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ABSTRACT: Nowadays, technologies involving nanoparticles, colloids,
sensors, and artificial intelligence are widespread in society, media, and
industry. It is thus mandatory to integrate them into the curricula of
students enrolled in chemistry and materials science. To this purpose, we
designed a simple assay for the detection of glutathione (GSH) using
surface-clean gold nanoparticles (Au NPs). The alteration of the electric
double layer of the Au NPs with increasing GSH concentration causes the
particles to aggregate, producing a measurable change in color. This
behavior, which is widely exploited for optical sensing, has been introduced
in an undergraduate course to familiarize the students with the concepts of
nanoparticles, colloids, colloidal stability, and sensor features (selectivity,
sensitivity, detection range). Nonetheless, there are no analytical models to
quantitatively relate the absorption of Au NP colorimetric sensors to
analyte concentration, which is the ideal condition for resorting to machine
learning (ML). Hence, an artificial neural network was instructed in a students’ collective data-sharing experiment about machine
learning. Overall, the laboratory experience is safe and highly tailorable to students’ background, course duration, available
instruments, and teacher’s didactic objectives. For instance, it can be lifted to the Master’s or Ph.D. level by improving the
spectroscopic and ML contents or shifted toward the industrial ground by focusing on the nanoparticle synthesis. We propose the
integration of this laboratory experience in the undergraduate and Master’s academic programs to stimulate the students with a
collection of hot topics that at the same time can consolidate their preparation on arguments of great relevance for their professional
life.

KEYWORDS: Second-Year Undergraduate, Upper-Division Undergraduate, Physical Chemistry, Computer-Based Learning,
Hands-On Learning/Manipulatives, Calibration, Colloids, Nanotechnology, Quantitative Analysis, Spectroscopy

■ BACKGROUND

In today’s academy, one of the main challenges of teaching is
how to cope with the increasing complexity of the
contemporary era, embodied by the interpenetration of
multiple disciplines and technologies at all levels. It is thus
mandatory to find new sustainable and effective ways to convey
diverse concepts, starting with the first years of teaching, to
endow students with the required set of skills and
competencies asked to the modern workforce. In effect,
students are aware of the global run to new complex
technologies even when these are not yet found in academic
syllabi, as demonstrated by their demand for hot scientific and
technological topics.
In chemistry and materials science, there is no doubt that

nanoparticles, colloids, sensors, and artificial intelligence
(mostly machine learning) are examples of such ubiquitous
and rapidly expanding fields.1,2 Industry’s increasing interest
makes mandatory their inclusion in academic courses, at least
with a basic introduction to expose students to the jargon and

technical pillars of apparently disparate disciplines. It is also
important to show that such new technologies can be
integrated and, in the near future, successfully used in both
laboratories and workplaces.
With this aim, we organized a lab experience for the

colorimetric detection of a peptide, glutathione (GSH), based
on the evolution of the optical properties of colloidal gold
nanoparticles (Au NPs) when their electric double layer is
altered by the analyte, causing particle aggregation. This
nanosensor is prepared and calibrated in the lab, and
subsequently, the data (absorption spectra) are analyzed
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both empirically and with the support of machine learning by
the instruction of an artificial neural network in a students’
collective data-sharing endeavor.
Nanosensors with Gold Nanoparticles

Nanomaterials are well-established technologies that are
exploited by industry in diverse sectors, ranging from the
mechanical properties of nanocomposites to catalysis and
biomedicine. A remarkable example is the development of
modern biosensors,3,4 a field where Au NPs have occupied
quite a unique position since their introduction in lateral flow
immunoassays, such as the pregnancy or antigenic COVID
tests available on the home’s shelf. In effect, the properties of
Au NPs make them an ideal choice for optical nanosensors in
which analyte concentration is transduced into a change of
color and absorption spectrum.3,5 Colloids of isolated spherical
Au NPs are intensely colored even at particle concentrations as
low as 10−9 to 10−8 M (Au atom concentration of 10−4 M)
because of the absorption generated by the collective
excitations of conduction electrons (called plasmons). This
band is located near 520 nm for Au nanospheres with a radius
of 10−20 nm, conferring the typical bright-red color
recognized for centuries (Figure 1A).5 The plasmon band is

