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A B S T R A C T

Anomaly Detection (AD) focuses on identifying unusual patterns in complex datasets and systems. While
Machine Learning and Decision Support Systems (DSS) are effective for this, simply detecting anomalies often
falls short in real-world scenarios, especially in engineering contexts where diagnostics and maintenance are
essential. Users need clear explanations behind anomaly predictions to understand the root causes and trust
the model. The unsupervised nature of AD complicates the development of interpretable tools. To address
this, we propose the Extended Isolation Forest Feature Importance (ExIFFI), a new approach that explains the
predictions of the Extended Isolation Forest (EIF), applicable to all Isolation Forest models that split using
hyperplanes. ExIFFI provides both global and local explanations by analyzing feature importance.

Additionally, we introduce Enhanced Extended Isolation Forest (EIF+), an improved version of EIF, designed
to better detect unseen anomalies by modifying the splitting strategy of hyperplanes. We compare various
unsupervised AD methods across five synthetic and eleven real-world datasets using the Average Precision
metric. EIF+consistently outperforms EIF in all scenarios, demonstrating superior generalization. To validate
the interpretability, we propose a new metric — 𝐴𝑈𝐶𝐹𝑆 (Area Under the Curve of Feature Selection) —
which uses feature selection as a performance indicator. ExIFFI proves more effective than other unsupervised
interpretation methods, excelling in 8 out of 11 real-world datasets and correctly identifying anomalous
features in synthetic datasets. Finally, we provide open-source code to encourage further research and
reproducibility.
1. Introduction

Machine Learning (ML) and Artificial Intelligence (AI) play a central
role in the ongoing socio-economic change, revolutionizing various
sectors such as manufacturing (Krafft et al., 2020; Xu et al., 2018; Leng
et al., 2024; Arunthavanathan et al., 2021), medicine (Houssein et al.,
2021), smart farming (Kaur and Bhattacharya, 2023; Jin and Xu, 2024)
and the Internet of Things (Klaib et al., 2021; Kaur and Bhattacharya,
2024). With the increasing deployment of ML across various industries,
new challenges have arisen, particularly due to the complexity and lack
of transparency in these systems.

Moreover, the diversity of end users, many of whom may not
have expertise in data-driven methods, further complicates the effective
use of these technologies. To address this, it is crucial to develop
algorithms that can explain the structure and predictions of ML models,
making them accessible and understandable to a broader audience.
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E-mail addresses: alessio.arcudi@studenti.unipd.it (A. Arcudi), davide.frizzo.1@phd.unipd.it (D. Frizzo), chiara.masiero@statwolf.com (C. Masiero),

gianantonio.susto@unipd.it (G.A. Susto).
1 While authors in the literature use the term ‘interpretability’ and ‘explainability’ associated with slightly different concepts when associated to Machine

Learning/Artificial Intelligence as presented in Gilpin et al. (2018), in this work we will use both terms interchangeably.

Many scientific works identify explainability1 as a key factor to enable
the successful adoption of ML-based systems (Confalonieri et al., 2021;
Doshi-Velez and Kim, 2017; Linardatos et al., 2020).

For tabular data, several methods are available to explain a model’s
predictions (Molnar, 2020). One common approach is to calculate
the importance of each feature in the model’s predictions. This in-
volves evaluating the influence of each feature on both individual
predictions (referred to as ‘‘Local Importance’’) and the overall dataset
(‘‘Global Importance’’). By evaluating feature importance, users gain a
deeper understanding of how the model utilizes input data to generate
predictions.

Despite the remarkable recent advancements in eXplainable Arti-
ficial Intelligence (XAI), most approaches are designed for supervised
https://doi.org/10.1016/j.engappai.2024.109409
Received 30 May 2024; Received in revised form 14 September 2024; Accepted 27
vailable online 22 October 2024 
952-1976/© 2024 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/ ). 
 September 2024

icle under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
mailto:alessio.arcudi@studenti.unipd.it
mailto:davide.frizzo.1@phd.unipd.it
mailto:chiara.masiero@statwolf.com
mailto:gianantonio.susto@unipd.it
https://doi.org/10.1016/j.engappai.2024.109409
https://doi.org/10.1016/j.engappai.2024.109409
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2024.109409&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Arcudi et al.

d

a

f
e
h
n

s
p

h

r
a
s
o

a

S
t

a

t

i
w

m

P
m

f
r

Engineering Applications of Artiϧcial Intelligence 138 (2024) 109409 
tasks, leaving unsupervised tasks, like Anomaly Detection (AD), rarely
iscussed in the literature.

AD, also referred to as Outlier Detection,2 is a field of ML that
focuses on identifying elements that live outside the standard ‘‘normal’’
behavior observed in the majority of the dataset (Hawkins, 1980).

Explainability is crucial for Anomaly Detection (AD) approaches,
particularly in industrial settings. For instance, AD methods used to
monitor industrial machinery can significantly benefit from clear in-
terpretations of detected anomalies. Understanding the root cause of
n anomaly can help reduce machine failures, minimize energy loss,

conserve resources, and lower production costs. Additionally, the need
or interpretable algorithms extends beyond technical benefits, lack of
xplanations can undermine trust in the model’s output, especially in
igh-stakes decision-making scenarios. In such cases, explainability is
ot just a preference but a legal requirement (Commission, 2020).

Isolation Forest (IF) (Liu et al., 2008) is a popular Anomaly Detec-
tion (AD) method due to its high accuracy, low computational cost,
and relatively simple internal mechanism. It operates by recursively
plitting the feature space using randomly chosen axis-aligned hyper-
lanes, allowing it to isolate anomalies with minimal partitions. To

enhance the interpretability of IF, specialized approaches like Depth-
based Isolation Forest Feature Importance (DIFFI) (Carletti et al., 2023)
ave been developed. DIFFI takes advantage of IF’s internal structure

to provide both global and local explanations of the model’s decisions.
However, the one-dimensional partitioning process used by IF can

introduce artifacts that degrade anomaly detection and reduce the
quality of feature explanations. To address this limitation, the Extended
Isolation Forest (EIF) has been proposed (Hariri et al., 2021). EIF
improves upon IF by utilizing oblique partitions, which help elimi-
nate these artifacts and enhance both anomaly detection and feature
explanation.

According to the literature, the EIF is among the top-performing
unsupervised anomaly detection (AD) methods (Bouman et al., 2023).
However, EIF lacks built-in interpretability for features and struggles
with robustness when encountering novel anomalies. To address these
limitations and encourage the adoption of isolation-based unsupervised
AD approaches, this paper makes three key contributions:

1. We propose the Extended Isolation Forest Feature Importance
(ExIFFI), the first (to the best of our knowledge) model-specific
approach which generalize the explanations to both IF models
and the extended version EIF.

2. We present EIF+, a refined version of the EIF designed to op-
timally model the space around the training data distribution,
enhancing the algorithm’s performance on unseen data. This
innovation aims to bolster the model’s generalization ability,
reliably identifying anomalies even without prior knowledge of
their potential locations or without being present in the training
dataset. ExIFFI applies to EIF+, too.

3. We benchmark the novel EIF+and ExIFFI against state-of-the-
art isolation based AD and explainability approaches on 16
public datasets and showcase their effectiveness and computa-
tional efficiency. To facilitate investigation and reproducibility,
we introduce a novel functionally-grounded quantitative evalua-
tion, named 𝐴𝑈 𝐶𝐹 𝑆 score, that measure the effectiveness of the
interpretation exploiting Feature Selection as a proxy task.

These contributions address critical gaps in the interpretability and
obustness of the EIF, which are essential to bridge for its broader
cceptance and adoption over the traditional IF, particularly given EIF’s
uperior performance, enhanced robustness, and reduced bias. More-
ver, this work paves the way for the wider adoption and application

2 In this paper, we will refer to ’Outlier Detection’ and ‘Anomaly Detec-
tion’ alternatively, always referring to the same unsupervised task of finding
nomalous data points.
 s

2 
of feature importance methods across various domains by establishing
a clear and systematic framework for comparing feature importance
explainability approaches.

The paper is organized as follows. Section 2 surveys relevant re-
search. Section 3.1 provides an introduction to the IF algorithm, fol-
lowed by a discussion of the EIF algorithm in Section 3.2. The newly
proposed EIF+model is introduced in Section 3.3. Sections 4.1 and 4.2
present the DIFFI and ExIFFI interpretation algorithms, along with the
graphical tools used to illustrate their results.

Section 5 describes the experimental setup for evaluating EIF+and
ExIFFI analyzing anomaly detection and interpretability performances.
ection 6 details the experiments, including graphical evaluations of
hree datasets in Sections 6.1, 6.2, while Section 6.3 presents the

numerical AD performance results for 16 datasets. Section 6.4 covers
the interpretation results, Section 6.5 analyzes the correlation between
interpretation and AD models results, and Section 6.6 provides an
ablation study on scalability for large datasets.

Finally, limitations, conclusions, and future research directions are
discussed in Section 7.

The Appendix includes an extensive description of datasets
Appendix A.1, an analysis comparing EIF and IF Appendix A.2, an
analysis providing a deep explanation on why ExIFFI is not depth-based
s DIFFI Appendix A.3, an ablation study on the EIF+hyperparameter

𝜂 Appendix A.4 , and a comparison of different interpretations
hrough the Normalized Discounted Cumulative Gain (NDCG) metric

Appendix A.5.

2. Related work

Root Cause Analysis (RCA) is essential for identifying the underlying
causes of anomalies in model behavior, enhancing our understanding
of system outputs. Papageorgiou et al. (2022) categorize RCA methods
into two main types: probabilistic and deterministic.

Probabilistic RCA methods, such as Bayesian Networks (Kitson
et al., 2023), model relationships between variables to infer causal
connections (Amin et al., 2021a). These approaches are particularly
effective in fields like medical diagnostics and risk assessment, where
they can trace the origins of specific events by representing probabilis-
tic dependencies (Yu and Zhao, 2020; Amin et al., 2019; Khakzad et al.,
2011; Amin et al., 2021b). However, they often require substantial
domain expertise, are computationally intensive, and may struggle with
scalability in large datasets with complex interdependencies.

In contrast, Deterministic RCA methods focus on evaluating the
mportance of individual features in contributing to specific outcomes
ithout modeling the entire system. These methods are divided into

ad-hoc and post-hoc approaches (Molnar, 2020). For example, ad-hoc
ethods like the feature importance measure in Random Forests (Kursa

and Rudnicki, 2010) are straightforward to implement and interpret but
may lack generalizability due to their dependence on specific models.
ost-hoc methods, such as SHAP (Lundberg and Lee, 2017a) and per-
utation importance (Altmann et al., 2010), offer model-agnostic inter-

pretability, though they often come at the cost of higher computational
demands and do not inherently provide causal insights.

Thus, the choice between probabilistic and deterministic RCA meth-
ods hinges on the specific needs of the problem at hand. Probabilis-
tic methods are suited for uncovering causal relationships but are
more complex and resource-intensive, while deterministic methods of-
fer greater flexibility and ease of use, especially when a model-agnostic
solution is required, though they may provide less depth in causal
inference.

Explainability in Unsupervised Anomaly Detection (AD) remains
a significant challenge, where Explainable Anomaly Detection (XAD)
ocuses on extracting relevant knowledge from AD models regarding
elationships either present in the data or learned by the model. Recent

urveys highlight the importance of interpretability in AD, particularly
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as it becomes a regulatory requirement in various applications (Li et al.,
2023b).

Unsupervised AD methods can be categorized into parametric and
on-parametric approaches, each presenting unique advantages and
hallenges, especially in terms of explainability. Parametric models
xpress relationships through a finite set of parameters, facilitating
traightforward predictions. However, these models often lack clear
nterpretability, necessitating additional tools for explanation. For in-
tance, the widely-used Anomaly Autoencoder (AE) model (Aggarwal,

2015) faces interpretability challenges, leading to the development of
methods like RXP (Residual eXPlainer) (Oliveira et al., 2022), which
provides explanations by analyzing deviations in reconstructed fea-
ures.

On the other hand, Non-parametric AD approaches do not rely on
redefined parametric functions and instead detect anomalies by lever-
ging the inherent structure and patterns in the data. This often results

in intrinsic interpretability. For example, ECOD (Empirical-Cumulative-
Distribution-based Outlier Detection) (Li et al., 2023a) derives explana-
ions directly from data distributions, and IF is enhanced by the DIFFI
lgorithm (Carletti et al., 2023), which uses partitioning processes to
xplain outliers. This intrinsic interpretability makes non-parametric
ethods particularly valuable when understanding the decision-making
rocess is crucial, with DIFFI showing effectiveness in industrial appli-
ations (Carletti et al., 2020; Brito et al., 2022) by providing both local

and global explanations.
In conclusion, the selection between parametric and non-parametric

unsupervised AD methods should be guided by application needs.
Parametric models offer simpler predictions but often require sup-
plementary tools for interpretability, whereas non-parametric models
provide greater flexibility and inherent interpretability by utilizing data
patterns directly, making them ideal for scenarios where understanding
the decision-making process is critical.

This paper addresses a significant gap in the literature by introduc-
ing a novel interpretability algorithm specifically tailored for models
based on the IF framework, including the Extended Isolation Forest
(EIF) model. While existing methods like DIFFI offer some interpretabil-
ity of IF model, they do not fully accommodate the unique structure of
EIF. Our proposed algorithm enhances the interpretability of EIF and
similar models, offering both local and global insights into anomaly de-
tection processes. This contribution is crucial for advancing Explainable
Anomaly Detection (XAD) by providing more accessible and effective
interpretability solutions for IF-based models, particularly in complex,
nsupervised settings.

3. Isolation-based approaches for anomaly detection

Next, we provide some notions about isolation-based approaches
for AD. This family of methodologies, stemming from the Isolation
Forest (Liu et al., 2008), identifies outliers as samples that can be easily
separated from the others, i.e., through a reduced number of splitting
hyperplanes.

3.1. Isolation forest

Isolation Forest is a widely used ML model for AD (Liu et al., 2008).
It generates a set of 𝑁 random trees, called isolation trees, that are
able to identify anomalous elements in a dataset based on their position
n the tree structure. The idea behind this approach is that anomalies,
n average, are located at the beginning of the trees because they are

easier to separate from the rest of the dataset.
Assume that we have 𝑛 training data 𝐗 = {𝐱1,… , 𝐱𝑛}, where 𝐱𝑖 ∈ R𝑑 .

he IF algorithm chooses at random one dimension 𝑞 ∈ {1,… , 𝑑} and
 split value 𝑝 ∈ [min𝑖∈{1,…,𝑛} 𝑥𝑖,𝑞 ,max𝑖∈{1,…,𝑛} 𝑥𝑖,𝑞]. The dataset is then

divided into two subsets, the left one 𝐿 = {𝐱𝐢|𝑥𝑖,𝑞 ≤ 𝑝} and the right
one 𝑅 = {𝐱𝐢|𝑥𝑖,𝑞 > 𝑝}. This procedure is calculated iteratively until

the whole forest is built. Suppose the size of the dataset is excessive, v

3 
meaning that the number of samples makes the construction of the trees
too slow; in that case, it is demonstrated by Liu et al. (2008) that it
is better to build the forest using only a random subsample �̃� with �̃�
elements for each tree. Not only does this keep the computational cost
low, it also improves IF’s ability to identify anomalies clearly. Once the
model has built an isolation forest, to determine which data points live
outside the dataset distribution, the algorithm computes an anomaly
score for each of them. This value is based on the average depth among
trees where each data point is isolated.

