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Abstract: Advancements in neural network approaches have enhanced the effectiveness of surface
Electromyography (sEMG)-based hand gesture recognition when measuring muscle activity. How-
ever, current deep learning architectures struggle to achieve good generalization and robustness,
often demanding significant computational resources. The goal of this paper was to develop a robust
model that can quickly adapt to new users using Transfer Learning. We propose a Multi-Scale
Convolutional Neural Network (MSCNN), pre-trained with various strategies to improve inter-
subject generalization. These strategies include domain adaptation with a gradient-reversal layer
and self-supervision using triplet margin loss. We evaluated these approaches on several benchmark
datasets, specifically the NinaPro databases. This study also compared two different Transfer Learn-
ing frameworks designed for user-dependent fine-tuning. The second Transfer Learning framework
achieved a 97% F1 Score across 14 classes with an average of 1.40 epochs, suggesting potential for
on-site model retraining in cases of performance degradation over time. The findings highlight
the effectiveness of Transfer Learning in creating adaptive, user-specific models for sEMG-based
prosthetic hands. Moreover, the study examined the impacts of rectification and window length,
with a focus on real-time accessible normalizing techniques, suggesting significant improvements in
usability and performance.

Keywords: surface electromyography (sEMG); hand gesture recognition; transfer learning; deep
learning; domain adaptation; prosthetic hands; real-time systems; user-specific models; gradient-
reversal layer; self-supervised learning; NinaPro database; triplet margin loss; fine-tuning; signal
processing; adaptive systems

1. Introduction

Deep learning has achieved important improvements in surface Electromyography
(sEMG) recognition systems, supporting the development of sophisticated prosthetic de-
vices, despite the intrinsic complexity of sEMG signals. However, many challenges remain,
including catastrophic forgetting, cross-user adaptation, and robustness in real-time perfor-
mance [1].

Motor neurons play a crucial role in converting brain information into muscle move-
ment [2]. The Motor Unit (MU), which consists of a motor neuron within an innervated
muscle fiber, is the fundamental unit of control. The union of numerous MUs generates
Motor Unit Action Potentials (MUAPs) [3] that eventually induce movement. The EMG
signal acquired from the sensing devices represents the discharge properties of the Motor
Units, expressing MUAP convolution in both time and space [4,5]. Typically, EMG signals
have an amplitude of around ±5000 µV and a frequency range between 6 and 500 Hz, with
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the most important frequency power being between 20 and 150 Hz [6]. Surface Electromyo-
graphy (sEMG) is a non-invasive approach to hand gesture identification in the myoelectric
control of prosthetic devices [7].

The key advantage of sEMG over other techniques, such as implanted electrodes, is its
simplicity in collecting and analyzing muscle electrical data, allowing users to use their
prosthetic limbs naturally through muscle activation patterns that can resemble the user’s
original hand movements. Despite substantial developments in this sector, sEMG-based
control systems in practical applications still face obstacles [8]. In particular, unpredictable
real-life situations that differ significantly from controlled laboratory conditions can bias
real-world performance compared to a controlled environment [9,10]. These variations can
strongly affect the shape and intensity of the signal, lowering the performance of sEMG-
based control systems. Typical examples of these variations include electrode shift [11],
unpredictable changes in skin electrode impedance [12], muscle fatigue, and alterations
in residual limb posture [13]. As a result, achieving precise control over daily activities
becomes challenging.

Many efforts have been made to investigate novel ways to improve the capabilities
of myoelectric control, in order to overcome these constraints. Recent advancements have
suggested the use of a larger number of sEMG electrodes placed around the residual limb,
combined with sophisticated machine learning techniques, [14]. Nevertheless, increasing
the number of electrodes complicates the network, increases expense, and may not always
be feasible, given the arm’s remaining fraction.

As prosthetic devices improve their functionality to restore the full capabilities of a
missing limb, their regulation becomes increasingly challenging [15]. Therefore, new control
paradigms and algorithms are being investigated to optimize grasping and manipulation
tasks in diverse real-world circumstances.

Deep learning has emerged as a powerful solution in multiple areas of study, such
as natural language processing, computer vision, and speech recognition [16]. Deep
learning techniques have been applied to improve the precision and reliability of EMG-
based gesture recognition systems, and this success has been mimicked in the field of
electromyography analysis.

Atzori et al. [17] were among the first to apply Convolutional Neural Networks
(CNNs) to recognize EMG patterns. Geng et al. [18] used HD-sEMG data to show the
capabilities of CNNs in distinguishing between hand gestures. Their findings revealed
how well deep networks can learn complex patterns in this domain. By extending this
strategy with a multi-stream divide-and-conquer CNN architecture, Wei et al. [19] increased
recognition accuracy over single-stream CNNs.

