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Effectiveestimationof entropyproduction
with lacking data
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Observing stochastic trajectories with rare transitions between states, practically undetectable on
time scales accessible to experiments, makes it impossible to directly quantify the entropy production
and thus infer whether and how far systems are from equilibrium. To solve this issue for Markovian
jump dynamics, we show a lower bound that outperforms any other estimation of entropy production
(including Bayesian approaches) in regimes lacking data due to the strong irreversibility of state
transitions.Moreover, in the limit of complete irreversibility, our effective version of the thermodynamic
uncertainty relation sets a lower bound to entropy production that depends only on nondissipative
aspects of the dynamics. Such an approach is also valuable when dealing with jump dynamics with a
deterministic limit, such as irreversible chemical reactions.

Energy transduction and information processing—the hallmarks of biolo-
gical systems—can only happen in finite times at the cost of continuous
dissipation. Quantifying time irreversibility and entropy production is thus
a central challenge in experiments on mesoscopic systems out of
equilibrium1,2, including living matter3–10 and technological devices11.
Experimental efforts have been paralleled by the recent development of
nonequilibrium statistical mechanics, focused on adding methods for esti-
mating the entropy production rate σ in steady states10,12–20. Several
approaches, for example, focus on improving estimates of σ in cases of
incomplete information and coarse-graining21–25. Sometimes, they are based
on lower bounds on σ2,18,19, of which the thermodynamic uncertainty rela-
tion (TUR) is a prominent example17,26–34. Classical methods estimate σ by
adding local contributions from non-zero fluxes between states35. However,
recent approaches have also introduced methods exploiting the statistics of
return times or waiting times36–40.

For high-dimensional diffusive systems or Markov jump processes on
an ample state space, where the experimental estimate ofmicroscopic forces
becomes difficult, the TUR is a valuable tool for quantifying approximately
σ. Indeed, the TUR is a frugal inequality, being based only on the knowledge
of the first two cumulants of any current J integrated over a time τ, i.e. its
average 〈J〉 and its variance var(J) = 〈J2〉− 〈J〉2,

σ

kB
≥ 2

hJi2
varðJÞ τ : ð1Þ

However, (1)might provide a loose bound on σ. For example, far from
equilibrium, kinetic factors41 often constrain the right-hand side of (1) to
values much smaller than σ.

Let us focus on a Markov jump process with transition rate wij from
state i to state j, in a stationary regimewith steady-state probabilityρi. If there
is a coupling between equilibrium reservoirs and the system, for each for-
ward transition between two states i and j, denoted (i, j), the backward
evolution (j, i) is possible. By defining fluxes ϕij = ρiwij, the mean entropy
production rate is written42–44 as

σ

kB
¼
X
i<j

ðϕij � ϕjiÞ ln
ϕij
ϕji

: ð2Þ

The system is in equilibriumonly if all currents are zero, that is,ϕij = ϕji
for every pair {i, j}. Experimentally, fluxes ϕij are estimated by counting the
transitions between states i and j in a sufficiently long time interval t.

The challenge we focus on is evaluating the entropy production rate
with experimental data missing the observation of one or more backward
transitions—any null flux makes (2) inapplicable. This situation is
encountered in a vast class of idealized mesoscopic systems such as totally
asymmetric exclusion processes45, directed percolation46, spontaneous
emission in a zero-temperature environment47, enzymatic reactions48, per-
fect resetting49. A first solution to this problem involves replacing each
unobserved transition ϕij by a fictitious rate ϕij ~ t−1 scaling with the
observation time. Intuitively, this corresponds to assuming that no transi-
tionwasobservedduring a time tbecause itsfluxwasbarely lower than t−1.A
Bayesian approach refines this simple argument, proposing the optimized
assumption ϕij≃ (ρj/ρi)/t for null fluxes in unidirectional transitions35.
Hence, it allows us to estimate the entropy production directly from (2).