sensitive to the interparticle spacing, meaning that aggregation
of the particles is associated with a remarkable red shift and
broadening of the absorption peak. This enables the
aggregation of the particles to be followed by eye or with a
UV−vis spectrophotometer. Thus, it is no surprise that
chemically engineered Au NPs have been exploited in a large
panel of bioanalytical assays where the surfaces of the Au NPs
are coated with analyte-binding functionalities that enable
particle aggregation and color change in relation to the analyte
concentration.3 This is easily possible because the gold surface
binds strongly to thiol functional groups through covalent
bonding, enabling conjugation with chemical components
selective for each desired analyte.
Besides, Au NPs are thermally stable and photostable,

chemically inert, and biocompatible, and colloids of mono-
disperse Au NPs can be prepared by simple wet-chemical
methods6 or by laser ablation in liquid7 without the need for
expensive or sophisticated equipment.
Such a range of positive features has not gone unnoticed in

this Journal, which has published several contributions on
integration of the synthesis, properties, and sensing applica-
tions of Au NPs into graduate and undergraduate university
syllabi.6,8,9 Nonetheless, to the best of our knowledge, our
practical experience is the first one to connect machine
learning with the use of Au NPs as colorimetric sensors for a
peptide.

Glutathione

The important role of nanotechnology in the bioanalytical field
and the consequent need for students to gain basic knowledge
on the use of nanotechnology products for practical
applications suggested the creation of a colorimetric assay for
a biomolecule like GSH. This was inspired by previous reports
in the scientific literature about the detection of thiol-
containing amino acids such as homocysteine and cysteine or
GSH using gold nanoparticles.10,11

GSH is the nontoxic tripeptide γ-glutamyl-cysteinyl-glycine
(Figure 1B) that is ubiquitous in eukaryotic cells, where it is
the most abundant non-protein thiol.10,11 GSH plays an
important antioxidant and detoxification role. For instance,
GSH is necessary for removal of harmful organic peroxides and
free radicals and can also bind to several toxic metals, solvents,
and pesticides, permitting their excretion.
The peptide bond between the amine group of cysteine and

the carboxylic group of the glutamic acid side chain leaves free
a thiol group, which can chemically interact with the Au NP
surface, and two carboxylic groups, which can form hydrogen
bonds at nonbasic pH with a second GSH molecule bound to
another Au NP.10,11 Overall, the binding of GSH to the
surfaces of Au NPs, based on the high affinity of thiolated
species for gold surfaces, will promote particle aggregation and
color change. These effects grow with the progressive
formation of a layer of peptides on the available Au NP
surfaces. Thus, the unique optical properties of Au NPs and
their binding affinity with GSH provide an excellent
opportunity to address in a single practical session several
fundamental aspects related to sensors, colloid stability,
interactions of nanoparticles with biomolecules, and data
analysis.
However, no analytical models exist to quantitatively relate

the optical absorption of Au NPs aggregated in the presence of
the analyte to the analyte concentration itself, which is the
ideal case for resorting to machine learning.

Machine Learning with Artificial Neural Networks

Artificial intelligence (AI) has rapidly grown from science
fiction to everyday life, where it has a fundamental role in
several sectors such as web chats, self-driving cars, face-
recognition functions in smartphones, and translation of
written text and speeches as well as many other less apparent
but equally pervasive aspects such as medical imaging, spam
filters, online recommendations, and fraud detection.12 In the
field of AI, machine learning (ML) is a major group of
informatic methods that enable machines to autonomously
learn from data in order to identify patterns and correlations of
technical utility.13

Frequently, ML is operated by resorting to artificial neural
networks (ANNs), which are sets of interconnected computing
elements called artificial neurons by analogy to the supposed
models of how biological neurons work in living organisms
(Box 1).14 In effect, the function of an ANN is to analyze a
large input set of correlated data to identify a corresponding set
of weights that best describe the correlations in the dataset.
This is especially useful when the dataset is extremely large and
the recognition of a pattern or a correlation is not trivial, not
apparent, or even not understood. The performance of an
ANN increases with the size of the dataset and optimization of
the structure of the neural network. Artificial neurons are
organized in “layers” placed between the input and the output
(see Figure 1C). Each layer is composed of a variable number

Figure 1. Sketch of the three key components of the laboratory
experience: (A) Au NPs, (B) GSH, and (C) an ANN.