The depth of a point 𝑥 in a tree 𝑡, denoted by ℎ𝑡(𝑥), is the cardinality
f the set of nodes  𝑡

𝑥 that it has to pass to reach the leaf node, i.e.:

ℎ𝑡(𝑥) = | 𝑡
𝑥| where  𝑡

𝑥 = {𝑘𝑠1 , 𝑘𝑠2 ,… , 𝑘𝑠ℎ}, (1)

Let 𝐸(ℎ(𝑥)) be the mean value of depths reached among all trees for
a single data point 𝑥. Then, according to Preiss (2000), the anomaly
score is defined by the function:

𝑠(𝑥, ̃𝑛) = 2−
𝐸(ℎ(𝑥))
𝑐(�̃�) , (2)

where 𝑐(𝑁) is the normalizing factor defined as the average depth of an
unsuccessful search in a Binary Search Tree (Hariri et al., 2021), i.e.:

𝑐(𝑁) = 2𝐻(𝑁 − 1) − 2(𝑁 − 1)
𝑁

. (3)

and 𝐻(𝑖) is the harmonic number that can be estimated by:

𝐻(𝑖) = ln(𝑖) + 0.5772156649 (Euler constant). (4)

IF’s fast execution with low memory requirement is a direct result of
building partial models and requiring only a significantly small sample
size as compared to the given training set. This capability is due to
the fact IF has the main goal to quickly isolate anomalies more than
modeling the normal distribution, contrarily to what other detection
methods do (Ruff et al., 2021).

3.2. Extended isolation forest

Although IF is one of the most popular and effective AD algorithms,
it has some drawbacks due to its partition strategy. One of them
s related to considering only hyper-planes that are orthogonal with
espect to the directions of the feature space, as Hariri et al. show
n Hariri et al. (2021). In some cases, this bias leads to the formation
f some artifacts where points are associated with low anomaly scores
ven if they are clearly anomalous. These areas are in the intersection
f the hyperplanes orthogonal to the dimensions associated with the
etection of inliers (Fig. A.9), creating misleading score maps and, in
ome cases, wrong predictions.

As a consequence, Hariri et al. in Hariri et al. (2021) tried to
improve the AD algorithm by correcting this bias with a different and
more general algorithm called Extended IF. Instead of selecting a hyper-
plane orthogonal to a single input dimension chosen at random, they
suggested picking a random point 𝐩 and a random vector 𝐯 that are
onsequently used to build a hyperplane that will split the space at
ach node of the binary tree into two smaller subspaces, as the IF does.
herefore, they proposed a more generic and extended paradigm, while
aintaining the fast execution and low memory requirements of the

riginal IF.
In the following, we will briefly describe the working principle of

the EIF model. Let us consider a set 𝑋 of 𝑛 elements 𝐱𝑖 ∈ R𝑑 with
𝑖 ∈ {1,… , 𝑛}. In order to evaluate the anomaly score of the samples,
the EIF model (Hariri et al., 2021) generates a forest of 𝑁 binary trees:

 = {𝑡0, 𝑡1,… , 𝑡𝑁}. (5)

Every tree 𝑡 ∈  is built from a bootstrap sample 𝑋𝑡 ⊂ 𝑋. At each
ode 𝑘 of 𝑡, a random hyperplane 𝑡

𝑘 is selected by picking a random
oint 𝐩 inside the distribution space limits, and a normalized random

ector 𝐯 defined as
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𝐯 ∼ 𝑍𝑍𝑍
‖𝑍𝑍𝑍‖2

, where 𝑍𝑍𝑍 = (𝑍1,… , 𝑍𝑑 )⊤ and

𝑍𝑖 ∼  (0, 1) ∀ 𝑖 ∈ {1,… , 𝑑}. (6)

Lesouple et al. in Lesouple et al. (2021) pointed out that this way
f drawing a random hyperplane may lead to the creation of empty
ranches, that are merely artifacts of the algorithm. To avoid this prob-
em, they propose a particular way of selecting random hyperplanes,
hat we also use in our implementation of the EIF model.

As done in Lesouple et al. (2021) and Hariri et al. (2021), we first
select a random hyperplane by drawing a unit vector 𝐯 defined as in
(6). which will serve as the normal vector of the hyperplane. Then, as
done in Lesouple et al. (2021), the point where the hyperplane passes
is obtained by a scalar 𝛼 drawn uniformly between the minimum value
and the maximum value of the points of the dataset 𝑋 in the direction
of the random vector previously drawn. Therefore,

𝛼 ∈ [min {𝐱 ⋅ 𝐯 ∀𝐱 ∈ 𝑋},max {𝐱 ⋅ 𝐯 ∀𝐱 ∈ 𝑋}], 𝐩 = 𝛼𝐯. (7)

The algorithm starts by generating a random hyperplane 𝑡
𝑘0

de-
ined by the intercept point 𝐩 and 𝐯 as described in Eqs. (6) and
7).

Thus the hyperplane splits the dataset 𝑋𝑡 into two subsets,
𝐿𝑡
𝑘0

= {𝑥𝑥𝑥|𝑥𝑥𝑥 ∈ 𝑋𝑡
𝑘0
, 𝑣𝑣𝑣𝑡𝑘0 ⋅ 𝑥𝑥𝑥 > 𝑣𝑣𝑣𝑡𝑘0 ⋅ 𝐩

𝑡
𝑘0
},

𝑅𝑡
𝑘0

= 𝑋𝑡 ⧵ 𝐿𝑡
𝑘0
.

(8)

The root node of the tree, 𝑘0, is the space splitting made by the hyper-
plane 𝑡

𝑘0
. Then, this method is applied recursively to the subsets 𝐿𝑡

𝑘0
and 𝑅𝑡

𝑘0
until the max number of splits is reached, which corresponds

to the preset max depth of the tree or when the set to split has only
one element.

Thanks to this hierarchical tree structure, to evaluate if an element
is an anomaly, the model extracts the path of the point 𝑥 ∈ 𝑋𝑡 from
the root to the leaf nodes down the tree. Then, as IF does (Ruff et al.,
2021), the EIF algorithm uses the average depth of the point in each
ree to evaluate the anomaly score, according to the paradigm that the
nomalies can be isolated with few partitions. The average depth of
he point in the trees will be translated to an anomaly score according
o Eq. (2), as in IF.

3.3. EIF+ a novel enhancement of EIF algorithm

Lesouple et al. (2021) showed that the EIF algorithm presented
by Hariri et al. in Hariri et al. (2021) can create misleading empty
ranches. On the other hand, we observed that the solution proposed
n Lesouple et al. (2021) hinders the ability to generalize well in the

space around the distribution. Actually, generalization ability is very
mportant in the context of AD, since an anomaly is a point that is
utside the normal distribution of the data.

Therefore, we propose EIF+, a novel approach that enhances the
EIF methodology, based on the modification introduced by Lesouple
et al. (2021). EIF+aims to better adapt to the space surrounding the
training data distribution, thus improving the performances of the EIF
model when the model is fitted without anomalies in the training set.

his goal is achieved by choosing splitting hyperplanes with an ad hoc
rocedure, in Fig. 1 it is possible to observe the difference.

Let  = {𝐱 ⋅ 𝐯 ∀𝐱 ∈ 𝑋} be the set of the point projections along
he hyperplane’s orthogonal direction 𝐯. As in Lesouple et al. (2021),

the point 𝐩 is defined as 𝐩 = 𝛼𝐯. However, instead of drawing 𝛼 using
he interval defined by the minimum and maximum values of  as

in Fig. 1(a), EIF+draws it from a normal distribution  (E[], 𝜂 𝜎())
as shown in Fig. 1(b). Even if EIF+can generate empty branches,
they contribute to the formation of a model that exhibits enhanced
generalizability, as will be shown in Section 6.
4 
4. Interpretability of isolation-based anomaly detection models

In the context of anomaly detection models, interpretability is cru-
cial because it allows us to understand and trust the model’s decisions,
especially in critical applications such as fraud detection, network
security, and medical diagnostics. An interpretable model enables prac-
itioners to verify whether the model is identifying meaningful patterns
r if it is influenced by spurious correlations, ultimately ensuring that
he anomalies detected are actionable and reliable.

With this in mind, we move on to the task of interpreting the
redictions made by the isolation-based models introduced in Section 3.

Interpretation algorithms aim to explain the latent patterns identified
by the models, thereby enriching our comprehension of their outputs.
Drawing inspiration from the DIFFI algorithm developed by Carletti
et al. (2023) for the IF, we introduce ExIFFI, a novel model-specific
lgorithm designed to interpret the results generated by the IF, EIF and
ts variant, the EIF+.

4.1. Depth-based isolation forest feature importance

Depth-based Isolation Forest Feature Importance (DIFFI) was the
first unsupervised model-specific method addressing the need to in-
erpret the IF model (Carletti et al., 2023). It exploits the structure

of the trees in the IF algorithm to understand which features are the
ost relevant to discriminate whether a point is an outlier or not. In
articular, a meaningful feature should isolate the anomalies as soon as
ossible, and create a high imbalance when isolating anomalous points
the opposite being true for inliers).

We briefly explain how DIFFI works and we introduce the related
notation, as we will leverage it when introducing the novel ExIFFI ap-
proach to explain EIF and EIF+predictions. From Carletti et al. (2023),

e define:

Induced Imbalance Coefficients 𝜆 : given an internal node 𝑘 of an
isolation tree, as defined in Section 3.1, let 𝑛(𝑘) be the number
of points that the node divides, being 𝑛𝑙(𝑘) and 𝑛𝑟(𝑘) the number
of points on the left and the right child, respectively. The
coefficient measuring the induced imbalance of the node 𝑣 is:

𝜆(𝑣) =
{

0 if 𝑛𝑙(𝑘) = 0 or 𝑛𝑟(𝑘) = 0
�̃�(𝑘) otherwise

(9)

where

�̃�(𝑘) = 𝑔
(

max(𝑛𝑙(𝑘), 𝑛𝑟(𝑘))
𝑛(𝑘)

)

and 𝑔(𝑎) = 𝑎 − 𝜆𝑚𝑖𝑛(𝑛)
2(𝜆𝑚𝑎𝑥(𝑛) − 𝜆𝑚𝑖𝑛(𝑛))

+ 0.5.

(10)

In the previous equation, 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 denote the minimum and
maximum scores that can be obtained a priori given the number
of data 𝑛(𝑘).

Cumulative feature importances 𝐈 : it is a vector of dimension 𝑑
(i.e., the number of features) where the 𝑗th component is the
feature importance of the 𝑗th feature. In Carletti et al. (2023),
authors distinguish between 𝐈𝐼 , created based on predicted in-
liers, and 𝐈𝑂, based on the outliers. Concerning 𝐈𝐼 , the procedure
starts with the initialization 𝐈𝐼 = 𝟎𝑑 . Considering the subset of
predicted inliers for the tree 𝑡, 𝐼 ,𝑡, for each predicted inlier
𝑥𝐼 ∈ 𝐼 ,𝑡, DIFFI iterates over the internal nodes in its path
𝑃 𝑎𝑡ℎ(𝑥𝐼 , 𝑡). If the splitting feature associated with the generic
internal node 𝑣 is 𝑓𝑗 , then we update the 𝑗th component of 𝐈𝐼
by adding the quantity:

𝛥 = 1
ℎ𝑡(𝑥𝐼 )

𝜆𝐼 (𝑣) (11)
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Fig. 1. Comparison of hyperplane selection methods: (a) EIF method by Lesouple et al. and (b) the novel EIF+ method.
]

The same procedure applies for 𝑥𝑂 ∈ 𝑂 ,𝑡 and 𝐈𝑂. Intuitively, at
each point and each step, the vector accumulates the imbalance
produced by each feature. The imbalance is measured by the
previously defined 𝜆 and weighted by the depth of the node.
This means that, according to DIFFI, features that allowed to
isolate the points sooner, are considered to be more useful.

Features counter 𝐕 : it is used to compensate for uneven random
feature sampling that might bias the calculated cumulative
feature importance. At each passage of a point through a node,
the entry of the counter corresponding to the splitting feature is
incremented by one. As for the cumulative feature importance,
two feature counters are calculated, the one for predicted inliers
𝐕𝐼 and the one for outliers 𝐕𝑂.

Based on the above-introduced quantities, DIFFI computes the
Global Feature Importance by looking at the weighted ratio between
outliers and inliers cumulative feature importance:

𝐺 𝐹 𝐼 =
𝐈𝑂∕𝐕𝑂
𝐈𝐼∕𝐕𝐼

4.2. Extended Isolation Forest Feature Importance (ExIFFI)

Drawing inspiration from DIFFI, we introduce ExIFFI, the Extended
Isolation Forest Feature Importance, a generalization of the DIFFI al-
gorithm that is able to rank the importance of the features in deciding
whether a sample is an anomaly or not for any of the IF models where
the space is split by an hyperplane.

As seen in Section 3.2, a node 𝑘 ∈ 𝑡 in an EIF tree 𝑡 ∈ 
corresponds to an hyperplane 𝑡

𝑘, that splits the subset 𝑋𝑡
𝑘 ⊆ 𝑋𝑡 ⊆ 𝑋.

Using the Lesouple et al. (2021) correction of the EIF, 𝑡
𝑘 is completely

defined by means of a vector orthogonal to its direction 𝐯𝑡𝑘, defined as
in (6), and a point 𝐩𝑡𝑘 that belongs to it, defined as in (7).

The hyperplane 𝑡
𝑘 separates the points in a set of elements on the

left side of the hyperplane and a set of elements on the right side of the
hyperplane.
𝐿𝑡
𝑘 = {𝐱|𝐱 ∈ 𝑋𝑡

𝑘, 𝐯
𝑡
𝑘 ⋅ 𝐱 > 𝐯𝑡𝑘 ⋅ 𝐩

𝑡
𝑘},

𝑅𝑡
𝑘 = 𝑋𝑡

𝑘 ⧵ 𝐿
𝑡
𝑘.

(12)

ExIFFI computes a vector of feature importances for each node of
the tree, based on two intuitions:
5 
• The importance of the node 𝑘 for a point 𝑥 is higher when 𝑘
creates a greater inequality between the number of elements on
each side of the hyperplane, and 𝑥 is in the smaller subset. Indeed,
greater inequality means a higher grade of isolation for the points
in the smaller set.

• For node 𝑘, the relative importance of the 𝑗th feature is deter-
mined by the projection of the normal vector of the splitting
hyperplane onto that feature. If the split occurs along a single
feature, that feature will receive the entire importance score.
If the splitting hyperplane is oblique, the importance scores of
multiple features will be calculated based on their respective
projections onto the normal vector of the hyperplane.

