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Abstract: Gesture Recognition has a prominent importance in smart environment and home
automation. Thanks to the availability of Machine Learning approaches it is possible for users
to define gestures that can be associated with commands for the smart environment. In this
paper we propose a Random Forest-based approach for Gesture Recognition of hand movements
starting from wireless wearable motion capture data. In the presented approach, we evaluate
different feature extraction procedures to handle gestures and data with different duration. To
enhance reproducibility of our results and to foster research in the Gesture Recognition area,
we share the dataset that we have collected and exploited for the present work.
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1. INTRODUCTION

Characterizing/sensing the human-in-the-loop has become
a prominent topic in control system technologies, with
applications in many fields: from gaming and spot (Pagliari
and Pinto, 2015; Cenedese et al., 2016b) to health care
(Sathiyanarayanan and Rajan, 2016), from home automa-
tion (Cenedese et al., 2015) to industry 4.0 and robotics
(Lim et al., 2017; Liu and Wang, 2018). It is important
in this context to differentiate between activities and ges-
tures. Gestures are here considered as basis movements
that compose an activity that is conversely completely
characterized by one or more gestures: for example, in
swimming, a stroke (gesture) completely characterize the
style (activity) (Terzi et al., 2017). Two types of scenarios
are typically envisioned in this context: (i) the wearable
scenario (Cenedese et al., 2016a) where the human is
equipped with sensors, like Inertial Measurement Units
(IMUs); (ii) the smart environment (Várkonyi-Kóczy and
Tusor, 2011) scenario, where the environment where hu-
man recognition takes place is equipped with sensors,
without the human having to necessary carry sensors on
his/her body.

This work is focused on Gesture Recognition (GR), that
is generally tackled as a classification task, where a set of
predefined gestures has to be classified. GR is particularly
relevant in smart environment applications (such as home
automation (Belgioioso et al., 2014)), where gestures are
associated with commands to be given to the smart envi-
ronment. The contributions of this paper are: (i) we intro-
duce a new GR dataset which, unlike many other datasets,

Fig. 1. Scheme of the classical ML approach to AR/GR
problems.

is based on Motion Capture data, which comprise 3D world
positions. We would like to stress that 3D positions trajec-
tories allow to apply more interpretable data visualization
techniques. Moreover, from raw positions, it is possible to
retrieve accelerations and velocity data, commonly used in
wearable applications. This is crucial in order to study the
impact of loss of information using IMU data with respect
to fully informative data; (ii) a pipeline for GR where:
(i) we compare different approaches for feature extraction
that are able to handle gestures of different duration, (ii)
we employ Random Forest for classification.

The paper is structured as follows: Section 2 is dedicated
to review recent works on GR, while in Section 3 the
procedure to create the dataset is described. In Section 4
we introduce our approach for the feature extraction and
GR phases and in Section 5 we present the results of our
experiments. Finally, we draw the conclusions in Section 6.

2. LITERATURE REVIEW

In recent years, GR/Activity Recognition (AR) problems
have been tackled using Machine Learning (ML) tech-
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niques under the main area of time series classification,
possibly supervised (Terzi et al., 2017; Cenedese et al.,
2016b). Generally, one of the main challenges one en-
counter when applying such approach is to translate the
raw time series into a format that can be used by ML clas-
sifiers; typically, the general scheme is given in Fig. 1: the
pipeline contains two blocks, atomic gestures extraction
and feature extraction, aiming to translate the informative
content in the classical form X ∈ RN×p, where N and p
are, respectively, the number of observations (executions of
atomic gestures in this context) and the number of features
extracted from each atomic gesture execution.
This is also the approach used in this paper, where the
atomic gestures extraction phase is performed on time
series containing multiple executions of the same gesture
and the classifiers employed are the well-known Random
Forests (RFs) (Breiman, 2001), which guarantee low bias
and low variance estimates. In addition to feature-based
approaches, there exist other similar approaches such as
distance-based ones. For a complete review on time series
classification, see (Susto et al., 2018).
In the last five years, Deep Learning (DL) proved to obtain
state-of-the-art results for many tasks, like Computer Vi-
sion and it has been successfully applied also to GR prob-
lems (Yang et al., 2015; Hammerla et al., 2016; Ordóñez
and Roggen, 2016). The common DL pipeline follows Fig.1
where the features extraction phase can be embedded with
the Neural Network architecture, allowing a plug-and-play
approach to modeling. Although DL approaches are able to
achieve high accuracy and to overcome a dedicated feature
extraction phase, this is obtained at the cost of lack of
robustness and interpretability, and the need of a large
number of training data. When the dataset cardinality
is not big (a typical situation in GR and many other
real-world problems), RFs represent a valuable alternative
for classification tasks, and in particular to GR as shown
by (Negin et al., 2013; Camgöz et al., 2014).