Journal of Chemical Education pubs.acs.org/jchemeduc Laboratory Experiment

https://doi.org/10.1021/acs.jchemed.1c01288
J. Chem. Educ. 2022, 99, 2112−2120

2113

https://pubs.acs.org/doi/10.1021/acs.jchemed.1c01288?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.1c01288?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.1c01288?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.1c01288?fig=fig1&ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.1c01288?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


of neurons, which also depends on the nature of the input and
output. Each neuron of the first layer receives the input and
transfers it to the neurons of the next layer by applying a
weight, whose identification and optimization is the scope of
the computational (“learning”) process.
The versatility of ANNs has few analogues, if any, suggesting

that applications of ANNs will penetrate deeply in all sectors,
including chemistry and materials science.13,14 The advances in
computational power and ML algorithms have now brought
into academic and industrial practice the analysis and
correlation of large amounts of experimental and theoretical
data about chemical compounds and materials. As a result, ML
is routine for the optimization of catalysts, the description of
physical properties of bulk materials, the prediction of
interaction potentials, and the identification of synthetic
parameters for a specific product.2 Recognition of absorption
spectra, which is implemented in this practical experience, is
another frequently sought task for ML.15 For instance, the first
review of the application of ML in chemistry, dated 1991,
described the use of neural networks for the analysis of mass,
IR, UV−vis, and NMR spectra to infer protein structure.16 In
the field of plasmonics, the number of studies resorting to ML
for classification and prediction of optical properties also is
rapidly growing.17−19

The widespread use of ML urges the familiarization of the
next generation of scientists and researchers with this
technology. This Journal has been contributing to the
introduction of ML and ANN concepts and computational
experiences since 1994.14 Nonetheless, a key point for teaching
is how ML can be used in the specific context of the
experimental practice of chemistry and materials science
beyond the theoretical and computational field.12,13 The
laboratory experience proposed here offers the opportunity
of molding the next generation of researchers for a future
where empirical processes and experimental practice will be
systematically supported by self-learning machines.
The Laboratory Experience

The laboratory experiment was designed for a class of ∼60
students of the second year of the B.Sc. in Industrial
Chemistry, with a student to demonstrator ratio of 12−16:1.
The demonstrator supervised three or four groups of students
working in two 4 h sessions dedicated to the experimental part
(with one UV−vis spectrometer for every two groups) and
data analysis, respectively. For the ML part, the data were
processed through an ANN provided within a MATLAB
environment. A 2 h introduction to the conceptual background
of the experience (sensors, gold nanoparticles, colloid stability,
ANNs, and expected data analysis) was provided a few days
before the experimental work.
The experience was accomplished by several cohorts of

students over the years, but the implementation of the ML part
was introduced only in the most recent cohort. In this last case,
students’ feedback was extremely positive, since the experience
received 55% of preferences in an online anonymous pool
available on the Moodle page for the course, with the
remaining 45% shared among the other experiences of a 64 h
laboratory course on physical chemistry (the other five lab
experiences were the determination of electrolyte conductivity,
spectroscopic estimation of diffusion coefficients of a dye,
fluorescence quenching, HOMO−LUMO gap estimation with
cyclic voltammetry, and standard potential determination in an
electrochemical cell). Students appreciated the instrument-free
possibility to monitor the quantity of GSH by the color
change, the introduction to the functional and chemical
properties of colloidal nanoparticles, the exploitation of ANNs,
and the realization of a bioassay they built themselves.
For the students of this laboratory course, it was their first

experience in handling, functionalizing, and using nanomateri-
als, analyzing the data, and writing a detailed laboratory report
according to scientific standards. Nonetheless, all groups
completed the experimental protocol and the related data
analysis. The learning outcomes were assessed by collecting a
written report (in electronic format) and evaluated according
to the table reported in the Supporting Information (SI).
From a teacher perspective, the laboratory experience has

the advantages of being simple, reproducible, safe, and hood-
free; being based on inexpensive reagents; requiring ambient
conditions; being accomplished with a UV−vis spectropho-
tometer as the only required instrumentation; and being
tailorable to the level of students and intended didactic
contents (as discussed also later in this article).