Thus, we assign an importance value function to every node of
the trees that is the projection on the normal vector of the splitting
hyperplane of the quotient between the cardinality of the sample before
a particular node and after it, following the path of a sample 𝐱. Thus,
knowing that the splitting hyperplane 𝑡

𝑘 of that node is determined
by the pair {𝐯𝑡𝑘,𝐩

𝑡
𝑘}

3:

𝝀𝑡𝑘(𝐱) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

|𝑋𝑡
𝑘|

|𝐿𝑡
𝑘|

)

𝑎𝑏𝑠(𝐯𝑡𝑘), if 𝐯𝑡𝑘 ⋅ 𝐱 > 𝐯𝑡𝑘 ⋅ 𝐩
𝑡
𝑘

(

|𝑋𝑡
𝑘|

|𝑅𝑡
𝑘|

)

𝑎𝑏𝑠(𝐯𝑡𝑘), otherwise
(13)

For example, consider a node 𝑘 with a hyperplane defined by 𝐯𝑡𝑘 =
[0.5, 0.7, 0.2] and 𝐩𝑡𝑘 = [2.0, 2.5, 1.0]. Suppose a point 𝐱 = [2.5, 3.0, 1.5].
We first calculate the dot products:

𝐯𝑡𝑘 ⋅ 𝐱 = 0.5 × 2.5 + 0.7 × 3.0 + 0.2 × 1.5 = 1.25 + 2.1 + 0.3 = 3.65

𝐯𝑡𝑘 ⋅ 𝐩
𝑡
𝑘 = 0.5 × 2.0 + 0.7 × 2.5 + 0.2 × 1.0 = 1.0 + 1.75 + 0.2 = 2.95

Since 𝐯𝑡𝑘 ⋅𝐱 = 3.65 is greater than 𝐯𝑡𝑘 ⋅𝐩
𝑡
𝑘 = 2.95, the point 𝐱 lies in 𝑅𝑡

𝑘.
If the subsets contain |𝐿𝑡

𝑘| = 90 and |𝑅𝑡
𝑘| = 10 points out of |𝑋𝑡

𝑘| = 100,
the importance vector 𝝀𝑡𝑘(𝐱) would be:

𝝀𝑡𝑘(𝐱) =
( 100
10

)

× abs([0.5, 0.7, 0.2]) = [10 × 0.5, 10 × 0.7, 10 × 0.2] = [5, 7, 2

The vector of importances evaluated in the tree 𝑡 for a point 𝑥 is
the sum of all the importance vectors of all the nodes that the element
𝑥 passed through on its path to the leaf node in the tree 𝑡 defined
in Eq. (1):

𝐈𝑡(𝑥) =
∑

𝑘∈ 𝑡
𝑥

𝝀𝑡,𝑘(𝑥). (14)
3 With 𝑎𝑏𝑠(𝐯) we refer to the positive part of every element of the vector 𝐯.
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We then calculate the sum of the importance vector of the point 𝑥
or all the trees in  :

𝐈(𝑥) =
∑

𝑡∈𝑇
𝐈𝑡(𝑥) (15)

We define 𝐕(𝑥) as the sum of the vectors orthogonal to the hyper-
lanes of the nodes that an element 𝑥 passes in a tree, then we calculate
he sum of the values in all the trees:

𝐕(𝑥) =
∑

𝑡∈𝑇

∑

𝑘∈ 𝑡
𝑥

𝐯𝑡𝑘 (16)

4.2.1. ExIFFI: Global feature importance
To globally evaluate the importance of the features, we divide 𝑋

into the subset of predicted inliers 𝐼 = {𝐱𝑖 ∈ 𝑋|�̂�𝑖 = 0} and the one of
predicted outliers 𝑂 = {𝐱𝑖 ∈ 𝑋|�̂�𝑖 = 1} where �̂�𝑖 ∈ {0, 1} is the binary
abel produced by the thresholding operation indicating whether the
orresponding data point 𝐱𝑖 is anomalous (�̂�𝑖 = 1) or not (�̂�𝑖 = 0).

We define the global importance vectors for the inliers and for
the outliers by summing out the importance values introduced in
Eq. (15):

𝐈𝐼 =
∑

𝐱∈𝐼

𝐈(𝐱), 𝐈𝑂 =
∑

𝐱∈𝑂

𝐈(𝐱). (17)

Likewise the sum of the orthogonal vectors:

𝐕𝐼 =
∑

𝐱∈𝐼

𝐕(𝐱), 𝐕𝑂 =
∑

𝐱∈𝑂

𝐕(𝐱). (18)

Due to stochastic sampling of hyperplanes, in order to avoid the
ias generated by the fact that it is possible that some dimensions are
ampled more often than others, the vectors of importance have to be
ivided by the sum of the orthogonal vectors.

�̂�𝐼 =
𝐈𝐼
𝐕𝐼

, �̂�𝑂 =
𝐈𝑂
𝐕𝑂

. (19)

To evaluate which are the most important features to discriminate
a data as an outlier we divide the importance vector of the outliers
y the one of the inliers. Eq. (19), and we obtain the global fea-

ture importance vector in the same vein as in the DIFFI algorithm
(Carletti et al., 2023):

𝐆𝐅𝐈 =
�̂�𝑂
�̂�𝐼

. (20)

For clarity, the pseudocode of the ExIFFI algorithm for the compu-
ation of the Global Feature Importance is reported in 1.

4.2.2. ExIFFI: Local feature importance
The Local Feature Importance assumes significance primarily within

he context of anomalous data points, especially from the point of
iew of applications. Indeed, providing explanations of samples deemed
nomalous eases decision-making by domain experts, who can sub-

sequently tailor their responses based on the salient features driving
the anomaly of a single point. Let us take into account an element
𝑥, Eq. (15) gives a vector of importances 𝐈(𝑥) of the sample 𝑥 for each
eature. Then the vector 𝐕(𝑥) is the normalization factor of the feature
mportance. Thus, the Local Feature Importance (𝐋𝐅𝐈) of an element 𝑥
s the quotient:

𝐋𝐅𝐈(𝑥) = 𝐈(𝑥)
𝐕(𝑥)

. (21)

The pseudocode for the 𝐋𝐅𝐈 computation is analogous to the one re-
orted in 1 with the difference that Eq. (21) is used in place of Eq. (20)
n the last step.
6 
Algorithm 1: ExIFFI Algorithm
Input : Isolation based AD model 𝐹 , Input dataset 
Output: Global Feature Importance vector 𝐺 𝐹 𝐼 ∈ R𝑝

𝐼(𝐱) ← (0)𝑝 ∀𝐱 ∈ ;
// Initialize all importance vectors to zero
foreach 𝐱 in  do

foreach Isolation Tree 𝑡 in 𝐹 do
 𝑡
𝑥 = {𝑘 ∈ 𝑡 ∣ 𝐱 traverses node 𝑘 in tree 𝑡};

𝐼𝑡(𝑥) ←
∑

𝑘∈ 𝑡
𝑥
𝜆𝑘,𝑡(𝑥) // Aggregate the

importance scores of all nodes in the
path from the root to the leaf node
containing 𝐱

𝑉𝑡(𝑥) ←
∑

𝑘∈ 𝑡
𝑥
𝑣𝑘,𝑡(𝑥);

// Aggregate the vectors orthogonal to
hyperplanes of the nodes in the path
from the root to the leaf node
containing 𝐱

𝐼(𝐱) ←
∑

𝑡∈𝐹 𝐼𝑡(𝐱);
// Aggregate the importance scores for 𝑥

over all the trees in the forest 𝐹
𝑉 (𝐱) ←

∑

𝑡∈𝐹
∑

𝑘∈ 𝑡
𝑥
𝐯𝑡𝑘;

// Aggregate the vectors of the direction
of the cut for 𝑥 over all the trees in the
forest 𝐹

end
end
𝐼 ,𝑂 ← Predict(, 𝐹 );
// Get the predicted inliers and outliers
𝐈𝐼 ←

∑

𝐱∈𝐼
𝐈(𝐱);

𝐈𝑂 ←
∑

𝐱∈𝑂
𝐈(𝐱);

// Sum together the importance vectors of all
inliers and outliers

𝐕𝐼 ←
∑

𝐱∈𝐼
𝐕(𝐱);

𝐕𝑂 ←
∑

𝐱∈𝑂
𝐕(𝐱);

// An analogous operation is done for the
orthogonal vectors

�̂�𝐼 ←
𝐈𝐼
𝐕𝐼

;

�̂�𝑂 ←
𝐈𝑂
𝐕𝑂

;
// Compute the final normalized importance

vectors separately for inliers and outliers

𝐺 𝐹 𝐼 ←
�̂�𝑂
�̂�𝐼

;

return 𝐺 𝐹 𝐼 ;

4.2.3. Visualizing explanations
Miller (2019) defines interpretability in AI models as the extent to

which a human can comprehend the rationale behind a decision. To
be effective, interpretability should deliver a clear and comprehensible
epresentation of how inputs influence outputs, even for individuals

who are not experts in the field.
To bolster users’ trust in the model, relying solely on a series of

numerical Scores is insufficient. Providing a series of summary scores
nd comprehensible graphical representations of these scores may help

the evaluation of the model outputs and bolster its interpretational
efficacy.

To achieve these goals, two distinct graphical representations are
proposed

GFI Score Plot The Score Plot is the average importance score across
runs of the algorithm. For clarity, we introduce the Score Plot, a
horizontal bar plot displaying average Global Importance Scores
across training executions (Fig. 2(a)).
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Fig. 2. Score Plot 2(a), and Scoremap 2(b) of the dataset Bisect3d.
LFI Scoremap The Scoremap provides local interpretability by com-
puting Local Importance Scores for feature pairs. Each grid point
represents the feature with the highest score, shown in red or
blue for the first and second features respectively. Darker shapes
indicate higher Feature Importance Scores. Scatter plots overlay
data points, distinguishing inliers (blue dots) and outliers (red
stars). Contour plots offer contextual insights of the anomaly
score regions. Focusing on the most important feature pair is
common practice, facilitating anomaly dispersion analysis. For
instance, in the Bisec3D dataset (Fig. 2(b)), this strategy was
employed.

The GFI Score Plot represents the outcome of multiple model runs,
40 in this paper (Section 6), to account for the stochastic nature
of IF-based models like EIF and EIF+. This approach recognizes the
inherent randomness of these models and leverages multiple runs to
capture variability, enhancing the reliability of interpretability results
and providing deeper insight into the influence of individual features
on model output.

To illustrate the interpretation of the graphical representation, we
use the Bisect3D dataset introduced in Appendix A.1. In this dataset,
anomalies are placed along the bisector of Features 0, 1, and 2, while
inliers are centered around the origin, following a normal distribution
across six dimensions. Consequently, Features 0, 1, and 2 play a key
role in detecting outliers, and due to model stochasticity, any of these
three features can be top-ranked in different executions.

The Score Plot in Fig. 2(a) shows nearly identical Importance Scores
for these three features, with the rest having consistently lower scores.
The feature ranking may vary with additional model runs.

The scatter plot in Fig. 2(b) highlights that outliers, represented
by stars, deviate from the ball of inliers. The color distribution in
the Scoremap indicates how the Local Importance Score varies across
feature space. Lighter shades dominate the center, while the further
from the distribution of inliers, the darker the color are, we observe
that the anomalies lay in between the change of the color of the most
important feature, underlying how the outliers are distributed in the
intersection of the two features.

To sum up, ExIFFI serves as the feature importance mechanism
for the EIF, extending the ideas from DIFFI, which focuses on the IF.
While DIFFI evaluates feature importance by assessing the imbalance
created by single-feature splits in IF trees, ExIFFI adapts this approach
to the more complex hyperplane splits in EIF. By leveraging the tree
structure, ExIFFI determines how each feature contributes to creating
imbalanced splits, ranking features based on their importance in detect-
ing anomalies within the EIF framework. This structural method allows
for understanding feature importance both globally, across the entire
dataset, and locally, for individual data points.
7 
5. Experimental setup

To evaluate the performance of the EIF+model and the interpretabil-
ity of ExIFFI, we conducted experiments using various benchmark
datasets, detailed in Appendix A.1. The implementation for EIF+, Ex-
IFFI, and the experimental setup are publicly available at https://
github.com/alessioarcudi/ExIFFI. In Section 5.1, we present in detail
how we will conduct the experiments about the model’s ability to
detect anomalies, especially under low contamination conditions, and
provide a comparative analysis against other AD models. Additionally,
in Section 5.2, we present instead the proxy tasks used in order to
evaluate the accuracy of ExIFFI’s interpretability and comparing it with
the ad-hoc method DIFFI and ECOD and various post-hoc interpretation
techniques.

Following the evaluation of the datasets, we analyze the soundness
and computational efficiency of these algorithms. In Section 6.5 we
compute the correlation between the local importance scores provided
by different interpretation algorithms with the anomaly scores provided
by the explained AD model with the aim of identifying a strong linear
relationship between these two quantities, which serves as a proof of
the correctness of the explanations. Finally, in Section 6.6 we compare
the algorithms considering the time needed to fit the model, predict the
results and computing feature importances. This examination highlights
the efficiency of the proposed models.

5.1. Performance evaluation

We assess the performance of the EIF+model by benchmarking
it against several anomaly detection (AD) models. This evaluation
includes both well-established models from the literature and a state-
of-the-art unsupervised AD model. The models compared are:

• Traditional Isolation-based approaches such as Isolation Forest
(IF) and Extended Isolation Forest (EIF).

• The novel Deep Isolation Forest (DIF), an advanced Isolation-
based model integrating deep learning techniques for enhanced
AD (Xu et al., 2023).

• The Anomaly AutoEncoder (Aggarwal, 2015), a deep learning-
based AD model, recognized for its robust performance in unsu-
pervised AD scenarios.

• The Empirical Cumulative distribution based Outlier Detection
(ECOD) (Li et al., 2023a), a non-parametric AD method which
uses the Empirical Cumulative Distribution function (ECDF) of
each single feature to compute the anomaly score, following the
intuition that anomalous points should be placed on the tails of
distributions.

https://github.com/alessioarcudi/ExIFFI
https://github.com/alessioarcudi/ExIFFI
https://github.com/alessioarcudi/ExIFFI
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In our experiments, we will evaluate the performance of anomaly
etection (AD) models across different levels of contamination within
he training dataset. This analysis is vital, as highlighted by Kim et al.

(2023), who stress the importance of examining the robustness of AD
models when the ‘‘normality assumption’’ (that all training data are
inliers) does not hold.

It is crucial to assess how AD models respond to varying levels
f contamination in the training data, where normal and anomalous
amples are mixed without labels. This evaluation not only reveals
he models’ effectiveness in real-world scenarios but also highlights
he impact of anomalies concentrated in specific regions of the data
pace. When anomalies are misclassified as normal, the model may
dapt to these outliers, distorting its representation of the overall data
istribution. As a result, the model’s ability to correctly identify and
solate true anomalies can be significantly diminished.

Specifically, our analysis studies anomaly contamination’s effect on
verage precision, focusing on EIF versus EIF+ performance differ-

ences. This thorough assessment benchmarks EIF+against traditional
methods and showcases its generalization ability.

With reference to the analysis of the performances varying the
contamination, we consider two distinct experimental scenarios chosen
to mirror the varied conditions under which AD models might be
eployed, offering a comprehensive understanding of their adaptability

and effectiveness:

• Scenario I: We fit and evaluate the models using the entire
dataset.

• Scenario II: We fit the models exclusively on the inliers within
the dataset, that correspond to the scenario of 0 contamination of
outliers. Subsequently, we assess the Average Precision scores of
these models when applied to the entirety of the dataset.

Finally in Section 6.3 the performances of the AD models are
nalyzed in terms of average precision, precision and AUC-ROC score.
esults are detailed in the Table 2.

