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"Our life is a constant journey...

...The landscape changes, the people change, our needs change, but the train keeps

moving. Life is the train, not the station."1

Dedicated to the man who taught me to always catch trains on time.

1Paulo Coelho
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Abstract

In the last years, the development of novel techniques within the Internet of Things

(IoT) paradigm is reshaping the way measurement systems are designed and developed.

Several applications require to derive measurements in harsh environments, where

nodes are moving or unreachable. A common example is represented by the novel

smart factory where, for example, moving robots, additive manufacturing processes,

critical control processes and safety-related activities need for accurate and real-time

measurement activities. These novel smart measurement systems allows to take con-

tinuous and thorough measurements, simultaneously on wide areas. This brings to

the development of smart and integrated sensors networks that should meet the re-

quirements coming from the industrial environment and, generally speaking, the In-

strumentation and Measurement (I&M) field, like timeliness, determinism, low-latency

and robust behavior. In this context, one critical aspect is surely related with commu-

nication, especially the wireless one. In this Ph.D. thesis, several wireless technologies

like Wi-Fi, Long Range (LoRa) and 5G are compared. From the comparative analysis

between different wireless technologies, it is possible to conclude that each of them has

strengths and weaknesses. For this reason, the choice of a one fits all communication

technology is challenging, and a possible solution is represented by the Time Sensi-

tive Networking (TSN) set of protocols. TSN aims to develop a set of algorithms that

comprehensively are able to provide high levels of determinism, and several studies

addresses the usage of TSN on top of Wi-Fi. Despite this, the communication tech-

nology must be chosen by carefully analyzing the specific application. For example,

LoRa networks are the best candidates when long communication range and low en-
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ergy consumption is needed. For example, in the following, an additive manufacturing

test case, where sensors are embedded into artifacts, will be analyzed. In this scenario,

energy consumption becomes the most important performance indicator. Wi-Fi or 5G

can, on the other hand, handle Ultra Low Latency (ULL) communication. Indeed,

talking about communication delay (or, equivalently of data rate) and accordingly to

the simulations presented in the following, 5G can send data within 10 - 15 ms while

LoRa data rates are very low due to inter message delays of even some seconds.

The aforementioned wireless communication strategies, must be carefully analyzed

and optimized, foreseeing to meet the stringent requirements coming from the indus-

trial field. For this reason, in this thesis, novel optimization strategies are proposed for

Wi-Fi and LoRa, aiming at adapting them for real-time smart measurement systems.

Particular attention is given to Machine Learning (ML) strategies, as they represent

key techniques in the IoT context. Results demonstrated the effectiveness of the pro-

posed optimization techniques, and the applicability of these protocols for IoT-based

smart measurement systems. Moreover, optimized communication strategies must be

used in conjunction with efficient and accurate post-processing techniques. Indeed,

post processing activities are of fundamental importance to derive measurements from

data and to assure a certain degree of data integrity. For this reason, some ML-based

post processing techniques have been developed and analyzed as a secondary research

project. As experienced in this work, ML can improve the performances of these novel

smart measurement systems, but at present a big challenge is to characterize the ML

techniques from a metrological point of view, for example by analyzing the measure-

ment accuracy. As a matter of fact, by both analyzing the current literature in the field

and the results obtained from several experiments, the aim of this study is twofold.

First of all, novel techniques to handle IoT-based measurement systems are presented.

Secondly, this work aims at underlining both the current progressions and the main

research challenges in the field.
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"A journey well shared is a journey well enjoyed." 2
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Introduction

In recent years the plan Industry 4.0 is fostering a significant transformation within

the field of industrial automation and control. In this context, the industrial and pro-

cess automation fields can also be seen as a significant instance of the Cyber Physical

System (CPS) concept. The CPS, collectively refers to those systems where a number

of computational elements is in charge of connecting the virtual to the physical world,

realizing computation, control and communication tasks [1]. These paradigms point to

the realization of the so-called Industrial Internet of Things (IIoT). The latter foresees

to transfer the Internet of Things (IoT) also in the industrial context, enabling the

interconnection of anything, anywhere and at any time. In particular, it comprehen-

sively groups several technologies and protocols (such as wireless communication, post

processing techniques, smart devices), aiming at the smart interconnection of sensors,

actuators and machines in the field level of the novel smart industry.

At present, the need for ever smarter industrial plants inevitably foresees the devel-

opment of IoT-based smart measurement systems. Indeed, the need for continuous and

thorough measurements, to be taken simultaneously on wide areas and in real-time,

inevitably requires the usage of IoT systems. However, the scenarios where sensors

and instruments are placed on a wide area or on mobile systems remain extremely

challenging. Especially, the wireless (or possibly the hybrid wired-wireless) networks

should be made capable of handling safety and time-critical traffic. More precisely,

requirements of the industrial domain pose additional constraints in terms of reliabil-

ity and real-time performance, just to mention a few, which require solutions yet to

come. Moreover, the industrial measurement systems devoted to acquire and analyze

1
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information from the field, are not anymore stand-alone systems, but they need to be

integrated within the whole smart factory. Even before the advent of the well-known

industry 4.0 concept, the need for integrated communication systems had been already

underlined, for example by the Computer Integrated Manufacturing (CIM) concept.

The latter has been somehow superseded by industry 4.0 as there is a gap between

CIM requirements and industry 4.0 ones [2]. Indeed, authors of [2] identify several

characteristics that are present in the industry 4.0 concept, but not in the CIM, such

as, between others, predictive maintenance, self configuration and flexibility. Despite

this, CIM still represents a good model to both represent the industrial levels, and

to underline the needs from the communication perspective. Indeed, the latter vary

depending on the specific level of the smart factoy. Moreover, the information coming

from the field must be integrated with the data coming from the upper levels, that

support the production (e.g. marketing, planning etc). The factory levels, according

to CIM are summarized int he so-called automation pyramid, depicted in Figure 1.

- Lower sending frequencies;

- Higher data dimensions;

- No need for deterministic / 

real-time communication

- Higher sending frequen-

cies;

- Lower data dimensions;

- Need for deterministic / 

real-time communication

Focus

Figure 1: The automation pyramid.

As can be seen from the figure above, different factory levels introduce different
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communication requirements. The focus of the thesis will be on the two lowest level

of the automation pyramid, in particular in optimizing the wireless communication

networks to cope with the depicted requirements. The requirements coming from the

industrial field (lower levels of the CIM pyramid), including timeliness and real-time

behavior, can also be generalized and extended to other application fields, where real-

time and smart measurement systems are needed (e.g. energy systems, aeronautical

applications, etc). As a matter of fact, there is the need for sensors networks capable

to accurately derive measurements in a real-time manner. For this reason, the Instru-

mentation and Measurement (I&M) field needs to introduce, implement and analyze

a plethora of novel technologies.

In this context, the I&M field needs to embody some of the enabling technologies of

the IoT systems, like for example Artificial Intelligence (AI), Machine Learning (ML)

and high performing communication networks. This topic is still challenging, as the

aforementioned techniques have been developed for general-purpose systems, where

timeliness and measurement accuracy are not key requirements. For example, the lat-

est generation of wireless technologies, as the LPWANs, WiFi6, 5G etc, represent an

incredible opportunity. Despite this, their optimization (for instance in terms of time-

liness, determinism, energy consumption, and data extraction rate) and their analysis

from a metrological perspective remain an important goal. In this context, the novel

Time Sensitive Networking (TSN) set of standards becomes very attractive. As we will

analyze in the following, TSN aims to provide determinism, by defining a set of pro-

tocols built on top of the Ethernet standard. For this reason, TSN can be in principle

built on top of also different Local Area Network (LAN)s, and TSN over Wi-Fi has

already been proposed and analyzed. Furthermore, to obtain more accurate measure-

ments and improve data exchange capabilities, novel techniques have been considered

recently. Between others, ML approaches, are gaining a greater importance. For in-

stance, Vision Based Measurement systems (VBMs)s are nowadays applied to several

different fields, where measures must be derived from images. Another emerging field

that could be relevant for sensor applications is the use of ML techniques for improving

compressive sensing. In light of these considerations, it is also clear the need for accu-

rate metrics to objectively evaluate both the obtainable communication performance
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(in terms for example of correctly received packets, determinism or latency) and the

information quality. Indeed, also the post processing, or the analysis, of the acquired

data have to be precisely taken into account. The combination of such new technologies

can have a very positive impact on instrumentation and sensor networks, especially in

the era of the so called digital twins. In this context, the usage and the development of

simulation frameworks has to be complemented by setting up meaningful experimental

testbed to validate the results (and the compliance with standards and regulations).

Authors of [3] precisely summarized the challenges and enabling technologies for

the development of these innovative smart measurement systems. In particular, it is

possible to identify several advantages on the usage of IoT based measurement systems:

1. Possibility to perform a continuous and thorough measurement activity;

2. Possibility to take simultaneous measurements on wide areas;

3. Possibility to perform a timeliness and real-time measurement activity;

4. Possibility to smartly and efficiently process the acquired measurements, ensur-

ing also the data integrity;

5. Possibility to take measurements on challenging environments, even connecting

unreachable or moving nodes.

In this context, it is possible to summarize the research challenges on the topic as

it follows:

1. Development of real-time and low-latency communication networks;

2. Real-Time processing of the acquired data;

3. Metrological characterization of IoT and ML approaches to measurements.

In this work, the development of real-time and low-latency communication net-

works is deeply addressed. In particular, the optimization of Wi-Fi and Long Range

(LoRa) networks is extensively studied, by means of both experimental testbeds and
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realistic simulations. In particular, parameter adaptation strategies for both Wi-Fi

and LoRa have been analyzed, and new Reinforcement Learning (RL) - based ones

are proposed. Furthermore, the Duty Cycle (DC) limitation on LoRa networks has

been addressed, and novel strategies to avoid it are proposed. As a matter of fact,

it will be possible to demonstrate that the proposed techniques allow the usage of

these general-purpose networks also in the I&M field. It is worth observing that the

aforementioned wireless protocols have very different characteristics, so that different

I&M applications may use different communication strategies. For example, if higher

sending frequencies are needed, and low-energy consumption is not an issue, Wi-Fi

outperfoms LoRa and vice-versa. Moreover, some simulations on 5G networks and an

analysis of TSN (also over Wi-Fi) are added, in order to be able to compare the most

appealing communication strategies on the field.

As a secondary project, the development of some ML - based post processing tech-

niques have been addressed. In particular, I developed some ML-based techniques to

classify images coming from a smart measurement system for ophthalmic applications.

Several ML techniques have been analyzed and compared, for example: K-means, space

vector machines and neural networks. The best ones in terms of classification perfor-

mances have been finally selected. In this context, we will see that one of the main

challenges is to study the accuracy of ML techniques, being this a big limitation on

their usage for safety applications and in general in the I&M scenario. Indeed, ML

techniques are usually considered, from a user perspective, a black-box approach. In

facts, they are used when a system model is not available. This approach leds to a non

predictable behavior, that needs further investigation when applied to safety related

applications or in general when a certain measurement accuracy is needed.

In the following, the first chapters will introduce the most important technolo-

gies addressed in this work. In particular, Chapter 1 will introduce both the IoT

concept and the requirements for smart measurement systems. Chapters 2 and 3 re-

spectively introduce the two considered enabling technologies in the context of IoT

- based measurement systems: AI and communication networks. In these chapters, a

general overview of the topics is given, the state of the art presented, with a special fo-

cus on the concepts needed more for the experimental part. Afterwards, experimental
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results are presented, and the conclusions are given.



Chapter 1

The IoT in the I&M Field

"When we talk about the Internet of Things, it’s not just putting RFId tags on some

dumb thing so we smart people know where that dumb thing is. It’s about embedding

intelligence so things become smarter and do more than they were proposed to do.1"

Nowadays, the IoT is literally spreading in every human activity, becoming popu-

lar also for the non insiders. The first formulation of the IoT concept comes from a

presentation by Kevin Ashton in 1999 [4], and was strictly related to Radio Frequency

Identification (RFId) devices. The IoT formulation evolved during the years, and now

comprise all the systems where objects are interconnected and acquire computational

capability, becoming someway intelligent and cooperative. At present, everyday life

greatly benefits from the IoT concept, allowing people to smartly control the house,

the car and also the body health, only to name a few. How comfortable is it to directly

"ask" to your house to make the coffee in the morning or to control the temperature

and the lights of your new smart house?

The aim of this chapter is to analyze the enabling technologies of the IoT, together

with its main advantages and applications. Moreover, a contextualization on the I&M

field is given.

1Nicholas Negroponte, Computer Scientist
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Figure 1.1: Scopus research on IoT: number of published articles per year.

1.1 Main Fields of Application and architecture

The growing interest for IoT systems is already visible to everyone, as at present

almost everyone has experienced the benefits coming from this innovative paradigm.

In parallel, also the research and academic interest on this technology grown a lot, as

demonstrated by Figure 1.1.

As it is possible to see, the number of published articles on IoT during the years

is grown exponentially. A deeper analysis on the published article can reveal also the

main fields of application. Figure 1.2 represents the number of articles published on

IoT per subject area.

As expected, most of the articles found on Scopus about IoT are categorized in
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Figure 1.2: Scopus research on IoT: number of published articles per subject area.

the Computer Science and Engineering subject areas. It is also interesting to under-

line that in the "others" category, added for typographical reasons, it is possible to

find very different subject areas like arts, chemistry, psychology and energy. By giving

a look to some articles found in this research, and analyzing the graphs above it is

possible to understand that IoT is really spreading in every human field. For exam-

ple, authors of [5] present an IoT-based environmental monitoring system, devoted

to the preservation of relics. Moreover, in [6] an IoT system for fire safety purposes

is discussed. Agriculture [7], smart buildings and cities [8]–[10] and telemedicine [11],

[12] are also other important application fields. For these reason, a common practice

nowadays is to define IoXT acronyms, to identify different IoT applications. For exam-

ple, Internet of Wearable Things (IoWT) [13] refers to all those kind of IoT systems
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that can monitor health parameters and are wearable. Another famous example is the

so-called Internet of Vehicles (IoV) [14], that allow to enact the transition from the

classic VEhicle ad-hoc NETworks (VANETs) to novel distributed systems. Following

this trend, in the following I will refer to Internet of Measurements (IoM) to represent

IoT - based distributed measurements systems, whose characteristics are discussed in

the following sections.

It is of fundamental importance to introduce the architecture of an IoT system. It

can be derived from the enormous amount of articles in the field. Despite this, a general

architecture has been figured out by authors of [15]. In particular, they identified 3

different levels of the IoT architecture, each of them grouping various technologies.

A graphical representation of the IoT architecture, derived following [15], is given in

Figure 1.3.

As a matter of fact, the activity of an IoT system is done by several devices, the

objects, capable to actively interact with the environment. In practice, each device

is equipped with some sensors and / or actuators. Moreover, each device has the

capability to interact with the other devices, thus being equipped with a communi-

cation module. In the last years, IoT devices are becoming increasingly cheaper and

simpler to use. Think about how simple can be building a smart home now by using,

for example, Alexa. It is possible to find a lot of smart devices that can be connected

to Alexa, from the light bulb to the coffee machine. With sensors (microphones for

example) and actuators (speakers for example) it is possible to simply interact with

the surrounding environment and the user. Afdterwards, a second level could be iden-

tified as the network level. Here the communication between the smart devices and the

upper layer is managed, for example by using Gateways. Data are then communicated

to a data plane, a cloud, where post-processing activity can take place. From this level,

the interaction with the user, depending on the specific application, can take place.

As already stated before, the main enabling technologies of the IoM are surely the

communication protocols (mostly wireless ones). As we will deeply discuss in Section

1.2, communication has an important impact on the performances of the IoM system.

Moreover, novel ML, and generally speaking, AI algorithms are usually considered an

enabling technology of IoT. Also in the industrial and I&M fields, several contributions
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Figure 1.3: Architecture of a general IoT system.

address the topic. One meaningful example are the so-called VBMs, particular IoM ap-

plications where measurements are derived from images, i.e. the application of Machine

Vision to the instrumentation and measurement field [16]. In this context, Convolu-

tional Neural Networks (CNN)s demonstrated their suitability for VBMs systems in
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many different applications [17]. For example, the authors [18] proposed a CNN-based

system for railway network inspection. Differently, [19] presented a method for head

pose estimation in vehicles. Furthermore, an interesting review paper [20] summarizes

the most widespread Deep Learning (DL) techniques for Image Classification, with

regard to ophthalmic applications. Despite this, the topic is still challenging as the

trustworthiness of AI and ML must be investigated [21].

