 (L0) (𝑃). Similarly, AutE (𝑄) = AutF𝑇 (N0) (𝑄) for all 𝑄 ∈ Γ. Hence,
it follows from Alperin’s Fusion Theorem [2, Theorem I.3.6] (combined with Lemma 2.6(b)) that
F = F𝑆 (L0) and E = F𝑇 (N0). This proves (a).

(b,c) We argue first that

𝑁N (𝑃)/𝑂 𝑝′ (𝑁N (𝑃)) is of characteristic 𝑝 for all 𝑃 ∈ Γ0. (5.2)

By Lemma 3.8(b), we may reduce to the case that P is fully E-normalised. So let 𝑃 ∈ Γ0 be fully
E-normalised. As Γ0 ⊆ E𝑞 , [16, Proposition 1(c)] gives that 𝐶N (𝑃)/𝑂 𝑝′ (𝐶N (𝑃)) is a p-group. In
particular, 𝐶N (𝑃)/𝑂 𝑝′ (𝐶N (𝑃)) is of characteristic p, and thus 𝐶N (𝑃) = 𝐶𝑁N (𝑃) (𝑃) is ‘almost of
characteristic p’ in the sense of [16, Definition 2.6]. It follows therefore from [16, Lemma 2.9] (applied
with𝑁N (𝑃) in place of G) that𝑁N (𝑃) is ‘almost of characteristic p’, which means𝑁N (𝑃)/𝑂 𝑝′ (𝑁N (𝑃))
is of characteristic p. This proves equation (5.2).

As 𝑁N0 (𝑃) = 𝑁N (𝑃) for all 𝑃 ∈ Γ0, it follows from equation (5.2) and from [16, Proposition 6.4]
applied with (N0, Γ0, 𝑇) in place of (L,Δ , 𝑆) that Θ is a partial normal subgroup of N0, that 𝑇 ∩Θ = 1,
that the canonical projection N0 → N0/Θ is injective on T and that (N0/Θ, Γ0, 𝑇) is a linking
locality over E if we identify T with its image in N0/Θ. The elements of 𝑁L (𝑇) = 𝑁L0 (𝑇) induce
F-automorphisms of T and act thus by assumption on Γ0 via conjugation. Hence, it follows from
Lemma 3.8(b) that Θ is invariant under conjugation by elements of 𝑁L0 (𝑇). Now [8, Corollary 3.13]
gives that Θ is a partial normal subgroups of L0. Moreover, 𝑆 ∩ Θ = 𝑆 ∩ N ∩ Θ = 𝑇 ∩ Θ = 1. This
means the kernel of the natural projection 𝜌 : L0 → L0 := L0/Θ intersects trivially with S and restricts
thus to isomorphisms 𝑆 → 𝑆 and 𝑇 → 𝑇 . Hence, (b) holds.

We now use the notation introduced in (b) and (c). By [8, Theorem 4.3], (L0,Δ0, 𝑆0) is a locality.
It is a special case of [17, Lemma 2.21(b)] that F𝑆 (L0) = F𝑆 (L0) = F . Using [8, Lemma 3.15],
one can observe that 𝜌 |N0 coincides with the canonical projection N0 → N0/Θ. Thus, (N 0, Γ0, 𝑇) =
(N0/Θ, Γ0, 𝑇) is a linking locality over E . Now (c) follows from Lemma 5.7. �

Proposition 5.9. Let F be a fusion system over S with a subsystem E over T. Then the following
conditions are equivalent:

(i) There exists a locality (L,Δ , 𝑆) over F with a cr-complete kernel (N , Γ, 𝑇) over E .
(ii) There exists a locality (L,Δ , 𝑆) over F with a kernel (N , Γ, 𝑇), which is a linking locality over E .

If either of these two conditions holds, then E is a normal subsystem of F .

Proof. Clearly, (ii) implies (i) as every linking locality is cr-complete. Assume now that (i) holds. Notice
that E𝑐𝑟 ⊆ Γ0 := Γ ∩ E𝑐 ⊆ Γ ∩ E𝑞 . Moreover, Γ0 is E-closed and AutF (𝑇) invariant as the same holds
for Γ and E𝑐 (compare Lemma 4.5). Hence, (ii) follows from Lemma 5.8(c).
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Assume now that (ii) holds. If (N , Γ, 𝑇) is a kernel of a locality (L,Δ , 𝑆) over F such that (N , Γ, 𝑇)
is a linking locality over E , then (N , Γ, 𝑇) is in particular cr-complete. Thus, (L,Δ , 𝑆) is cr-complete,
by Proposition 5.5. Hence, E and F are saturated, by Proposition 3.18(c). So E � F , by Lemma 5.6(b).
This proves the assertion. �

Proof of Theorem B. The statement follows from Proposition 5.5 and Proposition 5.9. �

Proposition 5.10. Let (L,Δ , 𝑆) be a locality with a kernel (N , Γ, 𝑇). Then the following conditions are
equivalent:

(i) (L,Δ , 𝑆) is of objective characteristic p.
(ii) 𝑁L (𝑇) is of characteristic p, and (N , Γ, 𝑇) is of objective characteristic p.

(iii) 𝐶L (𝑇) is of characteristic p, and (N , Γ, 𝑇) is of objective characteristic p.
(iv) 𝑁L (𝑃) is of characteristic p for every 𝑃 ∈ Γ.

Proof. By Lemma 5.2(a), (N , Γ, 𝑇) is a locality. Notice that 𝑇 = 𝑆 ∩N ∈ Γ ⊆ Δ , and thus 𝑁L (𝑇) is
a finite group with 𝐶𝑁L (𝑇 ) (𝑇) = 𝐶L (𝑇). So properties (ii) and (iii) are equivalent by [16, Lemma 2.9].
Hence, it is sufficient to show that properties (i),(ii) and (iv) are equivalent.

If (i) holds, then 𝑁L (𝑃) is of characteristic p for every 𝑃 ∈ Γ. In particular, 𝑁L (𝑇) is of characteristic
p. Moreover, by Lemma 4.2(b), 𝑁N (𝑃) � 𝑁L (𝑃) is of characteristic p for every 𝑃 ∈ Γ, showing that
(N , Γ, 𝑇) is of objective characteristic p. So (i) implies (ii).

To show that (ii) implies (iv), assume now that (ii) holds. Suppose furthermore that (iv) is false:
that is, there exists 𝑃 ∈ Γ such that 𝐺 := 𝑁L (𝑃) is not of characteristic p. Choose such P of maximal
order. By Lemma 3.8(b) and [8, Lemma 2.9], we may replace P by a suitable L-conjugate of P and
assume that 𝑁𝑆 (𝑃) is a Sylow p-subgroup of G. As (ii) holds, we have 𝑃 ≠ 𝑇 and thus 𝑃 < 𝑁𝑇 (𝑃).
Hence, by the maximality of |𝑃 |, the group 𝑁L (𝑁𝑇 (𝑃)) has characteristic p. Hence, by Lemma 4.2(a),
𝑁𝐺 (𝑁𝑇 (𝑃)) = 𝑁𝑁L (𝑁𝑇 (𝑃)) (𝑃) is of characteristic p. As (N , Γ, 𝑇) is of objective characteristic p, we
also know that 𝑁 := 𝑁N (𝑃) � 𝐺 is of characteristic p. Notice that 𝑁𝑇 (𝑃) = 𝑁𝑆 (𝑃) ∩ 𝑁 is a Sylow
p-subgroup of N, as 𝑁𝑆 (𝑃) is a Sylow p-subgroup of G. So it follows from Lemma 4.3 that G is of
characteristic p, contradicting our assumption. Hence, (ii) implies (iv).

Assume now that (iv) holds. If 𝑃 ∈ Δ is arbitrary, then 𝑃∩N ∈ Γ, so 𝑁L (𝑃∩N ) is of characteristic
p. Observe that 𝑁L (𝑃) ⊆ 𝑁L (𝑃 ∩ N ), and thus 𝑁L (𝑃) = 𝑁𝑁L (𝑃∩N ) (𝑃) is of characteristic p by
Lemma 4.2(a). Hence, (iv) implies (i). �

Proof of Theorem C. The statement follows from Proposition 5.5 and Proposition 5.10. �

Proof of Theorem D. Set F := F𝑆 (L) and E := F𝑇 (N ). By [10, Lemma 3.28(c)], (L,Δ , 𝑆) is a linking
locality if and only if (L, Δ̃ , 𝑆) is a linking locality, and similarly, (N , Γ, 𝑇) is a linking locality if and
only if (N , Γ̃, 𝑇) is a linking locality.1 Thus, supposing from now on that (L,Δ , 𝑆) and (N , Γ, 𝑇) are
linking localities, it is by Theorem C enough to show that Δ̃ = 𝛿(F) if and only if Γ̃ = 𝛿(E) and that
𝐸 (L) = 𝐸 (N ).

By Proposition 5.9, E �F . Moreover, our assumption yields that 𝑁L (𝑇) is of characteristic p. Hence,
by Lemma 3.10(b), 𝑁F (𝑇) = F𝑆 (𝑁L (𝑇)) is constrained. It follows then from [10, Corollary 7.18,
Lemma 7.19] that 𝐸 (𝐶F (E)) = 𝐸 (𝑁F (𝑇)) is the trivial fusion system. By [10, Lemma 7.13(c)], this
implies 𝐸 (F) = 𝐸 (E).

By [18, Lemma 11.13], 𝐸 (N ) � L. Moreover, by [10, Theorem E(d)], F𝑆∩𝐸 (N ) (𝐸 (N )) = 𝐸 (E) =
𝐸 (F), and 𝐸 (L) is the unique partial normal subgroup of L with F𝑆∩𝐸 (L) (𝐸 (L)) = 𝐸 (F). Hence,
𝐸 (N ) = 𝐸 (L).

