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A B S T R A C T

Agricultural drought is a complex natural hazard involving multiple variables and has garnered increasing 
attention for its severe threat to food security worldwide. In the context of climate change and the increased 
occurrence of drought events, it is crucial to monitor drought drivers and progression to plan the subsequent 
efforts in drought prevention, adaptation, and migration. However, previous studies on agricultural drought 
often focused on precipitation or evapotranspiration, overlooking other potential drivers related to crop drought 
stress. Additionally, macro-level analyses of drought-driving mechanisms struggle to reveal the underlying 
contexts of varying drought intensities. Northern Italy is one of the most important agricultural regions in Europe 
and is also a hotspot affected by extreme climate events in the world. In the summer of 2022, an extreme drought 
struck Europe once again, causing significant damage to the agricultural regions of Northern Italy. However, no 
studies to date have revealed the potential impacts and extent of extreme drought on this crucial agricultural area 
at a regional scale. Therefore, a comprehensive understanding of agricultural drought still requires further 
clarification and differentiated driver analysis. This study proposed a novel framework to comprehensively 
monitor agricultural drought with ensemble machine learning by constructing an integrated agriculture drought 
index (IADI) with remote sensing-related data including meteorology, soil, geomorphology, and vegetation 
conditions. Additionally, the Shapley Additive Explanation (SHAP) explainable model was applied to reveal the 
driving mechanism behind the drought event that occurred in northern Italy in the summer of 2022. Results 
indicated that the proposed explainable ensemble machine learning model with multi-source remote sensing 
products could effectively depict the evolution of agricultural drought with spatially continuous maps on an 8- 
day scales. The SHAP analysis demonstrated that the extreme and severe agricultural drought in the summer of 
2022 was closely related to meteorological indicators especially precipitation and land surface temperature, 
which contributed 68.88% to the drought. Moreover, the new findings also highlighted that soil properties 
affected the agricultural drought with a contribution of 28.3%. Specifically, in the case of moderate and slight 
drought conditions, higher clay and soil organic carbon (SOC) content contribute to mitigating drought effects, 
while sandy and silty soils have the opposite effect, and the contributions from soil texture and SOC are more 
significant than precipitation and land surface temperature. The proposed research framework could effectively 
contribute to improving the methodology in agricultural drought research, potentially bringing more instructive 
insights for drought prevention and mitigation.

1. Introduction

Drought is a globally pervasive hazard with complex causative fac
tors, and it can be categorized into multiple types based on various focal 
points, including meteorological, hydrological, agricultural, and 
ecological drought (Tarolli and Zhao, 2023). Among them, agricultural 
drought refers to the phenomenon in which insufficient soil moisture, 

caused by various factors, adversely affects the normal growth and yield 
of crops. Due to its severe and direct threat to food security and socio
economic sustainable development, it has garnered widespread atten
tion worldwide (Pan et al., 2023). More importantly, with the influence 
of global climate change, extreme weather events, such as heatwaves are 
becoming increasingly frequent (Arias et al., 2024). It has been reported 
that future climate would shift towards a drier trend, posing further 
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threats to global agricultural production and water resource supply, 
particularly in the Mediterranean region (Wang et al., 2022). Therefore, 
it is urgent to accurately monitor and provide early warnings for 
regional agricultural drought, as well as to reveal its occurrence patterns 
and mechanisms.

Due to its inherent advantages of wide coverage and long-term ob
servations, remote sensing has been frequently applied in regional 
agricultural drought monitoring. This involved analyzing information 
extracted from images related to vegetation, soil, and meteorological 
conditions, giving rise to numerous potential monitoring indices, such as 
the Temperature Rise Index (TRI) based on land surface temperature 
(Hu et al., 2020), the Normalized Difference Vegetation Index (NDVI) 
used for characterizing vegetation greenness, and the Standardized 
Precipitation Index (SPI) (Pan et al., 2023). Calculated based on a single 
indicator, the indices above are convenient for quick drought moni
toring due to their simplicity and minimal data requirements. However, 
since they only consider single factors, they cannot accurately reflect the 
actual drought conditions in regions with diverse land covers, complex 
topography, and significant internal variations in geographic environ
ments. Therefore, to comprehensively reflect drought conditions, 
remote sensing indices involving multiple indicators and considering 
their interrelationships have been further developed and applied, 
including the Standardized Precipitation Evapotranspiration Index 
(SPEI) derived from precipitation and evapotranspiration, vegetation 
health index (VHI) calculated from NDVI and land surface temperature 
(Javed et al., 2021), Temperature Vegetation Dryness Index (TVDI) 
based on standardized land surface temperature and vegetation index 
(Zhao et al., 2024), Palmer Drought Severity Index (PDSI) based on 
precipitation, temperature, potential evapotranspiration and soil pa
rameters (Faiz et al., 2022). Furthermore, to address the inherent un
certainty in estimating drought severity based on a single index, some 
studies have also attempted to use composite indices and demonstrated 
their feasibility (Rossi et al., 2023). However, despite the significant 
convenience provided by these remote sensing-based methods for 
regional drought monitoring, they tend to focus more on meteorological 
and vegetation factors, overlooking the potential impacts of other fac
tors, e.g. soil texture and soil organic content. Moreover, the subjective 
nature and regional variations in weight allocation during the process of 
combining multiple indices have also affected their performance in 
agricultural drought monitoring.

