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Abstract: We present a model that solves the strong CP problem via an axion para-
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are charged. Crucially, the vacuum expectation value of the axion is automatically relaxed
to zero because the only renormalizable source of explicit CP violation, beyond those en-
coded in the topological angles, is contained in the Standard Model Yukawa couplings, and
is therefore very suppressed. The Grand Color axion potential is controlled by the scale
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corrections to the effective topological angle can also arise, in our model as well as in a
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teractions, which introduce a new “heavy axion quality problem”. Our model has a very
minimal field content, it relies entirely on gauge invariance and does not require the intro-
duction of additional symmetries beyond the usual one postulated by Peccei and Quinn.
The phenomenology is very rich and can be tested at colliders as well as via cosmological
observations. A particularly interesting portion of parameter space predicts a visible Grand
Color axion of mass above the GeV and decay constant larger than a few TeV.
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1 Introduction

The QCD axion [1–3] is by far the most popular solution of the strong CP problem. There
are at least three good reasons why this is the case:

(i) It has a very simple setup;

(ii) It allows arbitrary sources of CP violation suppressed by scales much larger than 1GeV;

(iii) It can be tested via a wide array of probes.

The QCD axion just requires the existence of an approximate global U(1)PQ, anomalous
under QCD, which gets spontaneously broken at some high scale fa. The minimality of
these assumptions is envied by all alternative solutions to the strong CP problem, which
instead demand more complicated structures in the UV and are therefore viewed as less
plausible.

The second feature stems from the fact that the solution delivered by the QCD axion
is active at scales of order ΛQCD ∼ 1GeV. Whatever fundamental source of CP violation
is present at short distances, when we run down to ∼ ΛQCD it gets completely encoded in
the QCD topological angle θ̄ and higher-dimensional operators. By relaxing θ̄ to zero, the
QCD axion completely removes the largest source of CP-violation within the low energy
effective field theory.1 This is a truly remarkable property, that distinguishes the QCD

1The sources of CP-violation contained in higher-dimensional operators suppressed by the weak scale
and the new physics scale ΛUV, are easily kept under control. Operators suppressed by the weak scale lead
to very small effects because of the peculiarity of the SM Yukawa sector. The operators suppressed by ΛUV

can be made parametrically smaller by decoupling the new physics from the QCD scale. Below we will
discuss in detail the analogous effects that arise in our model.
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axion from all other solutions to the strong CP problem. This feature is loved in particular
by model-builders because thanks to it they are liberated from a number of otherwise
annoying technical hurdles: the origin of the flavor hierarchy, the smallness of the weak
scale, baryogenesis, dark matter, etc., are all questions that, in the presence of the QCD
axion, may be addressed without the need to worry about possibly large CP-odd phases in
the new physics. Nevertheless, (ii) is not at all an essential feature of a viable solution of the
strong CP. One may in fact turn the argument upside down and argue that (ii) represents
actually a “drawback” of the QCD axion, since it indicates that even in the optimistic event
of a confirmation of such a mechanism we will not be able to infer anything new about the
nature of CP violation at short distances.

Leaving any philosophical drift aside, the reason (iii) for its popularity is a very solid
one. Any interesting scenario for physics beyond the SMmust be able to make unambiguous
predictions to be confronted with experimental data. The axion solution of the strong
CP problem clearly predicts the existence of a pseudo-Nambu-Goldstone boson with an
irreducible coupling to gluons

Laxion ⊃
ā

fa

g2
C

32π2G
a
µνG̃

aµν (1.1)

where G̃aµν = εµναβGaαβ/2, that can be tested via collider, astrophysical, as well as cosmo-
logical observations. Current data set limits of the order fa & 108–109 GeV, leaving plenty
of room for a solution of the strong CP problem. What is more is that a Bose conden-
sate of very weakly-coupled axions may well be the totality or part of the dark matter if
fa ∼ 1012 GeV.

Features (i), (ii), and (iii) are at the origin of the well-deserved popularity of the QCD
axion. And yet, this nice story does not appear fully convincing to many of us. The reason
is also well-known, so much so that it has been given a name: “axion quality problem” [4–6].
The potential of the QCD axion is so small and the current lower bounds on fa so stringent
that tiny perturbations from uncontrollable sources of U(1)PQ-breaking beyond the QCD
anomaly, even if suppressed by the Planck scale, can easily destabilize the solution. In
simple terms, the standard axion solution is apparently a very delicate one.

There are two paths to address this problem. One can either find a mechanism to
suppress the potentially dangerous Planckian perturbations, or find new corrections to the
potential such that the QCD contribution gets effectively enhanced. In either case, unfor-
tunately, one or both of the attractive properties (i) and (ii) are lost. Known quantum field
theories that address the quality problem by suggesting mechanisms to suppress quantum
gravity perturbations invoke a number of seemingly ad-hoc gauge or global symmetries and
some end up being rather baroque. This approach to the quality problem relies on such
an intricate structure at short distances that the conceptual simplicity (i) promised by the
QCD axion gets partially if not completely overshadowed. One may still hope that string
theory offers alternative and more attractive explanations of the axion quality. Unfortu-
nately, our current understanding of string theory makes it hard to firmly establish the
relevance of this assertion.
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Rather than explaining why Planck-scale perturbations are suppressed compared to
the QCD-induced potential, one may alternatively build a model with a heavy axion, in
which the QCD potential is replaced by a much larger and more stable one. If we follow
this path also the IR-effectiveness of the standard QCD axion, i.e. feature (ii) above, cannot
hold anymore. In this paper we investigate scenarios that pursue this avenue. Here the
challenge is to identify a framework in which the new U(1)PQ-breaking effects are perfectly
aligned with the QCD-induced potential so that the overall energy is still minimized at a
value |〈ā〉|/fa . 10−10, compatibly with current data. A few such mechanisms have been
proposed.

One option is realized in scenarios where the large axion potential still comes from QCD
but, as opposed to the standard mechanism, it is due to new short-distance effects [7]. If
the QCD coupling grows relatively large at some UV scale, indeed, small instantons may
become relevant, and such effects are naturally aligned with the low energy QCD potential.
Unfortunately, a strongly-coupled UV framework of this type is intrinsically sensitive to
the misaligning effect of whatever new CP-odd phases are present at the UV cutoff [8, 9].
To firmly establish the viability of this program it is thus necessary to analyze a concrete
realization. To the best of our knowledge the only explicit and tractable model of this type
is the one of ref. [10]. This work shows that under reasonable assumptions the strong CP
problem may in fact be solved, though the required setup introduces a few copies of the
color gauge group along with a corresponding axion for each copy, and is therefore not as
minimal as one might have hoped.

Another viable avenue is to postulate a scenario in which U(1)PQ is anomalous under
an additional non-abelian group C′. Provided the anomaly coefficient is the same as the
one of QCD, the axion coupling to the two sectors reads:

Laxion ⊃
(
θ̄C + a

fa

)
g2

C
32π2G

a
µνG̃

aµν +
(
θ̄C′ + a

fa

)
g2

C′

32π2G
′a
µνG̃

′aµν , (1.2)

with G′aµν indicating the field strength of the C′ vectors. If it is possible to further identify
a structural condition that ensures

θ̄C = θ̄C′ (1.3)

up to corrections smaller than 10−10, then a unique axion ā/fa = θ̄C +a/fa can be defined.
Its potential may be naturally dominated by the C′ dynamics and be such that 〈ā〉 = 0,
analogously to QCD [11, 12]. In this framework one can obtain a sizable axion potential
if the new non-abelian sector becomes strong at scales much larger than ΛQCD, and the
quality problem is improved. The non-trivial task is explaining (1.3).