By Lemma 3.12 and [16, Proposition 5], 𝑂 𝑝 (F) = 𝑂 𝑝 (L) and 𝑂 𝑝 (E) = 𝑂 𝑝 (N ). Moreover,
𝑂 𝑝 (L) ∩ 𝑇 = 𝑂 𝑝 (L) ∩N = 𝑂 𝑝 (N ) by Lemma 5.2(c).

1It should be noted here that the term ‘proper locality’ used in [10] means exactly the same as the term ‘linking locality’.
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Assume first that Γ̃ = 𝛿(E). Let 𝑃 ≤ 𝑆 with 𝑂 𝑝 (L) = 𝑂 𝑝 (F) ≤ 𝑃. Then 𝑂 𝑝 (N ) ≤ 𝑃 ∩ 𝑇 and thus
𝑃 ∩ 𝑇 ∈ Γ if and only if 𝑃 ∩ 𝑇 ∈ Γ̃. Hence,

𝑃 ∈ 𝛿(F) ⇐⇒ 𝑃 ∩ 𝑇 ∈ 𝛿(E) (by Lemma 4.9(a))
⇐⇒ 𝑃 ∩ 𝑇 ∈ Γ̃( as Γ̃ = 𝛿(E))
⇐⇒ 𝑃 ∩ 𝑇 ∈ Γ (as noted above)
⇐⇒ 𝑃 ∈ Δ (since (N , Γ, 𝑇)is a kernel).

Since the above equivalences hold for every 𝑃 ≤ 𝑆 with 𝑂 𝑝 (L) ≤ 𝑃, it follows now from [18, Lemma
10.6] that 𝛿(F) = {𝑃 ≤ 𝑆 : 𝑃𝑂 𝑝 (L) ∈ 𝛿(F)} = {𝑃 ≤ 𝑆 : 𝑃𝑂 𝑝 (L) ∈ Δ} = Δ̃ . This proves one
direction.

Assume now the other way around that 𝛿(F) = Δ̃ . Let𝑄 ≤ 𝑇 with𝑂 𝑝 (N ) ≤ 𝑄. Then𝑄𝑂 𝑝 (L)∩𝑇 =
𝑄(𝑂 𝑝 (L) ∩ 𝑇) = 𝑄𝑂 𝑝 (N ) = 𝑄. Hence,

𝑄 ∈ 𝛿(E) ⇐⇒ 𝑄𝑂 𝑝 (L) ∩ 𝑇 ∈ 𝛿(E) (as 𝑄 = 𝑄𝑂 𝑝 (L) ∩ 𝑇)
⇐⇒ 𝑄𝑂 𝑝 (L) ∈ 𝛿(F) (by Lemma 4.9(a) and since 𝑂 𝑝 (L) = 𝑂 𝑝 (F))

⇐⇒ 𝑄𝑂 𝑝 (L) ∈ Δ̃ ( as 𝛿(F) = Δ̃)

⇐⇒ 𝑄𝑂 𝑝 (L) ∈ Δ (by definition ofΔ̃)
⇐⇒ 𝑄𝑂 𝑝 (L) ∩ 𝑇 ∈ Γ (as (N , Γ, 𝑇) is a kernel)
⇐⇒ 𝑄 ∈ Γ (as 𝑄 = 𝑄𝑂 𝑝 (L) ∩ 𝑇).

The above equivalences hold for all𝑄 ≤ 𝑇 with𝑂 𝑝 (N ) ≤ 𝑄. Hence, it follows from [18, Lemma 10.6]
that 𝛿(E) = {𝑄 ≤ 𝑇 : 𝑄𝑂 𝑝 (N ) ∈ 𝛿(E)} = {𝑄 ≤ 𝑇 : 𝑄𝑂 𝑝 (N ) ∈ Γ} = Γ̃. This proves the assertion. �

Lemma 5.11. Let (L,Δ , 𝑆) be a locality with kernel (N , Γ, 𝑇) such that (N , Γ, 𝑇) is a regular locality.
Set E := F𝑇 (N ), 𝑇0 := 𝐸 (N ) ∩ 𝑆 = 𝐸 (E) ∩ 𝑆 and Δ̃ := {𝑃 ≤ 𝑆 : 𝑃𝑂 𝑝 (L) ∈ Δ}. Then the following
are equivalent:

(i) (L,Δ , 𝑆) is a linking locality.
(ii) (L, Δ̃ , 𝑆) is a regular locality.

(iii) 𝑁L (𝑇) is a group of characteristic p.
(iv) 𝑁L (𝑇0) is a group of characteristic p.

Proof. Set F := F𝑆 (L). By [10, Theorem E(d)], 𝐸 (E) = F𝐸 (N )∩𝑆 (𝐸 (N )), and in particular 𝑇0 :=
𝐸 (N ) ∩ 𝑆 = 𝐸 (E) ∩ 𝑆. As (N , Γ, 𝑇) is regular (and in particular a linking locality), it follows from
Theorem C that (i) and (iii) are equivalent. Moreover, by [18, Lemma 10.6], Γ = 𝛿(E) = {𝑄 ≤

𝑇 : 𝑄𝑂 𝑝 (N ) ∈ Γ}. Therefore, properties (ii) and (iii) are equivalent by Theorem D. Hence, it remains
to prove that (iii) and (iv) are equivalent.

As 𝑇0 ∈ 𝐸 (E)𝑠 ⊆ 𝛿(E) = Γ ⊆ Δ by [10, Lemma 7.22], it follows that 𝐺 := 𝑁L (𝑇0) is a group
with 𝑁 := 𝑁N (𝑇0) � 𝐺. Indeed, since (N , Γ, 𝑇) is a regular locality, N is of characteristic p. Hence,
by Lemma 4.3, G is of characteristic p if and only if 𝑁𝐺 (𝑇) is of characteristic p. By [18, Lemma
11.12], every automorphism of N leaves 𝐸 (N ) invariant, so 𝑁L (𝑇) acts by Lemma 5.2(b) on 𝐸 (N )

via conjugation. In particular, 𝑁L (𝑇) ⊆ 𝐺, and thus 𝑁L (𝑇) = 𝑁𝐺 (𝑇). This shows the equivalence of
(iii) and (iv) as required. �

6. Products

In this section, we prove Theorem E and Corollary F. Indeed, we state and prove here some more
detailed results. The following theorem implies Theorem E. The reader might want to recall the notation
introduced in Remark 4.10.
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Theorem 6.1. Let (L,Δ , 𝑆) be a regular locality, and let N � L be a partial normal subgroup of L. Set

𝑇∗ := 𝐹∗(L) ∩ 𝑆, 𝑇0 := 𝐸 (N ) ∩ 𝑆, 𝑇 := 𝑆 ∩N and E := F𝑇 (N ).

Let 𝐻 ≤ 𝑁L (𝑇
∗) and set �̃� := 𝑁N (𝑇∗)𝐻. Fix 𝑆0 ∈ Syl𝑝 (�̃�) with 𝑇 ≤ 𝑆0. Set

Δ0 := {𝑃 ≤ 𝑆0 | 𝑃 ∩N ∈ 𝛿(E)}.

Then the following hold:

(a) N𝐻 = 𝐻N is a partial subgroup of L.
(b) 𝑁N (𝑇0) = 𝑁N (𝑇∗), and �̃� = 𝑁N𝐻 (𝑇∗) = 𝑁N𝐻 (𝑇0) = 𝑁N (𝑇0)𝐻.
(c) (N𝐻,Δ0, 𝑆0) is a cr-complete locality with kernel (N , 𝛿(E), 𝑇).
(d) Set Δ̃0 := {𝑃 ≤ 𝑆0 : 𝑃𝑂 𝑝 (N𝐻) ∈ Δ0}. Then the following are equivalent:

– �̃� is of characteristic p;
– (N𝐻,Δ0, 𝑆0) is a linking locality;
– (N𝐻, Δ̃0, 𝑆0) is a regular locality.

(e) F0 := F𝑆0 (N𝐻) is saturated. Moreover, E and 𝐸 (E) are normal subsystems of F0, 𝑁F0 (𝑇0) =
F𝑆0 (�̃�), and

F0 = 〈(𝐸 (E)𝑆0)F0 ,F𝑆0 (�̃�)〉.

Proof. Set F := F𝑆 (L). As usual, we write Π : D → L for the product on L.
(a) By definition of a regular locality, for every 𝑃 ≤ 𝑆, we have 𝑃 ∈ Δ if and only if 𝑃 ∩ 𝑇∗ ∈ Δ .