Hu et al. [20] investigated the incorporation of Recurrent Neural Networks (RNNs)
into CNN design, and they presented a hybrid CNN-RNN network. Compared to con-
ventional machine learning methods, this architecture showed improved generalization
capabilities using unique sEMG picture representations. Progressive Neural Networks
(PNNs) were used by Allard et al. [21] to transfer information from a source domain to
a target domain. Based on this, they subsequently improved the PNN technique and
demonstrated its efficiency with increasingly complicated gesture datasets [22].

Research has also explored the use of Transfer Learning (TL) to reduce training load
and to enhance generalization. By pre-training a source model on various participant
data, research has been able to enhance recognition accuracy when applied to the hand
motions of a different target participant. Wang et al. [23] specifically proposed an Iterative
Self-Training Domain Adaptation (STDA) method for cross-user sEMG recognition, com-
bining discrepancy-based alignment and iterative pseudo-label updates. Islam et al. [24]
developed a lightweight All-ConvNet+TL model that efficiently tackles inter-session and
inter-subject variability, which successfully enhances the accuracy and speed of sEMG
gesture classification, making it well suited for real-time applications. Nguyen et al. [25]
took a different approach by introducing a Frequency-based Attention Neural Network
(FANN) combined with Subject-Adaptive Transfer Learning.
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Despite advances in TL for EMG pattern recognition, several challenges still need to be
overcome. Current deep learning solutions have limits, in terms of long-term reliability and
adaptability to new gestures or users [26,27]. Indeed, the user can benefit from the option
to adapt and/or include new gestures into the model’s repertoire of recognizable gestures.
Researchers in this field have shown that deep learning may be the key to enhancing the
precision and robustness of sEMG-based control. Problems such as long-term dependability,
adaptation to new motions [28], and muscle activation coverage should be addressed as
well [29]. Furthermore, in the case of prosthetic devices, user adaptation, energy usage,
and inference time must all be considered.

The key objective of this study was to enhance model generalization among patients,
to reduce individual variability, hence facilitating quick user adaptation through Transfer
Learning. It also targeted key challenges in sEMG-based hand gesture recognition for
prosthetics, prioritizing low-computation interfaces and efficient data splitting techniques.

To achieve these goals, different pre-processing steps, including rectification, window
length, and normalization procedures, were analyzed. The study also investigated Transfer
Learning with few-shot learning for new user fine-tuning. In the end, to evaluate gener-
alization, we employed an adversarial network with gradient-reversal descent [30] and
self-supervision with triplet margin loss [31].

2. Material and Methods

An extensive analysis of the methodologies adopted is provided in this section. It starts
by describing the data used to assess model performance and their acquisition protocol.
Two data splitting strategies, inter-subject and intra-subject, are then introduced, followed
by a detailed description of the model structure, along with the training strategies employed
for pre-training the model backbone. The Transfer Learning framework description is then
presented. Finally, data pre-processing, normalization strategies, and parameter tuning
methodologies are discussed.

2.1. Data Acquisitions

Several publicly accessible datasets were used for the model evaluation, specifically
the NinaPro DB2, DB3, and DB7 databases, for which the details are listed in Table 1. The
setup used Delsys Trigno electrodes for sEMG data acquisition. The subjects mimicked
40 hand gestures, each repeated six times with 3 s of rest between exercises. Visual stimuli
were presented on a laptop, and relabeling was performed to account for delays. The
acquisition protocols for these databases are described in further detail in [32].

A subset of 14 gestures was selected from the available gestures based on the Activ-
ities of Daily Living (ADL) shown in Figure 1. This selection was made to balance the
trade-off between number of gestures and accuracy, as the study was tailored for a real
prosthetic device.

Table 1. Description of NinaPro databases used. The subjects column refers to the number of patients
performing the gestures, while repetitions refers to the number of iterations of the same gesture.

Name Subjects Channels Classes Repetitions Frequency Device

DB2 40 12 41 6 2000 Hz Delsys Trygno

DB3 11 (A) 12 41 6 2000 Hz Delsys Trygno

DB7 20 + 2 (A) 12 41 6 2000 Hz Delsys Trygno
Note: In the context of this study, the letter A in Subjects designates amputees.
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Figure 1. Selected hand gestures from Activities of Daily Living (ADL).

2.2. Data Splitting

The experimental strategy included two data splitting strategies: inter-subject and
intra-subject. Inter-subject involved training on data from one group of patients and
validating on another; intra-subject involved training, validating, and testing on different
repetitions of the same gestures from the same pool of subjects.

For both split modalities, 15 subjects (12 healthy individuals and three amputees) were
set aside to be used as test subjects for Transfer Learning. In the first method, to cover a
maximum variability, the remaining patients were randomly divided, with 80% used for
training and 20% for validation.

With regards to the intra-subject method, three repetitions were used for training (2, 4,
6), two for validation (1, 5), and one for testing (3). This division was introduced to account
for variables such as muscular fatigue, which can induce signal fluctuations [33].