5.2. Interpretability evaluation

Following the performance assessment, we shift our focus to the
interpretability of AD models, evaluating the ExIFFI algorithm, an ad-
hoc interpretation algorithm for the isolation based anomaly detections
such as IF, EIF and EIF+.

Our evaluation is carried out in two stages. Initially, we qualita-
tively examine the ExIFFI algorithm’s interpretive method through the
plots detailed in Section 4.2.3, observing how the resulting visualiza-
ions provide insights on the nature of the anomalies.

We then proceed to assess our model interpretive effectiveness by
comparing it with alternative interpretation algorithms.

• Ad-hoc algorithm named DIFFI, introduced in Section 4.1.
• Leveraging the ad-hoc interpretation of ECOD model (Li et al.,

2023a) we developed a local and global interpretation on its
feature outlier scores to create a common environment of compar-
ison. The model assigns an outlier score 𝑠𝑖 to each feature 𝑖 given
a sample 𝑥, and the paper analyzes feature outliers by comparing
each feature’s score 𝑠𝑖(𝑥) to the 99th percentile 𝑃99 saying that
the closer 𝑠𝑖 is to 𝑃99, the more outlier-like the feature. Than we
defined the LFI as:

𝐼local(𝑥) = 1
1 + (𝑠𝑖(𝑥) − 𝑃99)2

The GFI, similar to ExIFFI, is the mean importance of the outliers
𝑂 features divided by the mean importance of the inliers 𝑂:
𝐈𝐼 =

∑

𝐱∈𝑂 𝐈(𝐱)
|𝐼 |

∑

|𝑂 | 𝐱∈𝐼 𝐈(𝐱)

8 
• Post-hoc method that leverages Random Forest as a surrogate
model. This approach involves using an inherently interpretable
model to estimate the predictions of the initial Isolation Forest
models (IF, EIF, or EIF+), with interpretations derived from the
feature importance scores that the surrogate model provides.

In the absence of a one-size-fits-all metric or fully comprehensible
rior knowledge on the features, assessing the performances of such

algorithms is challenging due to the dependency on various factors,
including input data complexity, model intricacies, and end-user in-
terpretability, then the evaluation becomes a delicate balancing act
etween quantifiable measures and qualitative insights.

To quantitatively evaluate model interpretability, a proxy task is
ften utilized as an indirect means to assess model performance. In this
aper the Feature Selection acts as such a proxy, where Importance
cores from interpretability methods prioritize input features. Then
e assess the interpretation algorithm performance based on how it

prioritizes key features versus less important ones offering insight into
its effectiveness using the Feature Selection. Additionally, we add to
these results those from a casual feature selection to gauge the overall
performance trends more broadly.

We then introduce a metric to quantify the goodness of a Feature
election, the Area Under the Curve of Feature Selection (𝐴𝑈 𝐶𝐹 𝑆 ),
aking inspiration from the methodological evaluation used by Turbe

et al. in Turbé et al. (2023). 𝐴𝑈 𝐶𝐹 𝑆 is calculated as the difference
between the area under the curve when shrinking the dimensions of
he dataset on the most important features (𝐴𝑈 𝐶𝑀 ) and the area
nder the curve when considering the least important features (𝐴𝑈 𝐶𝐿),
𝑈 𝐶𝐹 𝑆 = 𝐴𝑈 𝐶𝑀 − 𝐴𝑈 𝐶𝐿. This metric reflects the distinction in

electing significant features or dropping them, with a larger gap
ndicating more effective prioritization, as on one hand losing vital
nformation leads to a noticeable performance decline when important
eatures are excluded early on, on the other hand maintaining the most
mportant information will result in maintaining the performances or
ven increasing them. The pseudocode 2 presents in details how the
𝐴𝑈 𝐶𝐹 𝑆 score is calculated.

Algorithm 2: Feature Selection Proxy Task
Input : Isolation based AD model 𝐹 , 𝐺 𝐹 𝐼 ranking , dataset

𝑋
Output: Average Precision vector 𝐴𝑃
𝐴𝑃𝑙 𝑒𝑎𝑠𝑡 ← [0,… , 0];
𝐴𝑃𝑚𝑜𝑠𝑡 ← [0,… , 0];
𝑋𝑙 𝑒𝑎𝑠𝑡 ← 𝑋;
𝑋𝑚𝑜𝑠𝑡 ← 𝑋;
for 𝑖 ← 1 to 𝑝 do

𝐴𝑃𝑙 𝑒𝑎𝑠𝑡[𝑖] ← average_precision(𝐹 , 𝑋𝑙 𝑒𝑎𝑠𝑡);
𝐴𝑃𝑚𝑜𝑠𝑡[𝑖] ← average_precision(𝐹 , 𝑋𝑚𝑜𝑠𝑡);
𝑋𝑙 𝑒𝑎𝑠𝑡 ← 𝑋𝑙 𝑒𝑎𝑠𝑡 ⧵𝑋𝑙 𝑒𝑎𝑠𝑡[∶,[−𝑖]];
// Inverse Approach: Remove the least

important feature
𝑋𝑚𝑜𝑠𝑡 ← 𝑋𝑚𝑜𝑠𝑡 ⧵𝑋𝑚𝑜𝑠𝑡[∶,[𝑖]];
// Direct Approach: Remove the most important

feature
end
return (𝐴𝑃𝑙 𝑒𝑎𝑠𝑡, 𝐴𝑃𝑚𝑜𝑠𝑡);

There exist various post-hoc interpretation algorithms like SHAP
Lundberg and Lee, 2017b) that could be integrated as a comparison

in the proxy task. However, due to their computational burden, these
algorithms are often less suitable for tree-based models, which are
widely employed in industrial settings due to their speed and low
memory requirements. Our experiments confirmed the unsuitability
of SHAP in our evaluation 6.6, even considering the faster variants
f SHAP (Lundberg et al., 2018), the required computational time

necessary to apply it to the benchmark datasets is excessive, making
it not viable in practice.
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Table 1
Experimental datasets overview: The first column lists the dataset names; the second specifies the total number of instances;
the third details the count of outliers; the fourth shows contamination rates; the fifth indicates the total features; the final
column reveals the dataset’s dimensionality.

Data Anomalies Contam Features Size Dataset type
𝑛 % 𝑑

Xaxis 1 100 100 9.09 6 (Low) Synthetic
Bisect 1 100 100 9.09 6 (Low) Synthetic
Bisec3D 1 100 100 9.09 6 (Low) Synthetic
Bisec3D_Skewed 1 100 100 9.09 6 (Low) Synthetic
Bisec6D 1 100 100 9.09 6 (Low) Synthetic
Annthyroid 7 200 534 7.56 6 (Low) Real
Breastw 683 239 52.56 9 (Middle) Real
Cardio 1 831 176 9.60 21 (High) Real
Glass 214 29 13.55 9 (Middle) Real
Ionosphere 351 126 35.71 33 (High) Real
Pendigits 6 870 156 2.27 16 (Middle) Real
Pima 768 268 34.89 8 (Middle) Real
Shuttle 49 097 3 511 7.15 9 (Middle) Real
Wine 129 10 7.75 13 (Middle) Real
Diabetes 85 916 8 298 9.65 4 (Low) Real
Moodify 276 260 42 188 15.27 11 (Middle) Real
i
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d
a
𝑟
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Our interpretability evaluation bypasses human experiments due to
heir high cost in terms of required time and effort, focusing instead
n metric-based assessments. Like other studies (Turbé et al., 2023;

Wojtas and Chen, 2020), we adopt, according to the Doshi-Velez’s
t al. taxonomy (Doshi-Velez and Kim, 2017), a Functionally-grounded

evaluation by using a proxy task (Feature Selection). This method is
neither specific nor expensive, making it ideal for our purposes. It pro-
vides a practical framework for assessing interpretability without the
significant resources required for human-based evaluations, aligning
with our research constraints and objectives.

6. Experimental evaluation of EIF+and ExIFFI

This section evaluates EIF+and ExIFFI, demonstrating their im-
provements over existing models. We focus on performance, particu-
larly interpretability and anomaly detection. The analysis also considers
their practicality in various settings by examining computational time.

We use a benchmark of 16 datasets with labeled anomalies to
valuate the performances of the models. This benchmark includes 5
ynthetic datasets, which were designed to highlight the differences
n model performance and to provide a ground truth about anomalies
nd model interpretation, as well as 11 open source datasets based on
eal applications. In the rest of the paper, the datasets will be indicated

using a typewriter font. Table 1 summarizes the key characteristics
f the datasets that were examined. A detailed description can be found

in Appendix A.1.
In the following sections, we present the qualitative results for

two synthetic datasets: Xaxis and Bisect3D_Skewed (Section 6.1),
along with the real-world dataset glass (Section 6.2). Next, we pro-
ide the quantitative results of the AD performance and its interpreta-
ion in Sections 6.3 and 6.4. Additional graphical results can be found

in the repository at https://github.com/alessioarcudi/ExIFFI.

6.1. Synthetic datasets

We evaluate the performance of EIF+and ExIFFI in detecting anoma-
ies and identifying the main features for the detection of anoma-
ous points through the graphical representations illustrated in Sec-
ion 4.2.3.

Synthetic datasets are designed to showcase the functionality and
behavior of the models and explanation algorithms, both in situations
where a single feature drives the detection of an anomaly and in
ases where multiple features contribute to anomaly identification. By
onstructing these datasets, we can replicate specific conditions and
ssess how effectively the model interprets anomalies when the under-
ying anomaly-generating mechanism is fully understood. This method

nables a precise evaluation of the model’s interpretative abilities.

9 
The construction of each synthetic dataset is inspired by from the
research paper authored by Carletti et al. (2023). The inliers are points
that lie within a 𝑝-dimensional sphere centered at the origin with a
radius 𝑟. These inliers are sampled from a uniform distribution in 𝑝
dimensions, denoted as 𝑝([−𝑟, 𝑟]), and are included in the dataset
f their L2 norm is less than 𝑟. Mathematically, this set of inliers is
epresented as 𝐼 = {𝑥 ∼ 𝑝([−𝑟, 𝑟]) ∣ ‖𝑥‖2 ≤ 𝑟}. This ensures that
ll inlier points are uniformly distributed within the defined boundary,

providing a well-defined structure for the normal data.
Outliers, on the other hand, are generated using a different ap-

proach to simulate anomalies. These outliers are uniformly distributed
along one or more axes, characterized by 𝑘 anomalous features. The
remaining 𝑝 − 𝑘 features act as noise, sampled from a Gaussian distri-
bution  (0, 1). The anomalous points are determined by the following
parameters:

• A unit vector 𝐮 ∈ S𝑛−1, where S𝑛−1 represents the unit sphere in
R𝑛, and 𝑢𝑖 ≠ 0 if 𝑖 is an anomalous feature,

• A scalar distance 𝑑 from the origin,
• A random variable 𝑥, sampled from a uniform distribution 𝐱 ∼
 ([min,max]),

• A noise vector 𝝐, where each anomalous feature is perturbed by
Gaussian noise: 𝜖𝑖 ∼  (0, 1) if 𝑖 is anomalous.

Thus, the outlier points are generally defined as:

𝑂 =
{

𝑑 ⋅ 𝐮 + 𝑥 ⋅ 𝐮 + 𝝐 ||
|

𝑑 ∈ R, 𝐮 ∈ S𝑛−1, 𝑥 ∼  ([min,max]),

𝜖𝑖 ∼  (0, 1) for each anomalous feature 𝑖
}

This equation captures the generation of outliers as a combination
of a scaled unit vector, a random displacement, and added noise,
reflecting the anomalous behavior in the dataset.

In this section, we examine anomalies in datasets with 𝑝 = 6
imensions, varying the number of anomalous features, 𝑘. Two datasets
re constructed to represent different scenarios: Xaxis, where 𝑘 = 1,
= 5, 𝑑 = 5, min = 0, max = 5 and anomalies occur along a single

imension thus 𝑢 = [1, 0, 0, 0, 0, 0], and Bisect3D_Skewed, where 𝑘 =
, 𝑟 = 5, 𝑑 = 5, min = 0, max = 5 and anomalies are distributed along a
kewed vector (𝑢 = [4, 3, 2, 0, 0, 0]∕‖[4, 3, 2, 0, 0, 0]‖). These datasets are

used to illustrate how feature importance scores change as anomalies
long one feature or along multiple feature with an order of how much
ach feature is important to determine the anomalies.

For a deeper explanation on the synthetic datasets generation pro-
ess please refer to the pseudocode presented in Appendix 3. The

other dataset used in the quantitative evaluation are presented in the
Appendix A.1 and are named Bisect, Bisect3D and Bisect6D

https://github.com/alessioarcudi/ExIFFI
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Table 2
Precision report: Scenario 1 (S1) and Scenario 2 (S2) performance metrics for various anomaly detection models across different datasets.
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S1

IF
Avg Prec 0.09 0.75 0.95 0.99 0.6 0.30 0.96 0.53 0.46 0.36 0.79 0.35 0.28 0.51 0.98 0.26 0.57
Prec 0.11 0.74 0.85 0.98 0.51 0.32 0.90 0.44 0.46 0.34 0.65 0.30 0.31 0.52 0.96 0.20 0,54
ROC AUC 0.51 0.85 0.91 0.98 0.63 0.63 0.90 0.69 0.70 0.62 0.73 0.59 0.64 0.63 0.97 0.56 0.72

EIF
Avg Prec 0.97 0.97 0.96 0.96 0.77 0.19 0.91 0.55 0.47 0.35 0.82 0.33 0.23 0.49 0.90 0.21 0.63
Prec 0.89 0.91 0.89 0.92 0.71 0.24 0.86 0.59 0.48 0.27 0.69 0.37 0.24 0.49 0.87 0.20 0.60
ROC AUC 0.93 0.95 0.93 0.95 0.84 0.59 0.86 0.77 0.71 0.58 0.76 0.63 0.61 0.61 0.93 0.56 0.76

EIF+
Avg Prec 0.91 0.94 0.93 0.93 0.75 0.20 0.88 0.50 0.44 0.31 0.84 0.28 0.21 0.49 0.70 0.17 0.59
Prec 0.89 0.83 0.71 0.81 0.64 0.28 0.85 0.52 0.49 0.24 0.72 0.27 0.41 0.50 0.71 0.00 0.55
ROC AUC 0.93 0.90 0.84 0.89 0.8 0.61 0.84 0.73 0.72 0.56 0.78 0.57 0.69 0.61 0.84 0.45 0.73

DIF
Avg Prec 0.06 0.16 0.30 0.19 0.25 0.21 0.44 0.58 0.10 0.30 0.87 0.26 0.34 0.41 0.54 0.07 0.31
Prec 0.06 0.20 0.28 0.16 0.32 0.26 0.49 0.52 0.90 0.20 0.76 0.26 0.39 0.41 0.60 0.00 0.36
ROC AUC 0.48 0.56 0.60 0.53 0.62 0.60 0.46 0.73 0.49 0.54 0.81 0.56 0.68 0.54 0.78 0.45 0.59