We may justify (1.3) by invoking a Z2 symmetry [13]. To realize this program a full
copy of the SM is however needed, and in particular the new confining group must be a
mirror copy of QCD, i.e. C′ = SU(3)′C. The mirror symmetry must be softly broken in
order to ensure that the mirror sector be sufficiently heavy to have escaped detection. If the
soft breaking is achieved via CP- and flavor-conserving interactions, any possible correction
to (1.3) is controlled by loops of the SM Yukawas and higher-dimensional operators. It is
known [14–16] that the former corrections, including both threshold as well as RG effects,
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are extremely small. The latter can be taken under control as well provided the soft
breaking scale is sufficiently small compared to the UV cutoff. These mirror models are
currently the most studied incarnation of heavy axion models [17–21].

Yet, there may be a simpler and more minimal way to justify (1.3), one that does not
require invoking a discrete mirror symmetry. One may in fact embed color SU(3)C into a
larger group at short distances, which we call Grand Color, and then postulate the latter be
broken into the SM times the new confining group C′. In this setup the structure of eq. (1.2)
emerges at the symmetry-breaking threshold, with (1.3) easily satisfied at tree-level even
when C′ is not an SU(3). This class of models was first suggested in ref. [22]. However that
paper does not present a concrete realization. Explicit models have been recently proposed
in [23, 24], but differ qualitatively from ours and the one of [22] due to the presence of
mass terms for the exotic fermions. These latter make it difficult to ensure (1.3) remains
protected against radiative effects. The main results of the present paper are providing an
explicit realization of the Grand Color scenario that robustly satisfies (1.3) and presenting
a careful study of the vacuum structure of the theory.

In section 2 we introduce a model with C′ = Sp(N − 3) and argue that in such a
framework the condition (1.3) is satisfied up to negligible radiative effects and higher-
dimensional operators, very much like in mirror models. The axion potential is analyzed in
detail and proved to be aligned with the QCD one in section 3. This is a highly non-trivial
result because in our scenario the presence of Yukawa interactions prevents from applying
the theorems of [11, 12]. A large confinement scale for C′ implies a sizable attenuation
of the axion quality problem. The phenomenology is discussed in section 4 and finally
section 5 presents our conclusions.

2 A Grand Color group

The gauge group of our model is SU(N)GC×SU(2)L×U(1)Y′ and the entire matter content,
SM included, is reported in table 1. The Grand Color is an SU(N)GC gauge group and
the SM quarks are in the fundamental and anti-fundamental representations. In order to
cancel gauge anomalies, hypercharge must be partly embedded into the Grand Color and
an abelian factor U(1)Y ′ , while to avoid triviality N must be odd [25]. Yet, the leptonic
sector remains basically the same as in the SM, whereas the scalar sector must include
at least two additional fields, Φ in the adjoint and Ξ in the 2-index anti-symmetric of
SU(N)GC, in order to break Grand Color in a phenomenologically viable way.

The most general renormalizable Lagrangian for the fields in table 1 includes the
standard kinetic terms and topological angles, a scalar potential, and a Yukawa interaction
with the Higgs doublet H of the same form as in the SM,

LYuk = YuQHU + YdQH̃D + Ye `H̃e+ hc, (2.1)

plus the operators QQΞ† and UDΞ. As explained in more detail below, though, the pres-
ence of the latter interactions would spoil the key relation (1.3). These couplings can be
forbidden in several ways, for example gauging B− L, promoting Ξ to a composite scalar,
or — perhaps less elegantly — invoking a global symmetry. Which of these mechanisms
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SU(N)GC SU(2)L U(1)Y′

Q N 2 1
2N

U N 1 −1
2 −

1
2N

D N 1 +1
2 −

1
2N

` 1 2 −1
2

e 1 1 +1
H 1 2 +1

2

Φ Adj 1 0

Ξ N⊗A N 1 1
N

Table 1. Minimal field content of the model. The scalars Φ,Ξ are solely needed in order to break
Grand Color into the SM gauge group.

is actually at work does not concern us. In the following we will simply assume that (2.1)
represent the full set of renormalizable Yukawa interactions in our model.

The breaking of Grand Color is obtained in two steps:

SU(N)GC × SU(2)L ×U(1)Y′
〈Φ〉−−→ SU(3)C × SU(N − 3)× SU(2)L ×U(1)Y′ ×U(1)GC
〈Ξ〉−−→ SU(3)C × Sp(N − 3)× SU(2)L ×U(1)Y. (2.2)

In the first step the vev of a scalar Φ breaks SU(N)GC into SU(3)C×SU(N − 3)×U(1)GC.
The abelian factor is normalized such that the fundamental representation of SU(N)GC
decomposes as

N→ (3,1) 1
6−

1
2N
⊕ (1,N− 3)− 1

2N
. (2.3)

The second step consists in breaking SU(N −3)×U(1)GC×U(1)Y′
〈Ξ〉−−→ Sp(N −3)×U(1)Y

through the vev of the Ξ component in the antisymmetric of SU(N − 3), which according
to (2.3) carries a U(1)GC charge equal to −1/N .2 It follows that the unbroken U(1)Y charges
are the sum of U(1)Y′ and the U(1)GC generators. For simplicity we take both scalar vevs
of order fGC. Importantly, because none of the new scalars Φ,Ξ has Yukawa couplings one
can in principle promote both of them to composite operators. In that case there would
no hidden fine-tuning in requiring the Grand Color breaking scale be much smaller than
the UV cutoff, i.e. fGC � fUV. Strictly speaking, the only naturalness problem that our
model necessary suffers from are the usual hierarchy and cosmological constant problems
of the SM.

Below the Grand Color breaking scale fGC, the fields Q,U,D split into the direct sum
of the SM quarks plus exotic chiral fermions as shown in table 2. The exotic fermions ψq,u,d

2To avoid any confusion, by Sp(N − 3) we denote the group of symplectic unitary N − 3 matrices.
Consistently, non-triviality of the theory implies N − 3 is even.
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SU(3)C Sp(N − 3) SU(2)L U(1)Y

Q =

 q

ψq

 3 1 2 1
6

1 N− 3 2 0

U =
(
u

ψu

) 3̄ 1 1 −2
3

1 N− 3 1 −1
2

D =

 d

ψd

 3̄ 1 1 1
3

1 N− 3 1 1
2

Table 2. Decomposition of the quarks below the scale fGC. Here ψq = (ψqu
, ψqd

) is an electroweak
doublet. The SM hypercharge U(1)Y is the sum of U(1)Y′ and U(1)GC ⊂ SU(N)GC.

inherit the Yukawa couplings to H from (2.1) and are therefore formally the same as the
SM ones up to renormalization effects. Crucially, however, there is no interaction between
the SM fermions and the ψ’s apart from higher-dimensional operators suppressed by fGC.
This implies that the flavor symmetries of the two sectors are effectively distinct: loops
of the Sp(N − 3)-charged sector will never be able to induce flavor-violating processes in
the SM.

In addition, the field-basis invariant SU(3)C and Sp(N−3) topological angles, inherited
by Grand Color as shown in (1.2), at tree-level satisfy θ̄C = θ̄C′ = θ − arg detYuYd, where
θ denotes the SU(N)GC angle. Radiative effects can spoil this tree-level relation, and
it is mandatory for us to show that the misaligning affects are under control. There
are three different sources of radiative effects that can potentially invalidate (1.3): the
scalar sector, the Yukawa couplings, and non-renormalizable interactions. The vevs of Φ
and Ξ are the order parameters of Grand Color breaking and their insertion is necessary
to generate a difference in the two topological angles. Other than that, however, the
scalar sector cannot appreciably contribute to a violation of (1.3) since the most general
renormalizable potential V (H,Φ,Ξ) is automatically CP-conserving and its parameters can
always be chosen so that CP does not get broken spontaneously. Furthermore, all radiative
corrections due to the Yukawa sector (2.1) at and below fGC are known to be completely
negligible [14–16]. Had we allowed the presence of unsuppressed flavor-violating coefficients
for QQΞ†, UDΞ, this nice property would not have held anymore.3

The bottom line is that in our model eq. (1.3) remains satisfied up to the desired
accuracy at the renormalizable level. The most dangerous non-renormalizable interactions