Realizing the importance of incorporating multisource data, an 
increasing number of researches have attempted to utilize multifaceted 
factors encompassing meteorological, soil and vegetation-related vari
ables associated with drought occurrence, undertaking a series of ex
plorations. Some researchers had constructed drought monitoring 
models by combining multiple linear regression with agricultural 
drought-related dataset (Zhang et al., 2022). However, these linear 
models may not effectively capture the complex relationships among 
multisource data, and they exhibited limitations when confronted with 
large volumes of data. To address these deficiencies, some approaches 
had been introduced into drought monitoring to enhance the model 
applicability and robustness. For example, Empirical Mode Decompo
sition (EMD) has been employed for the analysis of the formation and 
causes of agricultural drought due to its particular suitability for com
plex data with nonlinear and non-stationary characteristics with high 
flexibility (Jin et al., 2023). In addition, some local regression methods, 
such as Geographically Weighted Regression (GWR), have also been 
adopted for the construction of agricultural drought indices (Khosravi 
et al., 2024). Despite capturing the spatially heterogeneous features of 
drought through separate regressions at different locations, its funda
mental nature remained a linear regression model. Machine learning is 
capable of handling high-dimensional, large-scale data and discovering 
correlations and patterns within them, thereby providing deeper in
sights. In recent years, with the rapid advancement of artificial intelli
gence, significant breakthroughs have been achieved in drought 
modeling and monitoring (Mardian et al., 2023). For instance, numerous 

studies have attempted to utilize various machine learning methods to 
estimate drought probabilities using logistic regression, soil moisture 
estimation based on ensemble algorithms, short-term drought prediction 
through deep learning, and future drought projection by tree-based al
gorithms (Prodhan et al., 2022). However, most of these studies always 
utilized traditional meteorological drought indices such as SPI and SPEI 
in agricultural drought analysis. Furthermore, there was limited 
research that comprehensively utilized information from meteorology, 
vegetation, soil, and topography for multi-model learning in agricultural 
drought analysis. However, despite the ability of machine learning to 
enhance the accuracy of drought monitoring by leveraging large and 
diverse datasets, its black-box nature, which hinders the interpretability 
of the decisions made by the model, has been a subject of controversy 
(Mardian et al., 2023). Recently, the development of explainable ma
chine learning has opened up opportunities for analyzing the driving 
mechanisms of agricultural drought by measuring the contribution of 
each feature to the output or prediction. Specifically, some global met
rics and methods have been widely utilized for explaining decision- 
making in machine learning models, such as Mean Decrease in Impu
rity, Mean Decrease in Accuracy, and the Partial Dependence Plot 
(Friedman, 2001), failing to provide detailed decision criteria for spe
cific observation. Recently, several local interpretation methods for 
machine learning models have been proposed to address this limitation. 
For example, Local Interpretable Model-agnostic Explanations (LIME) 
interprets predictions by generating virtual samples and employing 
simple models. However, its stability and consistency may be compro
mised, particularly when dealing with complex underlying models 
(Mardian et al., 2023). Compared to LIME, the recently proposed SHAP 
model, based on game theory, possesses a more rigorous mathematical 
foundation. It allows for both global and local explanations simulta
neously and exhibits more stable and accurate results. Therefore, it is 
worthwhile to further address the potential limitations of existing 
agricultural drought monitoring and driving mechanism analyses 
exploring two main novel approaches: (1) integrating multi-source data 
related to agricultural drought and incorporating soil properties into 
ensemble learning models to monitor agricultural drought at a higher 
time resolution, considering the perspective of crop stress; (2) applying 
the latest interpretable machine learning techniques to reveal the 
differentiated driving mechanisms behind varying levels of agricultural 
drought, aiming to provide a more comprehensive understanding of the 
occurrence and development of agricultural drought.

Northern Italy, encompassing the Po Valley, stands as one of the most 
important agricultural production regions in Italy and even Europe. 
Simultaneously, it is also a hotspot for climate change (Straffelini and 
Tarolli, 2023). Research indicated that since the 1980 s, the frequency of 
drought events in the Mediterranean and Europe had been gradually 
increasing, and drought in northern Italy had also become more prev
alent (Baronetti et al., 2022). In the summers of 2011 and 2017, 
northern Italy experienced severe droughts, leading to soil moisture 
deficits in the region and ultimately resulting in reduced crop yields 
(García-Herrera et al., 2019). In the summer of 2022, another severe 
drought event swept through most parts of Europe, hitting the Po Valley 
with pronounced features of severe water scarcity and heatwaves 
(Bonaldo et al., 2023). It was reported to be a record-breaking drought 
event in the past two centuries, characterized by a dramatic drop in the 
Po River water level and a reduction in irrigation water supply 
(Montanari et al., 2023). Meanwhile, studies on future climate change 
indicated that the risk of drought in this region is expected to increase by 
50 %, and its impact is projected to rise by 80 % (Sofia et al., 2023). 
Despite Northern Italy, a major agricultural region in Europe, experi
encing extreme droughts driven by climate change, no study has yet 
comprehensively monitored agricultural drought at a regional scale or 
investigated the driving mechanisms behind the 2022 extreme drought 
event. Therefore, in this context, it is critically urgent to leverage more 
comprehensive data to achieve high spatiotemporal resolution of agri
cultural drought monitoring and unveil the underlying driving 
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mechanisms for agricultural drought prevention and food security. The 
aims of this study were as follows: (1) to construct a high temporal 
resolution model for agricultural drought monitoring by integrating 
ensemble machine learning and multi-source data, including meteoro
logical, vegetation, soil, and topography. (2) to evaluate the applica
bility and effectiveness of the proposed Integrated Agricultural Drought 
Index (IADI) and analyze the evolution of the 2022 summer drought at 
an 8-day scale. (3) to reveal the underlying driving mechanisms behind 
different levels of agricultural drought and propose drought prevention 
measures. The findings of this study will provide a more comprehensive 
understanding of agricultural drought monitoring and contribute to a 
deeper insight into the occurrence mechanisms of agricultural drought.