AE
Avg Prec 0.52 0.89 0.97 0.97 0.83 0.21 0.61 0.62 0.45 0.41 0.76 0.45 0.22 0.43 0.90 0.14 0.59
Prec 0.46 0.82 0.92 0.95 0.78 0.25 0.44 0.62 0.47 0.44 0.60 0.53 0.33 0.44 0.95 0.10 0.57
ROC AUC 0.70 0.90 0.95 0.97 0.87 0.59 0.41 0.79 0.70 0.68 0.68 0.72 0.65 0.57 0.97 0.51 0.73

ECOD
Avg Prec 0.1 0.99 0.97 1.00 0.82 0.26 0.85 0.65 0.29 0.38 0.56 0.5 0.26 0.46 0.91 0.19 0.57
Prec 0.1 0.99 0.9 1.00 0.75 0.3 0.75 0.53 0.35 0.41 0.54 0.48 0.35 0.45 0.87 0.1 0.55
ROC AUC 0.5 0.99 0.94 1.00 0.86 0.62 0.74 0.74 0.64 0.66 0.64 0.69 0.67 0.58 0.93 0.51 0.73

S2

IF
Avg Prec 0.10 0.99 1.00 1.00 0.98 0.45 0.99 0.68 0.26 0.65 0.89 0.72 0.37 0.58 0.98 0.61 0.70
Prec 0.00 0.95 1.00 1.00 0.96 0.43 0.94 0.60 0.31 0.68 0.79 0.73 0.42 0.55 0.97 0.50 0.68
ROC AUC 0.45 0.97 1.00 1.00 0.97 0.69 0.94 0.78 0.62 0.82 0.83 0.84 0.70 0.66 0.98 0.72 0.81

EIF
Avg Prec 0.99 0.99 0.99 0.99 0.97 0.45 0.98 0.74 0.55 0.57 0.90 0.65 0.27 0.54 0.97 0.57 0.76
Prec 1.00 1.00 1.00 0.99 0.98 0.41 0.93 0.72 0.61 0.68 0.82 0.64 0.36 0.57 0.95 0.60 0.77
ROC AUC 1.00 1.00 1.00 0.99 0.98 0.68 0.93 0.84 0.78 0.82 0.86 0.79 0.67 0.67 0.97 0.78 0.86

EIF+
Avg Prec 0.99 1.00 0.99 0.99 0.97 0.46 0.99 0.76 0.61 0.69 0.96 0.66 0.36 0.58 0.91 0.79 0.80
Prec 1.00 1.00 0.99 1.00 0.95 0.46 0.95 0.73 0.56 0.79 0.87 0.66 0.45 0.57 0.96 0.70 0.79
ROC AUC 1.00 1.00 0.99 1.00 0.97 0.70 0.95 0.85 0.76 0.88 0.90 0.80 0.72 0.67 0.97 0.83 0.87

DIF
Avg Prec 0.97 0.85 0.79 0.36 0.6 0.39 0.60 0.79 0.13 0.85 0.96 0.72 0.46 0.49 0.99 0.72 0.67
Prec 0.90 0.78 0.72 0.32 0.51 0.39 0.66 0.70 0.17 0.82 0.89 0.73 0.53 0.46 0.97 0.70 0.64
ROC AUC 0.94 0.87 0.84 0.62 0.73 0.67 0.64 0.83 0.54 0.90 0.90 0.84 0.76 0.59 0.98 0.83 0.78

AE
Avg Prec 1.00 1.00 1.00 1.00 0.95 0.44 0.98 0.83 0.50 0.53 0.87 0.65 0.24 0.50 0.90 0.45 0.74
Prec 1.00 1.00 1.00 1.00 0.9 0.42 0.94 0.70 0.52 0.62 0.75 0.68 0.33 0.54 0.94 0.50 0.74
ROC AUC 1.00 1.00 1.00 1.00 0.94 0.69 0.93 0.76 0.73 0.78 0.80 0.81 0.66 0.64 0.97 0.72 0.84

ECOD
Avg Prec 0.14 0.97 0.99 1.00 0.92 0.32 0.97 0.64 0.4 0.45 0.7 0.58 0.28 0.5 0.95 0.25 0.63
Prec 0.15 0.9 0.99 1.00 0.86 0.32 0.91 0.7 0.44 0.55 0.56 0.55 0.35 0.51 0.93 0.2 0.62
ROC AUC 0.53 0.94 0.99 1.00 0.92 0.63 0.91 0.67 0.69 0.74 0.66 0.73 0.67 0.62 0.96 0.56 0.76
Performance

In the Xaxis dataset anomalies are restricted to specific intervals
along a single feature (feature 0), while the rest of the data points are
uniformly spread within a 6-dimensional space. Detecting these anoma-
lies poses a challenge for algorithms like ECOD and Isolation Forest, as
they evaluate features individually. In particular in high-dimensional
spaces, anomalies confined to one dimension appear normal across
others, making them harder to detect. This challenge is particularly
evident in the well-known bias of Isolation Forest, pointed out by Hariri
et al. (2021), where there is a lower anomaly score in the bundles
orthogonal to all the axis but one around the data distribution. Since
anomalies in this case are aligned with one axis, they are inside the
bundle so they have a lower anomaly scores than anomalies with
the same distance from the data distribution but in a combination of
features.

This occurs because Isolation Forest as well as ECOD isolates each
feature independently, leading to a skewed perception when other fea-
tures behave normally. This bias motivated the development of the EIF
algorithm, which enhances anomaly detection by partitioning the data
space based on linear combinations of multiple features, rather than
treating them individually. As a result, EIF achieves substantially better
performance in detecting anomalies in datasets where the anomalies
are spread across a single dimension, such as the Xaxis dataset, which
Isolation Forest and ECOD struggle to identify.

In Bisect3D_Skewed the anomalies are aligned along the direc-
tion 𝑢 = [4, 3, 2, 0, 0, 0], then they are correlated to multiple features.
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This improves the detection performance of both ECOD and Isolation
Forest, as the anomalies exhibit more distinct behavior in the full
feature space.

In the two synthetic datasets presented, and in the results of the
synthetic datasets in the Table 2, the DIF perform poorly. This is due
to the fact that the anomalies are distributed in a specific manner
that does not leverage the strengths of DIF. DIF excels in detecting
anomalies when there are complex, non-linear relationships in the
data. However, when anomalies are confined to a specific feature (like
in the feature 0 case) or are linearly aligned (along the direction
[4, 3, 2, 0, 0, 0]), the model may not effectively distinguish them from
the normal data because these scenarios might not exhibit the complex
interactions between features that DIF is designed to exploit. This leads
to the model’s inability to properly isolate and detect these anomalies.

Finally, for what concerns the EIF and EIF+models they showcase
excellent performances with Average Precision values close to the
perfect score of 1, as detailed in Table 2

Interpretation

The Fig. 4 shows the importance scores of ExIFFI applied to EIF+in
Scenario II. The bar charts in the top row in Figs. 4(a) and 4(b)
illustrate the importance of each feature of the two datasets:Xaxis
and Bisect3D_Skewed. The importance scores not only demonstrate
the model’s ability to accurately identify the key features contributing
to the anomalies, assigning the highest scores to the most relevant
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Fig. 3. Figs. 3(a), 3(b) showcase the behavior of the average precision metric as the contamination level in the training set increases for different AD models. In particular
Fig. 3(a) is dedicated to Xaxis while 3(b) refers to Bisect3D_Skewed.
features, but also highlight its capability to distinguish between features
with varying scores when anomalies are unevenly distributed among
them. This nuanced differentiation underscores the model’s effective-
ness in capturing the relative significance of each feature based on the
specific distribution of anomalies.

In the bottom row, the local importance score maps depict the
relative importance of Feature 0 versus Feature 1 across different points
in a 2D space. The color gradient indicates which feature is more
important at each location (red for Feature 1 and blue for Feature
0). The maps demonstrate that the model consistently identifies the
correct dominant feature across different regions, with clear transitions
between blue and red areas, indicating precise differentiation between
the influence of Feature 0 and Feature 1 in different parts of the data
space. This ability to distinguish local importance highlights ExIFFI’s
robustness and effectiveness in feature selection under Scenario II.

The Table 3 presents an evaluation of feature selection methods
applied to the two Scenarios presented in Section 5.1, highlighting
key insights into their performance. The IF-based feature selection
(IF_ExIFFI) yields poor interpretation results in the case of Xaxis
dataset, which is consistent with the model’s overall bad performance,
indicating a direct link between the quality of the model and the
reliability of the feature importance it generates. Similarly, the Random
Forest-based method (IF_RF) also shows low interpretation results,
reinforcing the notion that the accuracy of a model’s performance is
crucial for effective feature importance evaluation.

On the other hand, the other feature selection methods, including
those based on EIF and EIF+, demonstrate very similar and strong
performance across both scenarios. This consistency suggests that these
methods successfully identified the most important features, contribut-
ing to their reliable performance across different conditions. Notably,
the EIF+_ExIFFI and EIF_RF methods performed particularly well, espe-
cially in Scenario II, highlighting their superior generalization ability
to unseen anomalies.

6.2. Real-world datasets

Real-world data presents a multifaceted benchmarking challenge,
mainly due to the intricate distributions and the subtle distinction
between inliers and outliers. These complexities often complicate the
task of reliably identifying anomalies, which in turn can affect the
interpretability of results. Our experiments aimed to shed light on the
efficacy of our models in discerning the features that affect the most
the anomalies.

We analyzed in details the results of the dataset named Glass due
to its unique characteristics and the insights they provide into anomaly
detection and feature interpretation. The Glass dataset offers clear
11 
definitions of features and anomalous classes, supported by literature
that helps validate the correctness of interpretation results. Moreover,
this dataset’s particular distribution, where some inliers are far from the
normal distribution and some outliers are close to inliers, highlights the
significant impact of contamination levels on model performance.

For a detailed view of the quantitative results of the datasets exam-
ined, refer to the Tables 2 and 3.

Performance

Fig. 5 shows that EIF+significantly outperforms EIF when con-
tamination levels are low, highlighting its superior generalization in
scenarios where the model is fitted primarily on normal data. This
improvement is evident in Fig. 6(b), where some inliers (blue dots)
are far from the distribution and some outliers (marked with orange
star) are inside the normal distribution, making it difficult for the model
to distinguish between normal and anomalous data when fitted to the
entire dataset. By focusing on normal data, EIF+better discerns the two,
leading to its marked advantage over EIF in these conditions.

A similar pattern can be observed for DIF, which also experi-
ences substantial performance gains when contamination levels are
low. While DIF struggles in high contamination scenarios, much like
other models, its deep learning architecture allows it to better map
data into informative subspaces when contamination decreases. This
enables DIF to capture the underlying structure of the normal data more
effectively, thereby isolating the remaining anomalies more accurately.
However, as noted in another table, DIF lacks robustness; despite
achieving high scores with some datasets in particular in Scenario II
as it is possible to see in Table 2, its performance drastically drops in
other datasets such as the synthetic ones, breastw, diabetes and
annthyroid. Additionally, DIF’s fit and prediction times analyzed in
Section 6.6 are significantly longer compared to simpler models like
IF and EIF, making it computationally expensive. In contrast, EIF+not
only improves upon EIF’s accuracy but also maintains relatively robust
results compared to the benchmark models and very low fit and pre-
diction times, offering a balanced trade-off between performance and
computational efficiency.

Interpretation

In this study, we chose to present the results from Scenario II due
to the significant overlapping of anomalies with inliers in Scenario I,
which led to poor performance. The strong overlap in Scenario I made
it challenging for the models to accurately distinguish between normal
and anomalous instances, resulting in less reliable feature importance
interpretations. As a result, the findings from Scenario II, where the
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Fig. 4. Figs. 4(a), 4(b) display the Score Plots for the Xaxis and Bisect3D_Skewed datasets, respectively. Figs. 4(c) and 4(d) outline, instead, the Local Scoremaps of these
two datasets. The feature importances used to generate these plots were obtained using the ExIFFI algorithm applied to the EIF+AD model.
Fig. 5. Figure showcases the behavior of the average precision metric as the
contamination level in the training set increases for different AD models trained on
the glass dataset.

model was trained solely on inliers, provide a clearer and more robust
analysis. For completeness.

As observable in Fig. 6(a), Barium (Ba) is emerged as the most
important feature, followed by Potassium (K). This aligns with domain
knowledge that we have on the dataset since the anomalous points
represent the chemical composition of the headlamp glass, confirming
the correctness of the approach, as Barium is known to be the key
differentiator between headlamp and window glass (Mrabet et al.,
2024).

The scoremap reveals that deviations in Potassium levels are not
strongly correlated with the anomaly distribution. In fact, as shown in
Fig. 6(b), the anomalous points (represented by orange stars) do not
12 
deviate from the normal distribution along the Potassium feature. How-
ever, some inlier points clearly deviate in their Potassium composition
and influence the interpretation output.

6.3. Performance report

Table 2 examinates the performance achieved by different AD mod-
els across various datasets. The analysis focuses on Average Precision
(Avg Prec), Precision (Prec), and ROC-AUC score metrics, under the
two different scenarios; with outliers in the training dataset (S1) and
without outliers (S2).

In S1 even if for each dataset the most performing model vary,
the EIF showcases superior Avg Prec, Prec, and ROC AUC scores
on average. This improvement underscores EIF’s enhanced anomaly
detection capability, particularly in handling complex data structures,
it is a model that robustly have high performances across all the
possible datasets. However, the EIF+model does not outperform EIF
within this scenario, indicating its modifications do not significantly
impact performance under standard test conditions, it remains the
second most performing model, together with AE. S2’s findings mark a
distinct improvement in EIF+’s performance over EIF, notably in real-
world datasets. In fact EIF+achieves parity or surpasses EIF in Avg
Prec and Prec metrics in all the dataset but Shuttle, demonstrating
its refined ability to detect anomalies. This enhanced performance is
attributable to EIF+’s algorithmic adjustments, optimized to grasp the
unseen outliers within complex data distributions more effectively than
EIF. Moreover EIF+demonstrate enhanced performances by figuring as
the most performing model in 6 out of 11 real world datasets and
reaching very high performances in synthetic ones. Thus it results as
the most performing model on average across the datasets.
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Fig. 6. Figs. 6(a), 6(b) display the Score Plot and Local Scoremaps for the glass dataset. The feature importances used to generate these plots were obtained using the ExIFFI
algorithm applied to the EIF+AD model.
Fig. 7. Average precision values for EIF and EIF+across multiple datasets in two scenarios and the mean precision over all datasets. Results for both Scenario I and Scenario II
are displayed for each dataset.
In Fig. 7 we observe how in Scenario I the results indicate that EIF
performs slightly better than EIF+across most datasets. This is reflected
by marginally higher average precision values for EIF in the majority of
the datasets. Although the difference is not substantial, it suggests that
EIF has a small performance edge under these specific conditions. Both
algorithms appear to be competitive in this scenario, with only slight
variations in their performance.

In contrast, Scenario II demonstrates a significant improvement
in the performance of EIF+, which outperforms EIF across almost all
datasets except for the shuttle dataset, where EIF maintains a slight
advantage. The mean results summarize this trend, showing higher
average precision values for EIF+in Scenario II. This suggests that
EIF+exhibits greater generalization capability when the anomalies are
not in the training set, as reflected by its overall better performance
across the majority of datasets in this scenario.