3In this respect our approach differs qualitatively from [23, 24], where the beyond the SM fermions
filling the Grand Color multiplet are decoupled by giving them large masses. Such a decoupling may also
be achieved in our model, where QQΞ†, UDΞ would generate a vector-like mass matrixM for the Sp(N−3)
fermions below fGC. Unfortunately, decoupling would typically violate (1.3) because M introduces a new
physical CP-odd phase that contributes to θ̄C′ at tree-level. In order to preserve |θ̄C′ − θ̄C| < 10−10 one
would therefore be forced to demand that |Arg[det[M ]]| < 10−10. In this paper we avoid this fine-tuning
by forbidding the couplings QQΞ†, UDΞ. This way the extra fermions remain chiral, like the SM fermions,
and get trapped into the heavy Sp(N − 3) hadrons.
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are dimension-5 and dimension-6 operators that contribute differently to the topological
angles once the scalars Φ,Ξ acquire a vev:

c̄5
fUV

g2
GC

32π2 ΦGGCG̃GC,
c̄6
f2
UV

g2
GC

32π2 Φ†ΦGGCG̃GC,
c̄′6
f2
UV

g2
GC

32π2 Ξ†ΞGGCG̃GC. (2.4)

The dominant effect comes from the first interaction, but this can be avoided by charging
Φ under an additional gauge symmetry, or postulating that Φ be the scalar responsible
for breaking U(1)PQ, in which case fa ∼ fGC. The last two operators are more model-
independent and imply θ̄C− θ̄C′ ∼ f2

GC/f
2
UV. Taking the Planck scale fUV = 2.4×1018 GeV

as the UV cutoff, satisfying the relation eq. (1.3) up to corrections of order 10−10 imposes
the constraint fGC . 1013 GeV. This bound can be further relaxed if Φ,Ξ are composite
operators.

Overall, the picture that emerges is qualitatively similar to the Z2-symmetric scenar-
ios: color and the exotic confining dynamics have basically the same topological angle if no
Yukawa couplings are introduced beyond Yu, Yd and the breaking of Grand Color is suffi-
ciently soft. Under these conditions a unique axion ā/fa = θ̄C + a/fa from the breaking of
a U(1)PQ with a Grand Color anomaly would automatically relax to zero the topological
angles of both color and C′ = Sp(N − 3). By making the latter confine at a scale f � fπ
much larger than QCD we will see the axion mass can be enhanced and the axion quality
improved while still robustly solving the strong CP problem. Actually, we will have to
require f larger than the weak scale because the exotic fermions carry electroweak charges
(see also section 4).

The precise origin of the axion is not relevant to our work. What matters is that its
couplings to the SU(3)C × Sp(N − 3) topological terms be the same. In addition, we will
work under the hypothesis that

fa > f, (2.5)

so that the tools of effective field theory can be employed in the next section to study the
axion potential.4 Scenarios in which fa > fGC automatically lead to equal couplings to
the SU(3)C × Sp(N − 3) topological terms. It is perhaps worth showing explicitly that
the same may also be true for fa < fGC. To see this let us for example UV complete the
axion sector via an interaction LPQ ⊃ yFF cΘ, with F (F c) fermions in the fundamental
(anti-fundamental) of SU(N)GC carrying U(1)PQ charge +1 and Θ a scalar of charge −2
responsible for breaking U(1)PQ spontaneously at a scale ∼ fa. In such a model the axion
acquires the very same couplings to the SU(3)C × Sp(N − 3) topological terms even with
fa < fGC because below the Grand Color breaking scale F, F c split into the direct sum of
fermions that are both in the fundamental representation of SU(3)C and Sp(N − 3) and so
have the same Dynkin index. The phase in y does not affect this conclusion. Finally, we
note that for definiteness we decided to work within a KSVZ axion model, but it should
be clear that a DFSZ model would equally do.

4The opposite regime, with fa < f , may nevertheless provide a solution to the strong CP problem but
requires a completely different study.
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3 The axion potential

At scales below fGC our model reduces to the SM plus an Sp(N − 3) gauge theory with
three families of fermions ψq = (ψqu , ψqd), ψu,d charged as shown in table 2, with Yukawa
couplings (2.1), and an axion ā equally coupled to color SU(3)C and Sp(N − 3). All the
scalars contained in Φ,Ξ acquire masses proportional to fGC and decouple. In this section
we discuss the fate of the exotic fermions and the axion potential.

The basic assumption is that Sp(N − 3) confines at a scale f < fGC larger than
v ≈ 246GeV. This hypothesis is certainly realized provided N ≥ 9. In order to get rid of
an otherwise large mixing between the axion and the η′ singlet of the Sp(N − 3) dynamics
we remove the axion from the topological term via a rotation of the ψq,u,d. This can
for example be achieved via a phase re-definition ψu → eiā/3faψu, where the factor of 3
denotes the number of generations, which puts the axion in front of the up-type Yukawas,
i.e. Yu → eiā/3faYu.

The physics at confinement is better described in terms of a strong Sp(N − 3) dy-
namics with an approximate SU(12) global symmetry under which the column vector Ψ =
(ψqu , ψqd , ψu, ψd) transforms as the fundamental representation. At confinement the chiral
condensates 〈ψquψqd〉 = −〈ψqdψqu〉 = 〈ψuψd〉 ∼ 4πf3/

√
N break SU(12)→ Sp(12) [26, 27].

To demonstrate this we first observe that, because all bound states of Sp(N − 3) are
bosonic, ’t Hooft anomaly matching implies that SU(12) must be broken. Finally, by the
Vafa-Witten theorem we know that the vectorial subgroup, namely Sp(12), should remain
unbroken [28]. Crucially, the electroweak symmetry is part of the unbroken group. The
choice C′ = Sp(N − 3) is essential to achieve this key property.

The pattern SU(12)→ Sp(12) delivers 65 would-be Nambu-Goldstone bosons (NGBs)
Π. These are not exact because the weak gauging of SU(2)L × U(1)Y and the Yukawa
couplings constitute a small explicit breaking of SU(12). In particular 51 of the would-be
NGBs acquire positive mass squared of order g2f2, g′2f2 from loops of the SU(2)L×U(1)Y
vectors. The other 14, denoted by Π0, are gauge-neutral and can in principle mix with ā,
similarly to the π0 in the standard QCD axion. It is the dynamics of these Π0 that controls
vacuum alignment and in particular the vacuum expectation value of the axion. The vev
of the charged NGBs, instead, vanish and can be ignored in our discussion. Incidentally,
some of the charged NGBs are electroweak doublets and mix with the fundamental H. The
heavy linear combinations are integrated out, whereas we assume that the mass parameter
of H is such that there exists a unique light eigenstate with a small and negative mass
squared. This will play the role of the Higgs doublet of the SM, HSM. The fine-tuning we
just invoked is nothing but the usual hierarchy problem.5

The dynamics of the neutral NGBs can be effectively described observing that the
electroweak symmetry leaves intact a smaller SU(3)q × SU(3)u × SU(3)d × U(1)B global
subgroup of SU(12), associated to the independent flavor rotations of ψq, ψu, ψd as well

5Note that from this observation follows that the true SM Yukawa couplings in low-energy observables
differ compared to Yu,d, not only due to different RG effects, but also because of some mixing angle. We will
neglect these corrections since our results are anyway affected by uncertainties of O(1) from incalculable
coefficients.
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as the Sp(N − 3) baryon number under which ψu, ψd have charge opposite to ψq. The
vacuum condensates break this symmetry down to SO(3)q × SU(3)u−d. As a result the 14
neutral NGBs can be effectively parametrized in terms of three matrices: a special, unitary
and symmetric matrix ΣL ∈ SU(3)q/SO(3)q, a special, unitary matrix ΣR ∈ SU(3)u ×
SU(3)d/SU(3)u−d, and finally ηB, the NGB of U(1)B. The boson ηB remains an exactly
massless state because the baryon number is not explicitly broken. We will discuss its
phenomenology in section 4. The remaining 13 neutral scalars, along with the axion,
acquire a potential from the Yukawa interactions of ψq,u,d. We stress that these couplings
are the same as those of the SM quarks at the threshold fGC, though below that scale
they renormalize differently. At the scale f relevant for the present discussion the ψq,u,d
couplings, which to avoid over-complicating our notation will still be denoted by Yu,d,
are expected to be somewhat larger than the SM Yukawas by a flavor-universal factor
due to loops of the Sp(N − 3) dynamics. Expanding in powers of Yu,d the most general
potential reads:

Vneutral = cud
N
f4 tr

[
YuΣRY

t
dΣL

]
e
i ā
Ngfa + hc +O(Y 4, v2/f2), (3.1)

with Ng = 3 the number of generations. The dominant contribution arises from a loop of
H and the Sp(N−3) dynamics. The factor of N has been identified using a large N scaling
and recalling that f2 ∝ N . The parameter cud is a real incalculable quantity. Subleading
corrections contain |HSM|2 and/or higher order insertions of the Yukawa couplings. The
former cannot affect qualitatively the potential; such corrections are necessarily small be-
cause we are interested in the chiral regime v . f (see also section 4). The latter will be
argued to be negligible in section 3.2.

Contrary to the standard QCD axion, the theory under consideration contains a light
fundamental scalar with Yukawa couplings to the fermions Ψ and it is not possible to
directly apply the results of [12] in order to argue that 〈ā〉 = 0. The minimization problem
is therefore conceptually different from QCD. In particular, in QCD [12] imply that the
vev of the pions must vanish and the low energy dynamics contains no CP violation other
than the one encoded in θ̄. In our scenario, on the other hand, the axion effective potential
can depend non-trivially on the vacuum configuration of the Π0’s. We will have to prove
〈ā〉 = 0 by brute force. This is what we will do in the next section.

Before turning to the minimization of the potential, though, we stress that (3.1) pos-
sesses a ZNg ⊂ SU(4Ng) symmetry under which ΣR,L → e±i2πn/NgΣR,L. This discrete
symmetry signals the presence of a set of inequivalent vacua sharing the same perturbative
mass spectrum and axion vev, which may indicate a cosmological domain-wall problem if
the temperature of the Universe ever exceeded f .6 This issue adds to the more familiar
domain-wall problem of axion models, which takes place at the scale fa > f .

3.1 Minimisation at leading order

The potential (3.1) involves 14 fields (13 neutral NGBs Π0 and the axion ā), and its
minimization is highly non-trivial. To perform this task we find it convenient to first

6These domain-walls are stable because Z3 ⊂ U(1)B, and explicit breaking of U(1)B occurs via effective
operators of an extremely high dimensionality, since the baryon number is very well protected by our gauge
symmetries.
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discuss the properties of the more general structure

V LO
neutral = V0 (Π0/f) eiā/faNg + hc, (3.2)

where the number of light fermion generations Ng as well as the explicit expression of V0
are left arbitrary. Interestingly, both the potentials of our model and that of the standard
QCD axion have precisely this form. Therefore some of the results discussed here have
a rather general validity. In particular, in appendix A we demonstrate that the absolute
minimum of (3.2) is found by maximizing |V0|, whereas the axion vacuum is determined
by 〈ā〉 /fa = Ng(π − φ) mod 2π, where φ = arg[V0] at the extremum.

In the case at hand V0 is given in equation (3.1), and in the basis in which Yu = Ŷu is
diagonal can be written as

V0 = cud
N
f4 tr[ŶuΣRŶdV

†
CKMΣL] (3.3)

= cud
N
f4 [Ŷu]i[A]ii, A = ΣRŶdV

†
CKMΣL.

|V0| is maximized when A is aligned as much as possible along Ŷu, with the corresponding
entries satisfying |[A]33| > |[A]22| > |[A]11|. Suppose for the time being that it is possible
to find a configuration ΣL,R that fully diagonalizes A, so that the diagonal entries read
[A]ii = |[A]ii|eiφi , where φi are phases subject to φ1 + φ2 + φ3 = 2πn because of the
constraint det[A] = det[Ŷd] ∈ R. Under this hypothesis |V0| would be maximized when
φi = φj is common to all entries, such that the trace becomes a coherent sum of terms, and
the minimum configuration would read φi = 2πn/Ng. The phase of V0 at the minimum
would finally be φ = arg cud + 2πn/Ng, and from eq. (A.7) we would infer that 〈ā〉 /fa =
Ng(π − (arg cud + 2πn/Ng)) = Ng(π − arg cud), or

〈ā〉
fa

=


0 mod 2π if Ng = even
0 mod 2π if Ng = odd and cud < 0
π mod 2π if Ng = odd and cud > 0

. (3.4)

This shows that, as long as A can be diagonalized, the system has a natural tendency to
relax the axion to a CP-conserving vev. Thus the axion vev is usually vanishing, though for
odd Ng and positive cud we get 〈ā〉/fa = π. Despite being CP-conserving, the latter option
is not phenomenologically acceptable because incompatible with the Gell-Mann-Okubo
relations [29]. In the standard QCD axion the result of [12] ensures that 〈ā〉/fa = 0, which
implies that cud must be negative. In our model later on we will offer some argument
indicating that cud should be negative.

Unfortunately, it is possible to prove that as soon as Ng ≥ 3 the matrix A cannot
be exactly diagonalized because ΣL, being unitary-symmetric, does not contain enough
degrees of freedom to diagonalize A†A. In scenarios with Ng ≥ 3 the logic leading to (3.4)
can thus at most be approximate. And yet, we find (at least for the physically relevant case
Ng = 3) that (3.4) remains valid. Despite the impossibility of diagonalizing A, in fact, the
relation det[A] = A11A22A33 + ∆ holds up to a very small perturbation ∆. Eq. (3.4) then
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applies because in a perturbative expansion for small off-diagonal elements the dynamical
phases of the three diagonal elements of A are determined at leading order to be 2πn/Ng.
That is, the corresponding fluctuations fall into a deep potential well, which cannot be
destabilized by the next to leading corrections due to ∆. As a result the overall phase of
V0 is still determined by φ = arg cud + 2πn/Ng and the axion vev by (3.4), as if A could be
exactly diagonalized.

Even though the above arguments seem rather convincing to us, an explicit calculation
would help lifting any doubt on (3.4). Furthermore, an explicit analysis is necessary to
compute the masses of the NGBs and the axion. In the following we will thus verify (3.4)
and calculate the axion mass for Ng = 1, where in fact A is trivially diagonalized, as well
as for Ng = 2, where it can be fully diagonalized by the NGB matrices. Subsequently we
will consider the phenomenologically relevant case Ng = 3. Along the way we will argue in
favor of cud < 0.

Warming up with Ng = 1 and Ng = 2. The Ng = 1 case is almost trivial, since
the spectrum of NGBs is composed of a charged composite Higgs, that is not relevant
to vacuum alignment, and the exact flat direction ηB. The potential simply reduces to a
potential for the axion:

V LO
neutral = 2 cud

N
f4 yuyd cos

(
ā

fa

)
(Ng = 1) (3.5)

where yu, yd are the up and down quark Yukawas. This potential is minimised at 〈ā〉 /fa =
0 mod 2π if cud < 0 or 〈ā〉 /fa = π mod 2π if cud > 0, as expected from (3.4). The axion
mass is given by

m2
a = 2 |cud|

N
yuyd

f4

f2
a

(Ng = 1). (3.6)

It is possible to show that for Ng = 1 the parameter cud must be negative. The argument
is a bit involved and will only be sketched here.