1.2 Requirements for distributed measurements systems

In previous Section, the IoT concept has been introduced, by analyzing both the

main application areas and the general architecture. Both IIoT and IoM concepts have

been introduced, and in the following I will refer indistinctly to IIoT and IoM. Indeed,

essentially the requirements coming from both are the same, and it is possible to say,

in substance, that Industrial IoT systems are one of the possible applications of IoM.

In this section, requirements in the field are deeply analyzed.

Networks employed in real–time industrial measurement systems have been exten-

sively addressed by the scientific literature [22], [23]. They are communication systems

specifically designed to effectively interconnect industrial devices such as controllers,

sensors and actuators. This type of communication implies the timely transmission

of limited amounts of data (some tens of bytes, typically) carrying, for example, set–

points values or process data variables. Due to the peculiarity of the applications for

which they are deployed, industrial networks have often to comply with tight timing re-

quirements. Indeed, they have to grant for the precise scheduling of periodic messages,

as well as to ensure that aperiodic messages are delivered within a–priori specified

deadlines. In substance, in the industrial field there is the need for real-time networks.

The aforementioned requirements can be generalized, and applied to novel IoT-based

measurement systems [3], and applied also for measurement systems in different fields.

For this reason, it is possible to generally refer to IoM systems.

In this context, the measurements coming from sensors cover a widespread impor-

tance, impacting on several data flows. In particular, on cyclic real-time flows, alarms
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and events. In this context, sensors data need to guarantee certain levels of measure-

ment precision and accuracy, thus allowing to suitably handle critical situations and

/ or stably controlling a process. Furthermore, in the harsh industrial environment, it

is of fundamental importance the analysis of the impact of complex, distributed and

IIoT measurement networks, even wirelessly connected, on the measurement accuracy.

In particular, there is the need for a precise analysis (by using also new measurement

metrics) of the impact of such new intelligent and smart systems on the measurement

activity. This problem is even more critical if the measurement system uses AI tech-

niques, or vision systems, the latter dramatically increasing the amount of time–critical

data to send and process. In this context, a significant example is the impact of the

transmission delay on the measurement process. Indeed, assuming that at a specific

instant of time ts the sensor sends a measure xs, the data will be received at an instant

of time tr = ts+ td, where td is a random variable describing the delay introduced by the

communication network. For this reason, the communication network has an impact

on the measurement uncertainty, as the real value of the measured variable is xr ≠ xs.

From a measurement point of view, this issue seems to present different simple

solutions, especially if the td uncertainty can be neglected. Indeed, considering only

the measurement aspects, it is both possible to timestamp the data coming from

sensors or adjust the deterministic error after data reception. Obviously, this kind of

solutions can be applied only if the analysis is carried offline, and measurements do

not need to be used in real-time. Roughly speaking, if a measurement is needed before

a certain instant of time, if it arrives later, even timestamped, it is not useful anymore.

Unfortunately, in an Industrial scenario measurements need to be used in real–time to

control a process or handle critical situations, such as alarms or sporadic events. In this

context, several works focus on the possibility, from a control perspective, to model and

take into account the network delay in the control design stage. For example, authors

of [24] try to compensate both network delay and packet loss by suitably designing

the control stage. For example, the delay could be taken into account by using a e−std

term in the control model.

In this context, the problem is that network delay is not even deterministic, as

in general td follows a specific probability function. From a measurement point of
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view, according to the International Organization for Standardization (ISO) Guide to

the Expression of Uncertainty in Measurement (GUM) [25], it is possible to evaluate

the uncertainty (type B) introduced by the communication network delay td, as per

Eq. (1.1).

u(x) = ∣δx(t, td)
δtd

∣ ⋅ u(td) (1.1)

Where x is the signal received from the sensor, that depends on both t and td,

and u(td) is the uncertainty on the knowledge of td. From the latter observation, it is

possible to conclude that lowering u(td), by using a deterministic network, lowers the

measurement uncertainty. In particular, measurement data need to be handled with a

certain priority, given by the critical level of the specific operation, that in turn reflects

on the measurement uncertainty. It is worth observing that, practically, the calculation

of δx(t,td)
δtd

can be approximated by evaluating the dynamics of the specific sensors

employed, thus deriving the ∆x
∆t

of the sensor. This is possible as x(t, td) = x(t − td),
thus involving in ∣ δx(t,td)

δtd
∣ = ∣ δx(t,td)

δt
∣. If the measurement system has been well designed,

the sensor dynamics needs to be fast enough to capture the measurand variations, thus

being the latter approach a worst-case analysis.

The widespread used communication networks for industrial applications, namely

fieldbuses and Real Time Ethernet (RTE) networks (Section 3.1) are applicable to

handle the requirements coming from the Industry 4.0 paradigm in terms of time-

liness and real-time behavior. This topic becomes critical considering the need for

IoT smart measurement systems, and wireless connectivity, as underlined also by the

Physikalisch-Technische Bundesanstalt (PTB) [26]. Notably, packet transmission peri-

ods and deadlines can be as low as some hundreds of microseconds. The introduction

of novel technologies, such as wireless networks in this challenging context needed care-

ful analyses, due to the well known problems that may affect wireless communication

such as fading, path loss and collisions, that inevitably lead to delays in packet deliv-

ery or, even worse, to packet losses [27], [28]. For this reason, both the communication
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delays and the so-called Data Extraction Rate (DER), defined in Eq. (1.2), must be

monitored to understand if a specific network protocol is tailored for IoM or not.

DERt =
RPt

SPt

⋅ 100 (%) (1.2)

Actually, SPt and RPt are, respectively, the sent and the correctly received packets

before the specific instant of time t.

This topic has been addressed by several research activities in the past years, that

led to the latest state of play in which wireless networks are widespread in the in-

dustrial scenario, particularly for process automation applications [29], [30]. Moreover,

their deployment is expected to grow significantly in the next future [31]. It is worth

observing that, to accurately handle time-critical traffic, synchronization between the

different devices is of fundamental importance. For this reason, both traditional indus-

trial networks (Section 3.1) and novel standards like TSN (Section 3.3) design accurate

syncronization algorithms.

As a last consideration, within the IoM and IIoT fields, the IoT architecture, al-

ready discussed in Section 1.1, must also be optimized. Indeed, the IoM systems can

also benefit of cloud computing, that can be exploited to improve the reliability, scala-

bility, interoperability of the CPS [32], as already pointed out in Section 1.1, providing

a centralized asset devoted to enhancing data storage, computing capabilities. How-

ever, while the cloud computing framework may foster the relationship between the

physical and the cyber (computing & control infrastructures) part of the system, in the

illustration of Figure 1.4 some of the critical issues undermining its implementation

are summarized [32], [33].

Principally, unbounded latency and delays yield a non-deterministic system, unable

to handle time-critical or real-time tasks. Moreover, the big amount of data can over-

load the network infrastructure, given the centralized nature of cloud servers, which

in turn may lead to serious security problems. A possible solution is found in the edge

computing paradigm, which demands for the availability of general-purpose devices,

with own computational and storage resources, at the edge of the system [34], [35].

Multiple edge devices are placed next to the physical entities realizing a computa-
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Figure 1.4: Limitation on the usage of cloud computing in the I&M scenario.

tional offload from the cloud to the edge devices, and hence effectively serve a lower

number of sensors. This strategy may help achieving an effective reduction of the la-

tency and delays associated to centralized computation and communications, as well

as may significantly increase robustness, safety and security. Even more, a significant

breakthrough can be provided by the development of what is called fog computing, a

novel decentralized architecture which is able to meet all the requirements of modern

smart factories [36], in terms of ultra-low latencies, reliability, Quality of Service (QoS),

security and functional safety.

As a matter of fact, the IoM can be developed by using edge or fog computing, in

order to provide reliable and real time measurement communication and process. In the

following, as already stated before, the work will focus on the optimization of wireless
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Figure 1.5: Edge computing representation.

protocol for the IoM field, whose architecture foresees the usage of intermediate edge

and/or fog layers, as depicted in Figure 1.5.

In the following, this architecture is not studied in detail, as the focus will be on

the communication between sensors and the devices placed next to the field, aiming at

controlling a process or monitoring a phenomenon. Moreover, several ML techniques

will be exploited to both optimize the communication and for post-processing purposes.

As already stated, between all the application fields of the IoT, the Industrial one,

and in general IoM, is certainly gaining much research interest in the last years. The

research interest on the IIoT is demonstrated also by Figure 1.6.

A similar trend can be noticed when searching IoT in the sources (conferences and

journals) in the I&M field, as can be seen in Figure 1.7.

As a matter of fact, the research on IoT systems in the I&M field started some

years later, but the interest on IoM is still growing. Despite this, the research on this
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Figure 1.6: Scopus research on IIoT: number of published articles per year.

field is still limited (only approximately the 3% of the total research on IoT).
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Chapter 2

An Introduction to AI and ML

"I believe there is no deep difference between what can be achieved by a biological

brain and what can be achieved by a computer. It, therefore, follows that computers

can, in theory, emulate human intelligence - and exceed it.1"

The AI is one of the most important and discussed topics on the last years. In

practice, AI groups a plethora of different techniques aiming at emulating the human

intelligence, thus allowing to smartly solve some challenging topics, or even to create

intelligent machines. Such an approach, rather then hardly coding instructions, proved

to be particularly efficient in a series of different applications such as health [37],

agriculture [38], transportation [39] and even industrial [40]. Despite this, both insiders

and non-insiders are still discussing about ethical issues and possible future negative

aspects of AI.

In this chapter, I will go through general definitions in the AI panorama and we

will deeply analyze the most used AI techniques in the I&M field.

1Stephen Hawking

21
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2.1 The Artificial Intelligence concept

Developing increasingly intelligent machines is surely a key topic in the next years.

But how it is possible to suitably define AI? The discussion about the most precise

definition of AI dates back in the ’50s, together with the development of first computers.

In particular, Alan Turing proposed the so-called Turing Test [41], aiming at answering

to the question: "Can machines think, like humans?" The Turing test, or the so-called

Imitation Game, is described by Theorem 2.1.1.

Theorem 2.1.1. The Imitation Game

Consider one computer, A, a human B and a human interrogator C, the latter

being in a separate room with the respect to the previous ones. The interrogator can

ask questions and receive answers from both A and B, via a suitable system of keyboards

and screens. In this game, the computer tries to trick the interrogator, by answering

to the questions like a human being will do.

If the interrogator is not able to identify who is the machine and who is the human,

the machine can be considered intelligent.

◻

One of the most famous critic to the Turing test comes 30 years later, in 1980, from

John R. Searle [42]. In practice, he underlined that a Machine could easily pass a Turing

test by learning a natural language, without any consciousness or real understanding

of it. In this context, it is also normal asking ourselves if a machine able to act as a

human, is also able to think as a human. As a matter of fact, as pointed out also by

authors of [43] the problem is not to define what Artificial means, but what Intelligence

means, especially if applied to inanimate entities, like machines. Indeed, the concept of

Intelligence is generally and intuitively related to a plethora of human capabilities like

the possibility to react to specific situations, to take actions in a specific environment,

to learn from experience, the intentionality and the rational behavior, only to name

a few. The possibility to a-priori label a technique as "artificial intelligence" is still

challenging, because it also depends by the specific definition of an agent, capable
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to take rational and intentional actions in specific environment, etc. For this reason,

practically, we will refer in the following to several established AI techniques, trying

to implement some of the aforementioned human capabilities. As a matter of fact, [44]

considers four different definitions of AI:

1. Thinking Humanly;

2. Thinking Rationally;

3. Acting Humanly;

4. Acting Rationally.

The detailed description of each formulation is actually out of the scope of this work.

Despite this, it is worth observing that, talking about intelligence acting and thinking

are two different features. Moreover, authors split the rational acting or thinking from

the human acting and thinking. This is because the strict rational context can be seen

as the capacity to achieve the most reasonable solution of a problem. In this context,

human intelligence is not related always with the best result, because depending on

the specific problem, each human can simply make mistakes. Moreover, intelligence is

also intentionality, such as a human can also, in principle, intentionally decide not to

choose the way to the best result.

In general, an intelligent machine relies on the concept of Agent. The agent runs

the so – called agent program, implementing an agent function that allows to act on

the environment basing on some inputs data derived from the environment too. The

general scheme is depicted in Figure 2.1.

Besides the definition of AI is still object of discussion between insiders, it is possible

to conclude that an Agent is said to be rational if it takes the best action in a specific

moment [44]. As a matter of fact, the process relies in a perception and action cycle,

where only the whole sequence of data acquired from the environment in the past

can affect the action taken in each moment. Now it is possible to understand why

measurement systems can benefit from AI. Indeed, imagine an IoT platform, collecting

data to be used as direct feedback for a control loop or to further analysis. The IoT
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Agent

Sensors

Environment

Actuators
Agent Function

Figure 2.1: Concept of Intelligent Agent.

device can run a suitable agent program, to properly process and analyze the collected

data.

2.2 Typologies of AI algorithms

In Figure 2.2 are depicted the possible subsets of AI algorithms.

As it is possible to see, there is a big difference between AI and ML, the latter

being a subset of the former. In particular, ML algorithms are essentially one possible

engine of an AI algorithm, from which AI can learn and improve with experience. As a

matter of fact, ML is not the only way an AI algorithm can work. Figure 2.3 represents

the typologies of ML algorithms.

In particular, ML algorithms can be grouped into supervised, unsupervised

and RL ones. Supervised learning groups a set of algorithms whose training activity is

carried out by using a set of desired output. In this context, the training dataset must

contain both inputs and desired outputs. As a matter of fact, two different activities

can be carried out by supervised algorithms, namely classification and regression. The

former deals with data classification, where the algorithm’s aim is to label the input

data, to divide them in different classes. On the other hand, regression algorithms are
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Artificial Intelligence

Machine Learning

Deep Learning

The software uses big amounts of data to auto - 

train itself by means of multi-layered Neural 

Networks

Algorithms capable to learn 

with experience

Algorithms trying to mimic 

human intelligence

Natural Language processing

Expert System

Robotics

Machine Vision

Speech Recognition

Figure 2.2: Artificial Intelligence algorithms and difference between AI and ML

capable of estimating values of a data series, from a set of known samples.

Some well-known supervised ML algorithms are listed below.

1. k-Nearest Neighbours

2. Linear Regression

3. Logistic Regression

4. Support Vector Machine (SVM)

5. Decision Tree

6. Random Forest (RF)

7. Neural Network (NN)2.

Unsupervised learning techniques, differently from the previous ones, train directly

from the input data, without the need for desired output data. These algorithms are

2Neural Networks can also be unsupervised
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Figure 2.3: Machine Learning algorithms classification

capable to automatically identify the characteristics, the patterns (namely features) of

the input data.

Unsupervised learning algorithms can be divided into two different classes.

1. Clustering Algorithms;

2. Associative Algorithms.

The first ones are, in substance, the unsupervised counterpart of the classification

algorithms. Indeed, input data can be divided into different groups (namely clusters)

basing on some similarity patterns.

Secondly, associative algorithms can identify relationships between variables, fea-

tures in huge datasets. The latter are mostly used for marketing purposes, such as for

predicting the incomes of some products. Another important activity is the so-called
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dimensionality reduction. Sometimes the input dataset is extremely big, with several

unuseful features. In this context, it is really important to identify the most important

characteristics and / or recombine input data. In this context, correlation between

features must be analysed or some feature extraction algorithms can be used, such as

the Principal Component Analysis (PCA).

In the following of this chapter, several ML techniques will be analysed, particu-

larly focusing on the most used in the I&M field and the ones used on the following

chapters. In particular, linear regression (Section 2.3) and logistic regression (Section

2.4) are investigated in order to better analyse, in Section 2.5, the Neural Networks.

The SVM are investigated in Section 2.6, RF in Section 2.7. The unsupervised K-

Means clustering algorithm is investigated in Section 2.8 and the RL in Section 2.9.