Additionally, the 15 subjects initially excluded and selected for testing Transfer Learn-
ing could also be used in both splitting methodologies to evaluate model performances over
unseen subjects. This enabled a subsequent assessment of the Transfer Learning framework
for user-specific fine-tuning. Both the intra-subject and inter-subject approaches applied
Transfer Learning to new subjects, allowing a comparative evaluation of their effectiveness.

2.3. Data Pre-Processing and Normalization Strategies

The pre-processing involved filtering, windowing, rectification, and normalization.
These strategies were selected as they did not require a significant computational effort,
which is an important constraint given the expected application for real-time prosthesis
use and its associated requirement for energy and efficiency and speed [34]. In order to
obtain an informative bandwidth from 10 to 500 Hz, these data were filtered applying a
fourth-order bandpass Butterworth filter [35]. Additionally, a notch filter at 50 Hz was
applied, to remove power-line interference.

Different windows were employed, each with a 75% overlap. These windows com-
prised 100, 150, 200, and 250 milliseconds. Using overlapping windows reduced infor-
mation loss at each window boundary, resulting in a more accurate representation of the
signal’s temporal features.

Normalization has long been used to reduce heterogeneity in electromyographic data
and to mitigate substantial inter-subject variability [36]. Three normalization strategies
(range [0 1], range [−1,1], and Z-Score) were evaluated in two ways: normalization by
subject and normalization by subject and channel [37,38].

The first approach relies on the calculation of subject-specific metrics from all channels
combined, which includes mean, standard deviation, minimum, and maximum. The
second approach, working at the channel level, is less likely to be influenced by artifacts,
spikes, and noise-related channels [39].

2.4. Model Structure

The architecture of the proposed Multi-Scale Convolutional Neural Network (MSCNN)
model is shown in Figure 2. This figure provides a clear representation of the model’s
structure and the relationships between its various components. For a more detailed
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understanding of the data flow within the MSCNN, refer to Table 2, which outlines each
step and operation in the process.

Figure 2. Architecture of the Multi-Scale CNN model.

The MSCNN model is composed of four distinct parts, each serving a unique purpose.
These components are as follows:

Part 1) As seen in Figure 2, this part is divided into two distinct blocks. Block 1 aims to
extract features to capture the spatio-temporal patterns in the sEMG signal. The
multichannel sEMG signal is represented as an image for each sample.

A set of five filters, sized (W × 3, 2*W × 3, 3*W × 3, 4*W × 3, and 5*W × 3)
are employed in Block 1, where W is selected as 1/20 of the chosen window size.
The selection of these sizes was driven by the need to parameterize the model
consistently across different window sizes to facilitate parameter tuning and com-
parison. Larger filter sizes correspond to lower-frequency related characteristics
and vice versa.

Each feature map output from the parallel convolutions of Block 1 is then fed
into Block 2. Block 2 has a similar structure and uses five additional convolution
layers with fixed 3 × 3 filter sizes. In Block 2, separable convolutions are used
to reduce the number of trainable parameters, and the number of neurons in
each layer is always doubled compared to the previous ones. Furthermore,
the dropout layers and Batch Normalization (BN) layers in both blocks are
implemented to increase the MSCNN model’s overall generalizability.

Part 2) The main objective of this part is to reduce the dimensionality of the feature
maps that come from Part 1 and then fuse them. After Part 1, the number of
feature maps is reduced from 320 (64 × 5) to 128 by using 1 × 1 filters in this
convolutional layer. The 1 × 1 convolution prevents the use of fully connected
layers, thereby decreasing the number of parameters and preventing overfitting.

Part 3) Part 3 allows the model to extract deeper features by employing other separable
convolutional layers, which reduces the number of parameters and, hence, the
computational load, an essential requirement for embedded applications.

Part 4) The final stage of the model involves converting the obtained features to class
probabilities for classification. This is accomplished by combining two completely
connected layers that process the deep features previously collected.

Notably, in Part 1 , a customized Conv2D layer is used for the first parallel convolutions.
This layer employs zero padding along the temporal axis and circular padding along the
first 8 channel axes to preserve spatial relationships between electrodes.

The rationale for this approach is evident considering the acquisition setup of the
databases, where the initial eight electrodes around the arm are organized in a circular
arrangement. This padding accounts for preserving spatial patterns, as converting a circular
architecture to a linear representation might result in loss or distortion of vital information.
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Table 2. Detailed structure of the model and data flow. The number before the layer type represents
the number of parallel layers of the corresponding type, e.g., 5-Conv2D represents five conv2D
layers. The first dimension (kernel size) of the first set of parallel Conv2D_Circular8 layers in-
creases linearly from a lower value to an upper value. The increment between each kernel size is
W = window length/20 (window length fixed at 300 here).