Thus, Lemma 3.8(e) yields that

for all 𝑢 ∈ W(L), we have 𝑢 ∈ D if and only if 𝑆𝑢 ∩ 𝑇∗ ∈ Δ . (6.1)

In particular, 𝑆 𝑓 ∩ 𝑇∗ ∈ Δ for all 𝑓 ∈ L. If 𝑛 ∈ N and 𝑔 ∈ NL (𝑇
∗), then we can conclude that

(𝑔−1, 𝑔, 𝑛) ∈ D via 𝑆𝑛 ∩ 𝑇∗. Hence, by the axioms of a partial group, 𝑔𝑛 is defined and 𝑔−1(𝑔𝑛) =
Π(𝑔−1, 𝑔, 𝑛) = 𝑛. Note also that 𝑆𝑔𝑛 ∩ 𝑇∗ ≤ 𝑆 (𝑔,𝑔−1 ,𝑔𝑛) . Using Lemma 3.8(f), we conclude that

𝑆 (𝑔,𝑛) ∩ 𝑇
∗ ≤ 𝑆𝑔𝑛 ∩ 𝑇

∗ ≤ 𝑆 (𝑔,𝑔−1 ,𝑔𝑛) ∩ 𝑇
∗ ≤ 𝑆 (𝑔,𝑔−1 (𝑔𝑛)) ∩ 𝑇

∗ ≤ 𝑆 (𝑔,𝑛) ∩ 𝑇
∗

and so

𝑆 (𝑔,𝑛) ∩ 𝑇
∗ = 𝑆𝑔𝑛 ∩ 𝑇

∗ for all 𝑔 ∈ 𝑁L (𝑇
∗) and all 𝑛 ∈ N . (6.2)

Let 𝑛 ∈ N and 𝑔 ∈ 𝐻. We argue first that N𝐻 = 𝐻N . Observe that 𝑢1 := (𝑔, 𝑔−1, 𝑛, 𝑔) ∈ D via
𝑆𝑛 ∩ 𝑇∗ and 𝑢2 := (𝑔, 𝑛, 𝑔−1, 𝑔) ∈ D via (𝑆𝑛 ∩ 𝑇∗)𝑔

−1 . Hence, 𝑛𝑔 = Π(𝑢1) = 𝑔(𝑛𝑔) ∈ 𝐻N and
𝑔𝑛 = Π(𝑢2) = (𝑛𝑔

−1
)𝑔 ∈ N𝐻. This shows that N𝐻 = 𝐻N . In particular, if 𝑓 = 𝑛𝑔 ∈ N𝐻, then

[8, Lemma 1.4(f)] yields (𝑔−1, 𝑛−1) ∈ D and 𝑓 −1 = 𝑔−1𝑛−1 ∈ 𝐻N = N𝐻.
It remains thus to show that N𝐻 = 𝐻N is closed under the partial product Π : D → L on L. Let

𝑤 = ( 𝑓1, . . . , 𝑓𝑘 ) ∈ D ∩ W(𝐻N ). Then for every 1 ≤ 𝑖 ≤ 𝑘 , we have 𝑓𝑖 = 𝑔𝑖𝑛𝑖 for some 𝑔𝑖 ∈ 𝐻 and
𝑛𝑖 ∈ N . Set 𝑢 = (𝑔1, 𝑛1, . . . , 𝑔𝑘 , 𝑛𝑘 ). Then by (6.2), we get 𝑆𝑢 ∩ 𝑇∗ = 𝑆𝑤 ∩ 𝑇∗. Now equation (6.1)
yields first 𝑆𝑢 ∩ 𝑇∗ = 𝑆𝑤 ∩ 𝑇∗ ∈ Δ and then 𝑢 ∈ D. By [8, Lemma 3.4], Π(𝑢) = Π(𝑔1, . . . , 𝑔𝑘 , 𝑛) for
some 𝑛 ∈ N . Hence, by the axioms of a partial group,

Π(𝑤) = Π(𝑢) = Π(𝑔1, . . . , 𝑔𝑘 , 𝑛) = Π(𝑔1, . . . , 𝑔𝑘 )𝑛 ∈ 𝐻N = N𝐻.

Thus N𝐻 is closed under the partial product and thus a partial subgroup. Hence, (a) holds.
(b) Lemma 3.22(a) gives 𝑁L (𝑇0) ≤ 𝑁L (𝑇

∗) and 𝑁N (𝑇0) = 𝑁N (𝑇∗). It follows from the Dedekind
Lemma [8, Lemma 1.10] that 𝑁N𝐻 (𝑇∗) = N𝐻 ∩ 𝑁N𝐻 (𝑇∗) = 𝑁N (𝑇∗)𝐻 = �̃�. As 𝐻 ≤ 𝑁L (𝑇

∗) ⊆
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𝑁L (𝑇0) and 𝑁L (𝑇0) is by [8, Lemma 2.12(a)] a partial subgroup of L, the Dedekind Lemma yields
similarly that 𝑁N𝐻 (𝑇0) = N𝐻 ∩ 𝑁N𝐻 (𝑇0) = 𝑁N (𝑇0)𝐻. This implies (b).

(c,d) Set Γ := 𝛿(E) and 𝑅 := 𝐸 (𝐶L (N )) ∩ 𝑆. We show first that

D ∩ W(N𝐻) = DΓ ∩ W(N𝐻). (6.3)

As 𝑅 ⊆ 𝐶L (N ), [18, Lemma 3.5] yields N ⊆ 𝐶L (𝑅) ⊆ 𝑁L (𝑅). Moreover, by Lemma 3.22(a),
𝐻 ⊆ 𝑁L (𝑇

∗) ⊆ 𝑁L (𝑅). As 𝑁L (𝑅) is by [8, Lemma 2.12(a)] a partial subgroup of L, it follows that
N𝐻 ⊆ 𝑁L (𝑅). Moreover, we use that 𝑂 𝑝 (L) = 𝑂 𝑝 (F), by [16, Proposition 5] and Lemma 3.12. So
fixing 𝑤 = ( 𝑓1, . . . , 𝑓𝑛) ∈ W(N𝐻), we have 𝑅𝑂 𝑝 (F) = 𝑅𝑂 𝑝 (L) ≤ 𝑆𝑤 . Hence, Lemma 4.9(b) gives

𝑆𝑤 ∈ 𝛿(F) = Δ ⇐⇒ 𝑆𝑤 ∩ 𝑇 ∈ Γ.

Notice that 𝑆𝑤 ∈ D = DΔ if and only if 𝑆𝑤 ∈ Δ . By [18, Lemma 10.4], Γ is overgroup-closed in T.
Hence, 𝑤 ∈ DΓ implies 𝑆𝑤 ∩ 𝑇 ∈ Γ. Moreover, by Lemma 3.22(d), Γ is closed under passing to L-
conjugates in S. Therefore, 𝑆𝑤 ∩ 𝑇 ∈ Γ implies 𝑤 ∈ DΓ. So 𝑆𝑤 ∩ 𝑇 ∈ Γ if and only if 𝑤 ∈ DΓ. This
proves equation (6.3). We show next

𝑆0 is maximal with respect to inclusion among the 𝑝-subgroups of N𝐻. (6.4)

Let 𝑆1 be a p-subgroup of N𝐻 such that 𝑆0 ≤ 𝑆1. Notice that 𝑇 ≤ 𝑆0 ≤ 𝑆1, so 𝑇0 = 𝐸 (N ) ∩ 𝑆 ≤

𝐸 (N ) ∩ 𝑆1. By [18, Lemma 11.13], 𝐸 (N ) � L. In particular, [8, Lemma 3.1(c)] yields that 𝑇0 is a
maximal p-subgroup of 𝐸 (N ). Hence, 𝑇0 = 𝐸 (N ) ∩ 𝑆1 � 𝑆1. Now (b) yields 𝑆1 ≤ 𝑁N𝐻 (𝑇0) = �̃�. As
𝑆0 ∈ Syl𝑝 (�̃�), it follows that 𝑆1 = 𝑆0. This proves equation (6.4).

Recall that by Lemma 3.22(d), Γ is closed under passing to L-conjugates in S. As T is by [8, Lemma
3.1(c)] a maximal p-subgroup of N , we have 𝑇 = 𝑆0 ∩N . Since the elements of Γ are contained in T
and N � N𝐻, it follows that Γ is closed under passing to N𝐻-conjugates in 𝑆0. So by equations (6.3)
and (6.4), the hypothesis of Lemma 5.4 is fulfilled with (N𝐻, 𝑆0) in place of (L, 𝑆). Hence, it follows
from this lemma that (N𝐻,Δ0, 𝑆0) is a locality with kernel (N , Γ, 𝑇). By [18, Theorem 10.16(a)],
(N , Γ, 𝑇) is a regular locality, and in particular it is cr-complete. Hence, (N𝐻,Δ0, 𝑆0) is cr-complete
by Theorem B: that is, (c) holds. Part (d) follows from (b) and Lemma 5.11.

(e) By [18, Corollary 11.10], we have 𝑇0 ∈ 𝛿(E) = Γ ⊆ Δ0. Hence, parts (b) and (c) together
with Lemma 3.10(b) yield that 𝑁F0 (𝑇0) := F𝑆0 (𝑁N𝐻 (𝑇0)) = F𝑆0 (�̃�). Moreover, by Theorem B and
Proposition 3.18(c), part (c) implies that F0 is saturated and E �F0. Hence, 𝐸 (E) �F0 by [10, Lemma
7.13(a)]. By Lemma 3.22(b), we have 𝑇0 = 𝐸 (E) ∩ 𝑆. Hence, (e) follows from Lemma 4.11. �

If the subgroup H in Theorem 6.1 has the property that 𝑆 ∩ 𝐻 ∈ Syl𝑝 (𝐻), then the following lemma
says that we can choose the p-subgroup 𝑆0 as a subgroup of S.
Lemma 6.2. Let (L,Δ , 𝑆) be a regular locality, and set 𝑇∗ := 𝐹∗(L) ∩ 𝑆. Let N � L, 𝑇 := 𝑆 ∩N and
𝐻 ≤ 𝑁L (𝑇

∗) such that 𝑆 ∩ 𝐻 ∈ Syl𝑝 (𝐻). Then

𝑆0 := 𝑇 (𝑆 ∩ 𝐻) = 𝑆 ∩ (N𝐻) ∈ Syl𝑝 (𝑁N (𝑇∗)𝐻).