6.4. Importance score

Table 3 presents the performance of the newly introduced 𝐴𝑈 𝐶𝐹 𝑆
metric on 16 benchmark datasets in the two different Scenarios and
the interpretations are evaluated with the EIF model or the EIF+.
As detailed in 5, ExIFFI is benchmarked against DIFFI, an ad-hoc
interpretability algorithm of the IF, post-hoc interpretability approach
utilizing feature importance from a Random Forest surrogate model and
the intrinsically interpretable model ECOD.
13 
For synthetic datasets, the 𝐴𝑈 𝐶𝐹 𝑆 scores are generally high across
all models showing that all the models found the right anomalous
features, with the notable exception of the Xaxis dataset in the cases
of IF_ExIFFI, IF_RF and ECOD present wrong results due to the lack of
precision of the underlying models.

In the case of real-world datasets, the unique definitions of inliers
and outliers complicate the interpretability performance assessment of
the models. This issue is especially evident in the Breastw, Pima,
and Moodify datasets, where the 𝐴𝑈 𝐶𝐹 𝑆 values are similar and
predominantly negative.

For the other eight datasets, the data supports the effectiveness of
ExIFFI, which consistently records the highest 𝐴𝑈 𝐶𝐹 𝑆 values in nearly
all datasets and scenarios, except for the glass dataset in Scenario 1.
In ExIFFI applied to EIF or EIF+have the highest average score in any
context.

The analysis also reveals that the most effective interpretations by
ExIFFI are generally those associated to the most performing isolation
forest model, indicating that the 𝐴𝑈 𝐶𝐹 𝑆 metric values are strongly
correlated with the efficacy of a specific prediction in a given dataset
and scenario (i.e., Scenario I or Scenario II).

In conclusion, this comprehensive analysis confirms the effective-
ness of the combined use of EIF+and ExIFFI, achieving optimal results
in both anomaly detection and interpretability.
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Table 3
𝐴𝑈 𝐶𝐹 𝑆 metric values for different interpretation algorithms with average precision evaluated with EIF and EIF+ in Scenario I (S1) and Scenario II (S2) across different datasets.
The highest values are highlighted in bold.
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S1

EIF

DIFFI 4.73 4.12 3.42 0.02 2.92 0.96 0.11 4.65 −0.36 1.59 2.36 −1.48 0.11 −0.48 −0.51 0.17 1.40
IF_ExIFFI −4.72 4.13 3.45 0.18 3.62 1.12 0.25 1.93 0.84 0.30 3.29 −1.68 2.19 −0.31 2.76 0.68 1.12
EIF_ExIFFI 4.71 4.15 3.39 0.08 3.67 0.98 0.04 5.41 0.96 0.46 1.82 −1.78 1.58 −0.31 −1.43 0.45 1.51
EIF+_ExIFFI 4.71 4.07 3.42 0.16 3.63 0.98 0.07 4.42 1.05 0.40 0.61 −1.51 1.86 −0.30 0.45 0.12 1.51
IF_RF −2.82 4.01 3.41 0.19 3.39 0.45 −0.14 1.48 −0.30 −1.73 −1.91 −0.80 1.48 −0.36 0.44 −3.09 0.23
EIF_RF 4.72 4.05 3.44 0.16 3.59 −0.68 −0.18 1.35 0.49 −1.71 −1.97 −0.84 −0.70 −0.44 1.69 −2.41 0.66
EIF+_RF 4.72 4.02 3.39 0.16 3.58 −1.19 −0.16 0.32 0.46 −1.46 −1.87 −1.88 −1.40 −0.28 1.90 −2.81 0.46
ECOD −4.7 3.35 3.58 0.21 3.63 −0.10 0.09 3.09 −1.01 −0.42 −0.61 2.50 2.56 −0.07 2.20 −0.03 0.89

EIF+

DIFFI 4.54 4.16 3.32 −0.02 2.75 0.91 0.08 4.39 −0.34 1.55 −1.13 −1.11 0.23 −0.49 −0.69 0.43 1.16
IF_ExIFFI −4.49 4.12 3.46 0.18 3.11 1.10 0.28 2.40 0.81 0.48 2.68 −1.16 2.17 −0.20 2.78 0.62 1.15
EIF_ExIFFI 4.55 4.04 3.38 0.05 3.23 0.93 0.02 5.12 0.82 0.56 1.61 −1.37 1.76 −0.32 1.22 0.45 1.63
EIF+_ExIFFI 4.52 4.05 3.48 .004 3.16 0.97 0.08 4.25 0.74 0.52 0.45 −0.99 1.92 −0.27 0.73 0.18 1.49
IF_RF −2.68 3.93 3.44 0.07 3.00 0.42 −0.14 1.28 −0.30 −1.31 1.76 −0.72 1.37 −0.30 0.36 −2.33 0.49
EIF_RF 4.56 3.95 3.43 0.05 3.11 −0.67 −0.16 1.35 0.38 −1.51 −1.85 −0.71 −0.36 −0.41 1.73 −1.57 0.70
EIF+_RF 4.57 4.01 3.40 0.08 3.16 −1.16 −0.14 0.36 0.40 −1.30 −1.56 −1.43 −0.97 −0.28 1.62 −2.05 0.54
ECOD −4.47 3.31 3.42 −0.04 3.19 −0.12 −0.01 2.82 −0.71 −0.11 −0.34 2.07 2.71 −0.12 2.72 0.20 0.91

S2

EIF

DIFFI 2.83 2.92 2.79 −0.04 1.50 2.04 0.06 4.76 −1.45 2.11 −1.33 −3.66 −0.38 0.25 −1.48 −3.79 0.45
IF_ExIFFI −4.73 3.84 3.01 0.06 4.07 2.25 0.08 3.40 −1.01 3.45 0.89 4.39 2.68 0.37 2.88 8.07 2.10
EIF_ExIFFI 4.72 3.84 3.01 0.11 4.05 2.03 0.06 8.28 0.35 2.55 4.31 −0.35 1.88 −0.21 0.76 7.12 2.65
EIF+_ExIFFI 4.74 3.82 3.02 0.07 3.99 2.18 0.02 8.60 0.82 1.76 2.26 −0.23 1.22 −0.03 0.01 9.00 2.58
IF_RF −2.85 3.82 3.05 0.10 4.04 2.05 0.09 7.69 −0.05 2.18 −1.23 2.07 1.28 0.19 0.90 4.41 1.73
EIF_RF 4.73 3.83 3.03 0.06 4.05 2.03 0.10 7.78 0.31 −1.63 1.33 1.63 −0.84 0.12 2.74 3.94 2.06
EIF+_RF 4.74 3.83 3.04 0.04 4.06 2.09 0.10 8.24 0.33 1.94 3.58 1.47 −0.24 0.06 2.13 4.87 2.52
ECOD −4.73 3.02 3.05 0.12 4.07 −0.25 0.07 6.26 −0.69 −0.71 −2.54 4.29 2.82 0.01 2.84 −1.59 1.00

EIF+

DIFFI 2.728 2.92 2.83 −0.12 1.52 2.00 0.06 4.33 −1.48 2.44 1.92 −3.36 −0.76 0.30 −1.45 −3.49 0.65
IF_ExIFFI −4.74 3.82 3.01 0.09 4.03 2.23 0.08 3.40 −0.93 3.41 0.26 4.23 3.18 0.36 3.07 9.40 2.18
EIF_ExIFFI 4.74 3.83 3.02 0.13 4.04 1.92 0.08 8.38 0.31 2.43 2.84 −0.20 2.23 −0.20 0.31 8.12 2.62
EIF+_ExIFFI 4.74 3.83 3.03 0.08 4.03 2.17 0.06 8.73 1.17 2.26 1.41 −0.04 1.32 −0.02 −0.13 9.25 2.62
IF_RF −2.85 3.83 3.03 0.11 4.04 1.99 0.06 7.88 −0.12 2.28 −1.08 2.48 1.38 0.21 0.64 4.53 1.78
EIF_RF 4.74 3.84 3.01 0.06 4.02 1.97 0.09 7.85 0.35 −1.64 0.69 2.17 −1.28 0.17 2.11 4.36 2.03
EIF+_RF 4.74 3.83 3.01 0.07 4.01 2.02 0.07 8.30 0.29 1.63 2.17 2.08 −0.74 0.14 2.11 5.64 2.46
ECOD −4.74 3.03 3.03 0.07 4.04 −0.16 0.07 6.04 −0.37 0.17 −2.06 4.57 2.75 0.05 2.90 −0.60 1.17
6.5. Correlation table

In this section we want to verify the soundness of the results
produced by the interpretation algorithms analyzed in this study. This
is achieved by computing the correlation between the Local Impor-
tance Scores produced by an interpretation algorithm and the Anomaly
Scores assigned by the explained AD models to different samples.
Intuitively if the interpretation model is able to correctly detect anoma-
ous points then, given an input data point 𝑥, high LFI scores should
orrespond to an high value on the Anomaly Score (i.e. 𝑥 is an out-
ier). Contrarily low importance values will be paired with a reduced
nomaly Score (i.e. 𝑥 is an inlier). In order to compute the correla-

ion between the LFI score and the Anomaly Scores the former were
ggregated through the sum in order to obtain a single value.

In Table 4 most of the correlation values exceed 0.9 proving the
effectiveness of the proposed interpretation methods which are able to
provide sufficiently high relevance scores to features describing anoma-
lous samples. An exception is represented by the ECOD and IF_ExIFFI
algorithms which perform poorly in correlation terms (i.e. lower than
0.75) on the Xaxis dataset. The reason under these poor performances
can be found on the limitations of these two AD models which fail to
detect outliers on Xaxis as already noted in Section 6.1.

6.6. Time scaling experiments

In this section, we compare the computational efficiency of different
algorithms, evaluating the time required for model fitting, making pre-
dictions, and interpreting results. Our examination, depicted in Fig. 8,
presents how these durations adjust with dataset size increases—both
by sample number and feature count, on a logarithmic scale. This
investigation is crucial for understanding each algorithm’s practical use
14 
in varying scenarios, such as industrial-sized datasets, where the sample
size and the feature space are generally larger than the ones encoun-
tered in the benchmark datasets used for evaluation in 5. Figs. 8(a),
8(d) details fitting times varying the sample size and number of features
respectively, Figs. 8(b), 8(e) outline prediction times, and Figs. 8(c),
8(f) the time to determine importance scores, providing insight into
the scalability and efficiency of these computational processes.

Analyzing computational efficiency, our observations reveal signif-
icant differences in the fitting, prediction, and interpretation speeds
of various algorithms, as depicted in Figs. 8(a), 8(d), 8(b), 8(e), and
8(c), 8(f). Specifically, the fitting time, as shown in Fig. 8(a), demon-
strates exponential increases for both the DIF and Anomaly Autoen-
coder models. The Anomaly Autoencoder exhibits a steeper rise due to
weight optimization requirements, contrasting with DIF, which utilizes
deep neural networks with random weights for nonlinear input data
transformation, hence avoiding lengthy NN training periods.

Additionally, ECOD scales exponentially as the sample size of the
dataset increases. Although ECOD is faster than IF-based models when
the sample size is small, it becomes slower when the dataset contains
more than 30k points. Interestingly, the number of features does not
significantly affect the efficiency of ECOD, making it less sensitive to
feature-dimensionality compared to other models.

For the experiment in which time effectiveness is tested by varying
the number of features in the dataset, the Anomaly Autoencoder re-
mains the most time-consuming method, while the trend of DIF is closer
to that of the Isolation-based methods (i.e., EIF, EIF+, IF), as shown in
8(d).

The prediction time analysis, referenced in Fig. 8(b), highlights DIF
as the most time-intensive model. This is attributed to DIF’s necessity
to aggregate predictions across an ensemble of neural networks and
representation spaces, significantly extending the prediction process.
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Table 4
Correlation values between local importance scores and anomaly scores for different interpretation algorithms in Scenario I (S1) and Scenario II (S2) across different datasets. The
highest values are highlighted in bold.
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S1

DIFFI 0.83 0.91 0.92 0.92 0.91 0.89 0.84 0.91 0.88 0.85 0.9 0.88 0.92 0.92 0.91 0.93

IF_ExIFFI 0.76 0.9 0.91 0.92 0.87 0.91 0.91 0.92 0.85 0.92 0.97 0.87 0.91 0.91 0.94 0.9

EIF_ExIFFI 0.95 0.95 0.95 0.95 0.94 0.91 0.95 0.93 0.91 0.92 0.96 0.75 0.95 0.89 0.88 0.93

EIF+_ExIFFI 0.93 0.93 0.94 0.93 0.92 0.92 0.92 0.94 0.95 0.94 0.96 0.93 0.92 0.94 0.79 0.96
ECOD 0.55 0.85 0.85 0.94 0.78 0.88 0.98 0.93 0.86 0.91 0.98 0.87 0.93 0.86 0.88 0.91

S2

DIFFI 0.84 0.95 0.95 0.96 0.93 0.9 0.92 0.93 0.91 0.9 0.91 0.92 0.92 0.92 0.91 0.94

IF_ExIFFI 0.74 0.93 0.92 0.93 0.89 0.9 0.94 0.92 0.88 0.94 0.88 0.91 0.9 0.91 0.92 0.93

EIF_ExIFFI 0.95 0.97 0.96 0.96 0.95 0.92 0.97 0.95 0.93 0.94 0.94 0.76 0.95 0.88 0.91 0.94

EIF+_ExIFFI 0.92 0.95 0.95 0.94 0.93 0.9 0.97 0.93 0.89 0.94 0.92 0.92 0.92 0.94 0.89 0.95
ECOD 0.58 0.84 0.84 0.94 0.77 0.88 0.9 0.93 0.88 0.9 0.99 0.86 0.93 0.85 0.88 0.89
Fig. 8. Time scaling experiments display the execution times trend of various AD and XAD algorithms varying the sample size (fixing the number of features to 6) and the
cardinality of the feature space (fixing the sample size to 5000).
In 8(e), instead, while DIF is still the slowest model, the Anomaly
Autoencoder, ECOD and IF models prediction time can be considered
independent on the number of features but only dependent on the
sample size. Finally, EIF and EIF+depict an increasing trend with,
however, much smaller values than the ones of DIF.

In the case of interpretation, Fig. 8(c) identifies DIFFI as the fastest
algorithm for calculating importance scores. EIF and EIF+experience
15 
a marked increase in computation time for this task beyond 11,000
samples. Nonetheless, their performance remains markedly better com-
pared to the RandomForest post-hoc interpretability method, which
suffers from exponential growth in execution time with larger sample
and feature sizes. KernelSHAP, on the other hand, produces out-of-scale
time results, making it unsuitable as an interpretation algorithm for
large datasets due to its inefficiency.
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ECOD, in contrast, is in line with the time complexity of ExIFFI,
ith a constant factor of difference since ECOD does not need to recon-

truct the importance scores because they are intrinsically embedded
n its output. This analysis illustrates the efficiency and adaptability of

EIF+and ECOD in providing rapid interpretation across varying dataset
scales.