2. Materials and methods

2.1. Study area

The investigated area, located in Northern Italy, mainly involves 
seven regions from Piemonte in the west to Veneto in the east, encom
passing the entire Po Valley, covering an area of about 46,000 km2 

(Fig. 1). Encircled by mountains on three sides, there are expansive al
luvial plains stretching from west to east. The agricultural system in the 
research area is predominantly irrigated (Valmassoi et al., 2020). In the 
plain, the main crops are maize, wheat, soybean, and rice. In steep-slope 
regions, agricultural types include vineyards, olive groves and orchards 
(d’Andrimont et al., 2021; European Environment Agency, 2019). 
Encompassing the largest plain regions in Italy with favorable 
geographical conditions, climate, and soil characteristics, the study area 
is a pivotal agricultural center in Italy for diverse agricultural activities, 
exerting a significant influence on food security and economic well- 
being.

However, with the influence of global climate change, the frequency 
and intensity of drought events have gradually increased across the 
European continent in recent years, posing significant risks to local 
agricultural development. Furthermore, intensified drought stress has 
also led to other issues, including saltwater intrusion and soil saliniza
tion which further worsening local agricultural production conditions 
(Tarolli et al., 2024). For example, an extreme heatwave struck Europe 
in the summer of 2022, resulting in a significant decrease in the water 
flow of the Po River. The ensuing severe drought led to reduced agri
cultural yields, causing substantial losses for local farmers. In light of 
this, to alleviate the impact of drought on agricultural production in 
Northern Italy, it is crucial to conduct a comprehensive analysis of 
drought events, monitor the occurrence trends, and reveal their under
lying mechanisms.

2.2. Data sources and processing

The occurrence and impact processes of agricultural drought are 
determined by various triggering factors, involving not only meteoro
logical information such as precipitation but also factors related to soil, 
vegetation status, and topography. This also forms the theoretical basis 
for constructing the comprehensive agricultural drought monitoring 
model. Therefore, to reveal the occurrence and development processes 
of agricultural drought, this study utilized multiple factors (Table. 1) 
related to agricultural drought over the spring-summer crop growing 
period (May to September) from 2015 to 2022 to construct an IADI 
calculated on the cropland extracted from CORINE Land Cover 2018. 
After evaluation, all input datasets were resampled to a spatial resolu
tion of 250 m for subsequent analysis. On one hand, this retains the 
advantages of high-resolution data as much as possible; on the other 
hand, it ensures acceptable computational efficiency for the subsequent 

Fig. 1. Over view of the study area. A: Topography and hydrography, B: Main crop types from CORINE Land Cover vector and EUCROP, 2018 (Agency and Land 
Cover, 2018)
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training of machine learning models. 

(1) Meteorological data

The 8-day land surface temperature (MOD11A2) in a 1200 x 1200 m 
grid and 8-day composite evapotranspiration (MOD16A2) at a 500- 
meter pixel resolution were obtained from the MODIS satellite prod
ucts; The daily precipitation used in this study was from the CHIRPS 
dataset (Climate Hazards Group InfraRed Precipitation with Station 
Data) with a spatial resolution of 0.05◦. To achieve the drought moni
toring with high temporal resolution and maintain consistency with 
other meteorological data, the daily precipitation was computed as 8- 
day products through summation. 

(2) Vegetation Data

The growth of crops and vegetation is directly affected by agricul
tural drought. Compared to indices such as NDVI that merely charac
terize vegetation greenness, some studies have found that Solar-induced 
chlorophyll fluorescence (SIF) products could reflect vegetation photo
synthetic rates more in real-time and show closer correlations with plant 
physiological status (Liu et al., 2020). Therefore, the global GOSIF 
(OCO-2 SIF) product with 0.05◦ spatial and 8-day temporal resolutions 
was utilized in this research. 

(3) Soil data

The SoilGrids version 2.0 product (250 m), including proportion of 
clay, silt, sand particles, and soil organic carbon content at 5 cm depth, 
was adopted to represent soil properties. Additionally, daily surface soil 
moisture with a 1 km resolution was collected from the Copernicus 
Global Land Service and then utilized to calculate its 8-day mean. 
Retrieved from the Sentinel-1 satellites, the soil moisture data had been 
validated with in-situ measurements and yielded high agreement over 
plains and agricultural areas in Italy (Bauer-Marschallinger et al., 2019). 