Part Layer Type Kernel
Size Output Size Activ Options

1-Input - 1/300 × 12 - -
5-Conv2D_Circular8 [15–75] × 3 32/300 × 14 ReLU pad = ‘circular’

5-BatchNorm2D - 32/300 × 14 - -
5-MaxPooling2D 15 × 1 32/20 × 14 - -

1 5-Dropout2D - - 20 × 14 rat e = 0.2
5-SeparableConv2D 3 × 3 64/20 × 14 ReLU pad = 0

5-BatchNorm2D - 64/20 × 14 - -
5-MaxPooling2D 2 × 2 64/10 × 7 - -

5-Dropout2D - 64/10 × 7 - rate = 0.2

2
1-Concatenate - 320/10 × 7 - -

1-Conv2D 128/1 × 1 128/10 × 7 ReLU -

1-SeparableConv2D 3 × 3 256/10 × 7 ReLU pad = 0
1-BatchNorm2D - 256/10 × 7 - -

1-MaxPool2D 2 × 2 256/5 × 3 -

3
1-Dropout2D - 256/5 × 3 - rate = 0.2

1-SeparableConv2D 3 × 3 256/5 × 3 ReLU pad = 0
1-BatchNorm2D - 256/5 × 3 - -

1-MaxPool2D 2 × 2 256/2 × 1 - -
1-Dropout2D - 256/2 × 1 - rate = 0.2

1-Flatten - 512 - -
4 1-Linear - 128 ReLU -

1-Linear - 14 SoftMax -

2.5. Model Pre-Training Strategies

This study employed three training strategies for the backbone of the model before
applying Transfer Learning: standard training, pre-training with triplet margin loss, and
domain adversarial network with gradient-reversal implementation.

Standard training involves a typical classification task using the softmax function and
cross-entropy loss at the end of the linear layers, to predict class probabilities.

Triplet margin loss enhances domain adaptation by learning data representations that
increase the similarity between positive pairs and separate negative pairs in the embedding
space. The loss is defined as

Ltriplet = ∑
i
[max(0, margin + d(ai, pi)− d(ai, ni))], (1)

where ai is the anchor sample, pi is a positive sample, ni is a negative sample, and margin
specifies a minimum distance between positive and negative pairings. In our example, a
positive sample is considered as a “different subject with the same label”, while a negative
sample is simply identified by a different label. This technique drives the model to improve
discrimination between subject-specific features, allowing for effective classification in the
following trials.

The gradient-reversal technique penalizes the primary model loss function depending
on the performance of the domain classifier, encouraging the model to learn features that
are domain-invariant (different subjects). The objective function to be reduced is expressed
as follows:
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min
1
n

n

∑
i=1

Lc( fi; yi)− λ · 1
m

m

∑
j=1

Ld(gj; dj), (2)

Here, Lc is the classification loss and Ld is the domain classifier loss. The parameter λ
determines the trade-off between classification and domain loss. The approach applies an
exponential scaling factor to shift the model’s attention from classification task to domain-
invariant learning across training epochs.

As illustrated in Figure 3, the embeddings for the triplet margin loss are extracted
from the output of the flatten layer in Part 3, which directly precedes the classification head.
In the domain adversarial network with gradient reversal, an additional head, identical
to Part 4, is integrated into the model architecture connected to the output of Part 3. The
objective of this secondary head is to classify subjects, thereby encouraging the backbone
to become invariant to subject-specific features.

Figure 3. Diagram illustrating the architecture used during pre-training with triplet loss and gradient
reversal. The two black dotted lines indicate the portions of the model retrained under two different
configurations: last and middle.

2.6. Transfer Learning Framework

Two different fine-tuning approaches were tested, as depicted in Figure 3. In the first
approach, referred to as last, only the two final linear layers from Part 4 were retrained, for
a total number of ∼70,000 trainable parameters. In contrast, for the second framework,
named middle, only the Part 1 and Part 2 layers were frozen, leading to ∼200,000 train-
able parameters.

Experiments were conducted with varying data quantities to be used in retraining
(from 1 to 4 repetitions) for each subject. For each amount of data, the model was re-trained
five times by varying the combination of repetitions. This allowed us to observe the model’s
behavior and its vulnerability to overfitting during the fine-tuning process.

Moreover, dividing data into several repetitions mimicked a real-world online scenario in
which the model has no prior on the specific validation and test iterations of the same exercise
beforehand. This allowed us to assess the ability to adapt to unseen data more realistically.
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To minimize the impact of randomness and to obtain a more reliable comparisons
between backbones, a 5-fold cross-validation was used. This means that for each subject in
the test group, we trained each pre-trained model five times, each with a different number
of repetitions for re-training. In each fold, a different set of repetitions was employed
for validation and testing, ensuring the model performance was evaluated on unseen
repetition-specific data across all folds.

This approach provided a more robust and reliable assessment of the generalizability
of the models and the ability to handle variations in data.