3. DATASET CREATION

In this Section we describe in detail the apparatus, the
data acquisition and elaboration procedures exploited to
build the GR dataset.

3.1 Experimental setup

Data acquisition sessions took place in the Multi AGent &
Motion Analysis and Gait Intelligent Control (MAG2IC)
laboratory of the Department of Information Engineering
at the University of Padova. The laboratory is equipped
with a BTS Smart-D Motion Capture system (MAGIC,
2019), composed of 12 infrared video cameras which col-
lect three-dimensional position data of 8 photo-reflexive
markers. At a given sampling instant, for each marker the
Motion Capture system acquires the x-component, the y-
component and the z-component of the marker position.
As a result, at each sampling instant we have a total of 24
acquired values. The cameras sampling rate is 340Hz .
The 8 markers have been placed in areas of the body
that allow a better characterization of the gesture, with
the future goal of making it possible data collection in
everyday applications, using consumer wearable devices.
Specifically, as shown in Fig. 2, the markers locations are:

on left and right wrists (smartwatch location); on left and
right arms (running band location); on left and right legs
(smartphone location, inside the pocket); on left and right
ankles (other running sensors location).
In this work we analyzed gestures performed statically (i.e.
standing still in the same point of the space) and through
the use of the right arm only (on the frontal plane),
therefore measurements from markers other than those
placed on the right arm and wrist are not particularly
informative. However, we decided to include in the dataset
also such measures, in the eventuality that they could be
useful elements of comparison, in classification phase, for
possible future work on the recognition of dynamically
executed gestures (walking or running) or using both arms.

3.2 Data acquisition

The data acquisition process was divided into several ses-
sions, each of which containing the measurements relating
to multiple executions of gestures belonging to a single cat-
egory. The categories of gestures for which data were col-
lected are 10: circle shape (‘©’), eight shape (‘8’), square
shape (‘�’), triangle shape (‘�’), M shape (‘M’), S shape
(‘S’), U shape (‘U’), V shape (‘V’), vertical movement
(‘��’) and horizontal movement (‘�’). With the purpose
of providing greater intra-class variability, for each gesture
category we considered 11 different modes of execution:
clockwise (CK), counterclockwise (CCK), small amplitude
(SA), medium amplitude (MA), big amplitude (BA), low
velocity (LV), medium velocity (MV), high velocity (HV),
vertical deformation (VD), horizontal deformation (HD)
and diagonal deformation (DD). Notice that there are
some incompatible gesture category-mode pairs: for ex-
ample, for the M shape gesture the CW and CCW modes
have no sense.
In order to create an automated procedure for the iden-
tification of markers, during the Motion Capture system
calibration phase we positioned the coordinate reference
system at the center of the room, oriented towards the
direction in which the gestures were performed. The cal-
ibration thus obtained guarantees that, once the subject