■ EXPERIMENTAL SECTION

Chemicals and Equipment

The experimental procedure involves the following chemicals:
Au NPs solution (8 nM in NPs), γ-L-glutamyl-L-cysteinyl-

Box 1. ML Jargon

Artif icial neural network: a collection of interconnected
computing elements (nodes or neurons) organized in layers.
Layer: a group of nodes. At least three layers exist: an input

layer, which receives information; an output layer, which
returns information; and one or more hidden layers, which
process information. A maximum of two hidden layers is
needed to model any mathematical function.
Feed-forward ANN: a network in which the information

proceeds only from the input to the output layer (when this is
not the case, the network is called recurrent).
Supervised training: training approach in which the ANN is

provided with a dataset of inputs and the related outputs (in
our case, each input absorption spectrum is provided with the
corresponding GSH concentration).
Epochs: iterations of the ANNs during the learning process.

Epochs stop when the error in the validation set is not
reduced anymore.
Training set: a subset of all the available data that is used for

the learning process.
Validation set: another subset of the available data that is

not used for training but is instead used to evaluate the
performance of the ANN over “unknown” data (i.e., its
generalization capability) at different epochs of the training
process.
Overf itting: the undesired situation in which the ANN

reproduces well the training set but not the validation set (i.e.,
the ANN has a large generalization error).
Early stopping: a training technique used to avoid

overfitting in which the training is stopped when the
performance of the ANN on the validation set does not
improve anymore.
Test set: a subset of all the available data that is distinct

from the training and validation sets and can be used to
compare the performances of ANNs with different hyper-
parameters (i.e., different numbers of layers, different numbers
of neurons, etc.)
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glycine (GSH) (≥98.0%, Sigma-Aldrich), and NaOH solution
(0.1 M, from NaOH, ≥ 98.5%, Scharlau). All of the chemicals
were used as received without further purification. All of the
solutions were prepared with double-distilled water (alter-
natively, Milli-Q water can be used). Au NPs were obtained by
laser ablation in liquid (LAL), a green method starting from a
99.99% pure Au plate dipped in a 10−4 M NaCl (≥99.5%,
Fluka) aqueous solution (see the SI for a scheme of the
synthesis setup). The 1064 nm laser pulses (6 ns, 50 Hz,
Nd:YAG laser) were focused on the metal plate with an f = 10
cm lens at a fluence of 8 J/cm2. The Au NPs prepared
according to this protocol are nearly spherical, with an average
size of 16 nm as determined by electron microscopy and fitting
of the UV−vis spectrum with the model described in ref 20. Au
NPs can be generated at low cost21 by LAL in any pulsed-laser
laboratory following the instructions reported in the Handbook
of Laser Synthesis & Processing of Colloids7 or purchased from
several companies (a list can be found in ref 21). Besides, an
automatic machine for the production of Au NPs with a
portable closed-box system has recently been proposed by the
company AutoProNANO.22 Alternatively, Au NPs can be
produced by chemical reduction of HAuCl4 with sodium
citrate, as described in ref 6.
The laser-generated colloids of Au NPs can be stored in

ordinary glass bottles at ambient temperature with a shelf life
of several weeks to months, allowing their use for multiple
laboratory sessions without changing the experimental results.
In any case, UV−vis spectroscopy can be used to confirm the
batch quality over time.
In the typical experience, students were provided with a set

of glassware and calibrated micropipettes, the stock solutions
of Au NPs and NaOH, and a GSH solution with an unknown
concentration (to be determined as the scope of their work).
Absorption spectra were collected with an Agilent Cary 60

UV−vis spectrophotometer using disposable plastic cuvettes
with a path length of 1.0 cm.
Data analysis was performed with the free software

SciDAVis,23 and ANN calculations were carried out with
MATLAB.
Procedure

In the typical experience, the procedure of the first session,
which was held in the laboratory, consisted of the following
steps (see the SI for details):

• Preparation of a GSH stock solution (10 mg/mL).
• Preparation of 16 standard GSH solutions (from 10 mg/

mL to 2 μg/mL by serial dilution) and a reference of
distilled water, each with a volume of 3 mL in a glass test
tube. The serial dilution is performed with micro-
pipettes, offering an excellent opportunity to train the
students in this technique and error propagation theory
during data analysis.

• Preparation of the GSH sample with an unknown
concentration and its 10-fold dilution, each with a
volume of 3 mL in a glass test tube.