2.7. Hyperparameter Optimization Using Grid Search

Hypothetical correlations between normalization techniques, activation function, and
rectification were also investigated. Once the model was fully parameterized, three exhaus-
tive grid searches were performed by varying the normalization methods. These searches
were used to evaluate the impact and effectiveness of the hyperparameters listed in Table 3.
For this experiment, an intermediate window of 300 points, corresponding to 150 ms, was
chosen. This ensured that there was sufficient time (≈100–150 ms) to process, infer, and
perform movements of the prosthetic hand before reaching the critical threshold of 300 ms,
considered as the upper limit for the user to perceive a real-time control [40,41].

Interestingly, one search focused on the effects of the [−1, 1] normalization method,
particularly on the impact of forcing values into the positive range (e.g., rectification,
Z-score) over information preservation. For more details, see the ’Hyperparameter Opti-
mization via Grid search’ subsection in the ‘Results’ section.

Table 3. This table presents the hyperparameters explored in the grid search. The keys N_Multi-
kernel, N_Post-Concatenation, and N_Separable_Conv represent the number of neurons in the hidden
convolutional layers of Parts 1, 2, and 3, respectively. Notably, in Part 1, Block 2 always employed
twice as many hidden neurons as Block 1. The bold values are the ones selected for the tuned model.

Hyperparameter Values Chosen

Batch size 64, 128, 256, 512

Optimizer SGD, Adam

Learning rate 1 × 10−2, 1 × 10−3, 1 × 10−4, 1 × 10−5

Decay rate 0, 1 × 10−2, 1 × 10−3, 1 × 10−4, 1 × 10−5

Activation function ReLu, LeakyReLU, ELU, PReLU

Pooling type MaxPooling, AveragePooling

N_Multi-kernel 16, 32, 64, 128

N_Post-Concatenation 64, 128, 256

N_Separable_Conv 64, 128, 256

3. Results

This section begins with an evaluation of the effect of the window length. It then
presents the results of the grid search technique used for the hyperparameter tuning.
Following this, the performance of the model across the databases is showcased, before
delving into the main aspect of Transfer Learning.

The middle Transfer Learning framework achieved accuracy of 98% ± 0.02 on a new
subject after retraining for just two epochs over four repetitions within a 150 ms win-
dow, demonstrating the model’s potential for real-time application. The code is available
at GitHub.

https://github.com/Farra96
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3.1. Window Length Impact

This subsection compares the various window sizes for the intra-subject experiment
on the combined database. Windows of size 200, 300, and 400 points, corresponding to 100,
150, and 200 ms, respectively, were tested with the fixed parameters showed in Table 2.

Furthermore, a 20 ms window (comprising 40 points) was chosen, considering the
potential use of a majority voting strategy, as this has been shown to be a valid option to
improve reliability [42]. The results shown in Table 4 highlight the significant performance
drops associated with the smallest window size, as expected. No substantial differences
were observed among the other three window sizes. Consequently, subsequent experiments
were conducted using only the 200- and 300-point windows, as they are more suitable for
real-time prosthesis control.

Table 4. Performance metrics for several window lengths over the merged database. Bold values
indicate the best in each metric.

Window Length (ms) Validation Loss Accuracy F1 Score Best Epoch

100 0.976 ± 0.011 0.775 ± 0.012 0.720 ± 0.010 62 ± 4.2

150 0.971 ± 0.017 0.778 ± 0.015 0.713 ± 0.012 51 ± 3.7

200 0.988 ± 0.019 0.769 ± 0.016 0.718 ± 0.014 56 ± 3.5

20 1.340 ± 0.025 0.689 ± 0.024 0.607 ± 0.019 36 ± 4.7

3.2. Hyperparameter Optimization via Grid Search

From the very first experiments, the channel-dependent normalization mode revealed
a clear benefit, since it was better at mitigating errors or abnormalities that were present
in some channels. For this reason, the results presented were all performed with channel-
wise normalization.

The grid search was performed employing several normalization techniques. For
this evaluation, the standard training algorithm was used over the merged database with
intra-subject splitting.

Table 5 summarizes the best three configurations identified using three grid searches
with changing normalization techniques. For each of them, 20 models were generated,
employing a fixed window length of 300 time-points, that is, with a 2000 Hz Delsys Trigno
Device, 150 ms per window. For better readability, the table excludes the parameters that
seemed to have minimal impact on performance. In particular, parameters such as the
number of neurons in N_Multi-kernel, N_Post-Concatenation, and the maxpool type
were omitted, as they were consistent across the top three configurations.

Table 5. The three best model configurations resulting from grid searching, varying the normalization
strategies.