(4) Topographic data

The NASADEM with a 30 m resolution was employed to represent the 
topographical information in this study.

2.3. Methodology

In this study, an explainable regression model based on the stacking 
strategy was trained to construct an IADI with higher spatiotemporal 
resolution compared to currently available indexes (Liu et al., 2020; 
Mardian et al., 2023), and then the mechanism behind drought events 
was analyzed. To construct the IADI, all predictor variables and the 
dependent variable (soil moisture) of the training set were used to train 
the four regression models. Subsequently, the model that performed the 

best on the validation dataset was selected as the final predictive model 
due to its superior capability. Ranging from 0 to 1, the IADI would reflect 
the severity of agricultural drought, where lower values indicated a 
more severe drought condition. Based on the classification criteria for 
drought severity from previous studies (Liu et al., 2020), the agricultural 
drought was divided into nine categories according to the quantile 
method as follows: extremely dry (0.12–0.15), severe dry (0.15–0.23), 
moderate dry (0.23–0.25), slight dry (0.25–0.32), normal (0.32–0.38), 
slight wet (0.38–0.44), moderate wet (0.44–0.52), severe wet 
(0.52–0.63), extremely wet (0.63–0.79). The model with the best per
formance in the validation dataset would be adopted to produce the 
IADI maps. The overall research framework is illustrated in Fig. 2.

2.3.1. Stacking ensemble learning
In this study, different types of machine learning regression models 

including RandomForest, XGBoost, and CatBoost were trained. Random 
Forest Regression (RFR) is an ensemble learning method based on 
bagging strategy which combines the predictions of multiple decision 
trees, leveraging the power of both bagging and feature randomness to 
enhance predictive performance and mitigate overfitting. XGBoosting 
Regression (XGBR), proposed by Chen and Guestrin (Chen and Guestrin, 
2016), belongs to the family of gradient boosting algorithms. It excels in 
regression tasks by sequentially boosting weak learners to refine the 
predictive model through the integration of a set of optimization tech
niques, regularization mechanisms, and parallel processing capabilities. 
Introduced by Ostroumova (Ostroumova et al., 2017), CatBoost 
Regression was designed to address tasks with categorical features. It 
also proposed a histogram-based method to improve the training effi
ciency. Additionally, regularization techniques such as automatic con
trol of tree depth and feature-based splitting were also integrated in the 
algorithm to prevent overfitting.

The above algorithms, based on bagging and boosting approach, 
exhibit distinct advantages in terms of model performance improvement 
strategies and data processing methods. To combine the strengths of 
different algorithms, the stacking strategy was then employed to inte
grate the aforementioned three models. Serving as base learners, the 
outputs from the above models were used as inputs for training the 
second model to obtain the final meta-learner. Generally, a simple linear 
model such as Support Vector Machines (SVM) could be adopted as the 
second model to mitigate the risk of overfitting. In this study, the dataset 
was divided into two parts as training set (70 %, 38,523 points) for 
model training and the remaining 30 % (16511 points) was used for 
validation. Before training models, all predictor variables and the 
dependent variable (soil moisture) were normalized to enhance 
efficiency.

2.3.2. Explainability in machine learning
In this paper, taking the summer drought (2022) in northern Italy as 

an example, the SHapley Additive exPlanations (SHAP) analysis was 
employed to the ensemble machine learning model to calculate the 

Table 1 
Dataset utilized in the study.

Variables Temporal Resolution Spatial Resolution Units Sources

LST 8 Day 1.2 km ℃ https://lpdaac.usgs.gov/products/mod11a2v061/ (Wan et al., 2021)
ET 8 Day 500 m mm https://lpdaac.usgs.gov/products/mod16a2v061/ (Running et al., 2021)
PRE Daily 0.05◦ mm https://data.chc.ucsb.edu/products/CHIRPS-2.0/ (Funk et al., 2015)
SIF 8 Day 0.05◦ W m− 2 μm− 1 sr-1 https://globalecology.unh.edu/ (Li and Xiao, 2019)
CLAY − 250 m g/kg https://soilgrids.org/ (Batjes and Calisto, 2023)
SILT − 250 m g/kg https://soilgrids.org/ (Batjes and Calisto, 2023)
SAND − 250 m g/kg https://soilgrids.org/ (Batjes and Calisto, 2023)
SOC − 250 m dg/kg https://soilgrids.org/ (Batjes and Calisto, 2023)
SM Daily 1 km % https://land.copernicus.eu/global/products/ssm/ (Bauer-Marschallinger et al., 2019)
DEM − 30 m m https://lpdaac.usgs.gov/products/nasadem_hgtv001/ (NASA JPL, 2020)

Notes: LST (land surface temperature); ET (evapotranspiration); PRE (precipitation); SIF (solar-induced chlorophyll fluorescence); SOC (soil organic carbon); SM (soil 
moisture).
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global contributions of all predictor variables. In addition, different 
degrees of drought were selected as typical cases for local interpretation 
to unveil the underlying mechanisms behind the occurrence of agricul
tural drought.