In this Letter, we put forward an additional estimation of the entropy
production rate, not based on (2). Instead, we introduce a lower bound to σ
(see (15)with (3) below)using the exact quantities needed for the estimation
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of (2), i.e., single fluxes. Notwithstanding that, our inequality can be tight
and give an estimate of σ that outperforms (2) (and any standard TUR) in
regimes lacking data, in which transitions between states may appear
experimentally as unidirectional in a trajectory of finite duration t. The
efficacy of our approach derives from several optimizations related to (i) the
short time limit τ→ 018,19, (ii) the so-called hyperaccurate current32,33,50,51,
and, most importantly, (iii) an uncertainty relation32,52 in which the specific
presence of the inverse hyperbolic tangent boosts the lower limit imposed to
σ by the TUR (1) (the hyperbolic tangent appears in several derivations of
TURs29,30). In the extreme case in which all observed transitions appear
unidirectional, the inequality simplifies to

σ

kB
≥ κ logðκ tÞ; for κ t≫ 1; ð3Þ

where the average jumping rate (or dynamical activity, or frenesy53) κ
characterizes the degree of agitation of the system. Thus, far from equili-
brium, the nondissipative quantity κ binds the average amount of dissipa-
tion σ. Key to our approach is the assumption that the overall rate of all
unobserved (reverse) transitions is of the order ~t−1. At the same time, we
make no assumption for the specific reverse rate of each unidirectional
transition. Equation (3) can also be used if only forward rates are known
analytically and backward rates are small and unknown. The chemical
reactions described at the end of the paper fall into this scenario.

Results and discussion
Empirical estimation
Equation (2) holds for Markov jump processes with transition rates satis-
fying the local detailed balance condition wij=wji ¼ esij , where sij =− sji is
entropy increase in the environment (in units of kB = 1, hereafter) when
transition (i, j) takes place. For these processes, the experimental data we
consider are time series of states (i(0), i(1),…, i(n)) and of the corresponding
jumping times (t(1), t(2),…, t(n) < t). The total residence time tRi that a tra-
jectory spends on a state i gives the empirical steady-state distribution pi ¼
tRi =t that approaches the steady-state probability distribution ρi for long
times t.

The estimation of σ is based on empirical measurements of fluxes ϕij,
whichwe define starting from the numbernij = nij(t) of observed transitions
(i, j),

ϕij ’ _nij �
nij
t
: ð4Þ

If the observation time t is much larger than the largest time scale, i.e.
t≫ τsys ¼ ðmini;jϕijÞ�1, the empirical flux _nij converges to ϕij and the
estimate of the entropy production rate simply becomes

σ ’ σemp �
X
i<j

ð _nij � _njiÞ ln
_nij
_nji
: ð5Þ

However, our focus is on systems in which t < τsys, so that some
transitions ði; jÞ 2 I areprobablynever observed (nij = 0)while their reverse
ones (j, i) are (nji ≠ 0). In this case, the process appears absolutely
irreversible54 and (4) is inapplicable—the estimate (5) would give an infinite
entropy production.We assume that the network remains connected if one
removes the transitions belonging to the set I so that the dynamics stays
ergodic.Note that the casewhere bothnij = 0andnji = 0posesnodifficulties.
Indeed, oneneglects the edge {i, j}, at the possible price of underestimatingσ.
We leave this understood and deal with the residual cases in which only one
of the two countings is null.

If in a time t a transition from i to j is not observed,we conclude that the
typical time scale of the transition is not shorter than t, that is ϕij≲ t−1. A
more quantitative argument35 suggests “curing” the numerical estimates of

fluxes by introducing a similar minimal assumption,

_nij ¼
nij=t; if nij > 0

pj=ðpitÞ; if ði; jÞ 2 I
0; otherwise;

8><
>: ð6Þ

and uses these regularized estimates of ϕ’s in (5).

Lower bounds to σ
To use TURs, we define currents by counting algebraically transitions
between states. For example, for (i, j), an integrated current during a time τ
is just the counting nij(τ)− nji(τ) during that period. By linearly combining
single transition currents via antisymmetric weights cij =− cji (stored
in a matrix c), one may define a generic current J = Jc =∑i < j

cij[nij(τ)− nji(τ)].
Among all possible currents, one can choose those giving the best lower

bound to σ, for instance, by machine learning methods18–20. However,
refs. 50,51 show that the TUR can be analytical optimized by choosing the
hyperaccurate current J hyp. In the limit τ→ 0, the coefficients defining J hyp