Norm Type Rectification Accuracy F1 Score N_SepConv Activation

Z_score Yes 0.8068 0.7514 256 PReLU
Z_score Yes 0.7971 0.7451 256 LeakyReLU
Z_score Yes 0.7893 0.7325 256 LeakyReLU

Range (−1; 1) No 0.7826 0.7280 128 ELU
Range (−1; 1) No 0.7722 0.7217 128 ELU
Range (−1; 1) No 0.7758 0.7187 256 LeakyReLU
Range (−1; 1) Yes 0.7399 0.6692 128 PReLU
Range (−1; 1) Yes 0.7487 0.6749 128 PReLU
Range (−1; 1) Yes 0.7338 0.6610 128 PReLU

Compared to other normalization methods, Z-score normalization exhibited better
accuracy and faster convergence, in line with other studies [43]. However, the top three
configurations when exploiting normalization within the range (−1; 1) and no rectification
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achieved similar performance with half the number of neurons in the N_Separable_Conv
layers of Part 3 of the architecture. This suggests that accounting for negative values may
allow the model to learn effectively with a simpler architecture. In contrast, the last three
rows show that rectifying the value and then normalizing between (−1; 1) might distort
information, leading to important performance drops.

3.3. Model Performance Across Databases

In Table 6, the performance of the fine-tuned standard model with respect to the
different databases for the intra-subject modality are summarized.

Table 6. Performance metrics over different databases.

Database
Window 100 ms Window 150 ms

Accuracy F1 Score Accuracy F1 Score

DB3 0.503 ± 0.012 0.454 ± 0.004 0.508 ± 0.022 0.458 ± 0.012

DB2 0.824 ± 0.010 0.770 ± 0.016 0.819 ± 0.009 0.768 ± 0.016

DB7 0.856 ± 0.005 0.797 ± 0.004 0.862 ± 0.007 0.796 ± 0.010

Merged 0.789 ± 0.011 0.741 ± 0.009 0.798 ± 0.014 0.768 ± 0.011

DB3 exhibited the lowest performance, likely due to higher variability among amputee
subjects.

Moreover, there was a noticeable shift in the dynamics of the performance, especially
for DB2 and DB7. Interestingly, DB7 had the best precision, despite having two amputee
patients. One possible explanation for this phenomenon could be that because DB7 had
only 22 subjects, compared to the 40 of DB2, the model tended to overfit on the subjects
employed, which improved its overall accuracy.

Meanwhile, because DB3 was included in the composite database, its performance
inevitably suffered as a result. Still, a respectable level of accuracy was obtained, most
likely as a result of exploiting more data during training, which typically results in the
development of more reliable models. To leverage the benefits of a more comprehensive
data pool, all future experiments will be performed using the merged database.

3.4. Transfer Learning Framework Effectiveness

In this section, we examine the effects of several techniques on final-user fine-tuning
within the Transfer Learning framework. In this context, final-user fine-tuning refers to the
process of personalizing the model for users who will be using a myoelectric-controlled
prosthesis for hand gesture recognition. The previously excluded subjects are used as new,
unseen patients for applying Transfer Learning and re-training on the subject-specific data.
All the training was conducted using a Tesla V100-PCIE-32GB GPU (NVIDIA Corporation,
Santa Clara, CA, USA) with CUDA version 12.1. The average inference time, measured
over 100 single-batched samples, was 3.16 ± 0.31 milliseconds.

Table 7 shows the last experiment, where only Part 4 of the model architecture was
retrained. The results show the average and standard deviation over the 15 subjects that
were previously discarded from training and validation. The F1 Score is also shown, to
account for the slightly imbalanced dataset. This table includes several window sizes,
pre-training algorithms, and splitting modalities.

The table provides useful insights. First, the intra-subject partitioning produced the
best results for regular training. This was most likely due to the model’s ability to train
over multiple epochs, as opposed to patient splitting, which stops early due to overfitting
over training subjects.
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Table 7. Average performance for the 15 previously excluded patients for TL-last experiments,
by retraining only Part 4 for four repetitions. Results are shown for the two pre-training data
splitting approaches: inter-subject and intra-subject. Bold values indicate the best performance across
different configurations.

Backbone Training

intra-Subject Inter-Subject

Window 100 ms Window 150 ms Window 100 ms Window 150 ms

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

Standard 0.87 ± 0.20 0.86 ± 0.20 0.90 ± 0.18 0.90 ± 0.18 0.83 ± 0.19 0.83 ± 0.19 0.86 ± 0.19 0.86 ± 0.19

Pre-triplet 0.66 ± 0.19 0.66 ± 0.20 0.68 ± 0.19 0.67 ± 0.20 0.53 ± 0.19 0.50 ± 0.20 0.66 ± 0.18 0.65 ± 0.19

Reversal 0.84 ± 0.18 0.84 ± 0.19 0.87 ± 0.17 0.87 ± 0.17 0.85 ± 0.18 0.84 ± 0.18 0.88 ± 0.16 0.87 ± 0.16

Reversal Amputee 0.84 ± 0.19 0.84 ± 0.20 0.88 ± 0.18 0.87 ± 0.18 0.84 ± 0.19 0.83 ± 0.20 0.87 ± 0.18 0.87 ± 0.19

The inter-subject splitting precluded the model from learning invariant features during
standard training. In this scenario, the adversarial network outperformed all the others,
showing that it had successfully learned some invariant properties. This pattern was also
seen in the reverse amputee training, which ranked second in the inter-subject trials.