Based on the cooperative game theory proposed by Shapley 
(Shapley, 1953), which aims to determine the relative contribution of 
each participant, the SHAP model has recently emerged as a powerful 
tool in the realm of explainable machine learning. It assigns the 
contribution of each feature to the final prediction through Shapley 
values, providing a unified framework for explaining the output of any 
machine learning model. The computation of Shapley values can be 
formulated as follows: 

ϕm(v) =
∑

S⊆N\{m}

|S|!(|N| − |S| − 1 )!

|N|!
(v(S ∪ {m} ) − v(S)) (1) 

where ϕm(v) is the contribution of feature m, N and S are the set and 
subset of all features, respectively. v(S ∪ {m} ) and v(S) represent the 
model outputs in various feature combinations whether m is involved or 
not, respectively. The term |S|!(|N|− |S|− 1 )!

|N|!
denotes the probability corre

sponding to various feature combinations. Therefore, the result obtained 
from the above expression represents the marginal contribution of 
feature m to the final outputs.

When it comes to the total contribution of all features for each 
observation, it could be expressed as follows: 

g(xʹ) = ϕ0 +
∑M

m=1
ϕmźm (2) 

where M is the number of all features, and ϕ0 represents the model 
outputs without any features.

2.3.3. Model evaluation
Utilizing 70 % of the whole data during vegetation growing seasons 

from 2015 to 2022, the three base models (RFR, XGBR, CATR) and the 
final meta-model were trained using the Bayesian Optimization method 
to select optimal hyperparameters. Compared to Grid Search and 
Random Search, Bayesian Optimization could utilize prior information 
to iteratively update the model, allowing for more intelligent selection 
of subsequent parameters. This significantly enhances computational 
efficiency while seeking optimal parameters (Pradhan et al., 2021). 
Subsequently, the trained regression models were validated using the 
remaining 30 % of the data, and their performance was evaluated 
through R2, Root Mean Squared Error (RMSE), and Mean Absolute Error 
(MAE) as follows: 

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (3) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)
2

n

√

(4) 

MAE =

∑n
i=1|yi − ŷi|

n
(5) 

where yi, ŷi and y represent the actual observed values, model pre
dictions, and mean values of the actual observations, respectively. n 
denotes the total number of observations.

Fig. 2. Research framework Diagram.
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R2 reflects the fitting level of the model to the actual observed values, 
while RMSE and MAE provide information about the predictive accuracy 
and error magnitude of the models. Compared to MAE, RMSE is more 
sensitive to outliers, and they focus on different aspects of the prediction 
error. The combination of them could provide a more comprehensive 
assessment of the model performance.

3. Results

3.1. Evaluation of drought monitoring performance for IADI

The performance of different regression models on the training and 
validation sets was shown in Table 2. It was observed that the RFR model 
performed the best on the training set but exhibited the poorest per
formance on the validation set, indicating its poor generalization per
formance. In comparison, the XGBR and CATR models showed similar 
performance on both the training and testing datasets. In general, the 
ensemble learning model (STACKING) exhibited the best performance 
on the validation dataset with a higher R2 of 0.707 and lower errors 
(RMSE = 0.088, MAE = 0.072), leveraging the strengths of multiple 
models to enhance overall performance. Therefore, the ensemble ma
chine learning model was ultimately adopted for constructing the IADI. 
After inputting multiband driving factor rasters into the model, time- 
series IADI maps were automatically generated.

Based on the well-trained ensemble learning model, multiband raster 
of all predictor variables at 8-day scales from different periods were then 
input into the model to predict the integrated agricultural drought 
index. As shown in Fig. 3, soil moisture and IADI in May 2022 in 
Northern Italy exhibited a generally consistent spatial pattern overall, 
but differences were also observed in local areas. This is primarily 
attributed to the limitations of the 8-day mosaic soil moisture products, 
where the mosaic results are constrained by data availability. In certain 
local areas, the mosaic results show significant discrepancies in soil 
moisture due to variations in meteorological conditions across different 
time periods. Specifically, compared to IADI, the soil moisture products 
exhibited significant data gaps attributed to the absence of satellite 
transit. In addition, noticeable striping patterns could be observed in the 
soil moisture data, resulting from the current limitation of satellite data, 
which cannot achieve daily coverage of the entire region. Consequently, 
the synthesized mosaic 8-day soil moisture products from different times 
were prone to such abrupt features, making it challenging to effectively 
capture the regional evolution characteristics of agricultural drought at 
8-day scales.

3.2. Characteristics of the typical drought variations in 2022

As shown in Fig. 4, the detailed evolution characteristics of the 2022 
Northern Italy extreme drought occurrence were captured by the IADI 
on an 8-day scale, providing spatially continuous results.