take the simple form32

chypij ¼
ϕij � ϕji
ϕij þ ϕji

’
_nij � _nji
_nij þ _nji

: ð7Þ

Moreover, the TUR (1) is the tightest when J is integrated over an
infinitesimal time τ→ 018,19 and can become equality in the limit τ→ 0 only
for overdamped Langevin dynamics. However, for Markovian stationary
processes Eq. (24) in ref. 32 states that

hJτi2
varðJτÞ τ

≥
hJT i2

varðJT Þ T
for J ¼ Jhyp; ð8Þ

where T � Mτ is a time span collecting M short steps of duration τ. It is
therefore useful to exploit the TUR in the short τ limit and define the short-
time precision pðJÞ as

pðJÞ � limτ!0
hJi2

varðJÞ τ : ð9Þ

For Markov jump processes, for a generic J, we have

hJi ¼
X
i<j

cijðϕij � ϕjiÞτ;

varðJÞ ¼
X
i<j

c2ijðϕij þ ϕjiÞτ þ Oðτ2Þ;
ð10Þ

and the related TUR in the limit τ→ 0 is

σ ≥ σJTUR ¼ 2 pðJÞ: ð11Þ

Focusing on the hyperaccurate current, which is also characterized by
〈J hyp〉 = var(J hyp), the optimized TUR reduces to σ ≥ σhypTUR ¼ 2phyp

(involving the so-called pseudo-entropy55) with

phyp �
X
i<j

ðϕij � ϕjiÞ2
ϕij þ ϕji

ð12Þ

In the following, we will use an improvement of the TUR. We start
from the implicit formula derived in52,

pðJÞ≤ σ2

4κf σ
2κ

� �2 ð13Þ
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which depends on the frenesy

κ ¼
X
i<j

ðϕij þ ϕjiÞ; ð14Þ

and the function f that is the inverse of x tanh x. We use the relation
g(x) = x/f(x) with g the inverse function of xtanh�1x56 to turn (13) into an
explicit lower bound on the entropy production

σ ≥ 2
ffiffiffiffiffiffiffiffiffiffi
phypκ

p
tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
phyp=κ

q� �
: ð15Þ

The inequality (15) reduces to the TUR close to equilibrium, where
σ→ 0, and is tighter than the kinetic uncertainty relation41 far from equi-
librium where tanhðσ=2

ffiffiffiffiffiffiffiffiffiffi
phypκ

p
Þ ! 1, namely κ≥ phyp.

Empirically, for κ t≫ 1, we can approximate the optimized precision
(12) and the frenesy (14) with

phypemp ¼
X
i<j

ð _nij � _njiÞ2
_nij þ _nji

; ð16Þ

κemp ¼
X
i<j

ð _nij þ _njiÞ: ð17Þ

Neither of them does require the regularization (6). However, the
(positive) argument of the tanh�1 function in (15) needs to be strictly lower

than 1, i.e. phypemp<κemp.

With p
hyp
emp there arises a problem when one measures irreversible

transitions in all edges, minð _nij; _njiÞ ¼ 0 for every i and j: in that case, one

can see that phypemp ¼ κemp. To fix the divergence of tanh
�1 that it would lead

to, we use an assumptionmilder than the requirement of reversibility for all
transitions used for (6).

If phypemp ¼ κemp, we assume that the observation time t is barely larger
than the typical time needed to have any reverse transition. By denoting a
tiny rate of any unobserved transition ði; jÞ 2 I as ϵij, the ratio of the pre-
cision of the hyperaccurate current over the frenesy becomes

phyp

κ
’ 1P

ði;jÞ2I ð _nji þ ϵijÞ
X
ði;jÞ2I

ð _nji � ϵijÞ2
_nji þ ϵij

’
κemp � 3

P
ði;jÞ2Iϵij

κemp þ
P

ði;jÞ2I ϵij

’ 1� 4
κemp

X
ði;jÞ2I

ϵij

¼ 1� 4
κemp t

’ 1� 4
κ t

;

ð18Þ

where we have set
P

ði;jÞ2Iϵij ¼ 1=t according to our assumption and we
replaced κemp with κ because they give the same bound to leading order in t.

Hence, in an experiment measuring only irreversible transitions for
t≫ 1/κ, (15) with (18) still provide a lower bound on the entropy pro-
duction rate:

σ

kB
≥ 2κ tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

κ t

r !
ð19Þ

ByTaylor expanding the argument of tanh�1 to the leading order, (19)
simplifies to the lower bound anticipated in (3), which is based simply on
evaluating the frenesy κ empirically with (17).