Our argument starts by considering a modified Ng = 1 scenario in which Yu = Yd
and only the neutral component of the fundamental Higgs is dynamical. This is certainly
not our model, but its effective potential is just a simple generalization of ours because
the UV diagrams that generate it, in terms of fundamental fermions and H, are virtually
identical to those in our model modulo corrections of order v2/f2. In particular, the sign
of the overall coefficient cud is exactly the same in the two scenarios because determined by
equal correlators in the unperturbed Sp(N − 3) theory. The conclusion that the axion vev
vanishes only for cud < 0 remains valid. But crucially, in the modified model the fermionic
determinant arising from the integration of Ψ is real and positive definite because the
fermionic spectrum is effectively doubled, see [11]. Therefore the result of [12] can be used
to argue that the axion must be minimized at zero, and hence indirectly that cud < 0. This
for us is proof that the coefficient cud in (3.5) is negative.
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The minimization of the Ng = 2 case is more interesting. In this case the potential (3.1)
depends on a CKM matrix that can be written in terms of the Cabibbo angle:

VCKM =

 cos θc sin θc
− sin θc cos θc

 (Ng = 2). (3.7)

As anticipated at the end of section 3, we find two inequivalent vacua related by a Z2
symmetry. These are given by

cud > 0 : 〈ΣL〉 = (±)

i cos θc i sin θc
i sin θc −i cos θc

 , 〈ΣR〉 = (±)
(
i 0
0 −i

)
, 〈ā〉 = 0, (3.8)

cud < 0 : 〈ΣL〉 = (±)

i cos θc i sin θc
i sin θc −i cos θc

 , 〈ΣR〉 = (∓)
(
i 0
0 −i

)
, 〈ā〉 = 0. (3.9)

With two generations the vacuum configurations precisely diagonalise A = ΣRŶdV
†
CKMΣL,

and in both cases 〈ā〉 /fa = 0 consistently with (3.4). In this vacuum all scalar excitations
(except for the exact flat direction ηB) are massive.

The Ng = 2 case is so simple to handle analytically that we were able to find an
explicit expression for the effective axion potential. This is obtained by solving the equation
of motion for the neutral NGBs Π0 and plugging it back into Vneutral. It is a reliable
approximation of the axion self-couplings in the limit f � fa in which the neutral NGBs
are much heavier than the axion. We find

Veff

(
ā

fa

)
= −2 |cud|

N
f4 tr[ŶuŶd]

√√√√√1− 4 det[ŶuŶd](
tr[ŶuŶd]

)2 sin2
(
ā

2fa

)
(Ng = 2), (3.10)

which is consistently minimized at 〈ā〉/fa = 0 mod 2π. This result is reminiscent of the
potential of the QCD axion in 2-flavor QCD. The axion mass immediately follows:

m2
a = 2 |cud|

N

det[ŶuŶd]
tr[ŶuŶd]

f4

f2
a

(Ng = 2). (3.11)

Eq. (3.10) is very valuable to us because we will not be able to obtain an explicit expression
for Ng = 3. It is therefore useful to extract as much information as possible from it. First,
we observe that in the limit of a heavy second generation eqs. (3.10), (3.11) reduce to
eqs. (3.5), (3.6). This is a highly non-trivial check of the consistency of our results. It is
a consequence of the fact that a large Yukawa coupling for the second generation implies
that a number of NGBs becomes much heavier than those associated to the light first
generation. Up to corrections suppressed by the heavy NGB mass, therefore, the potential
should reduce to the Ng = 1 case, which is what we see here explicitly. The very same
logic constrains the structure of the Ng = 3 potential, as we will verify numerically.
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A second important lesson we can draw from (3.10), and more readily (3.6), is that the
non-trivial dependence of the axion potential should be controlled by det[ŶuŶd]. This is
also a very general result, independent of Ng. Indeed, if any of the eigenvalues of Yu or Yd
were to vanish the UV Lagrangian would be invariant under an additional anomalous axial
symmetry which could be combined with U(1)PQ to obtain an exact unbroken one. In that
situation the axion would become an exact flat direction. Hence the axion potential must
be proportional to at least a power of all the eigenvalues. The quantity det[ŶuŶd] is the
simplest object with this property. The axion mass squared cannot be simply proportional
to the determinant unless Ng = 1, however. By counting the units of ~ we need at least
2Ng−2 additional coupling constants in the denominator, so dimensional analysis forces m2

a

to be inversely proportional to an appropriate combination of Yu, Yd as found in (3.11). The
significant hierarchy in the SM fermion masses and the decoupling properties mentioned
in the previous paragraph, together indicate that the axion mass in our model is always
numerically close to (3.6).

The real world: Ng = 3. Having checked the simplified scenarios Ng = 1, 2, we can now
turn to the realistic case Ng = 3. The previous calculations support the correctness of our
qualitative argument of section 3.1, and as such we expect the leading order potential (3.1)
to be minimised at 〈ā〉 /fa = 0 (π) for cud < 0 (> 0). Unfortunately, in the case Ng = 3
the potential involves 14 fields and it is not possible to approach the problem analytically.
For this reason we employ a customised mathematica algorithm which enables us to
numerically find the minimum of the potential up to a very high accuracy. The minimisation
procedure is repeated many times in order to statistically validate the result. The Yukawa
couplings that appear in the potential are renormalized at the scale ∼ 4πf/

√
N by the

Sp(N−3) dynamics. As a benchmark we employ the PDG data for VCKM and the numerical
values of Ŷu, Ŷd that correspond to the SM quark Yukawas evaluated at the TeV scale.
Changing the numerical value of these couplings does not affect our results qualitatively.
What we find is exactly what anticipated in section 3.1: the distinct vacua configurations
are related by a Z3 symmetry ΣR,L → e±i2πn/3ΣR,L; all vacua give rise to the same A,
which is diagonal up to small off-diagonal elements; the axion is minimised at 〈ā〉 /fa = 0
or π depending on the sign of cud.

In the study of the Ng = 1 toy model we gave an argument supporting the claim
that cud is negative. At sufficiently large N there is no distinction between the coefficients
cud for the Ng = 1 and Ng = 3 scenarios. We are therefore motivated to conjecture that
cud < 0 also for Ng = 3, and from now on work under this hypothesis. Given the central
role played by this hypothesis, it would be interesting to find an independent proof, for
instance using lattice QCD techniques.

We are now interested in studying the spectrum of the NGBs and the axion. To read
off the masses we first canonically normalise the kinetic term f2tr[∂µΣL,R∂

µΣL,R], altered
by the vev of the NGBs, and then perform an SO(14) rotation to diagonalise the Hessian
of the potential. As a result of this operation, the masses of the 13 neutral NGBs are
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found to be

m2
Π0 '



6.4× 10−2

2.5× 10−2

2.4× 10−2

2.4× 10−2

2.4× 10−2

2.4× 10−2

2.3× 10−2

2.7× 10−5

1.2× 10−5

2.5× 10−6

1.6× 10−6

1.6× 10−6

4.0× 10−8



× |cud|
N

f2 (3.12)

for all the three Z3-symmetric vacua configurations. The eigenstate corresponding to the
axion is the lightest one for any f < fa. The mass that we extract numerically respects
the scaling suggested in the previous section, namely

m2
a ' 2 |cud|

N
yuyd

f4

f2
a

' 1.8× 10−10 × |cud|
N

f4

f2
a

(Ng = 3). (3.13)

The NGBs’ masses are substantially unaffected by the mixing with the axion as long as
f/fa � 1 (even though the mixing will turn out to be important for phenomenology, see
section 4). In the extreme limit f/fa → 1 the mixing impacts the NGBs masses by a few
10%, with the lightest being affected the most.

We conclude this section emphasizing that the axion mass (3.13) is parametrically
enhanced with respect to the standard QCD axion as long as f & 102fπ. The goal outlined
in section 1 is fulfilled.

3.2 Subleading corrections and heavy axion quality

The analysis carried out so far demonstrates that our axion has a large mass and a leading
order potential minimized at 〈ā〉 = 0. Higher order corrections cannot affect this result
unless they introduce new sizable sources of CP-violation or flavor-violation. We will argue
next that subleading effects due to renormalizable interactions do not spoil our solution of
the strong CP problem and that the effect of non-renormalizable operators can be taken
under control.