Self-supervision with triplet margin loss performed poorly. During pre-training, it did
not use task loss, and simply forcing embeddings with triplet loss did not provide useful
insights into this challenging problem.

Figure 4 shows the variability among individuals, with a focus on the stronger ones
between amputees. This graph, based on the inter-subject experiment with the reversal
backbone, shows the difference in accuracy values for healthy people alone versus the
complete group, including amputees.

Figure 4. Performance averaged across 12 healthy patients and three amputees for the Transfer
Learning last with varying numbers of repetitions. Where X = 0 (no retraining), this reflects the
average results of testing over new, unseen subjects.

The increased standard deviation observed when the pool of 15 subjects included the
3 amputees is clear, mostly considering that the number of amputees was 3 out of 15. In
particular, the number of epochs averaged across all the individuals was, on average, less
than two, demonstrating that Transfer Learning does not require extensive and computa-
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tionally expensive training sessions. However, the success of Transfer Learning relies on
the consistency of the data used during pre-training within the selected subject.

Figure 5 exemplifies this challenge. It showcases the results of the TL framework for
the three amputees with the reversal backbone pre-trained with inter-subject splitting.

Figure 5. Comparison of the TL last for the three amputees. Model backbone pre-trained with reversal
gradient and inter-subject splitting technique.

Table 8 shows the middle experiment, where both Part 3 and Part 4 of the model’s
architecture were re-trained. The results show the average and standard deviation over
the 15 subjects that were previously discarded from training and validation. The F1 Score
is also shown, to account for the slightly imbalanced dataset. This table includes several
window sizes, pre-training algorithms, and splitting approaches.

Table 8. Average performance for the 15 previously excluded patients for the TL-middle experiments,
by retraining both Part 3 and Part 4 for four repetitions. Results are shown for the two pre-training
data splitting approaches: inter-subject and intra-subject. Bold values indicate the best performance
across different configurations.

Backbone Training

Intra-Subject Inter-Subject

Window 100 ms Window 150 ms Window 100 ms Window 150 ms

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

Standard 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.95 ± 0.04 0.95 ± 0.04 0.96 ± 0.03 0.96 ± 0.03

Pre-triplet 0.94 ± 0.04 0.94 ± 0.04 0.95 ± 0.03 0.95 ± 0.03 0.93 ± 0.05 0.93 ± 0.04 0.95 ± 0.02 0.95 ± 0.02

Reversal 0.95 ± 0.05 0.95 ± 0.05 0.97 ± 0.03 0.97 ± 0.03 0.95 ± 0.05 0.95 ± 0.06 0.97 ± 0.03 0.97 ± 0.03

Reversal Amputee 0.95 ± 0.05 0.95 ± 0.05 0.97 ± 0.03 0.97 ± 0.03 0.94 ± 0.05 0.94 ± 0.05 0.96 ± 0.03 0.96 ± 0.03

In Figure 6, it is possible to observe the difference in both mean and standard deviation
for accuracy and F1 Score, with respect to Figure 4. Similarly, in Figure 7 it is possible
to appreciate such a consistent change in performance even for the three amputees, in
particular for the problematic subject number 7.
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Figure 6. Performance averaged across 12 healthy patients and three amputees for the Transfer
Learning middle with varying numbers of repetitions.

Figure 7. Comparison of the TL middle for the three amputees. The Model backbone was pre-trained
with gradient reversal and inter-subject splitting.

Table 9 compares our results with other studies on subject-specific Transfer Learning.
Direct comparisons are challenging, due to the differences in chosen classes, input data
formats, model architectures, number of parameters, and Transfer Learning techniques.
However, this table provides our findings alongside recent work in the field. It aims to
place our results in the broader context of subject-specific Transfer Learning research.
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Table 9. Performance comparison of various Transfer Learning frameworks using NinaPro databases.