Finally, Sections 2.10 and 2.11 are going to point out, respectively, the metrics used to

evaluate classification algorithms and the training process of a classification supervised

NN. The latter sections will be particularly useful in the following, to better analyse

the experimental results. In this work, Python (in particular TensorFlow, Keras and

Sci-Kit Learn Python frameworks) is used to implement the various ML techniques. In

this chapter, to introduce the various techniques and the metrics part, the widespread

fashion mnist dataset is used as an example.

2.3 Linear Regression

As said before, regression algorithms aim is to predict values of a data sequence,

from a limited number of samples of the sequence. If we imagine to have as inputs a

vector of n inputs, xi∣i ∈ {1, . . . , n}, according to the linear regression algorithm the

output is generated as the weighted sum of the inputs, plus a so-called bias (θ0) value,

as per Eq. (2.1).

ŷ = θ0 + θ1 ⋅ x1 + ⋅ ⋅ ⋅ + θn ⋅ xn (2.1)

Generally speaking, supervised algorithms foresee the tuning of some parameters,

basing of the inputs and the known outputs. Linear regression parameters are θi∣i ∈{1, . . . , n}, and are tuned in order to achieve the best linear fit possible of the known
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data. For this reason, a common practice in all the supervised learning algorithms is

the definition of a suitable loss function. In particular, the most simple way to evaluate

the prediction error is by calculating a Mean Error (ME), as per Eq. (2.2).

ME =
1

n

n

∑
i=1

(ŷi − yi) (2.2)

Obviously, in this way the negative errors decrease the mean error. For this reason,

an Absolute Mean Error (AME) can be calculated, as per Eq. (2.3).

AME =
1

n

n

∑
i=1

(∣ŷi − yi∣) (2.3)

Another possibility is to calculate a Root Mean Squared Error (RMSE), as per

Eq. (2.4)).

RMSE =

$%%& 1

n

n

∑
i=1

(ŷi − yi)2 (2.4)

The RMSE is probably the most used loss function, as it weights more big pre-

diction errors. The RMSE must be used without considering outliers, that negatively

affect the error calculation.

The linear regression can be simply implemented in Python, by using Scikit - Learn.

An example is depicted in Figure 2.4.

As a matter of fact, the algorithms automatically adjust both the slope and the

intercept (this is why the bias value θ0 is needed) of the line, trying to achieve a best

fitting line. From the derived line, it is possible to estimate the unknown data. The

evaluation can be carried out by one of the errors introduced before, or with the so–

called determination coefficient (0 ≤ R2
≤ 1), where 0 means "wrong prediction" and

1 represents "perfectly predicted". It is worth noting that the linear prediction is not

much accurate when data have not a linear shape, as can be seen when comparing

Figures 2.4 and 2.5.

Usually, it is possible to consider a small portion of the whole data, that can be

considered linear. Moreover, this algorithm become the starting point for the following
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Figure 2.4: Example of Linear Regression. MSE = 5594, R2
= 0.1155.

ones, and even of the famous perceptron, from which the Neural Networks can be built.

2.4 Logistic Regression

The Logistic Regression is a classification supervised learning algorithm. In sub-

stance, Logistic Regression works exactly as the Linear one, introduced in Section 2.3

and it adds a sigmoid function after the calculations of Eq. (2.1).

As a matter of fact Eq. (2.1) becomes:

ŷ = σ(θ0 + θ1 ⋅ x1 + ⋅ ⋅ ⋅ + θn ⋅ xn) (2.5)
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Figure 2.5: Example of Linear Regression (2). MSE = 0.586458650226466, R2
= 0.85.

Where:

σ(t) = 1

1 + e(−t)
(2.6)

Whose graph is depicted in Figure 2.6.

As the logistic regression gives as an output a value between 0 e 1, the logistic

regression is particularly suitable to return the probability that an example belongs

to a particular class, thus being a classification algorithm.
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Figure 2.6: Graph of a Sigmoid function.

2.5 Neural Networks

NNs are surely one of the most used ML algorithms, and can be used to solve several

different problems, such as classification or prediction. NN can be both supervised and

unsupervised. In this section, NNs are introduced, specifically referring to supervised

classification problems, as in the following chapters classification problems using NN

are addressed.

A NN is a ML algorithm that foresee to mimic the behavior of the human brain.

The basic element of a NN is the so-called perceptron, that is represented in Figure

2.7. The perceptron can be considered the artificial counterpart of the human neuron.
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Figure 2.7: The perceptron.

The single perceptron, as can be seen from Figure 2.7, does the same operations

explained in the previous sections for the linear and logistic regressions. In particular,

given a series of inputs xi∣i ∈ 1,⋯, n, the output value is calculated as per Eq. (2.7).

y =
n

∑
i=1

(wi ⋅ xi) + b (2.7)

Where wi∣i ∈ 1,⋯, n are the weights of the perceptron, and b is the boas value.

As a matter of fact, the NN is organized into layers of perceptrons, that are properly

interconnected between them. In practice, a single perceptron can be considered the

most simple classifier. It draws a line to separate a group of data, in two different

classes and then passes the output to an activation function. The latter can be used,

in classification problems, to give as an output a probability value and one of the

possible activation functions can be the already introduced sigmoid (Eq. (2.5)). In

substance, a single perceptron can solve linear binary classification problems, where

data are linearly separable. For more complex problems, group of perceptrons working

together muct be employed, giving rise to the NN. A possible representation of a NN

is presented in Figure 2.8.

These networks are usually called Multi Layered Perceptron Neural Networks

(MLPNN), and are characterized by one input layer, one output layer and one or

more hidden layers between the former two. In general, networks with a huge number

of hidden layers between input and output, trained with a huge amount of data, are
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Figure 2.8: Neural Network example.

characterized by a so-called DL.

2.5.1 Training process

The fundamental components of the training process of a NN are depicted in Figure

2.9. In particular, the network initially sets random values of the weights in each neuron.

At each training step, the network generates an output value (that in a classification

problem is a vector containing, at each index i, the probability that the specific input

belongs to the class i), namely forward process. A specific Loss Function calculates

an error between the prediction and the real value, that in turn can be used from an

optimization algorithm to modify the weights in order to minimize the estimation

error. In this context, the so-called backpropagation is the process taking place from

the output layer (where the error is generated) through the hidden layers (where the

weights are modified) to the input one.
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Figure 2.9: NN basic elements.

2.5.2 Convolutional Layers

Complex image classification problems can be solved also by using the so-called

convolutional layers. A general example can be found in Figure 2.10, and they foresee

to use a suitable kernel, that is essentially a moving filter that scans the whole input

figure, trying to give more importance to specific features, like borders for example. In

this context, single layers values are multiplied by the kernel ones.

Usually CNNs are formed by both Convolutional and Pooling layers, where the lat-

ter are placed between each convolutional layer and the subsequent one. Specific image

patterns are identified by means of a Kernel slicing on the entire layer. Afterwards,

a common practice consists in the usage of a pooling layer, that downsamples the

input patterns, aiming to increase the robustness of the network to slight variations

of the detected features. The extraction of such meaningful features is done taking

the maximum from each kernel acquisition, namely max pooling. Finally, the last fully

connected layers and the softmax activation compute the probability of each image to
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Figure 2.10: Example of a typical Convolutional Network. There is a convolutional step, and
a subsequent classical classification.

belong to each of the 3 classes.

These networks are gaining grater importance in the image classification context.

Indeed, an interesting review paper [20] summarizes the most widespread Deep Learn-

ing (DL) techniques for Image Classification, with regard to ophthalmic applications.

They identified several CNN network models that proved to be promising such as,

among others, AlexNet [45], GoogleNet, [46] and ResNet [47]. These networks showed

the best results in the ImageNet Large Scale Visual Recognition Challenge [48] and

are all based on Convolutional Layers.
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2.6 Support Vector Machines (SVMs)

SVMs are typically considered a supervised classification algorithm, although if

they can be used, in general, also for regression purposes. Generally speaking, a

SVM generates a multidimensional plane, namely the Maximum Marginal Hyperplane

(MMH), that suitably divides data into different groups. In a two-dimentional plane,

the MMH is simply a plane. This plane is found iteratively, trying to minimize a loss

function. The plane is defined by the so-called support vectors, that comprise the data

at the boundary between the different classes. Highest the distance between the sup-

port vectors, highest the classification accuracy. The gamma value can be tuned, and

it is the counterpart of the Learning Rate (LR) in the NN.

2.7 Random Forest (RF)

RF is one of the most used classification ML algorithms. RF bases its behavior

on the usage of several decision trees. Decision trees are built by putting in all the

internal nodes (i.e. non-leaf ones) a feature of the input dataset, while the leaf nodes

are named as the output labels. Each arc of the tree represents one of the possible

characteristic of the feature specified by the parent node. In this way, a classification

task is simply carried out by starting from the root, following the features, until a leaf

node ends the algorithm returning a specific classification.

RF is typically considered a very powerful ML technique, as it employs different

decision trees that works in parallel, thus creating a forest of random decision trees.

Each tree makes a prediction, and the most voted class becomes the final outcome of

the algorithm.

2.8 K-Means

K-means is a clustering algorithm, capable to quickly and efficiently divide a non-

labelled dataset into different clusters. The idea is to group the dataset into K different

classes, being K a parameter tunable by the programmer. If we imagine to have data
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in a plane, and if the goal is to group the data in K different classes, it is possible to

firstly identify K centroids. A centroid represents the centre of a cluster, and each data

sample belongs to the cluster of the nearer centroid. The K-Means algorithm works as

follows:

1. K different centroids are randomly generated.

2. Each iteration implements a double phase technique: expectation-maximization.

Firstly, each data sample is assigned to the nearer centroid. Afterwards, the mean

squared distance between all the points belonging to a cluster is calculated.

3. K different centroids are generated.

4. Repeat from the step 2.

The quality of the centroids assignments is given by the squared sum of the eu-

clidean distances between the data sample and their centroid. The final centroid as-

signment is chosen as the one that minimizes such distance.

Practically speaking, the critical choice for the programmer is the number of clus-

ters K. Usually, different values of K are tested and the squared error is taken into

account to compare the performances for the different values of K. The typical obtained

curve is depicted in Figure 2.11.

This is known as the elbow curve, and usually the chosen K value is the one exactly

in the elbow. It represents the Sum of euclidean Squared Errors (SSE) for different K

values. As can be seen, while K increases, the error always decreases. This behavior

can be intuitively explained: if more centroids are present, more groups are created,

resulting in lower distances between data points and centroids. Ideally, by choosing K

equals to the number of data points, the error is zero. Despite this, it is possible to

notice that in the first part of the curve (before the elbow) the error decreases faster

then in the second part. This is because in the first part the error decreases both

because of the aforementioned mechanism and really because approaching the optimal

K value. Viceversa, on the second part, the error decreases only because of the natural

decrease of error in response to a K value increase. To better analyze this behavior
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Figure 2.11: KMEans algorithm typical elbow curve.

it is possible to weight the distance between the data points and the centroids with

the distance between centroids. In this context, the so-called silhouette coefficients are

calculated as per Eq. (2.8).

(CtoC −DtoC)
max(CtoC, DtoC) (2.8)

Where:

CtoC is the squared distance between centroids;

DtoC is the mean squared distance between data points and centroids.
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In the example before, the silhouette values are depicted in Figure 2.12.

Figure 2.12: Silhouette scores.

As it is possible to notice, the K value on the elbow is the one with higher silhouette

coefficients, but also K = 2 has a good silhouette value, thus can be considered a good

candidate.

2.9 The Reinforcement Learning

Among all the different ML techniques, RL, at present, is one of the most attractive,

with several application fields in which it was implemented [49]. In particular, the

modelization of a RL policy is depicted in Figure 2.13.
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Figure 2.13: Reinforcement Learning (RL) components.

The environment (i.e. the system) is modeled through the definition of suitable

states, being the states set named S. The RL policy foresees to train an Agent, to

make it learn how to properly act on the environment. In particular, a set of actions

A must be defined, being each action Ai ∈ A a possible choice to allow the transition

between states. In particular, at the time interval t, the chosen action At enact the

transition between the initial state St and the final state St+1. The training phase of

the algorithm is carried out by using a trial and error methodology, where the good-

ness of each chosen action is evaluated through the definition of a reward function, r.

Summarizing, each RL technique foresees the definition of a suitable Markov Decision

Process (MDP) (MDP = {S, A, P, r}), where P is the probability function. At each

training step t the agent chooses an action, causing the transition between the state St

and St+1. Actually, a reward Rt+1 is produced (describing the validity of the performed

action At) by evaluating the reward function, i.e. Rt+1 = r(t+1). Specifically, the aim is

to fill a table where at each pair {(Si, Ai) ∣ Si ∈ S, Ai ∈ A} is associated a suitable

rate, evaluating the goodness of the action Ai given the state Si. Afterwards, during

execution, the so-called best policy π is exploited, by using (at each state St) the

best evaluated action At. Usually, the function V π(s) = Eπ{Rt∣St = s} or the function

Qπ(s, a) = Eπ{Rt∣St = s, At = a} can be employed to evaluate the cumulative rewards

associated with the specific best policy π, named respectively value and action-value

function. In the formulas above, when performing the policy π, Eπ represents the ex-

pected return value. Actually, the evaluation of either the V π(s) or Qπ(s, a) functions,
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can be carried out by using several different approaches. In the following chapters,

when using RL, the Q-value associated to a specific pair (St, At), is calculated using

Eq. (2.9).

Q(St, At) = Q(St, At)+
+ α ∗ [R + γ ∗Q(St+1, At+1) −Q(St, At)] (2.9)

Specifically, Q-values are calculated by using St, At, R, St+1, At+1, namely State

Action Reward State Action (SARSA) algorithm. Actually, during training, the Q-

values are updated, while the best ones are used when exploiting π. In Eq. (2.9) the

first step is to calculate the so-called target, T = R + γ ∗Q(St+1, At+1). In particular

γ ∈ {0, . . . , 1} is chosen to suitably weight the importance given to the expected Q-value.

Secondly, the learning rate α is used to properly weight the error between T and the

previous Q-value. In particular, the higher α the higher the possibility to modify the

Q-values. Usually, α and γ are set after a careful analysis of the system and a trial

and error phase. Finally, during training, an ǫ − greedy algorithm (Eq. (2.10)) is used

to evaluate a trade-off between exploration and exploitation.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
At+1 = rand() if n ≥ ǫ

At+1 =max(Q(St)) if n < ǫ
(2.10)

In particular, exploration foresees to test a randomly chosen action, while exploita-

tion foresees to use the actual best action, to assure that all actions are going to be

evaluated during training. Referring to Eq. (2.10), n ∈ [0, 1] represents a real ran-

dom number, and ǫ can be suitably modified to achieve the desired trade-off between

exploration and exploitation.

2.10 Evaluation Metrics for Classification problems

In the following chapters, supervised classification problems are considered. For

this reason, the scope of this section is to introduce the evaluation metrics for such
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problems and to briefly discuss a typical training activity. Usually, the whole dataset

comprising inputs and (only for supervised ML techniques also the outputs) is splitted

into training data and validation ones. Typically, 70− 80% of the whole dataset is used

for training, while the other part to validate the model. During validation, the gold

considered metrics is the accuracy, defined as per Eq. (2.11).

accuracy(%) = yt

yt + yf

∗ 100. (2.11)

In substance, accuracy represents the percentage of the correctly labeled data (yt,

where t stands for true) out of the total number of examples(yt + yf , where f stands

for false).

The accuracy analysis has one important limitation: it does not allow to analyze

the inter-class classification errors. In particular, usually it is needed to understand

when the algorithm makes classification mistakes. To this purpose, one solution could

be the analysis of the confusion matrix, being Figure 2.14 one example, taken on the

digits dataset.

In the main diagonal, it is possible to appreciate the correctly labeled data (the

predicted label is equal to the actual one). In the other cells, it is possible to un-

derstand where mistakes are made. For example 3 "8" have been confused with "9".

This analysis is particularly useful when dealing with an unbalanced dataset. Indeed,

usually the dataset has to be balanced (i.e. each class has the same amount of ex-

amples). Practically, when dealing with real problems, sometimes it is impossible to

collect a balanced dataset. In such situation could happen that the classification of the

class with a lower number of examples is worst that the other classes. In this context,

precision (Eq. (2.13)) and recall (Eq. (2.12)) can be exploited.