Proof. Note that 𝑁L (𝑇
∗) is a group, S is a Sylow p-subgroup of 𝑁L (𝑇

∗), 𝑁N (𝑇∗) � 𝑁L (𝑇
∗), and

𝐻 ≤ 𝑁L (𝑇
∗) by assumption. As 𝑆 ∩ 𝐻 ∈ Syl𝑝 (𝐻), Lemma 4.1 yields that

𝑆0 := (𝑆 ∩ 𝑁N (𝑇∗)) (𝑆 ∩ 𝐻) = 𝑇 (𝑆 ∩ 𝐻)

is a Sylow p-subgroup of 𝑁N (𝑇∗)𝐻. In particular, it is a consequence of Theorem 6.1(a),(c) that 𝑆0 is
a maximal p-subgroup of the partial group N𝐻 and thus equals 𝑆 ∩ (N𝐻). �

Assuming the hypothesis of Corollary 6.3 below, we have E � F by [10, Theorem A]. Hence, it is
a consequence of [10, Lemma 7.13(a)] that 𝐸 (F) � F , and thus (𝐸 (E)𝑆0)F is well-defined. This is
implicitly used in the statement of part (b).
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Corollary 6.3. Let (L,Δ , 𝑆) be a regular locality, 𝑇∗ := 𝐹∗(L) ∩ 𝑆, N � L, and 𝐻 ≤ 𝑁L (𝑇
∗) with

𝑆 ∩ 𝐻 ∈ Syl𝑝 (𝐻). Set 𝑇 := 𝑆 ∩ 𝑇 , E := F𝑇 (N ), 𝑆0 := 𝑇 (𝑆 ∩ 𝐻), �̃� := 𝑁N (𝑇∗)𝐻 and

E𝐻 := F𝑆0 (N𝐻).

Then the following hold:

(a) E𝐻 is a saturated subsystem of F , E � E𝐻 and 𝐸 (E) � E𝐻.
(b) 𝑆0 ∈ Syl𝑝 (�̃�) and E𝐻 = 〈𝐸 (E)𝑆0,F𝑆0 (�̃�)〉, where 𝐸 (E)𝑆0 := (𝐸 (E)𝑆0)F = (𝐸 (E)𝑆0)E𝐻 .
(c) If D is a saturated subsystem of F such that 𝐸 (E) � D and F𝑆0 (�̃�) ⊆ D, then E𝐻 ⊆ D.

Proof. By Lemma 6.2, 𝑆0 ∈ Syl𝑝 (�̃�). Therefore, setting Δ0 := {𝑃 ≤ 𝑆0 : 𝑃 ∩ 𝑇 ∈ 𝛿(E)}, the
hypothesis and thus the conclusion of Theorem 6.1 hold. Theorem 6.1(e) implies now that (a) holds and
E𝐻 = 〈(𝐸 (E)𝑆0)E𝐻 ,F𝑆0 (�̃�)〉. By [10, Remark 2.27], (𝐸 (E)𝑆0)E𝐻 = (𝐸 (E)𝑆0)F . Hence, (b) holds as
well.

Now let D be as in (c), and suppose D is a subsystem over 𝑅 ≤ 𝑆. As F𝑆0 (�̃�) ⊆ D, we have in
particular that 𝑆0 ≤ 𝑅. Using [10, Remark 2.27] again, we observe that (𝐸 (E)𝑆0)F = (𝐸 (E)𝑆0)D ⊆ D.
As F𝑆0 (�̃�) ⊆ D by assumption, it follows now from (b) that E𝐻 ⊆ D, so (c) holds. �

Proof of Corollary F. By [18, Lemma 10.4], there exists a regular locality (L,Δ , 𝑆) over F . Moreover,
by [10, Theorem A], there exists N � L with 𝑇 = 𝑆 ∩N and E = F𝑇 (N ). By [10, Theorem E(d)], we
have 𝑇∗ := 𝐹∗(F) ∩ 𝑆 = 𝐹∗(L) ∩ 𝑆. Moreover, Lemma 3.22(b) gives 𝑇0 := 𝐸 (E) ∩ 𝑆 = 𝐸 (N ) ∩ 𝑆.
In particular, by [18, Lemma 10.4, Remark 10.12], we have 𝑇∗ ∈ 𝛿(F) = Δ ⊆ F 𝑠 . So 𝑁F (𝑇∗) is
constrained, and 𝑁L (𝑇

∗) is by Lemma 3.10(b) a model for 𝑁F (𝑇∗). Using Lemma 3.22(a), one observes
that 𝑁N (𝑇0) = 𝑁N (𝑇∗) � 𝑁L (𝑇

∗). Moreover, Lemma 3.22(c) gives 𝑁E (𝑇0) = F𝑇 (𝑁N (𝑇∗)). Hence, it
follows from [2, Proposition I.6.2] that 𝑁E (𝑇0) � 𝑁F (𝑇∗).

Now let G be an arbitrary model for 𝑁F (𝑇∗). As 𝑁E (𝑇0) � 𝑁F (𝑇∗), it follows from [2, Theorem
II.7.5] that there exists a unique normal subgroup N of G with 𝑆 ∩ 𝑁 = 𝑇 and F𝑇 (𝑁) = 𝑁E (𝑇0). Now
let 𝐻 ≤ 𝐺 with 𝑆 ∩ 𝐻 ∈ Syl𝑝 (𝐻). Set 𝑆0 := 𝑇 (𝑆 ∩ 𝐻). By [2, Theorem III.5.10], there exists an
isomorphism 𝛼 : 𝐺 → 𝑁L (𝑇

∗) with 𝛼 |𝑆 = id𝑆 . Notice that 𝑁𝛼 � 𝑁L (𝑇
∗) and 𝐻𝛼 ≤ 𝑁L (𝑇

∗) with

𝑇 = 𝑆 ∩ (𝑁𝛼), F𝑇 (𝑁𝛼) = F𝑇 (𝑁) = 𝑁E (𝑇
∗),

𝑆 ∩ 𝐻 = 𝑆 ∩ (𝐻𝛼) ∈ Syl𝑝 (𝐻𝛼) and F𝑆0 (𝑁𝐻) = F𝑆0 ((𝑁𝐻)𝛼).

By [2, Theorem II.7.5], 𝑁N (𝑇∗) is the unique normal subgroup of 𝑁L (𝑇
∗) realising 𝑁E (𝑇

∗). Hence,
𝑁𝛼 = 𝑁N (𝑇∗) and F𝑆0 (𝑁𝐻) = F𝑆0 (𝑁N (𝑇∗)(𝐻𝛼)). Therefore the assertion follows from Corollary 6.3
applied with 𝐻𝛼 in place of H. �

A. Normal pairs of transporter systems

It is not within the scope of this paper to construct extensions of localities, but Theorem A and our
theorems on kernels provide some tools for examining the properties of existing extensions. The results
in this appendix may help to compare our theorems on kernels to theorems on extensions of linking
systems in the literature. Such extensions have been studied in various places, starting with [6]. A
more transparent algebraic framework is used in [23, 1], where the definition of a normal pair of linking
systems is crucial (see also [2, Definition III.4.12]). This definition naturally generalises to a definition of
a ‘normal pair of transporter systems’, which we state below. Transporter systems were defined by Oliver
and Ventura [25], generalising the concept of a linking system. The goal of this appendix is to show
that localities with kernels correspond to normal pairs of transporter systems (compare Proposition A.4
and Theorem A.7). We use here a correspondence between localities and transporter systems that was
observed by Chermak [7, Appendix A].
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For any functor 𝛼 : C → D between categories and any objects 𝑃,𝑄 ∈ C, we let

𝛼𝑃,𝑄 : MorC (𝑃,𝑄) → MorD (𝛼(𝑃), 𝛼(𝑄))

denote the induced map between morphisms sets. Moreover, we set 𝛼𝑃 := 𝛼𝑃,𝑃 .
The literature on linking systems and transporter systems is mostly written in ‘left-hand notation’.

Therefore, in this appendix (unlike in the rest of the paper), we will write maps on the left-hand side
of the argument and conjugate from the left. In particular, if G is a finite group and Δ is a set of
subgroups of G, then TΔ (𝐺) denotes the category whose object set is Δ and such that the morphism set
MorTΔ (𝐺) (𝑃,𝑄) between any two objects 𝑃,𝑄 ∈ Δ is the set of all 𝑔 ∈ 𝐺 with

𝑔𝑃 := 𝑃𝑔
−1

= 𝑔𝑃𝑔−1 ≤ 𝑄.

A transporter system associated to a fusion system F over S is a category T whose object set is an
F-closed collection of subgroups of S, together with functors

TOb(T ) (𝑆)
𝛿

−−−−→ T 𝜋
−−−−→ F

subject to certain axioms. In particular, 𝛿 is the identity on objects and 𝜋 is the inclusion on objects,
𝛿 is injective on morphism sets, 𝜋 is surjective on morphism sets, and 𝜋 ◦ 𝛿 sends an element 𝑔 ∈

MorTOb(T ) (𝑆) (𝑃,𝑄) to the corresponding conjugation map 𝑐𝑔−1 : 𝑃 → 𝑄, 𝑥 ↦→ 𝑔𝑥. The reader is referred
to [25, Definition 3.1] for the precise definition. If 𝑃,𝑄 ∈ Ob(T ) and 𝜑 ∈ MorT (𝑃,𝑄), we will usually
write 𝜋(𝜑) for 𝜋𝑃,𝑄 (𝜑). The following definition is nonstandard.

Definition A.1. If (T , 𝛿, 𝜋) is a transporter system associated to a fusion system F , then we will say
that (T , 𝛿, 𝜋) is a transporter system over F if F is Ob(T )-generated: that is,

F = 〈𝜋(𝜑) : 𝑃,𝑄 ∈ Ob(T ), 𝜑 ∈ MorT (𝑃,𝑄)〉.

If (T , 𝛿, 𝜋) is a linking system associated to a saturated fusion system F , then it follows from
Alperin’s Fusion Theorem (compare [2, Theorem I.3.6]) that (T , 𝛿, 𝜋) is a transporter system over F .
However, in general, there can be transporter systems associated to a fusion system F that are not
transporter systems over F (but just transporter systems over a subsystem of F).