Fig. 2. Markers locations.
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niques under the main area of time series classification,
possibly supervised (Terzi et al., 2017; Cenedese et al.,
2016b). Generally, one of the main challenges one en-
counter when applying such approach is to translate the
raw time series into a format that can be used by ML clas-
sifiers; typically, the general scheme is given in Fig. 1: the
pipeline contains two blocks, atomic gestures extraction
and feature extraction, aiming to translate the informative
content in the classical form X ∈ RN×p, where N and p
are, respectively, the number of observations (executions of
atomic gestures in this context) and the number of features
extracted from each atomic gesture execution.
This is also the approach used in this paper, where the
atomic gestures extraction phase is performed on time
series containing multiple executions of the same gesture
and the classifiers employed are the well-known Random
Forests (RFs) (Breiman, 2001), which guarantee low bias
and low variance estimates. In addition to feature-based
approaches, there exist other similar approaches such as
distance-based ones. For a complete review on time series
classification, see (Susto et al., 2018).
In the last five years, Deep Learning (DL) proved to obtain
state-of-the-art results for many tasks, like Computer Vi-
sion and it has been successfully applied also to GR prob-
lems (Yang et al., 2015; Hammerla et al., 2016; Ordóñez
and Roggen, 2016). The common DL pipeline follows Fig.1
where the features extraction phase can be embedded with
the Neural Network architecture, allowing a plug-and-play
approach to modeling. Although DL approaches are able to
achieve high accuracy and to overcome a dedicated feature
extraction phase, this is obtained at the cost of lack of
robustness and interpretability, and the need of a large
number of training data. When the dataset cardinality
is not big (a typical situation in GR and many other
real-world problems), RFs represent a valuable alternative
for classification tasks, and in particular to GR as shown
by (Negin et al., 2013; Camgöz et al., 2014).

3. DATASET CREATION

In this Section we describe in detail the apparatus, the
data acquisition and elaboration procedures exploited to
build the GR dataset.

3.1 Experimental setup

Data acquisition sessions took place in the Multi AGent &
Motion Analysis and Gait Intelligent Control (MAG2IC)
laboratory of the Department of Information Engineering
at the University of Padova. The laboratory is equipped
with a BTS Smart-D Motion Capture system (MAGIC,
2019), composed of 12 infrared video cameras which col-
lect three-dimensional position data of 8 photo-reflexive
markers. At a given sampling instant, for each marker the
Motion Capture system acquires the x-component, the y-
component and the z-component of the marker position.
As a result, at each sampling instant we have a total of 24
acquired values. The cameras sampling rate is 340Hz .
The 8 markers have been placed in areas of the body
that allow a better characterization of the gesture, with
the future goal of making it possible data collection in
everyday applications, using consumer wearable devices.
Specifically, as shown in Fig. 2, the markers locations are:

on left and right wrists (smartwatch location); on left and
right arms (running band location); on left and right legs
(smartphone location, inside the pocket); on left and right
ankles (other running sensors location).
In this work we analyzed gestures performed statically (i.e.
standing still in the same point of the space) and through
the use of the right arm only (on the frontal plane),
therefore measurements from markers other than those
placed on the right arm and wrist are not particularly
informative. However, we decided to include in the dataset
also such measures, in the eventuality that they could be
useful elements of comparison, in classification phase, for
possible future work on the recognition of dynamically
executed gestures (walking or running) or using both arms.

3.2 Data acquisition

The data acquisition process was divided into several ses-
sions, each of which containing the measurements relating
to multiple executions of gestures belonging to a single cat-
egory. The categories of gestures for which data were col-
lected are 10: circle shape (‘©’), eight shape (‘8’), square
shape (‘�’), triangle shape (‘�’), M shape (‘M’), S shape
(‘S’), U shape (‘U’), V shape (‘V’), vertical movement
(‘��’) and horizontal movement (‘�’). With the purpose
of providing greater intra-class variability, for each gesture
category we considered 11 different modes of execution:
clockwise (CK), counterclockwise (CCK), small amplitude
(SA), medium amplitude (MA), big amplitude (BA), low
velocity (LV), medium velocity (MV), high velocity (HV),
vertical deformation (VD), horizontal deformation (HD)
and diagonal deformation (DD). Notice that there are
some incompatible gesture category-mode pairs: for ex-
ample, for the M shape gesture the CW and CCW modes
have no sense.
In order to create an automated procedure for the iden-
tification of markers, during the Motion Capture system
calibration phase we positioned the coordinate reference
system at the center of the room, oriented towards the
direction in which the gestures were performed. The cal-
ibration thus obtained guarantees that, once the subject

Fig. 2. Markers locations.