Recalli(%) = TPi

TPi + FNi

∗ 100. (2.12)

Precisioni(%) = TPi

TPi + FPi

∗ 100, (2.13)

Where:
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TPi Represents the amount of True Positives (TP) in the class i, i.e. the number of

examples belonging to class i, correctly labeled as i;

FPi Represents the amount of False Positives (FP) in the class i, i.e. the number of

examples belonging to class j ≠ i, wrongly labeled as i;

FNi Represents the amount of False Negatives (FN) in the class i, i.e. the number of

examples belonging to class i, wrongly labeled as j ≠ i.

Both Recalli and Precisioni allows to properly evaluate the classification perfor-

mances in each class, and ideally they must be both close to the maximum (100%).

Recalli is a sort of class accuracy, calculated with the respect of the total number of

examples belonging to class i. Similarly, Precisioni is a sort of accuracy on the classi-

fication of class i, calculated with the respect of the total number of samples labeled

as class i.

2.11 Training Process: a classification NN

Usually, the training of the ML algorithms is quite intuitive for the most of the

aforementioned algorithms. The training process could be particularly tricky when

dealing with NN. For this reason, the purpose od this section is to understand how to

perform a training activity, with a special reference to an image classification problem

solved with a NN.

Given the NN components already introduced in Section 2.5.1, the programmer

must correctly choose:

1. The network architecture (numebr of layers, dimensions of layers...);

2. The activation functions;

3. Loss Function;

4. The optimizer;

5. The Learning Rate.



44 CHAPTER 2. AN INTRODUCTION TO AI AND ML

In particular, usually the programmer perform a trial and error activity, while

the network is optimized by looking the metrics already introduced in the previous

Section.

Generally speaking, both the loss and accuracy curves are used to evaluate the

goodness of a NN. The latter has a more practical meaning, as it is strictly related

to the number of correctly labeled examples, as per Eq. (2.11). The loss function is

strictly related to the specific chosen loss function. As an example, Figures 2.15 and

2.16 respectively represent the loss and the accuracy plots derived from the training

of a simple NN used to classify the famous fashion mnist dataset.

The curves depicted above represent, in general, a good training activity. They

present a decreasing loss trend both in validation and in training and increasing accu-

racy curves over the different training epochs. An epoch represents a single training

step, where all the training examples are given to the NN. The curves increase or de-

crease very slightly, and they stabilize in a final loss and accuracy value. If the curves

are still changing, maybe it is better to increase the number of epochs or the LR.

The LR represents how much the optimizer can change the perceptron’s weights in

each epoch. Keeping the LR low can make the network poorly trained, while an high

learning rate can prevent the network from achieving the minimum value of the loss

function. In the latter case, it is also possible to overfit the model. The overfitting is

a condition where the network has learned too much from the examples given to it,

thus resulting in a poor generalization capability. Finally, it is worth observing that

usually training perform slightly better than validation.

By using convolutional layers on the fashion mnist dataset, it is possible to obtain

the loss and accuracy curves of Figures 2.17 e 2.18.

This curves represent a situation where the model overfitted. It is possible to

notice this behavior by analysing both the loss and the accuracy. The training is going

increasingly well with epochs, i.e. the loss decrease and the accuracy increases. Despite

this, validation is going worse, underlining the incapacity of the model to generalize

to new data. A possible technique, to avoid overfitting, is the so–called dropout. This

strategy foresee to disable some unuseful neurons in the hidden layer during training.

Indeed, overfitting usually takes place when using a too-powerful network for a simple
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problem. The disabled neurons are changed at each epoch, and the values of the

disabled neurons are adjusted. In substance, it is like training different networks at

each epoch, and then averaging the results of each NN.

With the dropout it possible to obtain the curves in Figures 2.19 and 2.20), that

are better than the ones without convolutional layers.

It has also been demonstrated that when dealing with images it is better to nor-

malize the input vectors (i.e. dividing each pixel value by 255.0). As a last remark,

it is important to underline that the so-called LR, which represents how quickly the

network learns, is always a key parameter, whose choice is usually done after several

experimental tests, with a trial-and-error approach. Weights were updated at each step

proportionally to the LR and to the calculated error..
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Figure 2.14: Confusion Matrix - Logistic Regression on "digits" dataset. Accuracy = 96%.



2.11. TRAINING PROCESS: A CLASSIFICATION NN 47

0.6

2.0

1.2

1.8

10 20 30 50

Train
Test

A
c
c
u
ra

c
y
 (

%
)

0 40

1.6

0.8

1.4

1.0

Figure 2.15: Loss (fashion mnist).
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Figure 2.16: Accuracy (fashion mnist).
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Figure 2.17: Loss (fashion mnist) - CNN.
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Figure 2.18: Accuracy (fashion mnist) - CNN.
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Figure 2.19: Loss (fashion mnist) - CNN and Dropout.
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Chapter 3

IoT Systems Communication

Networks

This chapter aims at giving a general introduction to the communication networks

that can be exploited in the industrial and I&M scenarios. The discussion will outline

the need for an optimization of widespread communication networks coming from the

general-purpose market, like Wi-Fi, LoRa or 5G.

3.1 Industrial Communication Networks

In the early days of industrial automation systems the need for data sharing among

different parts of a machine soon brought to the design of dedicated communication

systems, targeted at the industrial scenario, universally known as fieldbuses [50]. First

installations of fieldbuses date back to the early 1970s, but the number of available

solutions quickly diverged, to such an extent that it was referred to as a “fieldbus

war” [51], where several manufacturers have proposed proprietary industrial commu-

nication protocols, often with similar but completely non-interoperable functionality.

To overcome this fragmentation, lot of research energies were spent in standardization

processes. Shelved the project to develop a unique communication system, in 1999 the

first version of the IEC 61158 international standard was released, that comprised sev-

51
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eral fieldbuses [52]. During the years, the IEC 61158 standard became a huge project

collecting a lot of different fieldbuses, the majority of the total, for example Profibus,

ControlNet, Interbus (only to cite a few). Significant limitations characterized these

networks: low data rates, low number of connected nodes, as well as significantly

reduced interoperability capabilities. Indeed, the integration of heterogeneous tech-

nologies and the sharing of data among different solutions were severely limited and

internetworking capabilities were substantially absent [23].

With the subsequent proliferation of Ethernet technologies and the widespread

availability of Internet connections, the automation world started to develop a new

set of Ethernet–based systems, using the IEEE 802.1/802.3 specifications for the low-

est communication layers. However, unless strict traffic and access controls are im-

plemented, legacy Ethernet was unable to guarantee the required network latency,

reliability and determinism. This intrinsic lack of real–time capabilities gave rise to

the development of several dedicated (and proprietary) solutions, collectively referred

to as RTE, or Industrial Ethernet, networks [53]. The IEC 61158 and IEC 61784

international standards gathered several of them, e.g. PROFINET, Ethernet/IP, Mod-

bus/TCP, Ethernet POWERLINK, to name a few. Unfortunately, again the number

of available RTEs rapidly increased, impairing interoperability, convergence, integra-

tion/implementation costs, substantially replicating the former fieldbus battle [54],[55].

Several shortcomings brought to this situation. Indeed, one of the major barriers

to the realization of a “one fits all” solution was that different standardization bodies

were involved in the design of a new RTE protocol, as well as consortia (e.g. Profibus,

ODVA, etc.) has been formed to protect relevant market shares and brands. This

resulted in a widespread adoption of RTE solutions in the last years, with a large

industrial pervasiveness, but also in different approaches to obtain the desired perfor-

mance. Indeed, irrespective to the market share, these consortia had no control over

the standardization process of the underlying Ethernet (IEEE 802.1/802.3) standard,

and often an RTE solution has been obtained introducing some protocol “hack” over

the legacy Ethernet. Particularly, a well–accepted classification of different RTE sys-

tems follows the sketch in Figure 3.1, which identifies three different RTE classes with

respect to different real–time performance [56].
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Figure 3.1: A widespread classification of RTE industrial networks.

For the aim to provide interoperation, several studies were made to connect dif-

ferent fieldbuses to each others or with different technologies using specific hardware

or middleware protocol structure such as [57],[58],[59],[60]. The latter one is also an

example of hybrid wired and wireless network, being a mixed network a key solution

to develop smart measurement systems. Nowadays, how to adapt the widespread used

fieldbus and RTE systems to the requirements of Industry 4.0 is still challenging. Sev-

eral research activity has been made in this direction [61],[62]. Despite all, the complex

technological panorama is so broad that the development of a pletora of adapters to in-

terconnect different fieldbus and RTE system is practically infeasible. In this scenario,

the development of new systems to use the CPS architecture and enact the Industry

4.0 revolution, is undoubtedly required [22].

As already said the IoM envisages a massive usage use of wireless communication

strategies. In particular, wireless connectivity allows the possibility for typical indus-

trial controllers to acquire information from sensors and send control signals to the

actuators via a wireless communication system, building up the so–called Wireless Net-

worked Control Systems (WNCS)[63],[64],[65]. As a matter of fact, two of the most

important wireless solutions are represented by WirelessHART [66] and ISA100.11 [67],

where the former is surely the most studied and complete one. In particular, three im-
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Figure 3.2: IEEE 802.11 standards.

portant articles deeply analyse a WirelessHART solution, providing high reliability

also to the disturbances incurring on the controlled system. In particular, the formal-

ization of the problem is carried out in [68], a distributed framework for the packet

scheduling, D2
− PAS, is presented in [69] and a fully distributed one, FD − PAS

is discussed in [70]. The main limit of this approach is the Time Division Multiple

Access (TDMA)-based Data Link Layer (DLL) with a time slot of 10ms, leading in an

unacceptable fixed rating. In the last years, Wi–Fi reveled promising to be applied in

factory automation as, compared with the aforementioned IEEE 802.15.4 solutions, it

gives the possibility to cope with the timing requirements of the modern control sys-

tems and to perform a useful Rate Adaptation (RA) activity [71]. Indeed, for example

authors of [72] underlined the necessity of a minimum control frequency of 1kHz for

some specific application, not achievable by wirelessHART since it is characterized, as

already said, by a time slot of at least 10ms. How to adapt emergent wireless technolo-

gies, such as 5G and Wi–Fi, to the strict requirements of the factory automation is an

open research field [73],[74],[75],[76], together with recent works concerning industrial

LoRa networks [77].

3.2 Wi-Fi

The IEEE 802.11 [78] is a set of standards, commonly known as WiFi, developed

in order to be applied to the Wireless Local Area Network (WLAN). The physical layer

of this standard is the perfect candidate to be applied in high-speed networks. The real

time guarantees are not provided from the DLL of this standard, due to the random

nature of the protocol used to regulate the channel access and the frame delivery [79].

Many versions of the standard have been developed, summarized in Figure 3.2.

The analysis of all the standards is out of the scope of this study, but a precise
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Figure 3.3: The DCF protocol.

analysis of the different protocols and layers is provided in [79]. In the following, the

reasons why the Wi-Fi standard is not directly applicable for real-time applications

are discussed. In particular, the communication time over the Wi-Fi network is not

predictable, resulting in non deterministic behavior of the network. Indeed, the default

channel access mechanism of Wi-Fi is essentially non-deterministic, mainly due to

the unpredictable number of re-transmissions to be performed and the random delay

between them. Two different concepts need to be discussed to understand why several

retransmissions are needed. The channel access mechanism of Wi-Fi is graphically

represented in Figure 3.3.

Figure 3.3 summarize the Distributed Coordination Function (DCF) protocol. The

DCF policy is based on the Carrier Sense Multiple Access with Collision Detection

(CSMA/CD) algorithm with acknowledgement (ACK). Notice that the randomness

depends not only from the random waiting time, but also from the number of retrans-

mission attempts. Wi-Fi networks gives the possibility to use also a second channel

access mechanism, namely Point Coordination Function (PCF). The PCF is a central-

ized algorithm where the central Access Point (AP) gives to a station the possibility

to transmit. The waiting time before the transmission for each station is random also

according to the PCF protocol.
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The non-deterministic behavior of the network reflects in the impossibility to use

these standards for industrial control applications without optimizing them.

3.2.1 Rate Adaptation Algorithms

The Multi Rate Support (MRS) feature of IEEE 802.11 can be deployed to dynam-

ically change the transmission rate of a packet. Indeed, before each transmission, the

adopted rate can be selected from a set of available rates.

Definition 3.2.1 (Set of available rates). The set of the available rates, R, for the

transmission of a packet is defined as follows.

R = {r1, r2, ..., rn} where ri > ri−1, i ∈ {1, 2, ..., n}.
◻

Basically, the operation of a Rate Adapation Algorithm (RAA) consists in the

selection of an ordered set of rates, called Retransmission Chain, to be used for the

transmission of a packet.

Definition 3.2.2 (Retransmission chain). Consider the transmission of a packet for

which a maximum of N attempts can be carried out. The Retransmission Chain,

RC, is defined as

RC = {r(1), r(2)..., r(N)}, r(i) ∈ R.

meaning that the first transmission attempt is scheduled at rate r(1), the second at

rate r(2), the N-th at rate r(N)

◻

3.2.2 ARF: Automatic Rate Fallback

Automatic Rate Fallback (ARF) [80] is one of the most popular rate adaptation strate-

gies for Wi-Fi, designed for general purpose applications.
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The behavior of ARF can be briefly described as follows. Consider a set R of avail-

able data rates. Starting from the generic rate ri, a station implementing ARF moves

to the lower rate ri−1 after K consecutive failed transmission attempts. Conversely, the

rate is increased to ri+1 after N successful attempts. Also, if a failure occurs at the first

transmission attempt after the rate has been increased, then the rate is immediately

lowered down to ri−1 (this feature is known as "Probing transmission"). Typical values

of the parameters K and N for the ARF algorithm are 2 and 10 respectively [81].

Unfortunately, ARF demonstrated to be rather ineffective for real-time industrial

communication. However, its behavior allowed to derive two new algorithms able to

reduce both the number of retransmissions and the delivery time of a packet, that

revealed suitable for the industrial scenario. These are, namely, Static retransmission

rate ARF (SARF) and Fast retransmission rate ARF (FARF) [82].

3.2.3 SARF: Static retransmission rate ARF

SARF [82] is a variant of ARF in which each retransmission attempt is carried out

at rate r1, i.e. the lowest rate in the set R. In practice, if the first transmission attempt

fails, then for all the subsequent retransmissions we will have r(i) = r1 ∀r(i) ∈ RC with

i ∈ {2, 3, ..., N}. However, in order to grant SARF with the same sensitivity to channel

variations of ARF, a successful retransmission carried out at the lowest rate is not

considered as an event that resets the consecutive failures counter. More precisely,

only the original (first) transmission attempt is considered, and if K of these attempts

fail then the rate will be lowered anyway, even if they were interleaved by one or more

successful retransmissions. SARF ensures a very high success probability in packet

transmission, since the lowest transmission rate uses the most robust modulation. This

allows to limit the number of retransmissions, with the consequent reduction of the

randomness. The pseudo-code of SARF is described by Algorithm 1.
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Algorithm 1 SARF Algorithm

1: /* Initialization

2: ccf ← 0; ▷ Number of consecutive transmission failures

3: ccs← 0; ▷ Number of consecutive transmission successes

4: R ← {r1, r2, ..., rn}; ▷ Available rates

5: i← 1; ▷ Select the lowest transmission rate in set R

6: tr ← r1; ▷ Set transmission rate to the lowest value

7: /* End Initialization

8: while true do

9: if Request of a new transmission then

10: if Previous attempt was failed then

11: Perform transmission attempt at the lowest rate

12: else

13: Perform transmission attempt at the current rate

14: if Success then

15: ccf ← 0; ▷ Reset # of consecutive failures

16: ccs + +; ▷ Increase counter of consecutive successes

17: if ccs ≥ N then ▷ If success threshold reached

18: if i < n then ▷ If highest rate not reached

19: i + +;

20: tr ← ri; ▷ Increase rate

21: end if

22: end if

23: else

24: /* (If failure)

25: ccs← 0; ▷ Reset # of consecutive successes

26: ccf + +; ▷ Increase consecutive failures

27: if ccf ≥K then ▷ If failure threshold reached

28: if i > 1 then ▷ If lowest rate not reached

29: i − −;

30: tr ← ri; ▷ Decrease rate

31: end if

32: end if

33: end if

34: end if

35: end if

36: end while
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3.2.4 FARF: Fast rate reduction ARF

FARF is an algorithm that represents a customization of ARF in which K = 1

and r(i+1)
← r1. In practice, just a single failed attempt is sufficient to set the new

transmission rate to the lowest value in the set R, (i.e. r1). Conversely, the increasing

of the rate follows the same rules of ARF, and happens after N consecutive successful

attempts. Analogously to SARF, r(i) = r1 ∀r(i) ∈ RC with i ∈ {2, 3, ..., N}. From a

certain point of view, FARF is a more conservative algorithm than SARF, since it

intrinsically assumes that a failure is an event that requires to maintain low rates for

a certain number of subsequent packet transmissions. The pseudo–code for FARF is

described by Algorithm 2.