The IADI index revealed that a significant portion of agricultural 
areas in northern Italy had been subjected to agricultural drought dis
turbances starting from June, and then in the second week the drought 
conditions intensified and rapidly extended throughout the entire study 
area (Fig. 4). In the third week of June, most agricultural areas experi
enced another round of drought, with the Po River Delta (PRD) being 
particularly affected by extreme dry conditions. With the onset of pre
cipitation in the last week of June, there was an alleviation of agricul
tural drought occurred in the PRD region where more precipitation 
occurred at that time. However, due to decreased precipitation, drought 
conditions in the central and western regions were further exacerbated. 
Throughout July, the study area experienced the most severe agricul
tural drought, with the entire region being affected by dry conditions. 
Starting from July, the agricultural drought resurged and reached its 
peak from the second week of July to the first week of August during this 
extreme heatwave event. During the two weeks in mid-July, most of the 
agricultural areas in northern Italy experienced severe or extremely 
severe drought conditions (Fig. 4). Then, in the fourth week of July, 
several rainfall events occurred in northern Italy, alleviating the agri
cultural drought to some extent. In the first two weeks of August, the 
agricultural regions were still grappling with drought, particularly in the 
central and western parts of the study area, where severe drought con
ditions persisted. However, in the following two weeks, the agricultural 
drought severity began to decrease, with the most noticeable alleviation 
observed in the Po River Delta in the eastern part, attributed to rainfall 
occurred in the PRD during this period (Fig. 4). The result is consistent 
with the existing literature (Straffelini and Tarolli, 2023) and it indicates 
that the IADI index is capable of monitoring the spatiotemporal evolu
tion characteristics of agricultural drought at a higher temporal reso
lution with spatially continuous and reliable maps.

3.3. Contribution of different factors to drought

The global interpretative results of SHAP analysis were shown in 
Fig. 5 with the average SHAP values (Fig. 5A) for all predictor variables 
at each observation (Fig. 5B). It indicated that meteorological factors, 
including land surface temperature and precipitation, were the most 
crucial factors influencing the occurrence of widespread agricultural 
drought during the extreme heatwave event in the summer of 2022. 
Furthermore, the results also revealed that soil organic carbon and soil 
texture factors such as silt, sand, clay content also exerted a significant 
influence on the occurrence of agricultural drought, contributing 
notably at 28.3 % to the model output (Fig. 5A). In comparison, the 
influence from vegetation and topographic factors on the occurrence of 
this agricultural drought event was relatively small, with individual 
contributions of 1.62 % and 1.20 %, respectively.

Based on the entire training dataset, the SHAP global interpretative 
results could provide a comprehensive perspective on the attribution of 
the agricultural drought occurrence. However, the global results failed 
to deliver spatially heterogeneous information about the underlying 
driving mechanisms of agricultural drought because the causes of 
droughts may vary with different regions and degrees, each with its 
unique characteristics. Therefore, the local interpretive method of SHAP 
was further employed to analyze and interpret the causes of agricultural 
drought with diverse severity levels at different locations. As shown in 
Fig. 6, the local interpretive results for different severity levels of agri
cultural droughts were illustrated in the form of force plots.

The red color in the figure represented driving factors that could 
enhance the model outputs of the IADI, while the blue color indicated 
factors that would reduce the final results. Additionally, the length of the 
color bar represented the magnitude of their driving force for agricul
tural drought. The results indicated that for extreme and severe agri
cultural drought, meteorological factors including land surface 
temperature and precipitation were the predominant factors influencing 
their occurrence (Fig. 6A-6B). For moderate or slight agricultural 
drought conditions, the force plot reflected that higher clay content in 

Table 2 
Model Performance on the Training Set and Validation Set.

Model Metrics Training Set Validation Set

RFR R2 0.958 0.659
RMSE 0.033 0.100
MAE 0.026 0.080

XGBR R2 0.764 0.671
RMSE 0.077 0.092
MAE 0.063 0.075

CATR R2 0.774 0.683
RMSE 0.080 0.094
MAE 0.070 0.077

STACKING R2 0.855 0.707
RMSE 0.061 0.088
MAE 0.049 0.072

Notes: RFR (Random Forest Regression); XGBR (XGBoost Regression); CATR 
(CatBoost Regression); STACKING (Ensemble learning model).
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Fig. 3. Comparison of Soil Moisture and integrated agriculture drought index (IADI) in May 2022.

Fig. 4. Evolution of the agricultural drought occurrence during the summer of 2022 captured by integrated agriculture drought index (IADI).

Fig. 5. Global interpretative results of SHAP analysis for the 2022 summer drought (LST: land surface temperature; PRE: precipitation; SOC: soil organic carbon; ET: 
evapotranspiration; SIF: solar-induced fluorescence).
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the soil would contribute to resisting the occurrence of drought, while 
sandy and silty soil, on the contrary, could reduce soil moisture content, 
leading to agricultural drought. Additionally, the results also depicted 
that regions with higher clay and soil organic carbon content were more 
conducive to soil moisture retention in response to precipitation, while 
sandy soil had negative impacts on preventing agricultural drought. For 
both moderate/slight and non-drought conditions, the influence of soil 
texture and soil organic carbon on agricultural drought was greater than 
that of meteorological factors, including land surface temperature, 
precipitation, and evapotranspiration (Fig. 6C-6D).

The SHAP analysis indicated that, for extreme and severe agricul
tural drought, precipitation and temperature predominantly influence 
the outcomes. For moderate/slight and non-droughts, it illustrated that 
soil texture and soil organic carbon also played a significant role and was 
even more important than meteorological factors. Specifically, exces
sively high levels of sandy and silty soil textures were detrimental to 
resisting drought, while clay and soil organic carbon were more favor
able for soil moisture retention.