• Addition of 1 mL of the Au NP colloid to each of the
above test tubes and mixing/shaking to ensure the
uniform distribution of the particles.

• Taking pictures of all of the test tubes. The color
changes after only a few seconds, permitting the
aggregation of Au NPs to be followed in an instru-
ment-free manner. Students were asked to inspect the
solutions visually and try to place the two unknown

GSH samples in the correct intervals of concentration by
comparing their colors to those of the standard
solutions. An example of the result that each group
should obtain is shown in Figure 2A.

• Acquisition of the UV−vis spectra with disposable 1 cm
cuvettes. Absorption spectra are typically recorded 10
min after addition of Au NPs to let the system
equilibrate but also before precipitation of particles
occurs at the highest GSH concentration. It would be
optimal to keep a fixed time of preferably 10−15 min
between the addition of Au NPs and collection of the
UV−vis spectrum for all samples. The registration of
UV−vis spectra is normally carried out through
cooperation of groups while taking turns at the
spectrophotometers. It should be noted that the
aggregation state of NPs (and thus the spectrum) may
change with time, which can be a large source of error,
especially if students are waiting to use spectrometers.
Although not tested during the lab experience, a possible
strategy to stop or slow down aggregation is the addition
of an aqueous solution of the polymer at a fixed time, as
described in refs 24 and 25. However, this may be not
compatible with the last experimental task after
collection of the UV−vis spectra, in which a small
volume (ca. 0.5 mL) of 0.1 M NaOH is added to the test
tubes with the highest GSH concentration and the
disaggregation effect is recorded photographically and by
UV−vis spectroscopy. An example is shown in Figure
2B.

It should be noted that the colloidal stability of the Au NPs is
sensitive to trace contaminants. Hence, for all of the above
operations, the water used must be of the highest purity, and
the glassware employed must be scrupulously clean and well-
rinsed to avoid uncorrelation of the Au NPs optical properties
with GSH concentration.
The procedure for the second session on data analysis

consisted of the following steps:

Figure 2. (A) Photographs of the 17 GSH solutions for calibration of
the nanosensor and the two solutions with unknown GSH
concentration (to be determined in the experience). (B) Effect of
addition of NaOH to the solutions with the highest GSH
concentration.
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• Plotting of UV−vis spectra.
• Construction of the empirical calibration curves, with

determination of the detection range and sensitivity and
evaluation of the GSH concentration in the unknown
sample. Each GSH concentration comes with its error.

• Collective experiment for the evaluation of GSH
concentration in the unknown sample by instruction of
the ANN.

Because of COVID restrictions, data analysis was performed
by streaming instead of the standard execution in the computer
room of the laboratory. We used the Zoom platform provided
by our institution, exploiting the possibility to switch from the
main videoconference session for general advice to breakout
rooms for individual groups of students (using the breakout
room preassign function available on the Zoom home page of
the videoconference host) for student- and group-specific
advice.

■ HAZARDS
Hoods are not required because the chemicals employed are
not volatile or hazardous, except for the NaOH solution
(which is caustic). However, the experience should be

performed using standard personal protective equipment
(safety glasses, gloves, laboratory coats, and enclosed shoes),
and before performing the experiment, students should read
the safety data sheets of all chemicals to be used, which should
be provided at the workstation of each group.

■ RESULTS

The typical set of UV−vis spectra for the GSH standard
solutions is shown in Figure 3A. The spectra show an evolution
of the plasmon absorption band, whose maximum (λmax)
progressively red-shifts from 518 nm (GSH absent, nano-
particles not aggregated) to 620 nm (highest GSH
concentration, complete aggregation of Au NPs) simulta-
neously with its remarkable broadening. This corresponds to a
progressive solution color change from red to gray, which is
well-appreciable when the GSH concentration is above ∼0.08
mg/mL. These spectral features can be exploited to construct a
calibration curve that allows the quantitative estimation of the
GSH concentrations in the unknown samples, whose spectra
are shown in Figure 3B.