2019 IFAC ICONS
Belfast, Northern Ireland, August 21-23, 2019

129



130	 Nicoló Bargellesi  et al. / IFAC PapersOnLine 52-11 (2019) 128–133

Fig. 3. Time series associated with the x-component
(blue), the y-component (yellow) and the z-
component (orange) of the right wrist marker position
when performing the circle shape (medium ampli-
tude).

has assumed the correct position in the preparation phase,
each time series captured by the system can be uniquely
associated with the corresponding marker by the simple
analysis of the marker position at the start time. Indeed,
at the start time markers positioned on opposite sides
(right or left) differ at least in the z-component which is
negative or positive, respectively, while markers positioned
at different locations on the same side differ at least in the
y-component (i.e. their height).
As mentioned above, each session includes multiple exe-
cutions of the same gesture and, thus, we had to organize
the data acquisition procedure in a way that facilitates
the subsequent segmentation of the measurements into
the single executions. Therefore, for each feasible gesture
category-mode pair the data acquisition procedure is based
on the following steps:

(1) Start the acquisition of the Motion Capture system.
(2) Quiet phase (10-12 seconds) for the identification of

the start and the markers.
(3) Execution of individual gestures (separated by pauses

of 2-3 seconds).
(4) Quiet phase (10-12 seconds) for the identification of

the stop.
(5) Interruption of the acquisition.

An example of acquisition is given in Fig. 3, where are
reported the time series associated with the x-component
(blue), the y-component (yellow) and the z-component (or-
ange) of the right wrist marker position when performing
the circle shape (medium amplitude).

3.3 Atomic gesture extraction

Given the synchronous nature of the collected data, in
order to identify the periods of activity it is sufficient to
analyze the most informative time series, i.e. those associ-
ated with the marker positioned on the right wrist (with
which the gestures were performed). The hypothesis that
allows the identification of the temporal interval in which
a gesture is performed is the presence of a period of im-
mobility before and after each execution (indicatively set
to 2-3 seconds, as anticipated in Section 3.2). In order to
identify such activity intervals, we considered overlapping
windows on the time series. By evaluating the standard
deviation within each window, we can detect for each single
execution the start point and the stop point, as can be seen
in Fig. 4 (blue and red dashed vertical lines, respectively).
Notice that time series describing single executions may
have different lengths, even if we consider the same gesture
category and mode. This aspect must be given particular

Fig. 4. Extraction of single executions by detecting start
points (blue dashed vertical lines) and stop points (red
dashed vertical lines).

attention in model design phase as not all classification
algorithms can deal natively with inputs of variable size.
In Tab. 1 the number of single executions obtained for each
gesture category-mode pair is reported. The total number
of observations is 1537. The dataset is available at https:
//gitlab.dei.unipd.it/dl_dei/gesture_recognition.

4. PROPOSED APPROACH

In this Section we describe the three feature extraction
methods that we used and compared in our experiments
and we recall the basic functioning of Random Forests, the
classifiers used in the GR phase.

4.1 Feature extraction

As anticipated in Section 3.3, the time series describing
single executions obtained through the atomic gesture
extraction procedure may contain a variable number of
samples, hence we need to perform a feature extraction
phase before training a classification model. The goal of
the feature extraction procedure is to describe each single
execution with a feature vector xi of fixed dimension p, so
that a design matrix X with N rows and p columns can
be created (where N is the number of single executions).
Below we describe the three feature extraction methods
that we used and compared in our experiments.
- Time series cropping (CROP). We denote with Lmin

the minimum time series length, which coincides with the
number of samples contained in the shortest time series
of the dataset. This method consists in truncating time
series whose length exceeds the minimum length Lmin.
As a result, each single execution is described with a
feature vector of dimension p = 3 · Lmin for each marker
(i.e. a vector containing the first Lmin samples of the x-
component, y-component and z-component, respectively).
An example with Lmin = 100 is given in Fig. 5 (middle),
where blue samples are used as features, while orange ones
are discarded.
- Time series resampling (RESAMP). Differently from the
previous method, in which the same sample density is pre-
served at the price of not finishing the slowest executions,
the resampling procedure consists in preserving the overall
shape of the time series and discarding some intermediate
samples. In particular, the resampling period depends on
the length of the time series at hand: the longer the time
series, the bigger the resampling period. Similarly to the
previous method, the resampling procedure guarantees
that all time series contain the same number of samples,
equal to Lmin, and each single execution is described
with a feature vector of dimension p = 3 · Lmin for each
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Table 1. Number of single executions for each gesture category-mode pair.