4. Discussion

4.1. The applicability of new drought index in northern Italy

At present, owing to its relatively high spatial–temporal resolution 
and extensive observational capabilities, satellite data is well-suited for 
surface soil moisture estimations across large regions even on global 
scales. For instance, the European Space Agency provides a daily surface 
soil moisture product derived from Sentinel-1 radar observations with 
reliable soil moisture estimates across Europe and the results had been 
validated in northern Italy (Bauer-Marschallinger et al., 2019). How
ever, it cannot produce spatially continuous products with high tem
poral resolution due to the limitations imposed by satellite revisit cycle, 
which exited numerous data gaps within them (Paciolla et al., 2020). 
Taking the soil moisture, which could best characterize agricultural 
drought conditions, as the dependent variable, this study comprehen
sively integrated meteorological, soil, vegetation and topographical 
factors which potentially influencing soil moisture together, and input 
them into several machine learning models. As shown in Figs. 3 and 4, 
the predictive maps produced by the model with the optimal 

Fig. 6. Force plots of SHAP analysis for the 2022 summer drought at different severity levels (A: Extreme Agricultural Drought; B: Severe Drought; C: Moderate/ 
Slight Drought; D: Non-Drought) The red variable would increase the integrated agriculture drought index (IADI) value, while the blue one has the opposite effect. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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performance revealed that the spatial pattern of the IADI index was 
generally consistent with the synthesized soil moisture, but the IADI 
exhibited a more continuous and complete spatio-temporal distribution. 
Actually, the soil moisture data used for model training is not an 8-day 
average but a mosaic of data collected over an 8-day period. Due to the 
limitations of the Sentinel-1 satellite’s revisit cycle, it cannot fully cover 
the entire study area within 8 days. Therefore, the final 8-day mosaic is 
composed of soil moisture estimates from multiple dates stitched 
together. Therefore, due to challenges in achieving comprehensive 
coverage of the study area on an 8-day scales, the 8-day synthesized soil 
moisture existed shortcomings including spatial discontinuities, in
consistencies in adjacent ranges (Fig. 3) and low-precision estimations 
resulted from topography and vegetation coverage (Bauer-Marschal
linger et al., 2019).

Combined large volume of multiple drivers with ensemble machine 
learning algorithms, the derived IADI implied the complex relationships 
among variables related to agricultural drought and could consistently 
provide spatially continuous agricultural drought monitoring results. 
The findings suggested that the integrated employment of potential 
factors affecting agricultural drought and machine learning was appli
cable for constructing a reliable agricultural drought monitoring system 
with a concise and rapid method.

4.2. Implications for agricultural development under drought

As depicted in Fig. 6, this study found that the predominant factors 
behind different severity levels of agricultural drought were distinct. In 
Fig. 6, red variables indicated that high values would lead to an 
improvement in agricultural conditions, representing decreased drought 
severity and risk. Conversely, blue variables could result in an exacer
bation of IADI values, indicating more challenging agricultural 
conditions.

For extremely and severe agricultural drought, meteorological fac
tors such as land surface temperature and precipitation were key de
terminants of its occurrence and development. Specifically, higher land 
surface temperatures would accelerate the evaporation process, leading 
to a reduction in soil moisture and conversely, the dry soil would also 
intensify the increase in land surface temperature (Tian et al., 2023). In 
addition, a novel finding of this study highlighted the significant role of 
soil texture and soil organic carbon in influencing agricultural drought, 
confirming that these parameters should not be overlooked, even on a 
regional scale. As presented in Fig. 5A, the contribution of soil texture 
and soil organic carbon to the final agricultural drought could reach up 
to nearly 30 %. Previous experimental studies have also reported that 
soil texture strongly regulates soil moisture, especially during more 
frequent and prolonged droughts over Europe (Li et al., 2022). Specif
ically, to clarify the influence on soil moisture from texture, it has been 
demonstrated that soil available water in clay loam exhibited higher 
levels compared to sandy and silty soils through extensive field experi
ments. Generally, for different soil textures, the average, upper limit, 
and lower limit values of available water content are the highest in clay 
loam, then followed by silty and sandy soil (Salter and Williams, 1969). 
Soil particle size directly influenced soil pore structure, thereby affecting 
its water content. Soils with larger particles (sandy soil) are more prone 
to water infiltration but with poorer water retention capacity. By 
contrast, the clay particles are very small and tightly packed, resulting in 
overall strong impermeability and this means that clay can effectively 
prevent rapid infiltration and loss of water (Singh et al., 2017). How
ever, empirical formulas for calculating plant available water content, 
developed based on extensive soil data, utilize both soil texture (pro
portions of sand, silt, and clay) and organic matter content to estimate 
soil water retention characteristics and have been widely applied 
(Saxton et al., 2006). In fact, the increase in organic matter content in 
the soil could facilitate the improvement of soil porosity and structure, 
mitigating the severity of compaction and thereby alleviating water 
scarcity (Sofia et al., 2023). Specifically, high content of soil organic 

matter tends to generate more humic acids, facilitating its binding with 
mineral surfaces to form stable aggregates, thereby hindering the 
mineralization of organic carbon and promoting soil water retention 
(Sofia et al., 2023). Furthermore, humic acids can also create a water- 
retaining film, slowing down the rate of water evaporation, contrib
uting to the reduction of moisture loss. On a regional scale, studies 
generally acknowledge the importance of soil texture in influencing soil 
water movement, leading to spatial variations in soil moisture evapo
ration, and other hydrological processes (Luan et al., 2024), but gener
ally overlook the key role of SOC.