Algorithm 2 FARF Algorithm

1: /* Same code as SARF Algorithm (lines 3 to 7)

2: while true do

3: if Request of a new transmission then

4: Perform transmission attempt

5: if Success then

6: /* Same code as SARF Algorithm (lines 16 to 22)

7: else

8: /* (If failure)

9: ccs← 0; ▷ Reset # of consecutive successes

10: tr ← r1; ▷ Set transmission rate to the lowest value

11: end if

12: end if

13: end while
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3.2.5 RSIN: Rate Selection for Industrial Networks

Rate Selection for Industrial Networks (RSIN) is a rate adaptation algorithm specif-

ically conceived for the industrial environment, proposed in [83], and based on two

fundamental assumptions. Specifically, i) a station wishing to send a frame (of a given

length) has to be aware of the Signal to Noise Ratio (SNR) perceived by the receiver

and, ii) the station has to know the relationship between SNR and Packet Error Rate

(PER) for all the rates of the transmission set R. For each packet to be transmitted,

let D be its deadline. Then, the outputs of RSIN are the number of retransmissions

(Nopt), the retransmission chain (RCopt) and the residual error rate probability for

the transmission of that packet in a time less than D. More formally, RSIN can be

described by a constrained optimization problem, as per Definition 3.2.3.

Definition 3.2.3 (RSIN constrained optimization problem). For each packet trans-

mission let be:

D the transmission deadline;

s the signal–to–noise ratio;

l the payload of the packet to transmit;

Nmax the maximum number of retransmission attempts;

Let’s define:

N the number of allowed retransmission attempts;

Pr the residual packet transmission error probability, given N retransmissions at rates

r(1)....r(N);

ttrans the transmission time.

Then, the constrained optimization problem is to find an optimal number of re-

transmissions attempts Nopt, and a retransmission chain RCopt = {r(1)opt , r
(2)
opt ..., r

(Nopt)
opt },
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that minimize the residual packet transmission error probability, while ensuring that

the deadline is not missed. This bring us to Eq. (3.1).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min

N≤Nmax,r(i)
Pr(l, s, N, RC)

max
N≤Nmax,r(i)

ttrans(l, s, N, RC) ≤D, i = 1 . . . N
(3.1)

◻
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Algorithm 3 RSIN Algorithm

1: N ▷ number of retransmission attempts

2: /* Inputs */

3: Nmax ▷ max number of retransmission attempts

4: R = {r1, r2, ..., rn} ▷ set of available rates

5: D ▷ Packet deadline

6: s ▷ SNR value

7: /* Definitions */

8: ttrans ▷ packet transmission time

9: Pr,opt ▷ residual error probability for the optimal rate sequence

10: /* Definitions – Vectors of size Nmax */

11: P̄r ▷ P̄r[i]: residual error probability when N = i, i = 1 . . . Nmax

12: t̄trans ▷ t̄trans[i]: transmission time when N = i, i = 1 . . . Nmax

13: R̄Clow ▷ Vector of rate chains.

14: /* The i-th element, R̄Clow[i], contains the retransmission chain of length N = i that

ensures the lowest transmission error probability*/

15: /* Outputs */

16: Nopt ▷ optimal number of retransmissions

17: RCopt = {r(1)opt, r
(2)
opt, ..., r

(Nopt)
opt } ▷ optimal retransmission chain

18: for i← 1 to Nmax do

19: Running Algorithm 4.

20: end for

21: /* Calculation of Nopt and RCopt */

22: Nopt ← 1

23: RCopt ← R̄Clow[1]
24: Pr,opt ← P̄r[1]
25: for i← 2 to Nmax do

26: if P̄r[i] < Pr,opt then

27: Nopt ← i

28: RCopt ← R̄Clow[i]
29: Pr,opt ← P̄r[i]
30: else

31: Do nothing

32: end if

33: end for
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Algorithm 4 Selection of the retransmission chain ensuring the lowest transmission
error probability for each value of N

1: repeat

2: Generate a retransmission chain of size i, RCi

3: calculate ttrans(l, s ∈ S, N, RCi)
4: if ttrans(l, s ∈ S, N, RCi) ≤D then

5: if Pr(l, s ∈ S, N, RCi) < P̄r[i] then

6: t̄trans[i]← ttrans(l, s ∈ S, N, Ri)
7: P̄r[i]← Pr(l, s ∈ S, N, Ri)
8: R̄Clow[i]← RCi

9: else if Pr(l, s ∈ S, N, Ri) = P̄r[i] then

10: if ttrans(l, s ∈ S, N, RCi) < t̄trans[i] then

11: t̄trans[i]← ttrans(l, s ∈ S, N, RCi)
12: P̄r[i]← Pr(l, s ∈ S, N, Ri)
13: R̄Clow[i]← RCi

14: else

15: Do Nothing

16: end if

17: else

18: Do Nothing

19: end if

20: else

21: Continue

22: end if

23: until there are sequences of rates rj , of length i, ∈ R, meeting condition 3.2

RSIN is described by Algorithms 3 and 4. One of the core sections of Algorithm 3

is represented by lines 18–20. At this stage, a vector of retransmission chains is built,
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and each element stores the chain ensuring the lowest transmission error probability

for that specific number of retransmission attempts, ranging from 1 to Nmax. This

is achieved with the invocation of Algorithm 4. Subsequently, lines 22–33 select the

optimal retransmission chain among the Nmax chains of the R̄C low vector, as the

one associated with the lowest transmission error probability. It is worth noting, in

Algorithm 4, how the selection of the retransmission chain is handled in case more

retransmission chains ensure the same transmission error probability. As can be seen

(lines 9– 13), in this case Algorithm 4 selects the retransmission chain that has the

lower transmission time. A further assumption has been adopted to limit the execution

time of RSIN. Specifically, the construction of the array of retransmission chains by

Algorithm 4, has been carried out under the condition

r(1) ≥ r(2) ≥ ... ≥ r(N) (3.2)

that limits the retransmission chains to be considered.

Finally, in [71] a variant of RSIN, namely RSIN with Estimation (RSIN-E) has

been introduced. RSIN-E has been devised to address the cases in which the SNR is

not made available by the receivers. Thus, a learning algorithm has been designed to

provide an estimation of the SNR, as better detailed in [71]. The learning algorithm is

executed cyclically, with update period TU . Clearly, the introduction of a further algo-

rithm has the effect of increasing the execution time of RSIN-E, as will be investigated

in the following. In particular, the lower the update period, the higher the impact on

the execution time.

3.3 Time Sensitive Networking

The Industry 4.0 paradigm highlights the need for increasingly standardized and

integrated networks [84]. In this context, TSN standards offer a viable solution, point-

ing to the development of a novel smart factory paradigm. The idea underlying the

whole TSN project is to deeply modify the Ethernet standard at its roots (by the

development of a new Ethernet Medium Access Control (MAC) layer and a new Eth-
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ernet infrastructure), to introduce all those intrinsic mechanisms required to support

a broad range of time-, mission- safety-critical applications. Indeed, on the contrary,

all the available RTE networks build upon the legacy features of Ethernet, use proto-

col strategies (as a clever use of Virtual LAN prioritization) or even out-of-standard

data–link layers to introduce real–time capabilities over a network support that is

intrinsically non–real–time [85],[86].

Nevertheless, the first efforts in the stated direction have been pursued by the

consumer electronics industry, and specifically for targeting the needs for deterministic

Ethernet connections for professional audio and video streaming. This pushed towards

introducing the needed modifications directly within the IEEE related standards. For

this reason, in 2005 the Audio Video Bridging (AVB) Task Group (TG) was formed

within the IEEE 802.1 standard committee. In parallel the AVnu Alliance has been

formed, an associated group of manufacturers and vendors to support the compliance

and marketing activities. The activities of the AVB TG allowed to strongly enhance

the real–time capabilities of Ethernet with four new IEEE standards: 802.1AS-2011,

802.1Qat-2010, 802.1Qav-2009 and 802.1BA-2011. The new potentialities of Ethernet

AVB were soon deemed suitable also for the industrial scenario [87]. For this reason, it

was rapidly evident that the AVB name was not appropriate to cover all the potential

use cases that the achievable performance attracted.

In 2012 AVB was renamed in TSN TG, a subgroup of IEEE 802.1 Working Group

[88]. The suitability of these set of standards to different fields of application, has led to

the definition of different profiles, that represent one of the most powerful characteristic

of TSN. The IEEE 802.1 defines DLL protocols, as can be noticed from Table 3.1.
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Table 3.1: IEEE 802.1 Contribution within IEEE 802.

ISO/OSI Layer IEEE 802 Standard

Data Link Layer 802.2 Logical Link Layer

802.1 Bridging

802.3 MAC 802.11 MAC

Physical 802.3 PHY 802.11 PHY

As it is possible to notice from Table 3.1, a network-specific MAC layer is located

right under the 802.1 bridging layer. In this panorama, typically, two different LANs

are considered: the IEEE 802.3 (Ethernet) and the IEEE 802.11 (Wi–Fi) one. TSN,

traditionally, aims to enhance the performances of the IEEE 802.3 networks, but could

also be applied to IEEE 802.11 networks, to reduce both delay and jitter [89]. The

TSN standardization project focuses mainly on the IEEE 802.1Q (IEEE Standard for

Local and Metropolitan Area Networks–Bridges and Bridged Networks) [90], with the

development of several amendments to the standard. Indeed, time–sensitive traffic in

different scenarios may have different QoS requirements, involving in the need of a set

of configurable mechanism and protocols. Standards and amendments within the TSN

project [91] are listed in Table 3.2.
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Table 3.2: The TSN standardization project.

Standard Description Reference

IEEE 802.1AB Station and Media Access Control Connectivity Discovery [92]

IEEE 802.1AS Timings & Syncronization [93]

IEEE 802.1AX Link Aggregation [94]

IEEE 802.1CB Frame Replication & Elimination [95]

IEEE 802.1CS Link Local Registration Protocol [96]

Ongoing Projects

IEEE P802.1CQ Multicast and Local Address Assignment [97]

IEEE P802.1DC Quality of Service Provision by Network Systems [98]

IEEE P802f YANG Data Model for EtherTypes (amending IEEE 802-2014 [99]) [100]

IEEE P802.1ABcu LLDP YANG Data Model (amending IEEE 802.1AB [92]) [101]

IEEE P802.1ABdh Support for Multiframe PDUs (amending IEEE 802.1AB [92]) [102]

IEEE P802.1ASdm Hot Standby (amending IEEE 802.1AS [93]) [103]

IEEE P802.1ASdn YANG Data Model (amending IEEE 802.1AS [93]) [104]

IEEE P802.1CBcv FRER YANG Data Model (amending IEEE 802.1CB [95]) [105]

IEEE P802.1CBdb FRER Extended Stream Identification Funs (amending IEEE 802.1CB [95]) [106]

Amendments to the IEEE 802.1Q standard

Amendment Description Reference

802.1Qat Stream Reservation Protocol (SRP) [107]

802.1Qav Credit based Shaper [108]

802.1Qaz Stream Resv. Pot. [109]

802.1Qbu Frame Preemption [110]

802.1Qbv Enhancements for Scheduled Traffic [111]

802.1Qca Path Control [112]

802.1Qcc TSN Configuration [113]

802.1Qch Cyclic Queuing [114]

802.1Qci Per–stream Filtering [115]

802.1Qcp Yang Data Model [116]

802.1Qcr Asynchronous Shaping [117]

802.1Qcx YANG Data Model for Connectivity Fault Management [118]

Ongoing Projects

P802.1Qcj Automatic Attachment to Provider Backbone Bridging (PBB) services [119]

P802.1Qcw YANG Data Models [120]

P802.1Qcz Congestion Isolation [121]

P802.1Qdd Resource Allocation Protocol [122]

P802.1Qdj Configuration Enhancements for Time-Sensitive Networking [123]

Amendments to the IEEE 802.3 standard

Amendment Description Reference

802.3br Interspersing Express Traffic [124]
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In the Table the IEEE 802.3br amendment to the IEEE 802.3 standard is also

reported, as the TSN preemption support requires a slight modification of the Ethernet

standard. Moreover, in Table 3.2 are listed, among the others, several 802.1 ongoing

projects, thus underlining that the TSN task group is still performing a ceaseless

standardization activity. For this reason, Table 3.2 has not to be considered exhaustive

and definitive. Moreover, it is worth observing that this thesis focuses on the most

important standards for industrial measurement applications, and does not address all

the aforementioned standards. This wide range of mechanisms and protocols offered

by TSN, comprehensively aiming to reduce frame loss, synchronize stations among

each others, provide bounded latency and high reliability [113], need to be precisely

configured in each bridge of the considered network, to meet specific QoS requirements.

3.3.1 Time Sensitive Networking over Wi-Fi

The scheduling, bandwidth reservation, real–time behavior, Wi–Fi capabilities and

other features of TSN, open up to interesting and advanced time–critical application

where a constant flow of information, often coming from heterogeneous sensors, is

of vital importance. An example is the scenario proposed by [125] where swarn of

quadcopters are controlled to perform maneuvers at high speed. In this application,

measurements from cameras and onboard sensors are used by a centralized control

system to determine the references of each individual agent so that they can move in

a coordinated way. Specifically, a system consisting of 8 cameras acquires the position

and attitude of each vehicle with a frequency of 200Hz. The camera frames are sent via

a User Datagram Protocol (UDP) stream to a central processing unit. Furthermore,

each quadrotor is equipped with on-board sensors (accelerometer and gyroscope), the

measurements are sent via an XBee–UDP bridge to the central processing unit. Here,

they are processed, and each vehicle receives setpoints for coordinated motion via a

PPM analog transceiver with a 50Hz refresh rate. Another communication channel is

a low priority downlink for the purpose of data logging. The real–time requirements

are evident since the failure to comply with a deadline or delays in the communication

chain could lead to unexpected and catastrophic results. The use of different types of

traffic, such as real–time and best effort, is also evident, with the separation achieved
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through the use of physically separate communication channels. However, the commu-

nication architecture has some limitations. To maintain a sufficiently low latency and

high bandwidth, the data flow from the cameras uses UDP which does not provide

any QoS mechanism, exposing the system to potential packet losses. Using bridges to

switch from UDP to other communication systems can represent an additional bottle-

neck. Both of these downsides are destined to become critical if the number of agents,

and therefore the data flow, increases. In this context, some of TSN’s features can bring

benefits. For example bandwidth reservation and traffic scheduling can be used to pri-

oritize video streams and cyclic data for the control system. The Frame Replication

and Elimination for Reliability (FRER) can be used to increase the reliability of the

communication. The use of these features allow to lower the network latency and jitter.

Also the intrinsic clock synchronization required by TSN brings some advantages. Of-

ten in distributed autonomous systems GPS is used for clock synchronization in agents.

TSN provides further improvements by providing a shared sub–microsecond time ref-

erence to the network’s nodes, which can overcome GPS’s existing constraints [126].

In addition, to the decrease in latency, communication times, and improve synchro-

nization, a precise time–stamping of measured data can be used also to compensate

for further delays introduced by the measurement, processing, and control chain.