CW CCW SA MA BA LV MV HV VD HD DD TOT

© 18 20 20 20 20 20 20 20 18 18 20 214
8 20 20 18 20 18 18 18 18 18 16 16 200
� 16 16 14 14 14 - - - 16 16 - 106
� 15 16 14 14 14 14 14 14 16 16 - 147
M - - 14 14 14 14 14 14 10 12 24 130
S - - 14 14 14 14 14 14 10 12 24 130
U - - 14 16 14 14 14 14 12 12 24 134
V - - 14 14 14 12 14 14 12 12 24 130
� - - 20 22 20 22 22 20 - - 50 176
�� - - 20 22 20 22 18 20 - - 48 170

marker. An example is given in Fig. 5 (bottom), where
blue small vertical lines indicate the samples selected by
the resampling method.
- Summary statistics (STAT). This method consists in
summarizing the information contained in each time series
through a predetermined number of functions of the data
(usually referred to as statistics). In this work we decided
to represent each time series with 5 statistics: minimum
value, maximum value, sample mean, sample variance and
energy. As a result, each single execution is described with
a feature vector of dimension p = 3·5 = 15 for each marker.

4.2 Random Forest

RFs are high precision statistical modeling approaches
which have been shown to be able to outperform many
algorithms for both regression and classification. RF is an
ensemble method that deploys in parallel B Decision Trees
(DTs), a classical approach to statistical learning that, in
its naive form, is generally prone to overfitting and poor
prediction capabilities with high-dimensional modelling
problems; RF corrects for decision trees aforementioned
problems. We denote with X ∈ RN×p the design matrix

Fig. 5. Time series cropping (middle) and resampling
(bottom) of the original x-component (top) of the
right wrist marker position when performing the circle
shape (medium amplitude). Blue sample are used as
features, orange samples are discarded.

Voting System

Tree 1 Tree 2 Tree B

. . . 

Observation x

y1 y2
yB

y

Fig. 6. Random Forest (RF) scheme with B decision trees.
Figure adapted from Susto (2017).

and with Z ∈ RN the vector containing the target vari-
ables that we want to predict. In the case of a classification
task Z contains the classes associated to each observation,
while in the case of a regression task Z typically contains
continuous values.
A scheme of a RF is depicted in Fig. 6; for a new observa-
tion, whose input data are contained in the vector x, the
k-th tree assigns a class yk (in the case of a classification
RF) or a value yk (in the case of a regression RF). The RF
output is decided as follows: in the case of a regression RF,
the output value y is the average over Y = {y1, . . . , yB},
while in the case of a classification RF, the output y
is chosen as the mode of the set Y. The B trees are
constructed by exploiting a procedure called Bootstrap
Aggregating or Bagging (Dietterich, 2000). With the bag-
ging procedure, B random samples with replacement of
the training data are considered and a DT is fit to each
sample; for b = 1, . . . , B

(1) a random sample [Xb, Zb] with replacement of the
training data is considered;

(2) a DT fb(·) is computed on [Xb, Zb].

In the case of a classification problem, for a new obser-
vation x the corresponding RF output (i.e. the predicted
class) is then computed as the mode of Y = {y1, . . . , yB},
where yb = fb(x) for b = 1, . . . , B.

5. EXPERIMENTAL RESULTS

In this Section we describe the two experiments carried out
on the GR dataset described in Section 3 along with some
considerations on the obtained results. In order to reduce
the computational cost, we only exploited measurements
associated to the most informative markers, i.e. those
located on the right arm and right wrist, respectively.
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Table 1. Number of single executions for each gesture category-mode pair.