Examples
Let us illustrate the performance of the various estimators of the entropy
production ratewith the four-statenonequilibriummodel sketched inFig. 1.
Some transitions (black arrows) have a constant rate wij = 1 (in dimen-
sionless units). Other transition rates depend on a nonequilibrium strength
α, with α = 0 representing equilibrium: wij = e−α (red arrows), and wij = e−3α

(thin blue arrows). The latter class is thefirst to goundetected for sufficiently
large α, which causes the empirical estimate σemp to start deviating from the
theoretical value (α≳ 1.7 in Fig. 1). However, σemp remains the best option
for evaluating σup to a valueα ≈ 4,where the lower boundσhyptanh takesover as
the best σ estimator far from equilibrium. Interestingly, for α≳ 4, the
probability firr to measure a trajectory with only irreversible transitions
(green curve in Fig. 1) is still small. Hence, it is the full schemewith (15) and
the extreme case (3) that provides a good estimate of σ. For this setup, the
TUR optimized with the hyperaccurate current is only useful close to
equilibrium but is never the best option. For comparison with the hyper-
accurate version, in Fig. 1, we also show the loose lower boundoffered by the
TUR for the current J defined on the single edge {i = 1, j = 2}.

To appreciate the influenceof the trajectory durationon the estimators,
in Fig. 2a, we plot the scaling with the sampling time t of σemp and σ

hyp
tanh. In

this example, the fartheronegoes fromequilibrium, the longerσhyptanh remains
the better estimator. This aspect can be crucial if, for experimental limita-
tions, one is restricted to a finite t. It is also emphasized in Fig. 2b, where we
plot the time at which σemp becomes larger than σhyptanh, as a function of the
truedissipation rateσth.Again, it shows that inmoredissipative regimes, one
can rely on σhyptanh if trajectories are too short to obtain a good estimate of σth
with σemp.

The second example shows how our lower bound may scale favorably
with the systemsize compared to the other σ estimators.We study aperiodic
ring of N states with local energy ui ¼ � cosð2πi=NÞ and transitions
rates wi,i+1 = 1, wi;i�1 ¼ exp½�α=N þ ui � ui�1� (temperature is T = 1).

Figure 3 shows the ratios of σhypTUR, σ
hyp
tanh, and σemp over the theoretical value

σth, as a function of the nonequilibrium force α, both for a ring withN = 10

and for a longer ringwithN = 20 states. For eachN, we see that σhyptanh far from
equilibrium is the best estimator of the entropy production rate. Further-
more, it also appears to be the estimator that scales better by increasing the
system size: its plateau at σ/σth≃ 1 scales linearly with N (the inset of Fig. 3

Fig. 1 | Estimation of the entropy production in a 4-state model. For the 4-states
model (inset and description in the subsection Examples), estimates of the entropy
production rate and theoretical value σth (left axis), and the fraction of trajectories
displaying only irreversible transitions (green curve, right axis) as a function of the
nonequilibrium strength α. The sampling time is t = 103, and bands show one
standard deviation variability over trajectories. Highlighted regions: (i) the empirical
estimate works well while lower bounds progressively depart from σth; (ii) σemp

deviates from σth but remains the best estimator; (iii) the lower bound σhyptanh is the best
estimator.
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shows the α* value where σ/σth drops below the arbitrary threshold 0.9,
divided byN, as a function ofN), while this is not the case for the empirical

estimate σemp. These results propose σ
hyp
tanh as a valuable resource in a con-

tinuous limit todeterministic,macroscopic conditions.Next,we explore this
possibility.