As a matter of fact, the depicted scenario is a meaningful test case, where Wi-Fi

network could be applied to cope with the requirements in terms of data rate. Despite

this, the required real-time and deterministic behavior can be satisfied by the usage

of TSN on top of the IEEE 802.11 DLL. Some works suggest the usage of hybrid

wired/wireless networks, integrating ethernet TSN networks with both Wi–Fi [89]

and 5G [127]. Actually, TSN over Wi–Fi networks are promising to adapt Wi–Fi to

the stringent requirements of the industrial context. At present, the IEEE 802.11AS

standard [93] specifically refers also to IEEE 802.11 LANs, providing a synchronization

mechanism similar to the one designed for Ethernet networks, with the exception

of some media–dependent activities specified in IEEE 802.1AS [93], Clause 12. In

particular, how to communicate the timing messages between a Master Port and the

attached Slave Port in the generated spanning tree is quite different with the respect

to the full–duplex Point to Point links. In this case, in fact, the IEEE 802.11 [78]
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Timing Measurement procedure is used to calculate the propagation time. The last

version of the IEEE 802.11 standard allows also to use the Fine Timing Measurement

mechanism [78]. The transposition of the other TSN features in WiFi is still an open

research field.

3.4 LoRa and LoRaWAN

The aforementioned and widespread wireless technologies, such as Wi-Fi and 5G,

are particularly suitable when there is the need for high data rates and Ultra Low

Latency (ULL) behavior. As a matter of fact, some IoM applications need different

requirements, such as long communication range and low battery consumption. In the

introduction of Chapter 5 for example, a meaningful example test case is analyzed.

In these particular situations, other kind of wireless protocols can be analyzed. In

particular Low Power Wide Area Networks (LPWANs) are gaining particular interest

in the field, as they comprise several different wireless communication technologies,

characterized by wide area coverage and low battery consumption. Both of these re-

quirements are very important in the IoT scenario. These networks are also capable

to guarantee robust communication even in harsh environments (as, for example, the

industrial one), in consideration their particularly robust modulation schemes. De-

spite these important advantages, LPWANs are usually characterized by low data

rates. Some of the LPWANs are license-free, thus operating typically in the Sub-GHz

unlicensed spectrum regions, mostly exploiting in the EU the 868 MHz band.

One of the most used and studied technology is the LoRa Wide Area Network

(LoRaWAN), that is built on top of the LoRa physical layer. In the next section, some

important characteristics of both LoRa and LoRaWAN are discussed.

3.4.1 Main LoRa and LoRaWAN characteristics

As said before, LoRaWAN is one of the most used LPWANs operating in the

unlicensed bands. The typical architecture of a LoRaWAN network is depicted in

Figure 3.4.
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Figure 3.4: LoRaWAN Network Architecture

In particular, a LoRaWAN network relies on a star topology and comprises three

types of devices: End Device (ED)s that serve as LoRa sensors, GateWay (GW)s, and

a Network Server (NS). EDs are the data gatherers that send their information to

one or more gateways in their range, using an ALOHA protocol to access the wireless

medium. A GW receives a LoRa packet and forwards it to the NS that may either

accept or discard it. In this way, most of the computational burden is handled by the

NS, thus simplifying the complexity of the other devices (specifically EDs), with the

consequent benefits, particularly in terms of power consumption. The EDs are grouped

into three different classes: All(A), Beacon(B), Continuous(C). The three classes have a

common transmit phase in which nodes can randomly access the network to transmit

their data, whereas they differentiate on the subsequent phases. Class A EDs after

transmission open one or two consecutive temporal listen windows, in which they can

receive messages coming from the NS. Then class A EDs enter the sleep mode. Class B

EDs extend such behavior possibly opening more listening windows at scheduled times.

Finally, Class C EDs, after transmission enter the listening mode which is maintained

until the end of the cycle. In practice, the sleep mode is never entered by such EDs.
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Clearly, moving from Class A to Class C, the power consumption increases. It is

worth observing that, the particular network architecture is particularly applicable to

the IoM field, as the ED could be the sensing part of the network. In the following

experiments, the optimization of the LoRa communication between the EDs and the

GWs will be envisaged.

Talking about the LoRa physical layer, developed by Semtech, is essentially an

enhanced version of the Chirp Spread Spectrum (CSS), being the BandWidth (BW)

and the Spreading Factor (SF) its main parameters. In particular 2SF chips form one

symbol, and the relation between BW and SF is given by Eq. (3.3), representing the

Symbol Rate (SR).

SR =
BW

2SF
(3.3)

Roughly speaking, the higher the SF, the lower the data rate. Choosing an high

SF leads essentially to more robust (and more immune to noise), but slower communi-

cation. Furthermore, in EU the BW is 125kHz or 250kHz. Moreover, interleaving and

whitening strategies are applied to increase interference robustness; packet header and

payload are further coded by forward error correction, with Coding Rate (CR) in the

range CR ∈ [4/5, .., 4/8].
In a LoRaWAN network, the NS is in charge of choosing the LoRa network pa-

rameters, possibly applying adaptive strategies like the standard Adaptive Data Rate

(ADR), which leverages on SF tuning and variable Transmission Power (TP), whose

possible values are respectively listed in Eq. (3.4) and Eq. (3.5).

SFlist = [7, 8, 9, 10, 11, 12] (3.4)

TPlist = [2, 5, 8, 11, 14] (dBm) (3.5)

3.4.2 Duty Cycle Limitations

LoRa operates on the Industrial Scientifical Medical (ISM) bands. Consequently,

one of the main limitations on the application of LoRa for IoM is the DC limitation for
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devices not adopting a listen-before-talk strategy [128]. Indeed, the channel access in

the ISM bands is regulated by the reference standard EN 300 220-1, whose last version

is V3.1.1 [129]. Actually, following the aforementioned reference standard the DC is set

to 1%. For this reason, if the three mandatory channels are used (868.1, 868.3, 868.5),

the duty cycle per each channels becomes 1%

3
= 0.33%, meaning that the inter-message

delay needs to be suitably tuned, in order to fulfill regulations. Moreover, it is worth

observing that, as stated by authors of [130], the higher the airtime, the higher both

the probability of collisions and the clocks drift. The latter directly impacts on the

possibility to efficiently schedule the communication, as stated by authors of [131],

that also propose an interesting traffic schedule for LoRa. Moreover, the non-perfect

synchronization of stations impacts on the modulation / demodulation activity of

LoRa [132].

Actually, the objective now is to suitably formalize how it is possible to calculate

the inter-message delay, and in turn the number of messages allowed to be sent in an

hour. The first step consist the airtime calculation (i.e. the time needed to transmit a

message from a node to the GW). The airtime can be calculated simply as the ratio

between the number of sent symbols ns and the SR, as per Eq. (3.6). Actually, the

propagation time is negligible when considering industrial applications where distances

are very low (some meters).

airtime =
ns

SR
(ms) (3.6)

Where the number of symbols ns, that is calculated in Eq. (3.7), is the sum of the

payload and preamble ones.

ns(symbols) = np + 4.25 + 8 +max (⌈k⌉ ⋅ (4 +CR) , 0) (3.7)

And:

k =
8 ⋅ PL − 4 ⋅ SF + 8 + 16 ⋅CRC + 20 ⋅H

4 ⋅ (SF − 2 ⋅LDR) (3.8)

Where:
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np is the number of symbols of the preamble (tunable by the user);

PL represents the data PayLoad in bytes;

CRC is 1 if the Cyclic Redundancy Code field is enabled, otherwise 0;

H is 1 if the Explicit Header field is enabled, otherwise 0;

LDR is 1 if the Low Data Rate optimization is enabled, otherwise 0. It is worth

observing that LDR can be enabled only if BW = 125 kHz and SF ≥ 11;

Finally, remember that the SR can be calculated as per Eq. (3.3).

After the airtime has been calculated the intermessage delay according to the

considered DC can be simply derived from Eq. (3.9) which, in turn, determines the

number of possible sent messages in an hour.

delay = airtime ⋅ (1 −DC(%)) (ms) (3.9)

An example of the aforementioned timings, calculated for a specific set of parame-

ters, but for all the possible SF, is presented in Table 3.3.

Table 3.3: Data rate, airtime, inter-message delay, and the number of messages per hour for
each Spreading Factor. Settings: BW = 125.0, CR = 1.0, Payload (bytes) = 5.0, DC(%) = 1.0.

SF DR(kbit/s) Airtime(ms) Inter-message Delay (s) #msgs/h

7 5.469 36.096 3.574 1007.415

8 3.125 72.192 7.147 503.707

9 1.758 123.904 12.266 293.482

10 0.977 247.808 24.533 146.741

11 0.537 495.616 49.066 73.371

12 0.293 827.392 81.912 43.950
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3.4.3 The ADR strategy

As stated before, the NS is in charge of changing the transmission parameters of

LoRa radios, in particular the TP ans the SF. The LoRaWAN specifications define the

so-called ADR parameter adaptation strategy that is responsible for managing the SF

and TP of EDs.

ADR bases its behavior on an estimation of the so-called uplink signal-to-noise

ratio margin (Eq. (3.10)).

SNRM = SNRMeas − SNRDR −M (3.10)

Where SNRMeas is the maximum measured SNR over the last 20 received up-

link frames, SNRDR is the required SNR for successfully decoding incoming frames

at the desired data rate DR and usually M = 10dB. Subsequently, the discrete pa-

rameter NStep = int(SNRM/3), being int the integer part, is computed. It is im-

portant to observe that, on the ED side, TP and SF are reduced as much as pos-

sible, and the ED exploits acknowledgment from the backend to regain connectivity

once it is lost. ADR_ACK_LIMIT (by default equal to 64) and ADR_ACK_DELAY

(by default equal to 32) regulate ADR on the ED. In particular, a counter (namely

ADR_ACK_CNT) is incremented after each uplink message is transmitted. A re-

quest for an ADR_ACK is sent from the ED when the ADR_ACK_CNT reaches

the ADR_ACK_LIMIT without receiving any downlink message. The ED then waits

for the requested downlink message in the subsequent ADR_ACK_DELAY receiv-

ing opportunities. If a downlink message is not received after ADR_ACK_LIMIT +

ADR_ACK_DELAY uplink frames, the TP is increased directly from the ED, up to

the maximum value. If this is still not sufficient, also the SF is increased, to leverage

on the additional processing gain [133].
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Chapter 4

Optimizing WiFi for IoM

In the previous sections, an introduction on IoT-based measurement systems, or

IoM, has been given, together with an analysis of its enabling technologies. One of

the main issues related to IoM is related to the communication protocols, especially

wireless ones. Wi-Fi, already introduced in Section 3.2, is surely one of the most

used wireless LAN. In this section, optimization strategies for Wi-Fi networks are

investigated, by using both experimental and simulation assessments.

4.1 Parameter Adaptation Strategies Execution Times

In Section 3.2.1, RAAs have been introduced. The following experiment’s aim is

to properly evaluate the execution times of the most used RAAs. Indeed, although if

several RAAs have been proposed and analyzed during the years, up to my knowledge

no one investigated the impact of the execution times of such algorithms. Obviously

this analysis is needed, as the benefits coming from the RA strategy could be vanished

if its execution time is too high. For these reasons, the main aim of this Section is to

carefully analyze the behavior of the RA algorithms, by also taking into account the

execution times of the implemented techniques.

77
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4.1.1 Experimental Set–up

The RAAs described in Section 3.2.1, with the exclusion of ARF, have been prac-

tically implemented on a Personal Computer (PC) (Dell Optiplex 960) equipped with

an Ubuntu Long Term Support Linux distribution, based on Linux kernel version

4.1.0-040100-lowlatency. The PC is equipped with two commercial off–the–shelf Wire-

less Network Interface Cards (WNIC)s, namely TP-LINK model TL-WN851ND, to

implement an IEEE 802.11n network, as described in Figure 4.1.

Wi-Fi connection (IEEE 802.11n)

Personal Computer 

(PC)Board 1 Board 2

Figure 4.1: Experimental Set–up Representation.

The used WNICs are based on the AR9287 chip, which adopts the open–source

ath9k driver. This choice, along with adequate modifications to the mac80211 module,

following the technique outlined in [134], allowed to implement and test the designed

rate adaptation algorithms.

Clearly, the use of a PC with two WNICs does not reflect a real industrial network

set–up at all. However, as it will be better detailed in the following, the first set of

experiments carried out in this Section, do not need to be performed on an actual in-

dustrial network. Indeed, the performed analysis is aimed at evaluating the execution

times of the RAAs and their impact on the MAC layer execution times. Such times are

related to the algorithms implementation and do not depend on the network configu-

ration. Moreover, having the two WNICs installed on the same PC revealed definitely
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advantageous, because it allowed to exploit a unique clock source for the experiments,

ensuring a high accuracy of the results, since there was no need to synchronize the two

boards. Finally, by using a PC it has been possible to adequately modify the MAC

layer protocol stack, as well as to enable/disable and tune the rate adaptation algo-

rithms during the execution of the tests. However, in real I&M applications different

devices may be used. For example, factory automation applications make use of Pro-

grammable Logic Controller (PLC), sensors/actuators and, possibly, Soft PLCs. All

these devices, typically, do not grant full access to the MAC layer functions and, hence,

could have not been used for the purposes of this Section. Nevertheless, and more im-

portantly, rate adaptation algorithms do exist and are (or may be) used by such kind

of devices. In this respect, I believe the results of the practical experiments carried

out, which will be discussed in the next Section, represent a meaningful indication of

the impact of RAAs on the performance of industrial devices.

For the specific case of the RSIN algorithm, two different implementations have

been considered. In the first one, the constrained optimization problem (Eq. (3.1)) is

run before the transmission of each packet.

In the second implementation, referred to as RSIN Light (RSIN-L) in the following,

a set including all the optimal retransmission chains, for each possible SNR value, is

determined at an early initialization phase, and is stored within a look–up table. Thus,

the selection of the retransmission chain, that happens just before a single packet

transmission, simply involves an access to that table. This strategy clearly reduces the

execution time of the algorithm. However, since the constrained optimization problem

is not solved dynamically, RSIN-L implicitly assumes that i) the relationship between

SNR and PER does not vary over time, ii) the deadline is the same for all the transmit-

ted packets, iii) the packets have fixed length. The actual assessment of such conditions

depends on the communication channel status as well as on the specific application.

The RAAs have been implemented within the context of the Linux mac80211 frame-

work. In agreement with this approach, I developed the set of required functions for

each algorithm. A test application has been subsequently designed in which the data

exchange described in Figure 4.2 was triggered periodically, thus resembling a typical

industrial polling sequence.
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Figure 4.2: Data transaction between the two WNICs.

A Master–Slave relationship has been set–up where one board (the Master), config-

ured as AP, sends a request packet to the other one, configured as Station (the Slave),

that responds with a data packet. Each transaction ends when the Master receives the

packet with the requested data. The complete list of the settings used for the experi-

ments is summarized in Table 4.1. They have been selected to comply with the most

common features/requirements of Wi–Fi based real–time industrial networks and their

relevant rate adaptation algorithms, as described in [135], [27], [136] and [50].

In order to measure the RAAs execution times, I introduced adequate timestamp

points within the relevant parts of the protocol stack code. A representation of the

timings related to the transmission of a packet is provided in Figure 4.3.

As can be seen, the packet is initialized at time t1, and delivered to the MAC layer

at time t2. The execution of the RAA takes place in the interval t3 − t4. The packet

is eventually delivered to the physical layer at time t5. Notably, the reference clock
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Table 4.1: Settings of the experimental testbed.

Parameter Value

Period of Transactions 10 (ms)
Number of transactions 100000

Packet Length 50 bytes
KSARF 2

NSARF = NFARF 10
Update Period RSIN-E, TU 10 (ms)
RSIN and RSIN-E Deadline 2 (ms)

Center Frequency 2660 (MHz)
Channel model IEEE 802.11n

Channel bandwidth 40 (MHz)
STBC Enabled
LDPC Disabled

Guard Interval Normal
N of spatial streams 2

Available Data rates [Mbps] 13.5, 27, 40.5, 54, 81, 108, 121.5, 135

t

IEEE 802.11 Phy

RA
Packet preparation 

t1 t2 t3 t4 t5

MAC

Figure 4.3: Timings related to the transmission of a packet.

shared by the two WNICs allowed to precisely timestamp the events concerned with

code execution.

The correctness of the RAAs implementation can be verified by curves like the

ones in Figures 4.4 and 4.5, respectively for FARF and RSIN. The other ones are not

presented for sake of brevity. Each Modulation Coding Scheme (MCS) value, repre-

sented in the y-axis of the figure, represents a particular modulation scheme of Wi-Fi.