7. Conclusions

This paper delves into the important area of unsupervised AD, a
ritical task for identifying unusual patterns or behaviors in data. While

detecting anomalies is fundamental, the paper emphasizes that this is
often not enough for practical use cases. Users not only need to know
that an anomaly has occurred, but also understand why the model made
 certain prediction. This understanding is key for root cause analysis

and for building trust in the model’s decisions.
The primary contribution of this work is the introduction of ExIFFI,

an interpretability method inspired by DIFFI that aims to provide both
local and global interpretability, particularly for Isolation Forest (IF)-
based models. The qualitative results demonstrate that the approach
produces comprehensible results, as shown through its application on
three datasets: Xaxis, Bisect3D_skewed, and glass. Addition-
ally, the work presents EIF+, a variant of the Extended Isolation Forest
(EIF) model, which is designed to improve generalization performance.
A thorough comparative analysis of Isolation-based and deep learning-
based anomaly detection approaches is provided, which represents one
of the most comprehensive studies in this domain.

The experimental results support the utility of EIF+and ExIFFI,
showing that EIF+yields robust performance across multiple datasets,
outperforming benchmark models in certain scenarios. Specifically,
EIF+was the top-performing model in 6 out of 11 real-world datasets

ith the highest average score across the datasets in Scenario II and the
second-best model after EIF in Scenario I. The ExIFFI method applied
to IF-based models consistently showed superior performance across all
scenarios, as evaluated using the 𝐴𝑈 𝐶𝐹 𝑆 metric, which is based on the
Unsupervised Feature Selection proxy task.

Furthermore, the applicability of EIF+and ExIFFI to large-scale
datasets, such as those encountered in industrial settings, was assessed
hrough time-scaling experiments, with results presented in the paper’s
orresponding section.

Looking ahead, future research could explore innovative ways to
utilize the information encoded in the splitting nodes of decision trees,
particularly when multiple variables compete for relevance in the
model. An additional research direction could investigate the develop-
ment of a more general interpretability algorithm that could be applied
to all types of Isolation Forest models, including those with different
splitting functions, such as Hypersphere IF (Choudhury et al., 2021).

Finally, despite the promising results of ExIFFI, a key limitation of
the current study is the lack of evaluation in a real-world industrial sce-
ario with field-specific expertise. While ExIFFI provides interpretabil-
ty and facilitates understanding of anomaly detection models, its true

impact on human comprehension and decision-making processes has
ot yet been fully explored. The study did not include experiments
nvolving human feedback, where experts in the field could interact
ith the model and assess how well the interpretability methods aid

n understanding the data. Without such evaluations, the extent to
hich ExIFFI improves human understanding of model predictions

and supports more informed decisions remains uncertain. Future work
hould focus on assessing the practical value of ExIFFI by conducting

experiments that involve domain experts and gathering insights on how
interpretability impacts human interaction with data-driven systems.
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Appendix

A.1. Datasets

A.1.1. Synthetic datasets
We generated three additional datasets, following the same pro-

edure for the inliers and outliers definition as the one described
n Section 6: Bisect, Bisect3D and Bisect6D, with the aim to

explore how performance is affected when anomalies are defined by
multiple features. These new datasets position the anomalies along
isectors in higher-dimensional subspaces (i.e. 2,3 and 6 dimensions
espectively), incorporating multiple features to define the outliers. By

doing so, we are able to assess the robustness of the algorithms in
etecting anomalies that span multiple dimensions.

The mathematical construction of these synthetic datasets ensures
a controlled and systematic variation in the number of anomalous
features, providing valuable insights into the behavior of the algorithms
in complex, high-dimensional settings.

• In the Bisect dataset, the inliers are uniformly distributed
within a six-dimensional sphere. The outliers are positioned along
the bisector of the subspace formed by Feature 0 and Feature
1, using the direction vector 𝑣 = [1, 1, 0, 0, 0, 0]. Noise is added
to the remaining four dimensions to introduce variability, and
the outliers are scaled and perturbed accordingly. The graphical
results of the ExIFFI explanations for this dataset are accessible at
https://github.com/alessioarcudi/ExIFFI and they showcase how
the most important features, with similar scores, are Feature 0
and 1 as expected from the generation process.

https://github.com/alessioarcudi/ExIFFI


A. Arcudi et al.

d

a

d

M
t
e
k

t

Engineering Applications of Artiϧcial Intelligence 138 (2024) 109409 
• In the Bisect3D dataset, the inliers follow the same distribution
as in Bisect. The outliers are aligned along the bisector of the
subspace spanned by Feature 0, Feature 1, and Feature 2, with
the direction vector 𝑣 = [1, 1, 1, 0, 0, 0]. Noise is added to the
remaining three dimensions to simulate variability. This dataset
is very similar to Bisect3D_Skewed, presented in 6, since
also in this case anomalies are aligned along three features. The
main difference lays in the vector 𝑣 used for the generation.
In Bisect3D 𝑣 has the same amplitude across all the three
anomalous directions, making outliers deviate from normal points
by the same amount along Feature 0,1 and 2. Contrarily in
Bisect3D_Skewed the outlyingness of the different variables
is different. As a result in the Score Plot of Bisect3D, depicted
in Fig. 2(a), the importance scores of the top 3 features are almost
identical while there is a clear distinction in the Score Plot of
Bisect3D_Skewed, outlined in Fig. 4(b).

• Finally in Bisect6D anomalies are distributed along all the six
features composing the input space while inliers are distributed as
usual with the addition of some white noise to induce diversity.
Consequently the direction vector is defined as 𝑣 = [1, 1, 1, 1, 1, 1].
This dataset was produced to observe the behavior of ExIFFI in an
extreme scenario where all dimensions are affected by anomalous
points. The outcome is that all six features are assigned more
or less the same importance score and thus the final feature
ranking is decided by the stochasticity of the algorithm. For a
more detailed description of the results we refer the interested
reader to https://github.com/alessioarcudi/ExIFFI.

For clarity the pseudocode for the generation of the synthetics
atasets employed in this paper is provided in 3.

A.1.2. Real-world datasets
Most of the Real-World datasets used in our experiments come

from the widely used Outlier Detection DataSets (ODDS) library intro-
duced by Rayana (2016). Unlike synthetic datasets, these reflect the
complexity of real-world scenarios. However, many of these datasets
were originally designed for different purposes, such as multi-class
classification, and later adapted for anomaly detection (AD) by under-
sampling the least-represented class to create outliers, while merging
the remaining classes as normal data. This transformation can present
challenges, as the undersampled minority class may not truly represent
anomalies, complicating the evaluation of AD methods. Moreover, AD
models designed to detect isolated anomalies may not always align with
the provided labels, further complicating interpretability, as discussed
in Section 6.2.

Many real-world datasets also lack detailed information on features
nd labels, making it difficult to evaluate model performance and in-

terpret Feature Importance scores. An exception is the Glass dataset,
etailed by Carletti et al. (2019), which allows for deeper analysis of

feature influence on anomalies (see Section 6.2). The absence of such
detailed information poses significant challenges to assessing models
qualitatively and understanding feature impact on anomalies.

To address these limitations, two new datasets, Diabetes and
oodify, were added. These datasets provide detailed information on

he semantics of their features and labels, allowing for more thorough
valuation of AD and interpretation results in alignment with domain
nowledge.

Here we introduce the real-world datasets with details about the
context of the features and labels

• Annthyroid: The Annthyroid dataset (Quinlan, 1987) is part
of the UCI Machine Learning Repository. It is a three-class Clas-
sification dataset. The aim of the classification task associated
with this dataset is to detect whether a patient is hypothyroid
(i.e. the patient has an underactive thyroid) or not. For this
scope, the three classes used refer to the functioning conditions
17 
Algorithm 3: Synthetic Dataset Generation with Direction Vec-
or 𝑢 for Outliers

Input : Number of samples to generate 𝑛, Number of inliers
𝑛𝐼 , Number of outliers 𝑛𝑂, Number of features 𝑝,
Radius of the inliers ball 𝑟,Radius of the outlier
distance 𝑑, Number of anomalous features 𝑘, Bounds
for anomalies [min,max], Direction vector 𝑣 ∈ R𝑘

Output: Generated synthetic dataset  ∈ R𝑛×𝑝

𝐼 ← empty list;
𝑂 ← empty list;
// Initialize empty lists for inliers and

outliers
// --- Inliers Generation ---
while len(𝐼 ) < 𝑛𝐼 do

// Sample a random 𝑝-dimensional vector from a
Uniform distribution in [−𝑟, 𝑟]

inlier_point ∼ 𝑝([−𝑟, 𝑟]);
// Check if the L2 norm of the point is less

than or equal to 𝑟
if (||inlier_point||2) ≤ 𝑟 then

𝐼 ← 𝐼 ∪ inlier_point;
end

end
// --- Normalize the direction vector 𝑣 ---
𝑢 ← 𝑣∕||𝑣||;
// Normalize 𝑣 to obtain the unit direction

vector 𝑢
// --- Outliers Generation ---
for 𝑖 ← 1 to 𝑛𝑂 do

// Sample a scalar 𝑥 from a uniform
distribution in [min,max]

𝑥 ∼  ([min,max]);
// Create an empty vector for the outlier

point
outlier_point ← zeros(𝑝);
// Calculate the values of the first 𝑘

anomalous features based on direction 𝑢 and
added noise

for 𝑗 ← 1 to 𝑘 do
outlier_point[𝑗] ← 𝑑 ∗ 𝑢[𝑗] + 𝑥 ∗ 𝑣[𝑗] + (0, 1);

end
// Generate remaining 𝑝 − 𝑘 noisy features

from a Gaussian distribution
for 𝑗 ← 𝑘 + 1 to 𝑝 do

outlier_point[𝑗] ←  (0, 1);
end
// Add the generated outlier point to the

dataset
𝑂 ← 𝑂 ∪ outlier_point;

end
// Combine inliers and outliers to form the

final dataset
 ← 𝐼 ∪𝑂;
return ;

of the thyroid that can be normal (not hypothyroid), hyperfunc-
tioning (overactive thyroid) and subnormal. The dataset originally
contained 15 categorical and 6 numerical attributes. In order
to adapt it to an Anomaly Detection task only the numerical
attributes were considered and the hyperfunctioning and subnormal
function classes were considered as part of the outliers while
the normal functioning samples are used to build the inlier class.

https://github.com/alessioarcudi/ExIFFI
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The six numerical features represent, respectively, the following
quantities: TSH, T3, TT4, T4U, and FTI.

– TSH (Thyroid-Stimulating Hormone): TSH is an hormone
produced by the pituitary gland. An underactive thyroid
(hypothyroidism) is associated with high levels of TSH
while low levels of TSH are associated with an overactive
thyroid (hyperthyroidism).

– T3 (Triiodothyronine): T3 is one of the thyroid hormones.
It plays a crucial role in regulating the metabolism. It is
important to measure the levels of this hormone, specifically
in cases of hyperthyroidism.

– TT4 (Total Thyroxine): This quantity represents the total
amount of the T4 thyroid hormone in the blood. T4 levels
are associated to the overall thyroid hormone production.

– T4U (Thyroxine-Binding Globulin): T4U measures the
level of thyroxine-binding globulin, a protein binding to
thyroid hormones in the blood. T4U levels are connected
to the thyroid hormone availability in the body.

– FTI (Free Thyroxine Index): Taking into account the T4
and T4U levels, the FTI provides an estimate of the amount
of free thyroxine (T4) in the blood. It is used to assess the
free, active thyroid hormone levels in the body.

• Breast: The Breast dataset (Wolberg, 1992) is a Binary Clas-
sification dataset where the target is the presence of breast cancer
or not in a patient. The peculiarity of the samples contained in this
dataset is that they are formed by categorical features. Normally,
the Anomaly Detection models described in this paper are not
built to deal with categorical features but in this particular case
the high number of levels (e.g. The age variable has nine levels:
10–19, 20–29, . . . ; the tumor-size feature has levels equal to 0–
4,5–9,10–14, . . . ) characterizing the Breast dataset’s attributes
makes it possible to consider them as numerical features. The
dataset is composed of samples coming from the clinical cases
of Dr. Wolberg collected in a time span going from January
1989 to November 1991. The dataset is composed by 9 features
representing the following quantities: Clump Thickness, Unifor-
mity of Cell Size, Uniformity of Cell Shape, Marginal Adhesion,
Single Epithelial Cell Size, Bare Nuclei, Bland Chromatin, Normal
Nucleoli and Mitoses.

• Cardio: The Cardio (Campos and Bernardes, 2010) dataset is
part of the UCI Machine Learning Repository and its complete
name is Cardiotocography since it contains measurements
of fetal heart rate (FHR) and uterine contraction (UC) on car-
diotocograms.4 This dataset contains 3 classes that were assigned
by expert obstetricians: normal, supsect, and pathologic. In order
to use this dataset for Anomaly Detection the pathologic class was
discarded and the pathologic class was downsampled to 176 points
to maintain unbalance with respect to the pathologic class. There
are 21 features.5

• Glass: The Glass dataset (German, 1987) is originally used
for multi-class classification to distinguish 7 different types of
glasses. There are 9 features: the first one is the Refractive Index
while the others measure the concentration of Magnesium (Mg),
Silicon (Si), Calcium (Ca), Iron (Fe), Sodium (Na), Aluminum (Al),
Potassium (K) and Barium (Ba) in the glass samples. The seven
original glass groups were divided into two: Groups 1,2,3 and
4 represent Window Glasses while the remaining ones are non-
window glasses: containers glass, tableware glass and headlamp

4 A cardiotocogram is a medical test monitoring fetal hearth rate and
uterine contractions during pregnancy. It is used to assess the health status
f the fetus and the progress of labor during pregnancy and childbirth.

5 The complete list of features names can be found at: https://archive.ics.
uci.edu/dataset/193/cardiotocography.
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glass. Among the non-window glasses, headlamp glasses were
considered as outliers while Window Glasses are labeled as inliers
in order to convert this dataset to be used for Anomaly Detection.
According to some prior knowledge on the subject the Barium
(Ba) and Potassium (K) concentration should be decisive in distin-
guishing between headlamp and window glasses. In fact Barium is
considered the crucial element to perform the distinction between
headlamp and window glasses since it is usually added to the
category of headlamp glasses in order to improve their optical
properties. Another potential key attribute is Potassium (K) that
is frequently exploited to enhance strength and thermal resistance
of window glasses.

• Ionosphere: The Ionosphere dataset (Sigillito et al., 1989)
contains measurements collected by a radar in Goose Bay,
Labrador. The measurement system consisted of 16 high-frequency
antennas with a transmitted power in the order of 6.4 kW.
The targets to measure were free electrons in the Ionosphere.
Originally this is built as a Binary Classification dataset where the
two classes are good if the captured electrons show some kind
of structure in the ionosphere and bad otherwise. The signal is
processed with an autocorrelation function depending on the time
of a pulse and the pulse number. There are 17 pulse numbers and
each of them is identified by a pair of features for a total of 34
features.

• Pima: The Pima dataset6 comes from the National Institute of
Diabetes, Digestive and Kidney Diseases. It is a Binary Classi-
fication dataset whose aim is to predict whether a patient has
diabetes or not. This dataset is the result of the application of
some constraints to a larger dataset. In Pima, in fact, the data
considered are obtained from female patients of at least 21 years
of age coming from the Pima Indian heritage.
The dataset contains 8 features indicating some typical diag-
nostic measurements: Number of pregnancies, Plasma Glucose
Concentration, Diastolic Blood Pressure, Triceps skin thickness,
2-h serum if insulin, BMI (Body Mass Index), Diabetes Pedigree
function, and Age.