The force plots generated through SHAP analysis provide valuable 
insights into crucial parameters that should be considered before 
drought occurrences, facilitating hotspot identification based on local 
soil and meteorological conditions. For example, in areas with low soil 
organic carbon and clay content, targeted application of organic fertil
izer can be employed to increase soil organic carbon and improve soil 
structure. Moreover, in these hotspot areas, potential drought trends 
detected during critical crop growth stages such as jointing, heading, 
and grain filling can be used to schedule irrigation in advance to miti
gate damage to crops caused by drought stress (Deb et al., 2022). This 
practice contributes to enhancing soil fertility, boosting water retention 
capacity, and significantly benefiting agricultural drought resilience. 
These new findings can guide practical measures for farmers to imple
ment daily water storage and drought prevention strategies based on 
local conditions. For example, in steep-slope agricultural systems near 
the Alps, the implementation of rainwater harvesting systems, such as 
micro-water storage in suitable locations, could be considered to achieve 
better water resource management (Wang et al., 2023) . Additionally, 
critical areas could be identified based on local soil properties in 
advance for drought prevention. For example, to improve soil available 
water content, plowing can be conducted on drought-induced crusts in 
clay soils before potential precipitation, aiming to improve their water 
permeability. Additionally, soil structure and composition could be 
improved to mitigate water stress through conservation agriculture 
techniques such as cover crops, mulching and deep plowing (Luan et al., 
2024; Tarolli and Zhao, 2023). In this key agricultural production area 
of Northern Italy, only a few studies have focused on the impact of 
drought on agriculture, and those that exist have primarily analyzed 
long-term historical drought trends and changes in drought severity 
under future climate scenarios (Montanari et al., 2023; Sofia et al., 
2023). However, no research has explored the evolution and drivers of 
2022 agricultural droughts. Our work integrated multi-source datasets 
related to agricultural drought and utilized interpretable machine 
learning to monitor drought on an 8-day timescale, providing insights 
into the driving mechanisms of drought and valuable guidance for 
agricultural development.

4.3. Uncertainties and future perspective

However, there were still some issues remained to be further inves
tigated in this research. Firstly, the machine learning models could be 
further improved by inputting more accurate data. For instance, due to 
data availability, it was challenging to obtain sufficient in-situ data such 
as soil moisture, SOC, clay, silt, and sand at station scales and using data 
with coarser resolution would inevitably bring errors and increase the 
difficulty of exploring the complex relationships among datasets. In 
addition, the occurrence of agricultural drought is complex, and there is 
no consensus on the selection of its influencing factors. Secondly, the 
results of the SHAP analysis needed further on-site validation. On the 
one hand, the same model and identical input data may lead to different 
SHAP values in certain situations and this inconsistency could introduce 
uncertainties when interpreting the model. On the other hand, the 
interpretation of SHAP values may become more complex and unstable 
in the presence of highly non-linear relationships among data. While 
SHAP provided us with some insights into the underlying mechanisms of 
agricultural drought, due to its limitations, the final results needed to be 
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analyzed in conjunction with domain expertise and actual circum
stances. Finally, the criteria for classifying the severity levels of agri
cultural drought still required further research. Although the percentile 
method was commonly adopted for categorizing different levels of 
drought, there was a lack of reliable theoretical basis behind it. Despite 
some limitations, the preliminary results could still aid in monitoring 
agricultural drought and deliver useful insights on understanding the 
complex mechanism.

5. Conclusions

In this study, a comprehensive research framework for monitoring 
agricultural drought and explaining its occurrence mechanism on a 
regional scale was proposed by integrating meteorological, vegetation, 
topographical and soil data with explainable ensemble machine learning 
models. Results indicated that the proposed IADI maps deduced from the 
ensemble learning model could effectively reflect the evolution of 
agricultural drought with spatially seamless results on an 8-day scales. 
The mechanisms of agricultural drought in the study area, a crucial 
agricultural region increasingly affected by extreme weather events, 
were primarily influenced by meteorological and soil factors, with 
contributions of 68.88 % and 28.30 %, respectively. More specifically, 
regarding different levels of agricultural drought, the extreme and se
vere drought were primarily controlled by land surface temperature and 
precipitation. In addition to meteorological factors, moderate and slight 
drought were also significantly influenced by soil properties, and re
gions with more clay loam and soil organic carbon were less prone to 
agricultural drought. Based on the above findings, some targeted mea
sures were proposed for the agricultural drought prevention. The results 
could contribute with valuable insights for stakeholders such as farmers 
in drought management and provide potential prior knowledge for 
similar studies worldwide.
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