For a locality (L,Δ , 𝑆), there is a transporter system TΔ (L) over F𝑆 (L) defined. The object set of
the category TΔ (L) is Δ , and for 𝑃,𝑄 ∈ Δ , the set MorTΔ (L) (𝑃,𝑄) consists of all 𝑓 ∈ L with

𝑃 ≤ 𝑆 𝑓 −1 and 𝑓𝑃 := 𝑃 𝑓 −1
≤ 𝑄.

It turns out (see [7, Proposition A.3]) that (TΔ (L), 𝛿, 𝜋) is a transporter system, where the functor
𝛿 : TΔ (𝑆) → TΔ (L) is the identity on objects and the inclusion on morphism sets, and the functor
𝜋 : TΔ (L) → F𝑆 (L) is the inclusion on objects and sends a morphism 𝑓 ∈ MorTΔ (L) (𝑃,𝑄) to
𝑐 𝑓 |𝑃 ∈ HomF𝑆 (L) (𝑃,𝑄).

To review some notation and basic results, let (T , 𝛿, 𝜋) be a transporter system, and fix 𝑃,𝑄 ∈ Ob(T ).
If 𝑃 ≤ 𝑄, then the morphism

𝜄𝑃,𝑄 := 𝛿𝑃,𝑄 (1)

is regarded as an ‘inclusion map’. If 𝜑 ∈ MorT (𝑃,𝑄) and 𝑃′ ≤ 𝑃, then set

𝜑(𝑃′) := 𝜋(𝜑) (𝑃′).

By [25, Lemma A.6], a morphism 𝜑 ∈ MorT (𝑃,𝑄) is an isomorphism in the categorical sense if and only
if 𝜋(𝜑) is an isomorphism, which is the case if and only if 𝜑(𝑃) = 𝑄. It is shown in [25, Lemma 3.2(c)]
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that for all 𝑃′, 𝑄 ′ ∈ Δ with 𝑃′ ≤ 𝑃, 𝑄 ′ ≤ 𝑄 and all 𝜑 ∈ MorT (𝑃,𝑄) with 𝜑(𝑃′) ≤ 𝑄 ′, there exists a
unique morphism 𝜑|𝑃′,𝑄′ ∈ MorT (𝑃′, 𝑄 ′) with

𝜑 ◦ 𝜄𝑃′,𝑃 = 𝜄𝑄′,𝑄 ◦ 𝜑|𝑃′,𝑄′ .

The morphism 𝜑|𝑃′,𝑄′ is called the restriction of 𝜑 to a morphism from 𝑃′ to 𝑄 ′.

Lemma A.2. Let (T , 𝛿, 𝜋) be a transporter system associated to some fusion system over a p-group S.
Then the following hold:

(a) Let 𝑃′′ ≤ 𝑃′ ≤ 𝑃 and 𝑄 ′′ ≤ 𝑄 ′ ≤ 𝑄 be objects in T . Let 𝜑 ∈ MorT (𝑃,𝑄) with 𝜑(𝑃′) ≤ 𝑄 ′ and
𝜑(𝑃′′) ≤ 𝑄 ′′. Then

𝜑|𝑃′′,𝑄′′ = (𝜑|𝑃′,𝑄′ ) |𝑃′′,𝑄′′ .

(b) Let 𝑃,𝑄, 𝑅, 𝑃′, 𝑅′ ∈ Ob(T ), 𝜑 ∈ MorT (𝑃,𝑄) and𝜓 ∈ MorT (𝑄, 𝑅) with 𝑃′ ≤ 𝑃 and (𝜓◦𝜑) (𝑃′) ≤

𝑅′ ≤ 𝑅. Then

(𝜓 ◦ 𝜑) |𝑃′,𝑅′ = 𝜓 |𝜑 (𝑃′) ,𝑅′ ◦ 𝜑|𝑃′,𝜑 (𝑃′) .

(c) Let 𝑥 ∈ 𝑆 and 𝛼 = 𝛿𝑆 (𝑥). For every 𝑃 ∈ Δ , we have 𝛼(𝑃) = 𝑥𝑃 ∈ Δ and

𝛼 |𝑃,𝛼(𝑃) = 𝛿𝑃,𝛼(𝑃) (𝑥).

(d) Let 𝑃,𝑄, 𝑃′ ∈ Ob(T ) and 𝜓, 𝜑 ∈ MorT (𝑃,𝑄) such that 𝑃′ ≤ 𝑃, 𝑄 ′ := 𝜓(𝑃′) = 𝜑(𝑃′) and
𝜑|𝑃′,𝑄′ = 𝜓 |𝑃′,𝑄′ . Then 𝜑 = 𝜓.

Proof. (a) Setting 𝜑′ = 𝜑|𝑃′,𝑄′ , it follows from the definition of the restriction that

𝜄𝑄′,𝑄 ◦ 𝜑′ = 𝜑 ◦ 𝜄𝑃′,𝑃 and 𝜄𝑄′′,𝑄′ ◦ 𝜑′|𝑃′′,𝑄′′ = 𝜑′ ◦ 𝜄𝑃′′,𝑃′ .

Hence,

𝜄𝑄′′,𝑄 ◦ 𝜑′ |𝑃′′,𝑄′′ = 𝜄𝑄′,𝑄 ◦ 𝜄𝑄′′,𝑄′ ◦ 𝜑′ |𝑃′′,𝑄′′

= 𝜄𝑄′,𝑄 ◦ 𝜑′ ◦ 𝜄𝑃′′,𝑃′

= 𝜑 ◦ 𝜄𝑃′,𝑃 ◦ 𝜄𝑃′′,𝑃′

= 𝜑 ◦ 𝜄𝑃′′,𝑃 .

This implies (a).
(b) See [7, Lemma A.7(b)].
(c) By axiom (B) of a transporter system as stated in [25, Definition 3.1], we have 𝜋(𝛼) = 𝑐𝑥−1 , and

thus 𝑥𝑃 = 𝑃𝑥
−1

= 𝛼(𝑃). As 𝛿 is a functor, it follows that

𝜄𝛼(𝑃) ,𝑆 ◦ 𝛿𝑃,𝛼(𝑃) (𝑥) = 𝛿𝑃,𝑆 (1 · 𝑥) = 𝛿𝑃,𝑆 (𝑥 · 1) = 𝛿𝑆 (𝑥) ◦ 𝛿𝑃,𝑆 (1) = 𝛼 ◦ 𝜄𝑃,𝑆 .

This shows (c).
(d) Assume the hypothesis of (d) and set 𝜑0 := 𝜑|𝑃′,𝑄′ = 𝜓 |𝑃′,𝑄′ . It follows from the definition

restrictions that

𝜑 ◦ 𝜄𝑃′,𝑃 = 𝜄𝑄′,𝑄 ◦ 𝜑0 = 𝜓 ◦ 𝜄𝑃′,𝑃 .

As every morphism in T is by [25, Lemma 3.2(d)] an epimorphism, it follows that 𝜑 = 𝜓, as required. �

Central to the considerations in this appendix is the following definition that generalises the definition
of a normal pair of linking systems (compare [2, Definition III.4.12]).
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Definition A.3. Fix a pair of fusion systems F0 ⊆ F over p-groups 𝑆0 ≤ 𝑆 such that F0 is F-invariant.
Let T0 ⊆ T be transporter systems over F0 ⊆ F , respectively. Then T0 is called normal in T (written
as T0 � T ) if the following hold:

(i) Ob(T ) = {𝑃 ≤ 𝑆 : 𝑃 ∩ 𝑆0 ∈ Ob(T0)};
(ii) for all 𝑃 ∈ Ob(T0) and 𝜓 ∈ MorT (𝑃, 𝑆0), there are morphisms 𝛾 ∈ AutT (𝑆0) and 𝜓0 ∈

MorT0 (𝑃, 𝑆0) such that 𝜓 = 𝛾 ◦ 𝜓0; and
(iii) for all 𝛾 ∈ AutT (𝑆0), 𝑃,𝑄 ∈ Ob(T0), and 𝜓 ∈ MorT0 (𝑃,𝑄),

𝛾 |𝑄,𝛾 (𝑄) ◦ 𝜓 ◦ (𝛾 |𝑃,𝛾 (𝑃) )
−1 ∈ MorT0 (𝛾(𝑃), 𝛾(𝑄)).

We also say then that T0 � T is a normal pair of transporter systems over F0 ⊆ F .

Saying that T0 ⊆ T are transporter systems over F0 ⊆ F , respectively, means here more precisely
that T0 is a subcategory of T , that (T , 𝛿, 𝜋) is a transporter system over F (for appropriate functors 𝛿
and 𝜋) and that (T0, 𝛿 |TOb(T0 ) (𝑆0) , 𝜋 |T0 ) is a transporter system over F0.

We now prove that kernels of localities lead to normal pairs of transporter systems.

Proposition A.4. Let (N , Γ, 𝑇) be a kernel of a locality (L,Δ , 𝑆). Then TΓ (N ) � TΔ (L) is a normal
pair of transporter systems over F𝑇 (N ) ⊆ F𝑆 (L).
Proof. It follows from the discussion above that TΓ (N ) ⊆ TΔ (L) are transporter systems over
F𝑇 (N ) ⊆ F𝑆 (L). By Lemma 5.2(d), F𝑇 (N ) is F𝑆 (L)-invariant. Referring to the properties (i),(ii),(iii)
in Definition A.3, it follows from the definition of a kernel that (i) holds. Property (ii) is a consequence
of Lemma 3.13. Property (iii) holds since N � L. �

We outline now how a locality can be constructed from a transporter system and use this afterwards
to show that normal pairs of transporter systems lead to localities with kernels.