• Pendigits: The Pendigits dataset collects data regarding
handwritten digits produced by Forty-four human writers. The
task associated with this dataset is the one of recognizing the
correct written digit. The dataset is composed of 16 features and
the number of objects per class (i.e. per digit) was reduced by a
factor of 10% to increase the unbalance between classes in order
to adapt the dataset as a benchmark for the evaluation of Anomaly
Detection models.

• Shuttle: The Shuttle dataset (Newman et al., 1993) de-
scribes radiator positions in a NASA space shuttle. The samples
are characterized by 9 attributes. Originally, the dataset is used
for Multi-Class Classification with the target variable containing
seven possible classes, which are: Radiator Flow, Fpv Close, Fpv
Open, High, Bypass, Bpv Close, and Bpv Open. Besides the normal
Radiator Flow class about 20% of the data points describe anoma-
lous situations. To reduce the amount of anomalies the Radiator
Flow class is used to form the inlier class while a stratified
sampling procedure was applied to classes 2,3,5,6 and 7. Finally,
data coming from class 4 were discarded.

• Wine: The Wine dataset (Aeberhard and Forina, 1991) is part of
the UCI Machine Learning repository and it was originally created
as a 3-class classification dataset. In fact, it contains data resulting
from a chemical analysis of wines grown in the same region of
Italy but obtained from 3 different cultivars. So the aim of a
Classification model applied to this dataset would be to correctly
predict the original culture of wine given its chemical properties.

6 https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-
database.

https://archive.ics.uci.edu/dataset/193/cardiotocography
https://archive.ics.uci.edu/dataset/193/cardiotocography
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
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As it is usually done in these cases the dataset was adapted to
test Anomaly Detection models considering the data from two
cultures as inliers and the ones beholding to the last culture as the
outliers. The dataset is composed by 13 features representing the
following quantities: Alcohol, Malic Acid, Ash, Alcalinity of ash,
Magnesium, Total phenols, Flavanoids, Nonflavanoid phenols,
Proanthocyanins, Color Intensity, Hue, OD280/OD3157 of diluted
wines, and Proline.

• Diabetes: The Diabetes dataset8 is a Binary Classification
dataset with medical data about patients used to predict whether
they have diabetes or not. There are 4 categorical and 4 numerical
variables. In order to use the ExIFFI model only the numerical
variables were considered:

– Age: The age ranges between 0 and 80 and it can be an
important factor since Diabetes is usually diagnosed in older
adults.

– BMI (Body Mass Index): Measure of body fat based on
weight and height. High BMI values are linked to a higher
risk of diabetes.

– HbA1c-Level: The Hemoglobin A1c Level it is a measure
of a person’s average blood sugar level over the past 2–3
months. A high level of HbA1c is usually associated with
high diabetes risk.

– blood-glucose-level: The amount of glucose in the blood-
stream at a given time. High glucose levels are a key factor
to detect Diabetes.

Finally, the target variable is a binary variable indicating the
presence or absence of diabetes in the patient. Following the
usual protocol for Real World Datasets, the inlier group will
be represented by healthy patients while the ones affected by
diabetes will be placed in the outlier group.

• Moodify: Moodify is a recommendation app9 that classifies Spo-
tify songs according to the emotions transmitted to the users. The
system is trained on the Moodify dataset10 which contains fea-
tures regarding the main characteristics of about 278.000 songs
and the target is a 4 levels categorical variable with the following
coding:

1. Sad
2. Happy
3. Energetic
4. Calm

The label with the lowest frequency (15%) in the dataset is Calm
so that was used to create the outliers group while the inlier group
is formed by the songs that belong to the other three classes.
The dataset is composed of 11 numerical features describing
different musical attributes of a song. Except for the Loudness
variable, which expresses the overall loudness of the track in deci-
bels (dB), all the features have values contained in the [0, 1] inter-
val. The variable names are the following: Acousticness, Dance-
ability, Energy, Instrumentalness, Liveness, Loudness, Speechi-
ness, Valence, and Tempo. Other variables are Duration (ms) and
spec-rate.

7 These codes refers to two measurements of the optical density of a wine
sample performed at two different wavelengths: 280 nm and 315 nm. These

easurements are typically exploited to assess the protein content and the
tability of wine.

8 https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-
ataset.

9 More details on the Moodify project can be found at: https://github.com/
orzanai/Moodify.

10 https://www.kaggle.com/datasets/abdullahorzan/moodify-dataset.
 a
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A.2. Draw-backs of isolation forest

Next, we delve deeper into the artifacts of the IF and how the EIF
s able to avoid them. The primary distinction among the mentioned
odels lies in their approach to determining splitting hyperplanes. In

he case of the IF, it operates under the constraint of splitting the
eature space along a single dimension. Consequently, the constructed
plitting hyperplane is invariably orthogonal to one dimension while
emaining parallel to the others.

The EIF model instead relaxes this constraint, it allows multiple
plits in the feature space along different dimensions, thus the splitting
yperplane can be oriented differently in each isolation tree. This
elaxation helps to provide a more expressive way to capture complex
ata distributions while maintaining performances. Moreover, as Hariri
t al. pointed out in Hariri et al. (2021), the EIF avoids the creation

of regions where the anomaly score is lower only due to the imposed
constraints. In Fig. A.9 we can observe that the effect of the constraint is
twofold: (i) it generates bundles in the hyperplanes orthogonal to the

ain directions, and (ii) it creates ‘‘artifacts’’, i.e. low anomaly score
ones in their intersections, as we can observe in the Scoremap A.9(a).

As we progressively relax the IF constraint on splitting directions,
these artifacts tend to disappear. We simulated the evolution of the
anomaly score surface by allowing the hyperplane to split along a
new feature in each step. Figure vividly demonstrates the gradual
elimination of artifact-prone regions.

A.3. Non depth-based importance

In general, it is accurate to assert that the amount of feature impor-
tance attributed by a particular node 𝑘 to a given sample 𝑥, provided
that the node effectively separates the samples, should be greater if the
node is closer to the root of the tree, and the importance score should
ecrease as the node becomes deeper within the tree. This principle
s derived from the same concept used to determine anomaly scores,
hich are higher for samples that on average are in leafs closer to the

oot of the tree.
Two distinct approaches exist for assigning importance scores to

odes: the one used in the ExIFFI algorithm and the one proposed
y the DIFFI algorithm. The DIFFI algorithm importance scores are
ssigned to nodes based on a weighting scheme that inversely relates
he score to the depth of the node. This approach is parameterized to
nsure that scores decrease as nodes become deeper within the tree.

The ExIFFI algorithm is an alternative approach for assigning impor-
tance scores to nodes in a decision tree, which differs from the DIFFI
algorithm by not using the inverse of the depth to decrease the score as
the node becomes deeper in the tree. This stems from the fact that the

aximum acceptable score for a node is directly linked to the number
of elements it must partition. As the depth of the node increases, this
number inevitably decreases. Therefore, we assert that it is redundant
and potentially misleading to incorporate an additional parameter to
weigh the importance score.

The underlying idea is that as the node becomes deeper in the tree,
t is responsible for splitting fewer and fewer elements, and therefore, it

should not be penalized by reducing its importance score because the
structure of the algorithm itself decreases the importance on average
after every step deeper in the tree. In contrast, a node that splits many
elements closer to the root of the tree may be more important because
it has a greater impact on the separation of the data, but its importance
hould not be guaranteed by an external factor.

The ExIFFI algorithm adjusts the maximum score acceptable for
a node based on the number of elements it needs to split, which
allows for a fair comparison of the importance of nodes across different
depths in the tree. This approach can help to avoid overestimating the
mportance of nodes that are close to the root and underestimating the
mportance of nodes that are deeper in the tree, a risk that the DIFFI
lgorithm does not take into account.

https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset
https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset
https://github.com/orzanai/Moodify
https://github.com/orzanai/Moodify
https://www.kaggle.com/datasets/abdullahorzan/moodify-dataset
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Fig. A.9. Scoremap showing the differences between IF and EIF in the two dimensional space dataset Bimodal described in Appendix A.1.1.
Source: Figure inspired from Hariri et al. (2021).
Fig. A.10. Scoremap resulting from adding one degree of freedom per time while searching for splitting hyperplanes. In this way we move from the classic IF A.10(a) to the EIF
A.10(f). The experiment is performed on the six dimensional space dataset Bisect described in Appendix A.1.1.
E
s
t

v

We conducted an analysis of the ExIFFI algorithm with and without
he depth parameter, in order to identify differences in the evolution
f the score at different depths of the trees. To achieve this, we plotted
he average score of the nodes at various levels of depth in the forests,
s shown in Fig. A.11.

The results of this analysis indicate that the score generally de-
reases without the use of a depth parameter. Although the ExIFFI
lgorithm without the depth parameter produced higher scores, the
verall shape of the graph is still descending as nodes are evaluated
eeper in the tree. This suggests that the ExIFFI algorithm is effective in
ssigning importance scores to nodes, even when the depth parameter
s not utilized.

In summary, our analysis suggests that the ExIFFI algorithm is a
obust method for assigning importance scores to nodes in decision

trees, with or without the use of a depth parameter.
20 
A.4. EIF+: the effects of 𝜂

In this section the results of the ablation study on the 𝜂 hyperpa-
rameter of the EIF+model for the datasets covered in this Appendix are
reported.

The ablation study consists in evaluating the performance of the
IF+model, through the Average Precision metric, for 25 linearly
paced values between 0.5 and 5 of the parameter 𝜂, whose interpreta-
ion is given in 3.3.

After a careful observation of the plots collected in Fig. A.12 it is
possible to conclude that for the Bisect, Breastw, Ionosphere
and Shuttle the Average Precision of EIF+is not affected by the
alue of the parameter 𝜂. In fact, as it can be noticed comparing to

the blue line inserted in the plot to represent the Average Precision
value achieved by the EIF model, in these sets of data the improvement

+
achieved by EIF on its counterpart EIF is minimal since both models
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Fig. A.11. Analysis of the average scores of the nodes related to their depth.
Fig. A.12. Exploration of how average precision changes with variations in the 𝜂 parameter.
already achieve almost perfect precision scores. As a consequence the
model remain unchanges independently on the 𝜂 value since anomalies
are detectable utilizing the traditional oblique cuts employed by EIF.

For other datasets, where the data distribution is intricated and
EIF-like partitions are not as effective as the novel partition approach
introduced with EIF+, the effect of 𝜂 is more visible in the sense that
there are some contained oscillations on the Average Precision values
as the hyperparameter is varied.
21 
Concluding, comparing the diverse plots produced it is possible
to infer that the optimal value for the parameter analyzed in this
section is highly dependent on the specific dataset structure and thus
the suggested approach is to perform an hyperparameter optimization
through a validation set in order to find the optimal value of 𝜂.
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A.5. Explanations comparison through normalized discounted cumulative
gain

In Section 6.4 different interpretation algorithm for Anomaly Detec-
tion were compared through the newly introduced 𝐴𝑈 𝐶𝐹 𝑆 metric. In
this section we consider the employment of another quantitative metric
for the evaluation of the effectiveness of different XAD methods: the
Normalized Discounted Cumulative Gain (NDCG). The NDCG measure
was originally introduced for the evaluation of the rank quality in the
field of Information Retrieval (Järvelin and Kekäläinen, 2002). In this
xperiment NDCG is re adapted to perform the comparison between
he feature ranking produced by the computation of the Global Fea-
ure Importance scores with a dataset’s ground truth feature ranking.

For this reason this evaluation was conducted solely on the synthetic
datasets, the only ones equipped with ground truth anomalies and
eature rankings as explained in 6.

In order to obtain the NDCG score to evaluate how close a feature
anking produced by an interpretation algorithm is to the ideal one,

the Discounted Cumulative Gain (DCG) of the raw GFI scores will be
ompared with a relevance vector.

The DCG is computed considering the GFI values of the different
features together with a discount factor that takes into account the
position of a feature in the list. Considering a dataset  composed by 𝑝
features and a GFI feature vector 𝐺 𝐹 𝐼 = [𝐼1,… , 𝐼𝑝], the DCG score for
dataset  can be defined as follows:

𝐷 𝐶 𝐺 =
𝑝
∑

𝑖=0

𝐼𝑖
𝑙 𝑜𝑔2(𝑖 + 1)

Finally to obtain the NDCG score, DCG is normalized by the Ideal
DCG (IDCG) (i.e. the DCG score of the relevance vector representing
he ideal feature ranking):

𝑁 𝐷 𝐶 𝐺 = 𝐷 𝐶 𝐺
𝐼 𝐷 𝐶 𝐺

The relevance vector has to be crafted in order to represent the
ground truth importance score ranking, which may not be unique. In
this specific study, in fact, there are multiple correct rankings for each
ifferent synthetic datasets. Indeed, since normal features are sampled

as noise their order in the feature ranking is not relevant. The aim
f the evaluation through the NDCG score is to assess the ability of
 XAD model to correctly rank the crafted anomalous features in the
op positions.

For example, in the Xaxis dataset an explanation can be consid-
ered effective if it is able to place Feature 0 in the first position of
the ranking, while in Bisect3D_Skewed a good interpretation is the
one that places Feature 0,1 and 2 in the top 3 spots, in this precise
order. For this reason the relevance vectors for these two datasets
can be constructed, respectively, as follows: 𝑣 = [1, 0, 0, 0, 0, 0], 𝑣 =
[4, 3, 2, 0, 0, 0].

As it can be noticed from Table A.5 most of the interpretation
models considered are able to correctly rank the abnormal features,
eading to a perfect NDCG score of 1. There are a few exceptions
epresented by the DIFFI and ECOD interpretability algorithms on the
axis dataset which obtain lower NDCG scores. This results comes
ithout a surprise, in fact the struggle of the IF and ECOD model on

he Xaxis dataset are already deeply documented in Sections Section 6
and in Tables 2 3 4

Data availability

I have shared the link to my data/code in the paper.
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Table A.5
Normalized discounted cumulative gain score for different interpretation algorithms in
Scenario I (S1) and Scenario II (S2) across the synthetic datasets introduced in this
study. Scores for the proposed algorithm (i.e. ExIFFI) are enclosed in gray cells.

Sc
en

ar
io

M
od

el

Synthetic

Xa
xi

s

Bi
se

c

Bi
se

c3
D

Bi
se

c6
D

Bi
se

c3
D_

Sk
ew

ed

S1

DIFFI 1.0 1.0 1.0 0.9 1.0
IF_ExIFFI 0.35 1.0 1.0 0.99 1.0
EIF_ExIFFI 1.0 1.0 1.0 0.99 1.0
EIF+_ExIFFI 1.0 1.0 1.0 0.99 1.0
IF_RF 1.0 1.0 1.0 0.99 1.0
EIF_RF 1.0 1.0 1.0 0.99 1.0
EIF+_RF 1.0 1.0 1.0 0.99 1.0
ECOD 0.35 0.69 1.0 0.99 1.0

S2

DIFFI 0.63 0.91 0.96 0.67 1.0
IF_ExIFFI 0.35 1.0 1.0 0.99 1.0
EIF_ExIFFI 1.0 1.0 1.0 0.99 1.0
EIF+_ExIFFI 1.0 1.0 1.0 0.99 1.0
IF_RF 1.0 1.0 1.0 0.99 1.0
EIF_RF 1.0 1.0 1.0 0.99 1.0
EIF+_RF 1.0 1.0 1.0 0.99 1.0
ECOD 0.35 0.69 1.0 0.99 1.0
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