Renormalizable interactions. In the renormalizable version of our scenario the effec-
tive axion potential Veff(ā/fa) depends on flavor-invariant combinations of the parameters
Yu,d, 〈ΣL,R〉. The Yukawas parametrize explicit CP violation, whereas the NGB vacuum
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potentially represents an independent source of spontaneous CP violation. A non-vanishing
vev for the axion is induced by CP-odd, flavor-conserving combinations of these parameters.

Crucially, in our model all CP-odd invariants must necessarily be proportional to
explicit CP-violation. This follows from the fact that spontaneous CP violation does not
take place. As a first simple check of this statement, let us inspect the Ng = 2 toy model,
where we have an explicit analytic solution. Here the CKM matrix is real, i.e. there is no
explicit CP violation, and it is readily seen that eqs. (3.8) and (3.9) preserve the generalised
CP transformation ΣR,L → −Σ∗R,L. A far less trivial check is obtained for Ng = 3. In that
case we verified that, when we switch off the CKM phase, the explicit numerical solution
of the leading order potential in (3.1) also satisfies the relation 〈ΣR,L〉 = e±i2πn/3 〈ΣR,L〉∗.
In other words, in the absence of explicit violation, CP is not spontaneously broken.

An important consequence of what we just demonstrated is that any CP-odd flavor
invariant in Veff must be proportional to the explicit CP-violation in Yu,d. A key property of
our theory, inherited from the SM, is that explicit CP-violation should disappear whenever
two of the eigenvalues of the SM quark mass matrix squared are degenerate, or any mixing
angle goes to zero, or when the CKM phase vanishes. This is very important. We have
already seen that the non-trivial part of the effective axion potential must be proportional
to det[YuYd]. Here we find that any explicit CP-violating interaction of the axion must
contain a further suppression that disappears in the above limits. Such a suppression
is so significant that explicit CP-violation in Veff becomes effectively innocuos: CP-odd
flavor-invariant combinations of the Yukawas and 〈ΣL,R〉 may arise in Veff only at very
high order in an expansion in Yu,d and are numerically extremely small. It is therefore not
surprising that, even including the CKM phase, our O(Y 2) potential does not induce an
axion vev. In fact, at O(Y 2) the effect of explicit CP violation cannot be visible, the only
flavor-invariant candidate tr

[
Yu 〈ΣR〉Y t

d 〈ΣL〉
]
is real and hence there is nothing that can

be on the right-hand side of 〈ā〉 = 0.
In summary, subleading corrections to the effective axion potential are either even in ā

or odd, the latter being proportional to the explicit CP-violation. Terms even in ā cannot
destabilize our solution because the leading order theory has no flat directions. The terms
odd in ā are however dangerous if they include a tadpole. In that case the axion vev
is shifted from the origin. Still, the shift must be proportional to the tiny explicit CP-
violating phase that controls the tadpole and the vacuum expectation value would thus be
safely below |〈ā〉|/fa . 10−10. Our axion dynamically solves the strong CP problem like
in the standard QCD scenario. Higher dimensional operators with new CP-violating or
flavor-violating couplings can however introduce new CP-odd flavor invariants which can
be numerically more relevant that those of the renormalizable theory. These effects are
discussed next.

Higher-dimensional operators. At the root of the axion quality problem is the fact
that a huge fa makes the axion potential extremely sensitive to cutoff-suppressed U(1)PQ-
breaking interactions. As reviewed in section 1 this sensitivity may be alleviated by in-
creasing the axion mass. However, there is no free lunch. To enhance the axion mass, the
confinement scale f has to be rather large as well. As a result, cutoff-suppressed U(1)PQ-
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conserving contributions to the axion potential, as long as they are CP- or flavor-violating,
may become important and in principle spoil the solution of the strong CP problem.

More precisely, consider the flavor-violating but U(1)PQ-preserving operator

c̄ijkl
f2
UV

QiQjUkDl, (3.14)

where i, j, k, l are flavor indices. This has precisely the same axial U(1)A charges as the
leading order potential in (3.1) and thus represents a modification δV0 ∼ c̄ 16π2f6/(N2f2

UV)
of the quantity V0 ∼ Tr[YuYd]f4/N defined in (3.3). This is not aligned with (3.1) for
generic c̄ijkl, and must therefore be small. According to eq. (A.2) the axion vev is of order
〈ā〉/fa ∼ Im[δV0]/|V0|, where the imaginary part of the flavor invariant δV0 may come
either from c̄ijkl directly or from phases of the leading NGB vev, which become physical
when contracted with a flavor-violating c̄ijkl. The requirement that the effective topological
angle be less than 10−10 becomes

f . 10−7fUV, (3.15)

which for a maximal UV cutoff of order fUV = 2.4× 1018 GeV reads f . 1011 GeV. Some-
what similar considerations apply to operators that do not violate the axial Sp(N − 3)
symmetry U(1)A but still violate flavor, like

c̄ijkl
f2

UV
(ΨiΨj)(ΨkΨl)†. (3.16)

This operator modifies the NGB vev and in turn shifts the axion minimum. As a conserva-
tive bound we impose (3.15). Moreover, we could have operators that do not violate flavor,
but contribute new CP-odd flavor-conserving phases to the axion effective potential. A
typical example is the Weinberg operator

c̄W
M2

UV

g3
GC

16π2GGCGGCG̃GC. (3.17)

The new CP-odd phase should be smaller than 10−10 to guarantee a solution of the strong
CP problem. From this requirement the weaker upper bound c̄W f2/f2

UV . 10−10 follows.
Finally, let us come back to the original motivation of our work: the axion quality

problem. As a crude estimate, imposing that a U(1)PQ-violating operator of dimension d
does not significantly alter the axion vev implies

g2
UVf

4
a

(
fa
fUV

)d−4
. 10−10m2

af
2
a , (3.18)

where gUV is a coupling of the UV dynamics. For a given value of fa this represents a lower
bound on d− 4. Comparing to the lower bound in the standard QCD axion, i.e. (d− 4)std,
this reads

(d− 4) = (d− 4)std −
lnm2

a/m
2
a,std

ln fUV/fa
. (3.19)

The quality problem is logarithmically sensitive to the mass ratio m2
a/m

2
a,std and becomes

more and more sensitive to this quantity as fa gets larger. In our model we find an
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appreciable improvement as long as f � 102fπ, see (3.13). As a numerical example, for
fa = 1010 GeV and f = 108 GeV we get an axion mass of a few GeV. This corresponds to
d & 7, which is a significant improvement compared to dstd & 10.

4 Phenomenology

The phenomenology of our model is extremely rich and cannot be investigated in depth
here. In this section we present a first qualitative assessment.

The Sp(N − 3) dynamics generates many massive hadrons, all of which are unstable
because there is no unbroken flavor symmetry that protects them. Heavy hadrons of mass
∝ 4πf/

√
N as well as baryons quickly decay into NGBs. The electroweak-charged NGBs

decay into the SM Higgs boson, W±, Z0, and neutral Π0’s. The latter are much more long-
lived, and decay dominantly into QCD hadrons and/or photons via the mixing with the
axion and the η′ of the Sp(N − 3) dynamics. Less relevant decay channels for Π0’s are into
SM fermions via non-renormalizable interactions generated at the scale fGC. Very likely,
yet, only the lightest hadrons were significantly produced in the early Universe because
in order to robustly avoid a domain-wall problem associated to the Z3-degeneracy of the
NGB potential reheating must probably have occurred after Sp(N − 3) confinement (see
discussion below eq. (3.1)).

The hadrons can be directly produced at the LHC and future colliders. In addition, the
Sp(N−3) dynamics can be indirectly probed via precision measurements. As a rough mea-
sure of the current impact of these constraints we impose the qualitative bound f &TeV.
In this regime the low energy signatures are mainly controlled by ā and Π0 (and, if present,
ηB; see below). The effective field theory is governed by the couplings to the topological
terms of the gluon and the photon

LEFT ⊃
1
2(∂ā)2 − m2

a

2 ā2 + g2
C

32π2
ā

fa
GG̃+ c̄aγγ

e2

32π2
ā

fa
FF̃ (4.1)

+1
2(∂Π0,i)2 −

m2
Π0,i

2 Π2
0,i + g2

C
32π2 c̄

i
Π0gg

Π0,i
f
GG̃+ c̄iΠ0γγ

e2

32π2
Π0,i
f
F F̃ .