Let (T , 𝛿, 𝜋) be a transporter system over a fusion system F on S. Write Iso(T ) for the set of all
isomorphisms in T . Define a relation ↑T on Iso(T ) by writing

𝜑 ↑T 𝜓

if 𝜓 restricts to 𝜑. More precisely, this means 𝜑 ↑T 𝜓, if 𝜑 ∈ IsoT (𝑃′, 𝑄 ′) and 𝜓 ∈ IsoT (𝑃,𝑄) for some
𝑃, 𝑃′, 𝑄, 𝑄 ′ ∈ Ob(T ) with 𝑃′ ≤ 𝑃, 𝑄 ′ ≤ 𝑄, 𝜓(𝑃′) = 𝑄 ′ and 𝜑 = 𝜓 |𝑃′,𝑄′ . Let then ≡T be the smallest
equivalence relation on Iso(T ) containing ↑T . Write [𝜑] for the ≡T -equivalence class of 𝜑 ∈ Iso(T )

and L(T ) for the set of all equivalence classes of Iso(T ).

Remark A.5. We have 𝜑 ≡T 𝜓 if and only if there exists a sequence 𝜑1, 𝜑2, · · · , 𝜑𝑘 ∈ Iso(T ) such
that, for all 𝑖 = 1, 2, . . . , 𝑘 − 1,

𝜑𝑖 ↑T 𝜑𝑖+1 or 𝜑𝑖+1 ↑T 𝜑𝑖 .

By D denote the set of tuples 𝑤 = ( 𝑓1, 𝑓2, . . . , 𝑓𝑘 ) ∈ W(L(T )) for which there exist 𝜑𝑖 ∈ 𝑓𝑖 for
𝑖 = 1, . . . , 𝑘 such that the composition 𝜑1 ◦ 𝜑2 ◦ · · · ◦ 𝜑𝑘 is defined in the category T . Moreover, given
such w and 𝜑𝑖 , set

Π(𝑤) := [𝜑1 ◦ 𝜑2 ◦ · · · ◦ 𝜑𝑘 ] .

The map Π : D −→ L(T ) is well-defined. Together with Π and the map

L(T ) −→ L(T ), [𝜑] ↦→ [𝜑−1],

which is also well-defined, the setL(T ) forms a partial group by [7, Proposition A.9]. Moreover, the map

𝑆 −→ L(T ), 𝑥 ↦→ [𝛿𝑆 (𝑥)]
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is an injective homomorphism of partial groups, and its image is a subgroup of L(T ). We will usually
identify 𝑥 ∈ 𝑆 with [𝛿𝑆 (𝑥)] ∈ L(T ). With this identification, S is a subgroup of L(T ). Setting
Δ := Ob(T ), it is shown in [7, Proposition A.13] that (L(T ),Δ , 𝑆) is a locality. As we assume that
(T , 𝛿, 𝜋) is a transporter system over F , it follows from [17, Lemma 4.4(a)] that (L(T ),Δ , 𝑆) is a
locality over F . We will use these properties throughout without further reference.

Remark A.6. The partial group structure on L(T ) constructed above is not exactly the same as the one
constructed by Chermak [7, Appendix A]. The reason is that Chermak consistently uses the ‘right-hand
notation’ for maps and also for the category T . So if Π : D → L(T ) is the partial product defined above
and Π′ : D′ → L(T ) is the product constructed by Chermak, then

D′ = {( 𝑓𝑛, 𝑓𝑛−1, . . . , 𝑓1) : ( 𝑓1, 𝑓2, . . . , 𝑓𝑛) ∈ D}

and Π′( 𝑓𝑛, 𝑓𝑛−1, . . . , 𝑓1) = Π( 𝑓1, 𝑓2, . . . , 𝑓𝑛) for all ( 𝑓1, 𝑓2, . . . , 𝑓𝑛) ∈ D. In particular, conjugation by
𝑓 ∈ L(T ) with respect to the partial group with product Π′ corresponds to conjugation by 𝑓 −1 in the
partial group constructed above.

The main goal of this appendix is to prove the following theorem.

Theorem A.7. Let F0 ⊆ F be fusion systems over 𝑆0 ≤ 𝑆 such that F0 is F-invariant. Let T0 � T be a
normal pair of transporter systems over F0 ⊆ F . Set Δ := Ob(T ), Γ := Ob(T0), L := L(T ) and

N := { 𝑓 ∈ L : 𝑓 ∩ Iso(T0) ≠ ∅}.

Then (N , Γ, 𝑆0) is a kernel of (L,Δ , 𝑆) with F𝑆0 (N ) = F0. Moreover, there is an isomorphism
N → L(T0), which is the identity on 𝑆0, and there exists an invertible functor TΓ (N ) → T0 that is the
identity on Γ.

Remark A.8. Note that Theorem A.7 allows us to conclude results about normal pairs of transporter
systems from our results about kernels of localities. Let us point out one example: Call a transporter
system (T , 𝛿, 𝜋) over F cr-complete if F 𝑐𝑟 ⊆ Ob(T ). Consider a normal pair of transporter systems
T0 � T over F0 ⊆ F . Then it follows from Theorem B that T0 is cr-complete if and only if T is cr-
complete. Moreover, if so, then F0 is normal in F . As a particular consequence, if T0 � T is a normal
pair of linking systems over F0 ⊆ F (as defined in [1] and [23]), then F0 is always normal in F .

To prove Theorem A.7, we assume the following hypothesis:

From now on, let F0 ⊆ F be fusion systems over 𝑆0 ≤ 𝑆, respectively, such that F0 is F-
invariant, and let T0 � T be a normal pair of transporter systems over F0 ⊆ F , respectively.

More precisely, let (T , 𝛿, 𝜋) be a transporter system over F and (T , 𝛿 |TOb(T0 ) (𝑆)
, 𝜋 |T0 ) be a

transporter system over F0.

Lemma A.9. Let 𝑃,𝑄 ∈ Ob(T0) and 𝜓 ∈ IsoT (𝑃,𝑄). Then there exist 𝛾 ∈ AutT (𝑆0), 𝑅 ∈ Ob(T0) and
𝜓0 ∈ IsoT0 (𝑃, 𝑅) such that 𝛾(𝑅) = 𝑄 and 𝜓 = 𝛾 |𝑅,𝑄 ◦ 𝜓0.

Proof. Notice that �̂� := 𝜄𝑄,𝑆0◦𝜓 ∈ MorT0 (𝑃, 𝑆0) with �̂� |𝑃,𝑄 = 𝜓. Hence, by axiom (ii) of Definition A.3,
there exist 𝛾 ∈ AutT (𝑆0) and �̂�0 ∈ MorT0 (𝑃, 𝑆0) such that

�̂� = 𝛾 ◦ �̂�0.

Setting 𝑅 := �̂�0 (𝑃) and 𝜓0 := �̂�0 |𝑃,𝑅 ∈ IsoT0 (𝑃, 𝑅), we have 𝛾(𝑅) = 𝑄 and it follows from
Lemma A.2(b) that 𝜓 = �̂� |𝑃,𝑄 = 𝛾 |𝑅,𝑄 ◦ 𝜓0. �

Lemma A.10. Let 𝑃, 𝑃, 𝑄,𝑄 ∈ Ob(T0) with 𝑃 ≤ 𝑃 and 𝑄 ≤ 𝑄. Let 𝜓 ∈ IsoT (𝑃,𝑄) with 𝜓(𝑃) ≤ 𝑄
and 𝜓 |𝑃,𝑄 ∈ MorT0 (𝑃,𝑄). Then 𝜓 is a morphism in T0.
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Proof. As 𝑃 is a p-group, P is subnormal in 𝑃. As Ob(T0) is overgroup-closed in 𝑆0, induction on
|𝑃 : 𝑃 | allows us to reduce to the case that 𝑃 � 𝑃. Moreover, replacing Q by 𝜓(𝑃), we may assume that
𝜓(𝑃) = 𝑄, 𝜑 := 𝜓 |𝑃,𝑄 ∈ IsoT0 (𝑃,𝑄) and 𝑄 = 𝜓(𝑃) � 𝜓(𝑃) = 𝑄. It follows from [25, Lemma 3.3] that
𝜑◦𝛿𝑃 (𝑥) = 𝛿𝑄 (𝜋(𝜓) (𝑥)) ◦𝜑 for all 𝑥 ∈ 𝑃. As 𝜋(𝜓) (𝑃) ≤ 𝑄, this implies that 𝜑◦𝛿𝑃 (𝑃) ◦𝜑−1 ≤ 𝛿𝑄 (𝑄).
Hence, by Axiom II of a transporter systems (as stated in [25, Definition 3.1]) applied to the transporter
system T0, there exists 𝜑 ∈ MorT0 (𝑃,𝑄) with 𝜑|𝑃,𝑄 = 𝜑 = 𝜓 |𝑃,𝑄. It follows now from Lemma A.2(d)
that 𝜓 = 𝜑 is a morphism in T0. �

Set now Δ := Ob(T ), Γ := Ob(T0), L := L(T ) and

N := { 𝑓 ∈ L : 𝑓 ∩ Iso(T0) ≠ ∅}.

As before, we write Π : D → L for the product on L.

Notation A.11. For 𝑃 ≤ 𝑆, set 𝑃0 := 𝑃 ∩ 𝑆0. Similarly, define 𝑄0, 𝑃
′
0, 𝑄

′
0 for subgroups 𝑄, 𝑃′, 𝑄 ′ ≤ 𝑆.

For 𝑃,𝑄 ∈ Δ and 𝜑 ∈ IsoT (𝑃,𝑄), set moreover

𝜑0 := 𝜑|𝑃0 ,𝑄0 .