CW CCW SA MA BA LV MV HV VD HD DD TOT

© 18 20 20 20 20 20 20 20 18 18 20 214
8 20 20 18 20 18 18 18 18 18 16 16 200
� 16 16 14 14 14 - - - 16 16 - 106
� 15 16 14 14 14 14 14 14 16 16 - 147
M - - 14 14 14 14 14 14 10 12 24 130
S - - 14 14 14 14 14 14 10 12 24 130
U - - 14 16 14 14 14 14 12 12 24 134
V - - 14 14 14 12 14 14 12 12 24 130
� - - 20 22 20 22 22 20 - - 50 176
�� - - 20 22 20 22 18 20 - - 48 170

marker. An example is given in Fig. 5 (bottom), where
blue small vertical lines indicate the samples selected by
the resampling method.
- Summary statistics (STAT). This method consists in
summarizing the information contained in each time series
through a predetermined number of functions of the data
(usually referred to as statistics). In this work we decided
to represent each time series with 5 statistics: minimum
value, maximum value, sample mean, sample variance and
energy. As a result, each single execution is described with
a feature vector of dimension p = 3·5 = 15 for each marker.

4.2 Random Forest

RFs are high precision statistical modeling approaches
which have been shown to be able to outperform many
algorithms for both regression and classification. RF is an
ensemble method that deploys in parallel B Decision Trees
(DTs), a classical approach to statistical learning that, in
its naive form, is generally prone to overfitting and poor
prediction capabilities with high-dimensional modelling
problems; RF corrects for decision trees aforementioned
problems. We denote with X ∈ RN×p the design matrix

Fig. 5. Time series cropping (middle) and resampling
(bottom) of the original x-component (top) of the
right wrist marker position when performing the circle
shape (medium amplitude). Blue sample are used as
features, orange samples are discarded.

Voting System
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y1 y2
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Fig. 6. Random Forest (RF) scheme with B decision trees.
Figure adapted from Susto (2017).

and with Z ∈ RN the vector containing the target vari-
ables that we want to predict. In the case of a classification
task Z contains the classes associated to each observation,
while in the case of a regression task Z typically contains
continuous values.
A scheme of a RF is depicted in Fig. 6; for a new observa-
tion, whose input data are contained in the vector x, the
k-th tree assigns a class yk (in the case of a classification
RF) or a value yk (in the case of a regression RF). The RF
output is decided as follows: in the case of a regression RF,
the output value y is the average over Y = {y1, . . . , yB},
while in the case of a classification RF, the output y
is chosen as the mode of the set Y. The B trees are
constructed by exploiting a procedure called Bootstrap
Aggregating or Bagging (Dietterich, 2000). With the bag-
ging procedure, B random samples with replacement of
the training data are considered and a DT is fit to each
sample; for b = 1, . . . , B

(1) a random sample [Xb, Zb] with replacement of the
training data is considered;

(2) a DT fb(·) is computed on [Xb, Zb].

In the case of a classification problem, for a new obser-
vation x the corresponding RF output (i.e. the predicted
class) is then computed as the mode of Y = {y1, . . . , yB},
where yb = fb(x) for b = 1, . . . , B.

5. EXPERIMENTAL RESULTS

In this Section we describe the two experiments carried out
on the GR dataset described in Section 3 along with some
considerations on the obtained results. In order to reduce
the computational cost, we only exploited measurements
associated to the most informative markers, i.e. those
located on the right arm and right wrist, respectively.
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Table 2. Experiment #1: accuracy and compu-
tational time average (standard deviation).

CROP RESAMP STAT

Accuracy 0.93± 0.02 0.97 ± 0.01 0.96± 0.02
Comp. time 0.25± 0.01 0.22± 0.01 0.07 ± 0.004

Table 3. Cumulative confusion matrix for ex-
periment #1 with CROP method.

PRED

© 8

T
R
U
E © 6054 356

8 502 5588

Table 4. Cumulative confusion matrix for ex-
periment #1 with RESAMP method.