Figure 3. (A, B) UV−vis spectra corresponding to (A) the 17 calibration solutions and (B) the two unknown samples. (C, D) Calibration curves
built from changes in (C) the plasmon peak position (Δλmax) and (D) the absorbance at 650 nm (ΔAbs@650 nm). The insets show how the
response functions Δλmax and ΔAbs@650 nm were calculated. The responses of the unknown solutions are represented by the horizontal dashed
lines. Dotted lines show the linear interpolations between the pairs of calibration points with response values closest to the values for the unknown
solutions.
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Empirical Calibration

In the absence of a quantitative model, the simplest way to
build a calibration curve is to measure the shift of the
wavelength at the maximum of the surface plasmon band
(Δλmax) for the different GSH concentrations,3,5 as shown in
Figure 3C. The x scale was converted into the decimal
logarithm of GSH concentration to permit a clear visualization
of the data points over the 3 orders of magnitude explored
during the experiment. Another practical calibration curve
consists of reporting the change in absorbance for each
solution in the red spectral region (650 nm is suggested,
ΔAbs@650nm) versus GSH concentration, as shown in Figure
3D. These empirical curves were useful to introduce the
students to the concept of sensors as transducers of a stimulus
(GSH concentration) into a well-detectable response (peak
shift or absorption increase). These and the other concepts
about linear interpolation and calibration were provided to
students in the introductory lessons about the lab experience
and data analysis for the whole 64 h laboratory course
mentioned previously.
Then the response for the unknown GSH solutions was

added to the calibration plots (horizontal dashed lines in
Figure 3C,D), allowing the quantitative estimation of peptide
concentration. It is worth noticing that the calibration curves
are generally not describable with a single function, despite
resembling a sigmoid, because the initial and the final parts are
not exactly flat. At low concentrations, for instance, there could
be a red shift of Δλmax due to coating of the Au NPs with GSH
before that aggregation starts, which also is an effect that
increases with increasing GSH concentration. However, this
effect does not interfere with the calibration because the
datasets in Figure 3C,D have the same sigmoidal trend versus
GSH concentration and provided comparable results over the
various groups of students who performed the lab experience
in many different years.
A first rough prediction of the GSH concentration in the

unknown samples is possible with the pointer of the data
analysis software. However, more precise predictions can be
made by finding the intersections between the horizontal lines
and the linear interpolations between the pairs data points of
the calibration curve with response values closest to those for
the unknown samples (dotted lines in Figure 3C,D).
The students were asked to compare the values obtained

from the two calibrations and the undiluted and 10-fold diluted

samples as an indication of the reliability of the measurement
and the compatibility of the two calibrations.
Importantly, from the plots in Figure 3C,D it is immediately

evident that the responses of the undiluted and diluted GSH
samples are in two regions with much different slopes of the
calibration curves. This indicates the importance of sensitivity
when a sensor is used to detect a stimulus from an unknown
sample. This also explains the didactic utility of using a large
range of GSH concentrations. Students were also asked to
perform the derivative of the calibration curves to extract the
sensitivity over the whole concentration range. This last
operation is affected by the experimental error at low and high
GSH concentrations, which can be solved by identifying the
three main concentration ranges of the calibration curves and
making the linear interpolation for each of them (as described
in the SI).
Because of the shape of the calibration curves and the wide

range of GSH concentrations used, the performance assess-
ment of the nanosensor can be extended to the identification
of the lowest and highest detectable quantities, allowing
students to become familiar with concepts like the limit of
detection (LOD) and maximum detectable limit (MDL).

Calibration with the ANN

At the beginning of the data analysis session, students are
introduced to the concept of ML in broad terms, and the basic
working principle of ANNs is explained. Afterward, they are
asked to share the UV−vis spectra to build a training set large
enough for ANNs to be instructed. In the case of our
implementation, a total of 256 spectra (16 spectra for 16
groups of students) were collected and exploited to construct
the training set (70% of the spectra) and the validation set (all
of the remaining spectra) (see the SI for details and comments
on the dataset size). This immediately gives the students a
demonstration of the utility of ML in the processing of “large”
datasets.
An example of a single ANN training can be performed by

the demonstrator in front of the student audience, as it takes
around 1 min with the optimized parameters that we have
selected. The effects of changing the ANN parameters
(number of neurons per layer, number of layers, etc.) and
advancing training epochs can be also discussed during the
demonstration, to show their drastic effects on the predictions
and to comment on the concepts of overparametrization and
early stopping.