The effective couplings to the Z0 andW± bosons are phenomenologically less relevant. As-
suming that the U(1)PQ has no electroweak anomaly, and momentarily ignoring the mixing
with Π0, the coefficient c̄aγγ can be computed by moving the axion from the SU(N)GC topo-
logical term to the Yukawas with an anomalous chiral rotation, and re-placing it only in
front of the QCD topological term below the Grand Color breaking. Recalling that the SM
hypercharge is given by a combination of U(1)Y′ and U(1)GC, we get

c̄aγγ = −1
2 (N − 3)

(
1− 1

3N

)
. (4.2)

Consistently with expectations, this expression vanishes for N = 3, when our model reduces
to a standard KSVZ scenario. We will consider N = 13 for definiteness, noting that a
number of colors > 17 would typically induce a Landau pole for SU(2)L below the Planck
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scale whereas for N < 9 the condition f &TeV would not be attained. We verified that
with these parameters the condition f < fGC . 1013 GeV is also satisfied.

The neutral NGBs have no bare coupling to the SM vectors. However, they acquire
them from the mixing with ā and the heavy η′ of Sp(N − 3). These contributions are
parametrically of order c̄Π0gg ∼ f/fa and c̄Π0γγ ∼ max[m2

Π0
/m2

η′ , f/fa]. As a result the
decay rate into gluons, controlled by the ā−Π0 mixing, is of order

ΓΠ0→gg & Γā→gg
fa
f
, (4.3)

where we took into account the different scaling of the masses with f, fa (see (3.13)
and (3.12)). Importantly, the rate is always greater than Γā→gg in the regime (2.5). This
parametric estimate is confirmed by an accurate numerical analysis, which also reveals that
some Π0 can have rates several orders of magnitude larger than shown in (4.3). Note also
that the NGB mixing with the axion does not appreciably modify (4.2). As long as f � fa
the effect is parametrically suppressed, and we numerically verified that as f approaches
fa the change in the axion coupling to photons is still at most O(10%).

The axion mass is given in eq. (3.13) and in the allowed regime f &TeV is always larger
than the standard one. Furthermore, as we saw around (3.15), a conservative condition for
the strong CP problem to be solved is f . 1011 GeV, where we identified the UV cutoff with
the Planck scale. Combining the two bounds we see that our scenario populates the light-
pink bend in the ma − fa plot of figure 1 labeled by “Grand Color axion”, defined by the
implicit relation 103 GeV ≤ f ≤ 1011 GeV — where f = f(ma, fa) is given by (3.13). We
included a hard cut at f < fa to indicate the regime of validity of the effective field theory
approach adopted in this paper, see eq. (2.5). In the grey region f > fa our results do not
necessarily apply, though without a detailed analysis this region cannot be excluded. The
dotted grey lines in figure 1 show contour regions of eq. (3.19) with fUV = 2.4× 1018 GeV.
The axion quality problem is progressively more alleviated as we move towards the upper-
right corner. The regime with high quality is the one in which, for a fixed fa, the axion
mass is maximal, i.e. the confinement scale reaches the extreme value f → fa compatible
with (2.5).

The “Grand Color axion” bend is mostly probed by cosmological observations from
BBN and CMB physics (blue), astrophysics (green), and collider experiments (brown). In
particular, the left boundary of the blue region is taken from the collection of bounds in [30].
The rightmost part of the cosmology bound is due mainly to the Neff bounds from [31] and
the requirement that the total axion decay rate satisfies Γtot ≥ 3H(TBBN), where H(TBBN)
is the Hubble rate when the Universe reached temperatures of order TBBN = 4MeV [32],
in order not to interfere with Big-Bang-Nucleosynthesis. The hadronic decay rate has
been calculated adapting the results of [33] to our model. The axion decay rate takes into
account (4.2), includes also the mixing with the QCD mesons, and is modified with respect
to the standard case because of the much larger value of ma. For the astrophysics bounds
we refer to [30]. The collider bounds on top of figure 1 are taken from [34] and [35]. The
white regions are currently viable.
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Figure 1. Collection of the main bounds on fa vs. ma, as discussed in section 4. For definiteness
we assumed N = 13 and |cud| = 1. The light-pink bend denoted by “Grand Color axion” identifies
the region populated by our scenario.

In the far bottom-left of the “Grand Color axion” bend one should make sure that the
heavier NGBs are sufficiently long-lived to avoid disrupting the primordial abundance of
light elements. However, because of their large masses, vacuummisalignment typically over-
produces them in the form of a Bose condensate of ā,Π0 unless the initial misalignment
angles are extremely small. Moreover, in that region the axion quality problem is not
ameliorated compared to the standard scenario. For these reasons we believe the upper-
right region is more motivated.

The upper-right corner of the “Grand Color axion” bend is also more interesting be-
cause in that regime ongoing and future accelerators as well as future CMB observations are
able to explore our model. In particular, because fa can approach the TeV scale this scenario
can be probed for example at HL-LHC [21], Kaon and Hyperon factories [34], DUNE [35],
NA62 [36], Belle II [37, 38] and MATHUSLA [39]. The phenomenological signatures are
much richer than the standard QCD axion because of a variety of axion-like-particles Π0
with anomalous couplings, see (4.1). Future CMB surveys will also significantly improve
measurements of Neff and will be able to constrain a wider region of parameter space on the
right of the blue area. In contrast to the accelerator searches mentioned above, however,
here the neutral NGBs are not expected to play any relevant role because are much heavier
and decay faster than the axion, see (4.3). Yet, they might still lead to non-standard cosmo-
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logical signatures, albeit quite indirect. The energy stored in a Bose condensate of neutral
NGBs via vacuum misalignment may be estimated as ρΠ0(T ) ∼ θ2

rm
2
Π0
f2(T/Tr)3, with θr

denoting the misalignment angle at the end of inflation and Tr the reheating temperature.
For certain values of masses and decay rates the temperature Tm at which ρΠ0(Tm) domi-
nates over radiation is actually larger than the decay temperature Td ∼

√
ΓΠ0MPl. When

this happens the Universe undergoes an early period of matter domination which might
result in a depletion of the primordial densities of visible and dark matter.

One last comment should be added before closing. In addition to Π0, ā, our model
generically features a virtually massless photophobic axion-like particle ηB from the break-
ing of U(1)B ⊂ SU(12). It acquires no potential from the Yukawa interactions, since
these are U(1)B-symmetric, and only has electroweak anomalous couplings. Its effective
Lagrangian reduces to

LEFT ⊃
1
2(∂ηB)2 + ηB

fB

(
g2

L
32π2WW̃ − g2

Y
32π2Y Ỹ

)
, (4.4)

where fB = (2/
√

3)f/N , plus derivative interactions with itself and the other NGBs. While
its coupling to photons vanish, 1-loop generated interactions to the SM fermions lead to a
constraint of order f & 300×N TeV [40] whereas, under the hypothesis Tf < f , the impact
on Neff is minimal. The bound on f just quoted is much stronger than those considered
before. To obliterate the problem we may get rid of ηB by gauging U(1)B−L, as suggested
for other reasons in section 2. In order for ηB to be gauged away, all the fundamental
scalars should be neutral and right-handed neutrinos should be added in order to ensure
gauge anomalies cancellation.

5 Conclusions

We constructed a concrete model for a heavy axion arising from an enlarged color sector,
which is conceptually and structurally very simple, and has an extremely minimal field
content. Including all SM fields as well, the latter entirely fits in table 1. No mirror copy
of the SM, nor of color, is required. In addition, there is no need for additional global
symmetries besides the familiar U(1)PQ. The necessary coupling structure may naturally
result as a consequence of gauge invariance and the field content.