PRED

© 8

T
R
U
E © 6270 140

8 177 5913

For both experiments we performed 100 random iterations
of the RF algorithm (with 100 DTs) for each feature
extraction method. For the evaluation of the models we
adopted a 70%-30% train-test split and computed classi-
fication accuracy (averaged over the 100 iterations) and
cumulative confusion matrix on test set.

5.1 Experiment #1

For the first experiment we considered a reduced version
of the GR dataset, which comprises only executions of
circle shape and eight shape with a total number of avail-
able observations equal to 414. The shortest time series
has length Lmin = 317, therefore CROP and RESAMP
methods represent each single execution with a feature
vector of dimension p = Lmin · ncomp · nmarker = 317 · 3 ·
2 = 1902, where ncomp denotes the number of components
of each measurement and nmarker the number of markers
considered. The STAT method, instead, represents each
execution with a feature vector of dimension p = 5 ·ncomp ·
nmarker = 5 · 3 · 2 = 30 and it can be noticed that the
value of p, in this case, is independent of the shortest time
series length. As can be seen in Table 2, the more compact
representation provided by STAT method allows to reduce
the training time if compared to CROP and RESAMP.
However, the best classification accuracy is achieved with
the RESAMP method, suggesting that the representation
given by STAT can be enriched by including more infor-
mative additional statistics. The CROP method gives the
worst performance and this may be due to the fact that
relevant information from the original signal is discarded,
especially when processing slow gestures. By inspecting
the cumulative confusion matrices in Table 3, Table 4 and
Table 5, it can be noticed that the classification accuracy
for the circle shape is slightly higher than for the eight
shape for all feature extraction methods. This difference is
further emphasised for the CROP method, i.e. the method
with the worst performance.

Table 5. Cumulative confusion matrix for ex-
periment #1 with STAT method.

PRED

© 8

T
R
U
E © 6151 259

8 292 5798

Table 6. Experiment #2: accuracy and compu-
tational time average (standard deviation).

CROP RESAMP STAT

Accuracy 0.79± 0.02 0.94 ± 0.01 0.84± 0.02

Comp. time 1.40± 0.08 1.25± 0.06 0.31 ± 0.03

Table 7. Cumulative confusion matrix for ex-
periment #2 with CROP method.

PRED

© 8 � � M S U V � ��

T
R
U
E

© 5515 397 7 77 43 121 179 3 62 52

8 368 5328 0 0 0 59 37 24 74 95

� 10 0 2740 377 1 59 0 0 33 11

� 109 0 310 3472 388 18 0 0 25 30

M 67 0 5 290 3292 86 0 0 39 112

S 427 71 29 37 140 2464 211 26 288 248

U 223 4 0 0 0 139 2631 689 173 203

V 115 37 0 0 0 89 798 2172 239 414

� 110 17 119 86 18 58 28 204 4591 46

�� 2 68 0 0 53 187 121 431 80 4199

Table 8. Cumulative confusion matrix for ex-
periment #2 with RESAMP method.

PRED

© 8 � � M S U V � ��

T
R
U
E

© 6231 100 0 23 5 13 60 2 22 0

8 102 5793 0 0 0 0 0 1 14 75

� 0 0 2983 226 13 0 0 0 9 0

� 28 0 87 4173 10 30 0 0 23 1

M 0 0 39 23 3829 0 0 0 0 0

S 47 56 0 3 0 3523 1 0 114 197

U 20 0 0 0 0 9 3566 465 2 0

V 0 0 0 0 0 0 451 3392 21 0

� 1 0 16 0 20 44 1 27 5112 56

�� 0 0 0 0 0 118 0 0 36 4987

Table 9. Cumulative confusion matrix for ex-
periment #2 with STAT method.