Figure 4. (A) Sketch of the [100|60|1] ANN. (B) Average estimates of the unknown concentrations of GSH solutions with the ANN and the
empirical methods. The real values are reported by the dashed and dotted lines.
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To obtain more accurate predictions of the unknown GSH
solutions, multiple independent trainings must be performed.
With the code provided in the SI, 1 h on a common laptop is
typically sufficient, allowing the process to be launched in the
background at the beginning of the data analysis session.
We exploited a college-wide MATLAB installation, which

has several built-in features specifically suited for ML
applications and a relatively friendly graphical user interface.
This should overall greatly facilitate students in continuing
these activities autonomously in the future.
The structure of the ANN and the type of training were

optimized before the demonstration using a dataset collected
from the previous cohorts of students. We used a feed-forward
network with a layer structure of [100|60|1]. The 100 nodes of
the input layer correspond to the absorbances at 100 equally
spaced wavelengths in the UV−vis spectra recorded by the
spectrometer: this means that the ANN considers all of the
spectral information instead of a specific point as in the
empirical calibrations. The single node of the output layer
corresponds to the GSH concentration for that spectrum. A
schematic of the ANN is shown in Figure 4A.
Finally, the ANN can be applied to the spectra of the

unknown GSH solutions for each group, to provide an
estimation of the concentration. As shown in Figure 4B, the
predicted values of the unknown GSH concentration are
generally in agreement with the real value (0.370 mg/mL),
with a mean value of 0.39 mg/mL and a standard deviation of
±0.10 mg/mL, performing better than the average of the
empirical estimations. The observed variability is surely
affected by the experimental errors, principally due to dilutions
and nonuniform aging time before UV−vis analysis but also to
the size of the training dataset (see the SI). For the 10-fold-
diluted solution, the mean of 0.038 mg/mL is close to the real
value of 0.037 mg/mL but with a standard deviation of ±0.026.
However, the lower spectroscopic differences for the diluted
GSH sample also affect the empirical evaluation, as is evident
from the plots of average (Figure 4B) and single-group
concentration estimations (Figure 5).

■ DISCUSSION

The working principle of the nanosensor relies on the change
of colloidal Au NPs from the dispersed state to the aggregated
state upon interaction with GSH, which gives rise to new
collective-particle surface plasmon absorption at wavelengths
longer than 520 nm.10

Although colloidal solutions are thermodynamically unstable
against phase separation, the Au NPs in this study are
negatively charged and repel each other by an electrostatic
potential of higher intensity than the attraction potential, as
described by the Derjaguin−Landau−Verwey−Overbeek

(DLVO) theory.26 The Au NPs obtained by LAL in NaCl
aqueous solutions have a negative charge ascribable to the
adsorption of Cl− ions, as elucidated by recent studies.27 In Au
NPs obtained by chemical reduction, a negative surface charge
is also present as a result of adsorption of citrate ions.10

The thiol moiety on the cysteine of GSH spontaneously
binds to the surface gold atoms of Au NPs within a few
seconds, replacing the adsorbed anions. However, the pKa
values for the free carboxylic (2.05 for the glutamate moiety
and 3.40 for the glycine moiety) and primary amine (9.49 for
the glutamate moiety) groups of GSH are such that they are
zwitterionic at neutral pH.10,11 Thus, the GSH monolayer does
not produce an electrostatic double layer like the replaced
anions. Besides, several possible interparticle interactions have
been suggested to occur in GSH-coated Au NPs, especially
intermolecular hydrogen bonding.10,11 Theoretical calculations
identified 12 different intermolecular hydrogen-bonding
conformations in neutral GSH, excluding those with the SH
group bonded to Au.11 Hence, the combination of surface
charge cleavage and intermolecular interactions upon binding
of GSH promotes Au NPs aggregation.
On the other hand, the GSH-mediated assembly of Au NPs

should be inhibited at high pH in the solution, as shown after
the addition of one drop of NaOH, because of dissociation of
the carboxylic groups and restoration of a negative charge on
the particle surface. Indeed, the disaggregation lasts for a few
minutes before a slow sedimentation process restarts because
of the high ionic strength of the solution, corresponding to the
shortening of the Debye length in the electrostatic double layer
and consequent surface charge shielding.10