Citation Database Classes Input Window Model Accuracy %

Zhai 2017 [44] 1 DB2 10 Spectrogram 200 ms 2D-CNN 90.06
DB3 85.53

Wei 2019 [19] 2 DB2 50 Features 200 ms Multiview
2D-CNN 83.7

Soroushmojdehi 2022 [45] 3 DB2 17 Raw sEMG 250 ms PFCnet 82.87

Lehmler 2022 [46] 4 DB2 17 Raw sEMG 200 ms 1D-CNN 68.52
DB3 50.72

Zabihi 2023 [47] 4 DB2 17 Raw sEMG 200 ms TraHGR 88.72

Qamar 2024 [48] 5 DB2 50 Spectrogram 200 ms DP-CNN 94.00
DB3 85.36

Fan 2023 [49] 6 DB2+TL DB3 17 Feature 100 ms CNN 67.5

Lin 2023 [50] 6 DB2+TL DB3 17 Features 200 ms LE-CNN 83.5

Ours DB2+DB3+DB7 14 Raw sEMG 150 ms MSCCNN-last 98.04
MSCNN-middle 87.70

Overview of Transfer Learning strategies implemented: 1 Adaptive self-calibration system utilizing a consensus-
based voting mechanism across four separate repetitions. 2 Personalized adaptive Batch Normalization applied to
each subject’s data. 3 Merging and freezing subject-specific and multi-subject features previously extracted before
employing a new classifier training phase. 4 Retaining the weights of earlier layers while retraining the final layers
of the model. 5 Subject-specific training from scratch without pre-existing models. 6 Initial training performed on
DB2, with subsequent layer freezing and retraining of the final layers using DB3 subject-specific data.

4. Discussion

The results indicate that a more personalized model that learns subject-specific features
rather than merely retraining the final linear layers is crucial for improving the adaptability
and performance of sEMG-based prosthetic hands. Nonetheless, even in this situation,
the number of epochs before overfitting were, on average, fewer than two in all cases,
suggesting the potential for efficient and embedded fine-tuning. Given the approximately
≈3 ms inference time, even on a powerful GPU that is not intended for embedded devices,
this performance suggests that the system is sufficiently fast for real-time applications or
even for a major voting strategy.

Another consideration regards the amputees. These patients present unique challenges
for gesture recognition, due to greater differences in their physiological signals, resulting
from factors such as the percentage of muscle remaining after amputation along with
residual sensations of the phantom limb [51]. Therefore, the creation of user-adaptive
models is a crucial area of research in the field of EMG-based prosthetic devices.

For example, subjects number 7 and number 4 of DB3 demonstrated this variability
particularly well, as shown in Figure 5. Subject 7 exhibited a complete absence of phan-
tom limb sensation and zero percentage of remaining forearm, leading to the usage of
10 channels instead of 12. Meanwhile, patient number 4 had a unique combination of low
phantom sensation, no prior myoelectric experience, and the highest DASH score in the
dataset. In contrast, patient number 9 represented better the average clinical profile of the
other amputee subjects.

Factors like phantom limb sensation intensity, remaining forearm percentage, DASH
score, and prior myoelectric prosthesis experience seemed to influence the model’s ability
to adapt to new users.

5. Conclusions

This study demonstrates that Transfer Learning techniques improve the effectiveness
of sEMG-based prosthetic hands by customizing models to individual users. Retraining
with more layers produces better outcomes, emphasizing the benefit of allowing models
to learn subject-specific features. The findings underline the importance of managing
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intra-subject heterogeneity, particularly among amputees, in order to maintain consistent
performance between individuals.

Strategies such as adversarial network with gradient-reversal descent and channel-
wise normalization can help in building a more robust pre-trained model. Furthermore,
allowing an embedded device to extract daily parameters for normalization and re-training
in loco should also be considered. Implementing these ideas in prosthetic devices could
result in more adaptive, efficient, and user-specific solutions, thereby improving the func-
tionality and usability of these technologies.

Future Work

During the re-training phase in both modalities, we used standard training, and we
split the data by repetitions. However, to account for intra-subject variability, it is possible
to retrain layers using gradient-reversal techniques across different repetitions or sessions
of the same subject.

This approach would help to maintaining performance consistency and adapt to the
user’s unique patterns over time.

Furthermore, in order to overcome performance degradation due to daily variations
in prosthetic devices, built-in functions should be implemented. These implementation
tools could either make it easier to acquire new data for fine-tuning or provide alternative
techniques to avoid such computation on the embedded device itself.

In our case, the alternative would be to collect a single sample for each exercise, which
could then be used to quickly update the necessary values for normalizing each channel,
based on daily circumstances. Using this single-sample strategy, the system might adjust
to daily variations without incurring computational overhead, resulting in efficient and
effective performance in real-world scenarios.

In the future, fuzzy similarity formulations [52] could improve sEMG pattern discrim-
ination, whilst adaptive fuzzification techniques [53] could improve system adaptability.
These advances have the potential to improve prosthesis control, particularly for smooth
multi-gesture recognition.

Improving inference time is a major concern for future work, with a focus on faster
computations and reduced energy consumption for prosthetic devices. Faster inference time
would also enable the implementation of major voting strategies, which could significantly
increase the system’s reliability. Promising advances have been made in this regard by
establishing quantization techniques, which may slightly reduce accuracy but dramatically
improve energy efficiency and inference time in prosthetic devices [54,55].
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