The unique sources of CP-violation in the renormalizable part of the theory are in-
cluded in the Yukawa couplings Yu,d and the topological angles, exactly as in the SM.
Hence, radiative corrections cannot spoil the equality of the couplings of the axion to QCD
and the new confining group C′ = Sp(N − 3). From the very same reason follows that the
effective Grand Color axion potential is automatically aligned with the QCD one: our sce-
nario introduces no exotic flavor-conserving CP-odd phases, and is therefore approximately
CP-invariant up to a very high accuracy, like the QCD potential.

Our scalar potential has a characteristic O(Y 2) form but also shares some similarity
with the standard one due to the presence of a mixing between the axion and the heavy
neutral Nambu-Goldstone modes, somewhat analogous to the ā−π0 mixing in the standard
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scenario. The resulting Grand Color axion mass is very distinctive and scales as:

m2
a ∼

yuyd
N

f4

f2
a

, (5.1)

where yu,d are the up- and down-quark Yukawas renormalized by the Sp(N − 3) dynamics
at ∼ 4πf/

√
N . By construction the axion potential in our model is a 2-loop-sized effect

proportional to two powers of Yukawas, and eq. (5.1) follows from dimensional analysis and
simple physical considerations. This expression differs from the one predicted by existing
heavy axion models and its magnitude falls somewhat in between mirror and UV-instanton
models. It is significantly enhanced compared to the one predicted by potentials dominated
by small instantons. As a result, an improvement in axion quality is achieved with a
significantly smaller f , and hence a reduced sensitivity to physics at the cutoff scale. The
scaling in (5.1) is however suppressed compared to what is found in Z2-symmetric models,
and so for a similar axion mass our f needs to be larger.

While corrections to the effective topological angle 〈ā〉/fa from renormalizable cou-
plings are virtually negligible, the effect of U(1)PQ-violating as well as U(1)PQ-conserving
higher-dimensional operators can in principle alter the axion vev in a significant way. The
sensitivity to Peccei-Quinn-violating interactions suppressed by the UV cutoff is reduced
compared to the standard scenario, and the quality is certainly improved because of the
larger axion mass. Yet, we found that heavy axion models develop a novel sensitivity to
Peccei-Quinn-preserving deformations.7 This “heavy axion quality problem” is generically
shared by all models that attempt to increase the axion mass via a new strong coupling
at f � fπ, and ours is no exception. Future measurements of the dipole moments of the
neutron, as well as of atoms and molecules will potentially be able to set upper bounds on
the axion mass of these scenarios.

Finally, we should point out that in this paper we presented just one of a larger set of
interesting Grand Color scenarios. Our choice C′ = Sp(N − 3) was for example motivated
by the need to avoid electroweak symmetry breaking at the scale f , but other options are
possible. It would be interesting to explore alternative Grand Color scenarios, for example
models with different C′, scenarios compatible with a complete grand unification into a
simple gauge group, or scenarios with composite Φ,Ξ, and construct explicit models with
fa ∼ f . Besides robustly addressing the strong CP problem with an alleviated quality
problem, these models feature a number of distinctive phenomenological signatures, which
in this paper we just began to explore.
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A General considerations on the leading order potential

In this appendix we derive the minimization condition for the leading order potential
of the neutral scalars. This can be compactly written as in eq. (3.2). The extremality
conditions read 

δV0
δΠm e

i〈ā〉/faNg + δV ∗0
δΠm e

−i〈ā〉/faNg = 0
V0e

i〈ā〉/faNg − V ∗0 e−i〈ā〉/faNg = 0.
(A.1)

Combining these equations (we will show below that |V0| 6= 0) we get ei〈ā〉/faNg = ±V ∗0 /|V0|,
so that the above system can be rewritten as

δ|V0|
δΠm = 0
sin
(
〈ā〉
Ngfa

)
= ∓ Im[V0]

|V0|
(A.2)

from which it is clear that the vacuum is obtained extremizing |V0|, and a necessary con-
dition for the strong CP problem to be solved is that V0 is real at the minimum.

To see whether the vacuum is actually at the minimum or at the maximum of |V0| we
must study the Hessian, which reads

H =

M2
ΠΠ M2

aΠ

M2
aΠ M2

aa

 (A.3)

with

[M2
ΠΠ]mn = 1

f2
δ2V0

δΠmδΠn
ei〈ā〉/faNg + 1

f2
δ2V ∗0

δΠmδΠn
e−i〈ā〉/faNg (A.4)

[
M2
aΠ

]
m

= i

ffaNg

δV0
δΠm

ei〈ā〉/faNg − i

ffaNg

δV ∗0
δΠm

e−i〈ā〉/faNg (A.5)

M2
aa = − 1

f2
aN

2
g

V0e
i〈ā〉/faNg − 1

f2
aN

2
g

V ∗0 e
−i〈ā〉/faNg .

The NGB-axion mixing and the pure axion term are order f/fa and f2/f2
a . For simplicity

we will work in the limit f � fa, so we can treat them as perturbations, but our conclusions
will apply in general. In this way, if M2

ΠΠ has no flat directions the lightest eigenvalue
approximately reads

M2
a = M2

aa −M2
aΠ[M2

ΠΠ]−1M2
aΠ +O(f4/f4

a ) ≤M2
aa. (A.6)

Thus a necessary condition for stability is M2
aa ≥M2

a ≥ 0, which translates into

V0e
i〈ā〉/Ngfa = −|V0|. (A.7)
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This tells that the absolute minimum of the potential is reached when V LO
neutral = 2V0e

i〈ā〉/Ngfa

= −2|V0|, and hence the vacuum is obtained by maximizing |V0|. This justifies the earlier
assumption V0 6= 0, for V0 = 0 would be energetically disfavored. The conclusion just
derived has been obtained for f � fa but in fact has general validity because a mass
mixing always pushes the lightest eigenstate to lower values, so the condition M2

aa ≥ 0 is
anyway necessary. The presence of flat directions in M2

ΠΠ would not alter the conclusion
either. Indeed, for the same reason we just explained these directions cannot mix with the
axion otherwise they would turn tachyonic after the mixing is removed. It follows that Π
flat directions cannot affect the axion mass nor the argument leading to (A.7).

In summary, we demonstrated in complete generality that the minimum of V LO
neutral is

obtained by maximizing |V0| with respect to the goldstone fields. The axion vev follows.
Indeed, writing V0 = |V0(〈Π〉)|eiφ(〈Π〉/f), eq. (A.7) indicates that the value of the axion at
the minimum is determined by 〈ā〉 /Ngfa + φ = π mod 2π.

The solution of the strong CP problem requires Ng(π−φ) be a multiple of 2π, and this
cannot be assessed unless an explicit form of V0 is given. In section 3.1 we analyzed in detail
the potential of our scenario. Here, as a quick check of our results, we study the leading
order potential for the standard axion in 2-flavor QCD. Note that the same structure (3.3)
applies to the standard QCD axion provided Ŷu is interpreted as the quark mass matrix
and A the pion matrix. In the QCD case the axion is rotated such that the quark masses
are positive, i.e. mu,d > 0, and the axion field appears as in (3.2) with Ng = 2. Switching
off the charged pion components we have V0 = C[mue

iπ0/fπ + mde
−iπ0/fπ ], with C some

constant. For mu 6= 0 we find that |V0| has two extrema, one at 〈π0〉 = 0 and the other
at 〈π0〉 = π/2. At the two extrema the function |V0| is respectively given by mu +md and
|mu −md|. Hence the absolute maximum of |V0| is attained when 〈π0〉 = 0 and the strong
CP problem, as well-known, is solved, i.e. 〈ā〉 /fa = 2π ∼ 0. When mu = 0 the function
|V0| = |C|md is constant and φ = arg[V0] arbitrary. The argument above tells us that the
axion is now a flat direction, as expected.
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