Finally, we note that the pH of the colloids obtained by LAL
is different from that of the colloids obtained by other methods
such as chemical reduction with citrate.28 If the pH of the
initial solution changes, also the amounts of GSH and NaOH
to be used may be different. For instance, the contribution to
aggregation due to hydrogen bonds among carboxylic groups is
possible only if the pH is quite low (pH 2−3).
Experience Tailorability

By offering the students an opportunity to familiarize
themselves with topics like nanoparticles, bionanomaterial
interactions, sensors, colloids, and ML, this experience
emphasizes the multidisciplinary approach to modern scientific
endeavors. Nonetheless, the structure of the experience could
be easily recontextualized according to teaching objectives,
course duration, and instrumentation constraints of the
laboratory. In Figure 6 we propose a “plug-in” organization
of the experience, where each module can be added or
removed as desired. Besides, at the level of a really advanced
lab course, students may be involved personally in identi-
fication of hyperparameters and ANN training.

Figure 5. Outputs of (A) the ANN and (B, C) the empirical methods for the unknown solutions of the 16 groups participating in the laboratory
experience. Average values and confidence intervals (standard deviation) for the 16 samples are reported as horizontal lines.
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A first module may consist of the synthesis of Au NPs with
LAL or chemical reduction of HAuCl4 (Figure 6A). In our
case, the nonspecificity of the Au NPs for the analyte was a
deliberate choice to keep the duration of the experience to a
single lab session, but a longer time for the practical activity
would allow the inclusion of the surface functionalization
necessary for a specific recognition ability (e.g., for metal
cations).3,5 The addition of NaOH and the transient
disaggregation of GSH-coated Au NPs offers the opportunity
to enter into more detail with the DLVO theory (Figure 6B).
In our lab experience, students were proposed also to plot a set
of interaction potentials representative of Au NP surfaces
under the various conditions of the practical experience (see
the SI). This part can be also done in a spreadsheet program or
with a MATLAB script.
More details on the optical properties of Au NPs can be

added, including the Beer−Lambert law or fitting of the
absorption spectra with Mie theory (Figure 6C). For instance,
a fitting script may be developed by the instructors starting
from those described in ref 5, or the Mie and Gans models
reported in ref 20 can be used.
Also, the characterization of the colloidal nanoparticles can

be expanded with a range of approaches (Figure 6D), from a
simple observation of the Tyndall effect to the exploitation of
dynamic light scattering (DLS) or z-spectroscopy (a technique
for measuring the electrostatic potential at the NP surface) or
even transmission electron microscopy (TEM). The character-
ization of AuNPs can be performed before and after coating
with GSH or different compounds and biomolecules. In the
case of TEM, it is suggested to use a diluted polymeric matrix
to avoid aggregation of the Au NPs during sample deposition,
as described in ref 25. Finally, a fluorimeter can also be used in
the synchronous scan mode (detection of light elastically
scattered from the sample) for an advanced study of the optical
properties of aggregated Au NPs (Figure 6E).5

On the opposite side, the experience could be adapted to a
more general approach by omitting the most advanced aspects.

■ CONCLUSIONS
We have described a laboratory experience treating several
emerging concepts with rapid permeation in modern
technologies, such as nanoparticles, colorimetric nanosensors,
bionanomaterial interactions, surface functionalization of metal
nanoparticles, plasmon absorption, colloids, and data analysis
with ML. In addition, basic principles of sensor performance
such as calibration, selectivity, sensitivity, and measurement
range are directly experienced.
In this practical, the students use a colloid of Au NPs to

estimate the quantity of GSH in an unknown solution on the
basis of the color change, which is conveniently monitored
with UV−vis spectroscopy. Data analysis is performed
empirically as well as with collective data sharing to instruct
an ANN. The experimental protocol requires safe and
affordable reagents and just a UV−vis spectrophotometer,
while the ANN part is performed with a standard MATLAB
code.
The practical is suitable for students with various scientific

backgrounds (chemists, materials scientists, chemical engi-
neers, biologists, biotechnologists, etc.) and levels of study. In
effect, the experience is also tailorable to fit the preferred
pedagogical objectives, instrument dotation, and lab duration
by exploiting the intrinsic “plug-in” modularity of the
workflow.
With this experience, the students acquire familiarity with

apparently distant concepts like nanotechnology and machine
learning, thereby becoming aware of the multidisciplinarity and
complexity that will accompany their professional lives.
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