The higher the MCS, the higher the rate.
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Figure 4.4: Rate Adaptation behavior of the FARF algorithm.

4.1.2 Execution Times of Rate Adaptation Algorithms

The execution time of each RA algorithm has been measured placing timestamps

at the instants t3 and t4 in Figure 4.2. The obtained statistics are given in Table

4.2, whereas Figure 4.6 reports the Experimental Cumulative Distribution Function

(ECDF).

As can be seen, the statistics also comprise Minstrel, a widespread general purpose

algorithm [134]. Minstrel has not been designed for real-time industrial applications.

However, it has been included here as an effective basis for comparison. From the

presented results, it appears evident that SARF, FARF and RSIN-L have execution

times of the same order of magnitude of Minstrel. Conversely, RSIN has the highest

execution time, as an effect of the constrained optimization problem algorithm exe-

cuted before each packet transmission. RSIN-E has an intermediate value, due to the
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Figure 4.5: Rate Adaptation behavior of the RSIN algorithm.

choice of using a look up table in the experiments for such algorithm, analogously to

RSIN-L. A higher value is expected in case the constrained optimization problem is

executed before each packet transmission. Also, the mean execution time of RSIN-E

can be reduced by increasing the update time of the learning algorithm, TU , which in

this experiment was set to a rather low value (10 ms, as reported in Table 4.1).
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Table 4.2: Execution time statistics of the rate adaptation algorithms.

Algorithm Mean Std. deviation

SARF 1.56895 (µs) 0.993964 (µs)
FARF 1.80424 (µs) 0.999401 (µs)
RSIN-L 1.95316 (µs) 1.24508 (µs)
RSIN 22.8111 (µs) 2.9518 (µs)
RSIN-E 5.5637 (µs) 3.98806 (µs)
Minstrel 1.29763 (µs) 1.79429 (µs)

In industrial applications, in order to assess real–time performance, often worst case

communication times have to be taken into consideration. For this reason, I calculated

the maximum execution times of the algorithms, that are reported in Table 4.3. As

can be seen SARF, FARF and RSIN-L perform better than Minstrel, whereas both

RSIN and RSIN-E show higher times, in agreement with the previous analysis.

Table 4.3: Maximum values of the execution time of the selected RAAs.

Algorithm Max Value

SARF 4.81206 (µs)
FARF 4.33086 (µs)
RSIN-L 6.13538 (µs)
RSIN 31.7115 (µs)
RSIN-E 17.2933 (µs)
Minstrel 7.71133 (µs)

4.1.3 Impact of the Rate Adaptation Algorithms on the MAC layer

Execution Time

In a further session of experiments, I determined the execution times of the MAC

protocol with the rate adaptation algorithms running, and evaluated the relevant im-

pact of the algorithms themselves on such times. The impact is defined as the percent-

age of MAC layer execution time used to run the RA algorithm, and expressed as the

ration between the algorithms execution time and the overall execution time of the
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Figure 4.6: ECDFs for the comparison of the RAAs execution times.

MAC protocol stack. The MAC layer execution time has been measured, with refer to

Figure 4.3 as the difference between the two timestamps t2 and t5. The statistics are

reported in Table 4.4, whereas Figure 4.7 shows the ECDFs curves. The Table also

reports the impact of RAAs.

As can be seen, the experimental results reveal that the impact of the rate adapta-

tion algorithms on the IEEE 802.11 MAC layer execution times may be considerable,

depending on the selected algorithm.
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Figure 4.7: ECDFs representing the IEEE 802.11 MAC layer execution times.

Table 4.4: Impact of the RA techniques on the MAC layer execution time.

MAC Execution Time
Algorithm Mean Std. deviation Impact [%]

SARF 11.7137 (µs) 6.26242 (µs) 13.39

FARF 13.4602 (µs) 6.81398 (µs) 13.40

RSIN-L 12.5359 (µs) 6.9672 (µs) 15.58

RSIN 29.4723 (µs) 7.00321 (µs) 77.40

RSIN-E 18.096 (µs) 6.90356 (µs) 30.75

Minstrel 12.7162 (µs) 6.91258 (µs) 10.20
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4.1.4 Impact of the Rate Adaptation Algorithms on Communication

In order to achieve deeper insights about the various components of a data ex-

change cycle, I evaluated the time taken by the communication sequence of Figure

4.2, that in the following I refer to as Round Trip Time (RTT), and the consequent

impact of the rate adaptation algorithms on it. Similarly to the previous section, the

impact is evaluated as the percentage of RTT used to run the RA algorithm. In this

experiment, I decided to use the same network configuration shown in Figure 4.1 that,

as already observed, does not reflect that of a typical industrial network. Nonetheless,

the obtained results are meaningful. Indeed, the proximity of the two WNICs ensures

an efficient communication, characterized by the selection of high transmission rates by

the RAAs and very limited packet retransmissions, as I assessed in a post processing

analysis. Consequently, the communication times resulted definitely lower than those

achievable with a (more realistic) distributed industrial network. Thus, the measured

RTT represents a lower bound for such a performance index. Conversely, the measured

impact is an upper bound, since the execution times of the rate adaptation algorithms

do not depend on the network configuration.

The RTT has been calculated inserting two timestamps in the code, the first one

placed at time t1 (in Figure 4.3), and the second one, with refer to Figure 4.2, at the

instant of data reception from the Slave. The resulting ECDFs are presented in Figure

4.8.

At a first glance, from the figure, it appears evident that the adoption of rate

adaptation algorithms specifically designed for real-time communication algorithms

results definitely advantageous, since they allow to achieve low values of round trip

times, characterized by very limited variability, as also confirmed by the statistics

reported in Table 4.5. This is due to the very high probability of success at the first

transmission attempt they achieve (for example, 98, 2% for SARF and 99.6% for RSIN

have been measured). In this way, the random backoff times between two subsequent

transmission attempts were mostly avoided, with the consequent benefits on timeliness

[83].

More importantly, Table 4.5 shows that the impact of the execution time of all the

rate adaptation algorithms on RTT is very limited, in particular, also for algorithms
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Figure 4.8: ECDFs for the comparison of the RTT when rate adaptation is enabled.

Table 4.5: Statistics of the Round Trip Time and Impact of the RA techniques

Round Trip Time
Algorithm Mean Std. deviation Impact [%]

SARF 1.69607 (ms) 0.978333 (ms) 0.1836

FARF 1.6906 (ms) 0.965661 (ms) 0.2134

RSIN-L 1.61245 (ms) 0.927467 (ms) 0.2423

RSIN 1.66003 (ms) 0.891203 (ms) 2.7478

RSIN-E 1.53468 (ms) 0.789313 (ms) 0.7250

Minstrel 2.26982 (ms) 1.47906 (ms) 0.1143
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such as RSIN and RSIN-E that showed longer execution times than the other ones. This

result on the one hand confirms that the adoption of the rate adaptation algorithms

is advantageous whereas, on the other hand, it shows that communication times are

predominant over elaboration times. As a last consideration, it is also possible to

notice RSIN and RSIN-E present also lower values of standard deviation. This is a

good result, pointing to increasingly deterministic communication protocols.

4.1.5 Minimum Cycle Time for a Wi–Fi based Real–time Industrial

Network

In a final session of tests, I carried out a set of simulations to investigate the impact

of the execution times on the Minimum Cycle Time (MCT), a typical performance

index for industrial networks [22], [137]. The MCT has been introduced for networks

based on a cycle (that are widespread in the industrial scenario) in which a master

device regularly polls a set of slaves. In such a kind of configurations, MCT is defined

as the minimum time employed by the master to subsequently poll all the slaves.

I referred to industrial network configurations typically deployed at the lower levels

of factory automation systems, such as production islands, that comprise a controller

and a limited number of sensors/actuators [138]. Also, the parameters selected for this

test are those listed in Table 4.1. For the sake of simplicity, aperiodic traffic has not

been considered. In order to execute realistic simulations, I took into consideration the

results of the previous measurement sessions. In particular, the measured MAC layer

execution times were introduced in the simulation model of all the involved nodes.

Moreover, from the communication point of view, I adopted an approach similar to

that presented in [139] and [140]. Transmission and Reception correlation matrices

are calculated to simulate a multi-path MIMO channel. Specifically, the “F” channel

model, proposed by the IEEE 802.11 Task Group n, has been used. Such model is

targeted for industrial environments. The simulation setup comprised one master and

a variable number of slaves. The polling of a slave, as described in Figure 4.2, starts

with a data request packet issued by the master and ends with the reception of the

response data from the slave. In the simulations, I considered two rate adaptation

algorithms among those addressed so far, namely RSIN and RSIN-L. Furthermore, as
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a basis for reference, I plotted the behavior of the MCT for the (purely theoretical)

case in which the execution time of the rate adaptation algorithm was not considered.

This is referred to as “No–ET”. The settings of the network were those presented in

Table 4.1.

The behavior of the MCT versus the number of nodes is provided in Figure 4.9 that

reports the mean values (continuous lines) and the variation range relevant to the 5th

and 99th percentiles, respectively (dotted lines). The statistics are reported in Table

4.6. To ensure good readability the figure does not comprise RSIN-L that, however,

has a behavior very close to that of No–ET. As can be seen, although the adoption of

RSIN leads to a greater MCT, with respect to No–ET, its impact is rather limited. As

an example, for the case of 20 nodes, it results 2.94%. These outcomes are confirmed

by the statistics of MCT, which also show that the variability introduced by the rate

adaptation algorithm on the MCT is negligible. As a final remark, it may be observed

that, practically, the MCT increases linearly with the number of nodes. This is not

surprising, because the main cause of non–linearity is represented by packet retrans-

missions during the polling of slaves, that introduce random backoff times, with the

consequent negative impact on the MCT. A packet needs to be retransmitted either

when it incurs in a collision or when it is lost for other communication impairments.

However, with the adopted Master–Slave protocol, collisions are negligible (slaves can

not transmit contemporaneously) and so are the consequent packet retransmissions.

Moreover, packet retransmissions due to other causes are limited by RSIN, that clev-

erly selects transmission rates able to ensure the best packet transmission success

probability.

Table 4.6: Statistics of the MCT and Impact of the RA algorithms.

Nr. RSIN RSIN–L No–ET
Nodes Mean Dev. Mean Dev. Mean Dev.

(ms) (ms) (ms) (ms) (ms) (ms)

5 8.5064 0.4198 8.3022 0.4241 8.2566 0.4274

10 16.9741 0.5772 16.5751 0.5879 16.4748 0.5883

20 33.9502 0.8226 33.1381 0.8314 32.9521 0.8386
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Figure 4.9: Minimum Cycle Time for a Prototype Industrial Network.
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Chapter 5

Optimizing LoRaWAN for IoM

Wi-Fi networks are surely attractive within the IoM concept, as they are high-

performing and speed networks. As a matter of facts, there are several industrial

applications where high data rates are not required, but long communication range

and low energy consumption are key requirements. For example, a useful test-case

is presented in the following. The ADMIN-4D project [141] foresees the development

of 3D printers of huge dimensions, devoted to the printing of dumb-based artifacts

for various applications. In this context, humidity and temperature must be carefully

tracked during both the production phase of the artifact, and in the final deployment

site. In particular, during production data coming from the artifact are used to control

the process (e.g. sent to a PLC) as depicted in Figure 5.1. Moreover, data from both

the production and in the final deployment phases are collected in the cloud to be

used for offline analysis.

In such application, low data rates are acceptable, but long range (especially when

the artifact is in the final deployment site) and battery consumption are surely key

issues. The latter is an important parameter, as once the sensors are embedded in the

artifacts are not accessible anymore. For this reason, a LoRa network has been chosen

for the project. Indeed, by comparing Figures 5.1 and 3.4 it is possible to see that the

considered network architecture is exactly the same. An experimental campaign to test

different kind of batteries and their lifetime has also been conducted. With a sampling

93
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period of 5 minutes, it was possible to obtain a battery lifetime of approximately 18

days and 60 days by using respectively widespread Lithium-ion (Li Ion) and Lithium

Thionyl Chloride (LTC) batteries.

By carefully analyzing this meaningful test case, it is possible to draw some con-

clusions, and challenges in the application of LoRa network for industrial systems and,

generally speaking, in the I&M field.

1. First of all, common requirements coming from the IoM need to be investigated

and optimized, as already discussed in Section 1.2. The number of correctly sent

packets and communication delays must be investigated.

2. Battery consumption must be decreased. Indeed, for the considered application,

the battery lifetime is enough but generally speaking, and increasing the sending

frequency, an optimization of the energy consumption is needed.

3. To generalize, and apply LoRa networks in a wider area of applications, the

already discussed (in Section 3.4.2) DC limitation must be addressed, to increase

the data rate.

5.1 Parameter Adaptation Using RL

In order to suitably address the aforementioned issues, it is possible to adjust

the transmission parameters introduced in Section 3.4.1 can be adjusted. In practice,

this parameter adaptation is something similar to the already discussed RA for Wi-

Fi networks. In the following, a novel parameter adaptation strategy based on RL

is presented and compared to the default parameter strategy of LoRa, namely ADR

(Section 3.4.3). Results obtained in this section demonstrate that the proposed RL

strategy achieves a better trade-off between the number of correctly sent packets and

the energy consumption.
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5.1.1 Formalization

As already stated, the development of performing and accurate industrial IoT

measurement systems, poses several challenges in terms of correctly delivered packets,

under strict timing requirements. In this context, the DER that has been already

introduced in Eq. (1.2), becomes a key parameter for this study. It is worth observing

that all the following RL strategies follow the approach introduced in Section 2.9, with

particular reference to Eq. (2.9) and Eq. (2.10).

Moving from the aforementioned observations, a RL–based parameter adaptation

policy has been proposed, namely RL-based Rate Adaptation Algorithm (RRAA).

The latter, bases its behaviour on a suitable MDP, where states, actions and rewards

are defined as follows. First of all, states are defined as couples of DER and SNR

values. In particular, both DER and SNR variation intervals of the UpLink messages

are discretized to suitably describe all the possible communication conditions. Ten

different equally spaced DER levels have been identified, ranging from 0% to 100%.

Moreover, after a careful analysis of the behaviour of the simulator, 12 SNR levels

ranging between 0 and 60dB, and one level to represent SNR > 60dB, have been

recognized. The proposed discretization allows to describe the system environment by

means of 130 different states. The SNR becomes, in this context, a key parameter, able

to suitably represent the channel’s condition, depending on both the distance between

node and GW and the interference with other devices. For this reason, the Q table

resulting from the training activity can be shared between all nodes, thus developing a

smart, mobile and plug and play measurement system. Secondly, Actions are defined as

couples of TP and SF, whose possible values have been already presented, respectively,

in Eq. (3.4) and Eq. (3.5). By combining them a total number of 30 actions can be

identified.

After a trial and error phase, rewards for RRAA have been defined as per Eq. (5.1),

to suitably optimize the total DER.

r =
(DERt −DERt−1) ∗ SNRt

SFt

(5.1)

Specifically, higher rewards are given to actions resulting in higher DERs, SNRs
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and lower SFs, i.e. higher data rates. The latter, in particular, aims at accomplish a

trade–off between communication robustness and low transmission delay. Indeed, the

DER, the SNR and the SF are monitored from the environment after an action is

taken. It is worth observing that, if the algorithm is run in a static network config-

uration and the same interference model, the considered variables varies mostly due

to the chosen action. By combining them as per Eq. (5.1), higher rewards are given

when both the DER and SNR increase. By only taking into account the numerator in

Eq. (5.1), the algorithm is always choosing the most robust communication possible,

that will result in higher communication delays. For this reason, I decided to divide

by the SF, to give higher rewards to lower SFs, that in turn increase the data rate.