As 𝑆0 is strongly closed, we have in the situation above that 𝜑(𝑃0) = 𝜋(𝜑) (𝑃0) = (𝜋(𝜑) (𝑃)) ∩ 𝑆0 =
𝑄0. So 𝜑0 is well-defined and an element of IsoT (𝑃0, 𝑄0). Observe also that 𝜑0 ↑T 𝜑 and thus
[𝜑] = [𝜑0] for all 𝜑 ∈ Iso(T ).

Lemma A.12. If 𝜑, 𝜓 ∈ Iso(T ) with 𝜓 ↑T 𝜑, then 𝜓0 ↑T 𝜑0.

Proof. Let 𝑃′ ≤ 𝑃 and 𝑄 ′ ≤ 𝑄 be objects in T such that 𝜑 ∈ MorT (𝑃,𝑄), 𝜓 ∈ MorT (𝑃′, 𝑄 ′),
𝜑(𝑃′) ≤ 𝑄 ′ and 𝜑|𝑃′,𝑄′ = 𝜓. Applying Lemma A.2(a) twice gives then

𝜑0 |𝑃′
0 ,𝑄

′
0
= 𝜑|𝑃′

0 ,𝑄
′
0
= 𝜓 |𝑃′

0 ,𝑄
′
0
= 𝜓0.

Hence, 𝜓0 ↑T 𝜑0. �

Lemma A.13. The following hold:

(a) If 𝜑, 𝜓 ∈ Iso(T0), then 𝜑 ≡T 𝜓 if and only if 𝜑 ≡T0 𝜓.
(b) Let 𝜑 ∈ Iso(T0) and 𝜓 ∈ IsoT (𝑃,𝑄) for some 𝑃,𝑄 ∈ Ob(T0). If 𝜑 ≡T 𝜓, then 𝜓 ∈ Iso(T0).
(c) If 𝜑 ∈ Iso(T ) with [𝜑] ∈ N , then 𝜑0 ∈ Iso(T0).

Proof. (a,b) Clearly, the relation ↑T0 is contained in the relation ↑T , so, if 𝜑, 𝜓 ∈ Iso(T0) with 𝜑 ≡T0 𝜓,
then 𝜑 ≡T 𝜓.

Suppose now that 𝜑 ∈ Iso(T0) and 𝜓 ∈ IsoT (𝑃,𝑄) for some 𝑃,𝑄 ∈ Ob(T0). Assume 𝜑 ≡T 𝜓.
To show (a) and (b), it remains to show that 𝜓 ∈ Iso(T0) and 𝜑 ≡T0 𝜓. By Remark A.5, there exists
a series 𝜑 = 𝜑1, 𝜑2, . . . , 𝜑𝑛 = 𝜓 ∈ Iso(T ) such that, for all 𝑖 = 1, 2, . . . , 𝑛 − 1, we have 𝜑𝑖 ↑T 𝜑𝑖+1
or 𝜑𝑖+1 ↑T 𝜑𝑖 . Notice that 𝜑0 = 𝜑 and 𝜓0 = 𝜓 as 𝑃,𝑄 ∈ Ob(T0). Thus, Lemma A.12 allows us to
replace 𝜑1, 𝜑2, . . . , 𝜑𝑛 by 𝜑0

1, 𝜑
0
2, . . . , 𝜑

0
𝑛. Thus, we may assume that 𝜑1, 𝜑2, . . . , 𝜑𝑛 are isomorphisms

in T between objects of T0. Then Lemma A.10 implies that for all 𝑖 = 1, 2, . . . , 𝑛 − 1, 𝜑𝑖 ∈ Iso(T0) if
and only if 𝜑𝑖+1 ∈ Iso(T0). As 𝜑1 = 𝜑 ∈ Iso(T0) by assumption, it follows therefore inductively that
𝜑1, 𝜑2, . . . , 𝜑𝑛 ∈ Iso(T0). In particular, 𝜓 = 𝜑𝑛 ∈ Iso(T0). For 𝛼, 𝛽 ∈ Iso(T0) it is easy to observe that
𝛼 ↑T 𝛽 if and only if 𝛼 ↑T0 𝛽. Hence, we also have 𝜑𝑖 ↑T0 𝜑𝑖+1 or 𝜑𝑖+1 ↑T0 𝜑𝑖 for 𝑖 = 1, 2, . . . , 𝑛 − 1.
This shows 𝜑 ≡T0 𝜓. So (a) and (b) hold.

(c) If 𝜑 ∈ Iso(T ) with [𝜑] ∈ N , then by definition of N , there exists 𝜓 ∈ Iso(T0) with 𝜓 ∈ [𝜑].
Then 𝜑0 ≡T 𝜑 ≡T 𝜓. Hence, it follows from part (b) that 𝜑0 ∈ Iso(T0). �

For the following lemma, recall that we identify 𝑥 ∈ 𝑆 with [𝛿𝑆 (𝑥)] ∈ L.
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Lemma A.14.

(a) N is a partial subgroup of L with N ∩ 𝑆 = 𝑆0.
(b) Set L0 := L(T0), write [𝜑]0 for the ≡T0 -equivalence class of 𝜑 ∈ Iso(T0), and identify 𝑥 ∈ 𝑆0 with

[𝛿𝑆0 (𝑥)]0. Then the map

𝜃 : N → L0, 𝑓 ↦→ 𝑓 ∩ Iso(T0)

is an isomorphism of localities that restricts to the identity on 𝑆0.

Proof. We prove first

N is closed under inversion. (A.1)

For the proof, note that every 𝑛 ∈ N can be written as 𝑛 = [𝜑] for some 𝜑 ∈ Iso(T0). Then 𝜑−1 ∈ Iso(T0),
and it follows from the definition of the inversion on L that 𝑛−1 = [𝜑−1] ∈ N . This shows (A.1). We
argue next that

the map 𝜃 is well-defined and a bijection. (A.2)

Indeed, it follows from Lemma A.13(a) that [𝜑] ∩ Iso(T0) = [𝜑]0 for all 𝜑 ∈ Iso(T0). Hence, 𝜃 is well-
defined and surjective. Note also that 𝑓 ∩ 𝑔 ≠ ∅ for all 𝑓 , 𝑔 ∈ N with 𝜃 ( 𝑓 ) = 𝜃 (𝑔). As the equivalence
classes of ≡T form a partition of Iso(T ), we can therefore conclude that the map 𝜃 is injective. So (A.2)
holds. We show next

𝑆0 ⊆ N ∩ 𝑆 and 𝜃 |𝑆0 = id𝑆0 . (A.3)

For the proof, let 𝑥 ∈ 𝑆0. Lemma A.2(c) implies 𝛿𝑆 (𝑥) |𝑆0 = 𝛿𝑆0 (𝑥) ∈ AutT0 (𝑆0) ⊆ Iso(T0), so
𝑥 = [𝛿𝑆 (𝑥)] = [𝛿𝑆0 (𝑥)] ∈ N . Moreover, 𝑥 = [𝛿𝑆 (𝑥)] gets mapped [𝛿𝑆0 (𝑥)]0, which we also identify
with x (as stated in part (b)). This proves (A.3). We show next

N is a partial subgroup, and 𝜃 is a homomorphism of partial groups. (A.4)

For the proof, let 𝑤 := (𝑛1, 𝑛2, . . . , 𝑛𝑘 ) ∈ W(N ) ∩ D. As 𝑤 ∈ D, there exist 𝜑𝑖 ∈ 𝑛𝑖 for 𝑖 = 1, 2, . . . , 𝑘
such that the composition 𝜑1◦𝜑2◦· · ·◦𝜑𝑘 is defined in T . Note that then the composition 𝜑0

1◦𝜑
◦
2 · · ·◦𝜑

0
𝑘

is also defined. Moreover, as 𝜑0
𝑖 ↑T 𝜑𝑖 , we have 𝜑0

𝑖 ∈ 𝑛𝑖 for 𝑖 = 1, 2, . . . , 𝑘 . By Lemma A.13(c),
𝜑0
𝑖 ∈ Iso(T0). So, replacing 𝜑1, 𝜑2, . . . , 𝜑𝑘 by 𝜑0

1, 𝜑
0
2, . . . , 𝜑

0
𝑘 , we may assume 𝜑𝑖 ∈ Iso(T0). Then

𝜑1 ◦ 𝜑2 ◦ · · · ◦ 𝜑𝑘 ∈ Iso(T0), and hence

Π(𝑤) = [𝜑1 ◦ 𝜑2 ◦ · · · ◦ 𝜑𝑘 ] ∈ N .

Together with (A.1), this shows that N is a partial subgroup.
Note also that 𝜃 (𝑛𝑖) = 𝑛𝑖 ∩ Iso(T0) = [𝜑𝑖]0 for 𝑖 = 1, 2, . . . , 𝑘 . Moreover, the composition 𝜑1 ◦ 𝜑2 ◦

· · · ◦ 𝜑𝑘 is defined in T0. Hence, writing Π0 : D0 → L0 for the product on L0 (defined in the usual way),
it follows that 𝜃∗(𝑤) = (𝜃 (𝑛1), 𝜃 (𝑛2), . . . , 𝜃 (𝑛𝑘 )) ∈ D0 and

Π0 (𝜃
∗(𝑤)) = [𝜑1 ◦ 𝜑2 ◦ · · · ◦ 𝜑𝑛]0 = [𝜑1 ◦ 𝜑2 ◦ · · · ◦ 𝜑𝑛] ∩ Iso(T0) = Π(𝑤) ∩ Iso(T0) = 𝜃 (Π(𝑤)).

This proves that 𝜃 is a homomorphism of partial groups, and (A.4) holds.
For the proofs of the next two properties, recall Definition 3.15 and the notation introduced there.