Deterministic limit
Our approach extends to deterministic dynamics resulting from the mac-
roscopic limit of underlying Markov jump processes for many interacting
particles such as driven or active gasses57,58, diffusive and reacting
particles59,60,mean-field Ising andPottsmodels61,62, and charges in electronic
circuits63. In these models, the state’s label i is a vector with entries that
indicate the number of particles of a given type. The system becomes
deterministic when the typical number of particles goes to infinity, con-
trolled by a parameter, such as a system size V→∞. In this limit, it is
customary to introduce continuous states x = i/V 64, e.g., a vector of

concentrations, such thatwij =Vωr(x) where ± r labels the transitions to (or
from) the states infinitesimally close to x. Such transition rate scaling is
equivalent to measuring events in a macroscopic time ~t � tV . The prob-
ability pi ~ δ(x− x*) peaks around themost probable state〈x〉≡ x*. The
entropy production rate (5) becomes extensive in V 65, and its density takes
the deterministic value

~σ � σ

V
¼
X
r>0

½ωrðx�Þ � ω�rðx�Þ� ln
ωrðx�Þ
ω�rðx�Þ

; ð20Þ

with ω±r(x*) the macroscopic fluxes.
We are interested in the case where backward transitions (r < 0) are

practically not observable, i.e., the fluxes ω−∣r∣(x*) are negligibly small
compared to the experimental errors. Sinceκ is also extensive inV, wedefine
the frenesy density ~κ � κ=V ¼Prωrðx�Þ and apply (3) as

~σ ≥ ~κ logð~κ~tÞ: ð21Þ

The formula above holds for ~t≪ 1=maxðω�jrjðx�ÞÞ, which is the typical
time when backward fluxes become sizable.

We compare (20) and (21) for systems of chemical reactionswithmass
action kinetics, i.e., each flux ω±r(x*) is given by the product of reactant
concentrations times the rate constant k±r

66. In particular, we take the fol-
lowing model of two chemical species, X and Y, with uni- and bimolecular
reactions,

;"
kþ1

k�1

X 2 X"
kþ2

k�2

Xþ Y

X"
kþ3

k�3

Y Y"
kþ4

k�4

;:
ð22Þ

Figure 4a shows, for a specific set of rate constants, that the bound (21)
outperforms the empirical estimation (20) for all times when the dynamics
appears absolutely irreversible. This occurs for all randomly drawn values of
the rate constants (Fig. 4b).Additionally, weplot the histogramof times~tq at
which (21) and (20) reach the fraction q < 1 of the theoretical entropy
production rate, for q = 0.6 in Fig. 4c and q = 0.8. Figure 4d. Times resulting
from (21) are significantly shorter than those from the empirical mea-
sure (20).

The application of (3) is possible either when the forward rates are
analytically known (as in the example in Fig. 4) or when they can be
experimentally reconstructed. Direct measurement of chemical fluxes is a
challenging task. One case in which they are measurable with high pre-
cision is photochemical reactions in which the emission of photons at a
specific known frequency signals the reaction events (see47 and references
therein). In general, one can measure reliably only concentrations, from
which one can extract reaction fluxes only in specific networks (and if the
reaction constants are known). We note, however, that the same method
exemplified with chemical reactions can be used, e.g., for electronic cir-
cuits, where counting electron fluxes between resistive elements is much
easier.

Conclusion
In summary, the lower bound (15), turning into (3) for systems that appear
absolutely irreversible, is more effective than the direct estimate (5) with (6)
in cases of lacking data. Knowledge of the macroscopic fluxes is enough to
apply our formula (3), which outperforms the direct estimation in strongly
irreversible systems where all backward fluxes are undetectable. Thus, we
provide a effective tool to estimate the dissipation in biological and artificial
systems, whose performances are limited by energetic constraints7,67,68.

Fig. 3 | Estimation of the entropy production for a ring model. For the ringmodel
described in the subsection Examples, we show various estimates of the entropy
production rate divided by the theoretical value, for t = 104, as a function of the
nonequilibrium strength α/N, for ring lengths N = 10 and N = 20. The inset shows
α*/N. For α→ 0, the standard deviation of σ/σth (shaded bands) are amplified
because also σth→ 0.

Fig. 2 | Estimation of the entropy production as a function of the sampling time.
a For three values of the nonequilibrium parameter α (see legend) in the model of
Fig. 1, scaling with the sampling time t of the estimators σemp and σhyptanh, and theo-
retical values (horizontal thick lines). Bands show one standard deviation variability
over trajectories. b Time when σemp becomes larger than σhyptanh, as a function of σth.
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Methods
Dynamics of the stochastic model systems described in the subsection
Examples and the deterministic chemical reaction network described in
subsectionDeterministic limit have been obtained by the standardGillespie
algorithm and numerical integration of the rate equations, respectively.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The numerical codes that support the findings of this study are available
from the corresponding author upon reasonable request.
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