PRED
© 8 � � M S U V � ��

T
R
U
E

© 5950 144 19 83 54 61 131 2 0 12
8 191 5587 31 1 0 79 38 18 0 40
� 50 26 2867 200 2 25 36 10 15 0
� 281 22 144 3648 214 30 13 0 0 0
M 330 2 16 55 3278 57 136 17 0 0
S 432 574 209 221 159 1778 226 175 3 164
U 61 281 76 56 145 85 2887 354 28 89
V 38 227 30 0 8 58 321 2770 226 186
� 2 5 3 3 11 22 3 52 5176 0
�� 0 2 0 33 0 68 89 59 10 4880

5.2 Experiment #2

For the second experiment we considered the whole GR
dataset, which consists of 1537 observations. The shortest
time series has length Lmin = 167, therefore CROP and
RESAMP methods represent each single execution with a
feature vector of dimension p = Lmin · ncomp · nmarker =
167 · 3 · 2 = 1002. The analysis of the results in Table 6
leads to considerations analogous to those given in Section
5.1 for experiment #1.

When considering the whole dataset it is worth highlight-
ing the value of the information contained in the cumula-
tive confusion matrices given in Table 7, 8 and 9. Indeed,
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in the context of smart environments each gesture corre-
sponds to a specific command and this correspondence is
typically designed according to two principles:

• most used commands are associated with the most
ergonomic gestures;

• critical commands (i.e. those that cannot be failed)
are associated with gestures with the lowest false
positive/false negative rates.

It is evident that the overall classification accuracy does
not provide enough information for this purpose and the
knowledge about the distribution of misclassified gestures
is of fundamental importance for the design of a trustwor-
thy and robust system. For example, if we consider the
cumulative confusion matrix given in Table 8 (associated
with the best performing feature extraction method, RE-
SAMP) we would associate a critical command to shape
M (low false negative and false positive rates) rather than
shape U (high false negative and false positive rates).

6. CONCLUSION

In this paper we presented an algorithm for Gesture
Recognition of hand movements based on Random Forests:
we showed this classifier combined with a proper feature
extractor can be an effective approach to smart environ-
ment applications. In the problem at hand, the RESAMP
method experimentally proved to be an effective choice for
extracting features in term of accuracy at small price of
time complexity with respect to the STAT method. More-
over, we published the dataset we used as a benchmark in
order to foster research in the GR area.

In future works, we plan to augment the GR dataset
with IMU data and analyze the corresponding loss of
information with respect to Motion Capture data. We also
plan to extend the approach proposed in this paper to the
recognition of dynamically executed gestures (e.g. walking,
running) and gestures executed with both arms.

REFERENCES

Belgioioso, G., Cenedese, A., Cirillo, G.I., Fraccaroli, F.,
and Susto, G.A. (2014). A machine learning based
approach for gesture recognition from inertial measure-
ments. In 53rd IEEE Conference on Decision and Con-
trol, 4899–4904. IEEE.

Breiman, L. (2001). Random forests. Machine learning,
45(1), 5–32.
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sponds to a specific command and this correspondence is
typically designed according to two principles:

• most used commands are associated with the most
ergonomic gestures;

• critical commands (i.e. those that cannot be failed)
are associated with gestures with the lowest false
positive/false negative rates.

It is evident that the overall classification accuracy does
not provide enough information for this purpose and the
knowledge about the distribution of misclassified gestures
is of fundamental importance for the design of a trustwor-
thy and robust system. For example, if we consider the
cumulative confusion matrix given in Table 8 (associated
with the best performing feature extraction method, RE-
SAMP) we would associate a critical command to shape
M (low false negative and false positive rates) rather than
shape U (high false negative and false positive rates).

6. CONCLUSION

In this paper we presented an algorithm for Gesture
Recognition of hand movements based on Random Forests:
we showed this classifier combined with a proper feature
extractor can be an effective approach to smart environ-
ment applications. In the problem at hand, the RESAMP
method experimentally proved to be an effective choice for
extracting features in term of accuracy at small price of
time complexity with respect to the STAT method. More-
over, we published the dataset we used as a benchmark in
order to foster research in the GR area.

In future works, we plan to augment the GR dataset
with IMU data and analyze the corresponding loss of
information with respect to Motion Capture data. We also
plan to extend the approach proposed in this paper to the
recognition of dynamically executed gestures (e.g. walking,
running) and gestures executed with both arms.
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