We show next that

𝜃 is an isomorphism of partial groups. (A.5)
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Writing again Π0 : D0 → L0 for the product on L0, it is by (A.2) and (A.4) sufficient to prove that
D0 ⊆ 𝜃∗(D ∩ W(N )). For the proof of this property, let 𝑢 = (𝑔1, 𝑔2, . . . , 𝑔𝑛) ∈ D0, and fix 𝜑𝑖 ∈ 𝑔𝑖 for
𝑖 = 1, 2, . . . , 𝑛 such that the composition 𝜑1 ◦ 𝜑2 ◦ · · · ◦ 𝜑𝑛 is defined in T0. Note that such 𝜑𝑖 exist by
definition of D0. Then 𝜑𝑖 ∈ Iso(T0), and hence 𝑓𝑖 := [𝜑𝑖] ∈ N with 𝜃 ( 𝑓𝑖) = 𝑔𝑖 . As the composition
𝜑1 ◦ 𝜑2 ◦ · · · ◦ 𝜑𝑛 is defined in T0, it is also defined in T . Therefore, 𝑤 := ( 𝑓1, . . . , 𝑓𝑛) ∈ D ∩ W(N )

with 𝜃∗(𝑤) = 𝑢. This shows D0 ⊆ 𝜃∗(D ∩ W(N )), and thus (A.5).
Note that (b) holds by (A.3) and (A.5). Moreover, 𝑆0 ⊆ 𝑆∩N . Also recall that N is a partial subgroup

of L by (A.4) and that (L0, 𝑆0, Γ) is by [7, Proposition A.13] a locality. In particular, 𝑆0 is a maximal
p-subgroup of L0 and thus by (b) also a maximal p-subgroup of N . This implies 𝑆 ∩N = 𝑆0. �

Lemma A.15. Let 𝑃,𝑄, 𝑅, 𝑃′, 𝑄 ′, 𝑅′ ∈ Ob(T0), 𝜑 ∈ IsoT (𝑃,𝑄), 𝜓 ∈ IsoT (𝑃′, 𝑄 ′), 𝜑0 ∈ IsoT0 (𝑃, 𝑅),
𝜓0 ∈ IsoT0 (𝑃

′, 𝑅′), 𝛼, 𝛾 ∈ AutT (𝑆0) such that 𝛼(𝑅) = 𝑄, 𝛾(𝑅′) = 𝑄 ′,

𝜑 = 𝛼 |𝑅,𝑄 ◦ 𝜑0 and 𝜓 = 𝛾 |𝑅′,𝑄′ ◦ 𝜓0.

If 𝜑 ≡T 𝜓, then 𝛾−1 ◦ 𝛼 ∈ AutT0 (𝑆0).

Proof. By Remark A.5, there exists a series 𝜑 = 𝛽1, 𝛽2, . . . , 𝛽𝑛 = 𝜓 ∈ Iso(T ) such that 𝛽𝑖 ↑ 𝛽𝑖+1
or 𝛽𝑖+1 ↑ 𝛽𝑖 for 𝑖 = 1, . . . , 𝑛 − 1. By Lemma A.9, every 𝛽𝑖 can be factored as a restriction of an
automorphism 𝛼𝑖 ∈ AutT (𝑆0) with an isomorphism in T0. We may assume that 𝛼1 = 𝛼 and 𝛼𝑛 = 𝛾. If
𝛼−1
𝑖+1 ◦ 𝛼𝑖 ∈ AutT0 (𝑆0) for 𝑖 = 1, . . . , 𝑛 − 1, then

𝛾−1 ◦ 𝛼 = 𝛼−1
𝑛 ◦ 𝛼1 = (𝛼−1

𝑛 ◦ 𝛼𝑛−1) ◦ (𝛼−1
𝑛−1 ◦ 𝛼𝑛−2) ◦ · · · ◦ (𝛼−1

2 ◦ 𝛼1) ∈ AutT0 (𝑆0).

Thus, we may reduce to the case 𝜑 ↑T 𝜓 or 𝜓 ↑T 𝜑. As 𝛾−1 ◦ 𝛼 ∈ AutT0 (𝑆0) if and only if 𝛼−1 ◦ 𝛾 =
(𝛾−1 ◦ 𝛼)−1 ∈ AutT0 (𝑆0), we may indeed assume that

𝜑 ↑T 𝜓.

This means 𝑃 ≤ 𝑃′, 𝜓(𝑃) = 𝑄 ≤ 𝑄 ′ and 𝜑 = 𝜓 |𝑃,𝑄. Setting 𝑋 := 𝜓0 (𝑃), Lemma A.2(b) gives

𝛼 |𝑅,𝑄 ◦ 𝜑0 = 𝜑 = 𝜓 |𝑃,𝑄 = 𝛾 |𝑋,𝑄 ◦ 𝜓0 |𝑃,𝑋 .

As 𝜑0 and 𝜓0 are morphisms in T0, this implies, together with Lemma A.2(b), that

(𝛾−1 ◦ 𝛼) |𝑅,𝑋 = (𝛾 |𝑋,𝑄)
−1 ◦ 𝛼 |𝑅,𝑄 = 𝜓0 |𝑃,𝑋 ◦ 𝜑−1

0 ∈ IsoT0 (𝑅, 𝑋).

Hence, Lemma A.10 gives 𝛾−1 ◦ 𝛼 ∈ AutT0 (𝑆0). �

Lemma A.16. We have N � L.

Proof. Recall that N is a partial subgroup of L by Lemma A.14(a). Let 𝑓 ∈ L and 𝑛 ∈ N such that
( 𝑓 −1, 𝑛, 𝑓 ) ∈ D. Then there exist

𝜑−1 ∈ 𝑓 −1, 𝜌 ∈ 𝑛, 𝜓 ∈ 𝑓

such that the composition 𝜑−1 ◦ 𝜌 ◦ 𝜓 is defined. Replacing 𝜑, 𝜌, 𝜓 by 𝜑0, 𝜌0, 𝜓0, we may assume that
for some 𝑃,𝑄, 𝑃′, 𝑄 ′ ∈ Ob(T0), we have

𝜓 ∈ IsoT (𝑄 ′, 𝑃′), 𝜌 ∈ IsoT0 (𝑃
′, 𝑃), 𝜑−1 ∈ IsoT (𝑃,𝑄).

By Lemma A.9, there exist then 𝑅, 𝑅′ ∈ Ob(T0), 𝜑0 ∈ MorT0 (𝑃, 𝑅), 𝜓0 ∈ MorT0 (𝑃
′, 𝑅′) and 𝛼, 𝛾 ∈

AutT0 (𝑆0) such that 𝛼(𝑅) = 𝑄, 𝛾(𝑅′) = 𝑄 ′,

𝜑−1 = 𝛼 |𝑅,𝑄 ◦ 𝜑0 and 𝜓−1 = 𝛾 |𝑅′,𝑄′ ◦ 𝜓0.
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As 𝑓 = [𝜓], we have [𝜓−1] = 𝑓 −1 = [𝜑−1], so𝜓−1 ≡T 𝜑−1. Thus, Lemma A.15 (applied with (𝜓−1, 𝜑−1)
in place of (𝜑, 𝜓)) implies that 𝛾−1 ◦ 𝛼 ∈ AutT0 (𝑆0). By definition of the product Π on L, we have

𝑛 𝑓 = Π( 𝑓 −1, 𝑛, 𝑓 ) = [𝜑−1 ◦ 𝜌 ◦ 𝜓] .

Using Lemma A.2(b), observe that

𝜑−1 ◦ 𝜌 ◦ 𝜓 = 𝛼 |𝑅,𝑄 ◦ 𝜑0 ◦ 𝜌 ◦ 𝜓
−1
0 ◦ (𝛾 |𝑅′,𝑄′ )−1

= 𝛼 |𝑅,𝑄 ◦ 𝜑0 ◦ 𝜌 ◦ 𝜓
−1
0 ◦ (𝛾−1 ◦ 𝛼) |𝛼−1 (𝑄′) ,𝑅′ ◦ (𝛼 |𝛼−1 (𝑄′) ,𝑄′ )−1.

As 𝜑0 ◦ 𝜌 ◦ 𝜓−1
0 ◦ (𝛾−1 ◦ 𝛼) |𝛼−1 (𝑄′) ,𝑅′ ∈ Iso(T0), it follows from axiom (iii) in Definition A.3 that

𝜑−1 ◦ 𝜌 ◦ 𝜓 ∈ Iso(T0). Hence, 𝑛 𝑓 = [𝜑−1 ◦ 𝜌 ◦ 𝜓] ∈ N . This shows the assertion. �

Proof of Theorem A.7. By Lemmas A.14(a) and A.16, N is a partial normal subgroup of L with
𝑆 ∩ N = 𝑆0. Using that Ob(T0) ⊆ Ob(T ) and axiom (i) in Definition A.3 holds, we can see that
Γ = {𝑃 ∩ 𝑆0 : 𝑃 ∈ Δ} ⊆ Δ . Hence, (N , Γ, 𝑆0) is a kernel of (L,Δ , 𝑆).

By Lemma A.14(b), there is an isomorphism 𝜃 : N → L0 := L(T0) that (with appropriate identifi-
cations) restricts to the identity on 𝑆0. In particular, F𝑆0 (N ) = F𝑆0 (L0), and there exists an invertible
functor TΓ (N ) → TΓ (L0) that is the identity on Γ. We have seen in our general discussion above that
F = F𝑆 (L). So we have similarly that F0 = F𝑆0 (L0) = F𝑆 (N ). It is moreover shown in [7, Lemma
A.15] that there is an invertible functor TΓ (L0) → T0 that restricts to the identity on Γ. This implies the
assertion. �
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