This adaptive strategy does not take into account the energy consumption, being suit-

able for applications where the battery lifetime of the sensors is not critical. On the

contrary, there are several industrial applications where measurement systems must

also accomplish to battery lifetime requirements, as the aforementioned one. In this

context, sensors become unreachable, thus underlining the importance of the battery

lifetime. For these reasons, the battery consumption must be taken into account. The

novel RL algorithm, namely Green RRAA (GRRAA), foresees to modify the rewards,

to take into account the TP. The new reward function is presented in Eq. 5.2.

r =
(DERt −DERt−1) ∗ SNRt

β ∗ SFt ∗ TPt

(5.2)

It is worth observing that, the β value can be used to suitably tune the RL adapta-

tion policy. In particular, the higher β, the higher the importance of SF and TP in the

rewards. In this situation, much attention is given to the energy consumption, as the

algorithm tries to use lower TPs and SFs. Actually, the lower the SF, the higher the

data rate, the lower the transmission time, thus reflecting in a lower energy consump-

tion and transmission delay. On the contrary, the lower β, the higher the importance

of the DER. In conclusion, α and γ values of Eq. (2.9) are set, respectively, to 0.1 and

0.7, while β is set to 10.

The training activity starts initializing the Qtable with null values. When a downlink

message is received from a specific node, the DER and the SNR values are used to
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determine the new state while the rewards are calculated using Eq. (5.1). Then, the

new Q-value is calculated with Eq. (2.9). Once the Q-table has been updated, the new

action is determined exploiting the ǫ-greedy algorithm Eq. (2.10), and the SF and TP

values are updated.

5.1.2 Simulation Set-Up

LoRaEnergySim (LES) [142], a Python-based simulation framework, has been used

to properly evaluate the behaviour of the three algorithms (RRAA, GRRAA and ADR).

In particular, LES allows to suitably simulate collided and weak packets. Moreover,

as the simulator already implements the ADR adaptive technique, it is particularly

suitable to compare ADR with the proposed adaptive strategy in terms of DER. In

addition, an accurate energy consumption model is used by LES, thus allowing to

achieve meaningful results in terms of used power.

The LES provides objects for modeling one or more "Nodes", a single "GW" and

a suitable "Air Interface". The latter one suitably models the propagation bahavior,

the SNR, and the collisions. In this way, the communication between several Class-A

LoRa nodes has been suitably simulated. As a first step, two simulation scenarios have

been considered. Figure 5.2 represent the simulated network architecture.

As can be seen in Figure 5.2, nodes are placed in circumferences centered on the

GW, respectively with a radius of 100m and 3950m. In both scenarios, a total of

20 nodes has been used. This particular choice has been made to obtain simple but

meaningful environments allowing a clear analysis and comparison of the transmission

parameters selected by the three algorithms, depending only by the distance between

the node and GW. In the depicted scenarios, the network backend, after the reception

of Nstep consequent uplink messages, sends a downlink message communicating the

RPt value of the specific node. The latter information allows the DER calculation as

per Eq. (1.2).

Table 5.1 resumes the simulated environments setup.

It is worth noting that, in Table 5.1, the duty cycle is set to 1%. Then, the inter-

message delay has been set to the highest value, to suitably respect the imposed duty

cycle also when the data rate is the lowest (i.e. SF12). In the next section, simulation
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Figure 5.2: Locations of the nodes

Table 5.1: Simulation setup

Parameter Value

Number of nodes 20
Area of the simulated environment 64Km2

Total UpLink packets per node (N) 1000
Period of confirmation downlink message (Nstep) 5
Payload length (Byte) 50
Duty Cycle (%) 1
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results are presented and discussed.

5.1.3 Results and discussion

After an extensive training phase, it was possible to test the adaptation algorithms,

in all the aforementioned scenarios. In particular, the chosen SF and TP values are

presented respectively in Figure 5.3 and in Figure 5.4.

The most important observations can be derived from Figure 5.4. In particular, the

RRAA algorithm does not optimize the choice of TP, that has been mostly set at the

higher values. Clearly, this involves in higher DER compared to ADR, that optimizes

also the energy consumption. On the contrary, the GRRAA better optimizes the usage

of TP. By comparing the behavior of GRRAA and ADR, it is possible to underline that

the network presents different behaviors in the two considered scenarios. Indeed, ADR

chooses mainly the lower TP when the distance from the GW is very low, while setting

high TPs when dealing with more challenging scenarios. Actually, GRRAA balances

better the TPs in both scenarios. By analysing the SF, it is also possible to underline

that, by highering the β value in Eq. (5.2) it is still possible to lower the energy

consumption, and also the transmission time. Indeed, GRRAA presents higher DERs

because it makes use of higher SFs (especially when the distance from the GW is high),

compared to ADR. This leds to higher transmission times and energy consumption.

Moreover, comparisons between the three algorithms in terms of DER and Power spent

per Packet (PP) are depicted respectively in Fig. 5.5 and 5.6. Furthermore, the mean

DER and PP values are listed in Table 5.2.

Results in terms of both DER and PP, are totally consistent with the analysis made

above. When the distance from the GW is too low, all the algorithms are capable to

correctly deliver packets, and ADR performs better in terms of energy consumption.

On the other side, GRRAA performs definitely better in terms of PP, while maintaining

high DERs, when the distance from the GW becomes higher. From Table 5.2, it is

possible to draw some last observations. Firstly, all the algorithms perform better in

terms of DER when the distance from the GW is lower, thus underlining the correctness

of the proposed algorithms. Moreover, the power spent to send a single packet grows

with the distance from the GW. Actually, the GRRAA provides quite similar energy
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Figure 5.3: Comparison of the SF in two different scenarios with ADR, RRAA, and GRRAA



102 CHAPTER 5. OPTIMIZING LORAWAN FOR IOM

Figure 5.4: Comparison of the TP in two different scenarios with ADR, RRAA, and GRRAA
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Figure 5.5: Comparison of the DER in two different scenarios with ADR, RRAA, and GRRAA

Table 5.2: Comparison of the Power per Packet in two different scenarios with ADR, RRAA,
and GRRAA

Name SimNo DER PWR per PKT PWR over DER

ADR 100 99.88 182.08 1.82
ADR 3950 73.25 233.33 3.19
RRAA 100 100.00 216.65 2.17
RRAA 3950 83.12 236.69 2.85
GRRAA 100 99.77 199.37 2.00
GRRAA 3950 76.60 215.12 2.81
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Figure 5.6: Comparison of the Power per Packet in two different scenarios with ADR, RRAA,
and GRRAA
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Table 5.3: Comparison of the Power per Packet on the random locations scenario with ADR,
RRAA, and GRRAA

Name DER PWR per PKT PWR over DER

ADR 94.04 192.13 2.04
RRAA 98.94 210.75 2.13
GRRAA 98.97 198.19 2.00

consumption values compared to ADR, while performing definitely better in terms of

DER. From a comparison between RRAA and GRRAA, it is possible to underline

that the GRRAA performs better in terms of energy consumption, while maintaining

similar levels of DER. Summarizing, both the simulation setup and the algorithms

implementation are coherent with the theoretical behavior of the network, and the

proposed approach is solid and performs better than ADR. Finally, I also considered

a scenario where 60 nodes are randomly placed in a 1km2 area, with a central GW.

The results obtained in such scenario, are presented in Table 5.3.

Actually, the results are encouraging as they confirm the previous ones, allowing

to properly generalise the discussion made above.

5.2 Overcoming DC limitation in LoRa networks

In Section 3.4.2 I already underlined that one of the big limitations on the applica-

tion of LoRa networks for IoM is the DC limitation. In Section, hybrid channel access

mechanisms are proposed, aiming to increase the data rate, thus decreasing the delay

between the packet generation and the reception. The latter parameter, will be partic-

ularly taken into account, and the results will confirm that the proposed approaches

decrease the delay and increase the packet delivery rate.

5.2.1 MAC strategies

Several works in the literature have considered the design of different MAC strate-

gies, instead of pure-ALOHA. In fact, a listen-before-talk solution can be effectively
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implemented by exploiting the Channel Activity Detection (CAD), already present in

all the LoRa radios to detect the presence of incoming preamble chirps [143]. In [144],

the authors analyzed several medium access strategies from energy and reliability

perspectives, wherein the widespread Carrier Sense Multiple Access (CSMA) listen-

before-talk channel access methodology has also been taken into account. In CSMA,

a device performs the channel sensing before a packet transmission and proceeds with

the data communication only if the channel is sensed idle, thus avoiding collisions

among devices. In [143], the authors pointed out that CAD procedure, provided by

LoRa devices, can effectively be used for channel sensing. Although this feature is orig-

inally designed for energy-efficient preamble detection, authors demonstrated a 95%

accuracy in detecting the channel occupancy. Moreover, the authors of [145] estimated

the CAD procedure duration, depending on the specific SF. Despite these encourag-

ing results, note that the relationship between the CAD procedure accuracy and the

specific surrounding environment (e.g disturbances, obstacles, etc) is still unclear.

5.2.2 Channel Access Designs

In this section, the design of hybrid ALOHA-CSMA medium access strategies to

overcome the DC limitation of the LoRaWAN specification. The first solution considers

using CSMA in one of the three mandatory channels, with ALOHA in the other two. I

refer to this technique as a hybrid ALOHA-CSMA (hybAC) strategy. All the scenarios

considered in this Section are based on a basic implementation of CSMA. Between the

transmission of a packet and the subsequent one, the device waits for a Distributed

Inter-Frame Space (DIFS). Then, the channel sensing is performed, and the CAD

timings are added. If the channel is free, the device can start the transmission. If

the channel is occupied, the device waits a random time between 0 and a predefined

Contention Window (CW), before retrying the transmission. A maximum number of

transmission attempts can be done, before considering the packet as lost. The hybAC

strategy considers sending the measurements directly to the GW using two available

ALOHA channels when possible. The third channel, where measurements are sent

through the CSMA channel access mechanism, gives the possibility to send packets

during the ALOHA channels’ unavailability due to the aforementioned DC limitations.
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The second solution investigates a hybrid ALOHA-CSMA strategy with Relaying

capabilities (hybACR). The idea is to enable the devices with high inter-message de-

lay to transmit packets by using CSMA to the neighboring devices, which may still

have DC left for transmission. These “relays" in turn, transmit the message to the

GW using ALOHA. In this way, the nodes in critical situations (i.e., having no DC

left to transmit) can ask for help from neighbors, without the need to sense the whole

area, but only a limited geographical space around them. An idea could be to optimize

the sensitivity threshold to reduce the sensing area. I will refer to this connectivity

mode as the Device-to-Device (D2D) communication or relaying strategy. There are

several contributions in the literature addressing the LoRa D2D capability. Actually,

a comprehensive review can be found in [146], and it is mainly used to provide connec-

tivity to the End Devices out of the reception range of the GW. The authors in [146]

also highlighted that all the relaying End Devices must have the capability to simul-

taneously receive packets at different SFs. Therefore, for the considered application,

it is important to consider multi-channel devices, thus allowing the reception of pack-

ets from stations with different SFs. A conceptualization of the proposed approach is

depicted in Figure 5.7.

Figure 5.7 represents an area served by a central GW and several associated End

Devices. The red circles represent End Devices with no more DC left, i.e., they have

consumed the allowed DC quota, as depicted in the figure with zero slots in the DC

queue. In this case, the red devices can use the available DC of the black devices,

by transmitting their frame in D2D mode using CSMA mechanism. Red nodes, when

needed, can send a broadcast help_request, asking to use other nearby stations as

relays. It is worth noting that the area in which one station can sense the channel and

send help_requests through CSMA, strictly depends on the chosen energy detection

threshold; thus, it becomes a tunable parameter of the whole approach. The problem

is, in fact, twofold. Stations with DC left must choose one (or a set) of other stations

to serve as a relay, and send to them an help_ack comprising information about the

DC and the SNR. This information will be used then by the red devices to choose the

best station as a relay, among the ones that acknowledged help_requests. In substance,

for relay selection, an Request To Send (RTS)/Clear To Send (CTS) mechanism is
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Figure 5.7: Conceptualization of the proposed approach.

enabled to pair stations with no DC queue left with relays. By analyzing Figure 5.8,

it is possible to understand how the RTS/CTS works.

It is also worth observing that the RTS/CTS mechanism is able to handle the so-

called hidden terminal issue. In particular, each station at each time checks if, following

the duty cycle limitations, it has the possibility to transmit a packet. If so, and no

packet is ready for transmission, the radio switches to receiving mode, waiting for the

help_request of another node. If more than one RTS is received, the station chooses

to relay information coming from the first node that asked for help. Similarly, if more

CTSs are received from a node requesting help, the first station sending CTS is used
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Figure 5.8: RTS/CTS mechanism.

as a relay.

It is worth observing that the problem I want to solve takes place on two different

levels. The network behavior is strictly related to the specific set of selected communi-

cation parameters. In particular, given Eq. (3.6), Eq. (3.7), Eq. (3.3) and Eq. (3.9), it

is possible to notice that BW, CR, and SF strictly affect the inter-message delay. For

this reason, the parameter adaptation in this context is strictly related not only to the

desired communication performances but also to the possibility to relay and schedule

all the needed data traffic. Despite this, it is reasonable to first consider separately the

adaptation of the communication parameters and the traffic schedule. Communication

parameters can be at a first glance chosen, aiming at a high-performing communica-

tion, based on the distance of the specific node to the GW. In particular, it is possible

to assume that the stations more distant from the GW have a higher SF, also if this
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behavior depends on the specific adaptation strategy employed, as outlined previously.

In this way, moving from the center of the network to the border, the SF increases,

and the inter-message delay increases.

5.2.3 Simulation Assessment

A suitable simulation environment has been set up, to evaluate the strategies pro-

posed in the previous section. As in the previous Section, the LES simulator [142] has

been exploited, by adding a basic CSMA implementation and enabling D2D commu-

nication. In this study, the CAD procedure has been considered enough effective to

derive the channel occupancy, so that the information about the channel status has

been simply shared between nodes in the simulator. Despite this, the timings related

to the CAD procedure have been properly taken into account. In this regard, the CAD

procedure timings can be derived from literary works, following an approach similar

to [147].

By exploiting the aforementioned simulator, a network comprising a central GW

and End Devices at different distances are tested. The network topology, together with

the communication setup, is depicted in Figure 5.9.

I evaluated both the hybAC strategy and the hybACR strategy, comparing them

with the pure-ALOHA strategy in terms of correctly delivered packets and End-to-

End (E2E) delay. In this context, E2E comprises all the communication delays and

also the time packets wait in the queue for being transmitted. This definition of E2E

is particularly meaningful in this context, to evaluate the aging of the measurements

when they are received by the GateWay.

5.2.4 Results

The network already depicted in Fig. 5.9 is simulated by using the communication

parameters as given in Table 5.4.

The conducted simulations lasted 2 hours, where Poisson-distributed traffic is gen-

erated, with a total number of 1080 packets per node. In these 2 hours, the E2E has

been monitored only for half an hour, as its value (for ALOHA algorithms) quickly
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Figure 5.9: Network Setup.

diverge. This behavior is given by the fact that at a certain point ALOHA can not

serve any more packets in the queue of nodes with high SF. For this reason, monitoring

the delay for more than half an hour is not meaningful.

The first simulation objective was to test the pure-ALOHA channel access mecha-

nism in LoRa, using all three mandatory channels. The average number of sent packets,

for the different SFs, is summarized in Table 5.5.

Notice that the results obtained are totally comparable with the theoretical ones

(Table 3.3). Indeed, as expected, for SF 7, 8 and 9 the DC limitation has no effect as

the number of generated packets are much less then the number of packets that can

be served. For the other SFs, if we consider three channels, the number of sent packets
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Table 5.4: Simulation parameters.

Parameters Symbol Value

Bandwidth BW 125 kHz
Payload PL 5 bytes
Transmit power TP 14 dBm
Duty cycle DC 1 %
Simulation time T 2 h
Packet generation rate λ 0.15 pkts/s
Total measurements per node pktn 1080

Table 5.5: Average number of sent packets with a pure-ALOHA channel access mechanism.

SF Average sent packets

7 1075
8 1078
9 1066
10 695
11 348
12 228

are below the theoretical ones. As a matter of fact, in the simulations there are more

delays taken into account, trying to mimic the behavior of a real hardware platform.

Moreover, this setup is particularly interesting as nodes with SF 7 and 9 can send

more messages than the planned ones, while stations with SF 12 can not send all the

packets.

Afterwards, the hybAC strategy has been evaluated. The statistics of the sent and

correctly delivered packets are reported in Table 5.6.

Obviously, in a low-traffic scenario, the hybAC scenario and the pure ALOHA

one perform similarly, according to what is already outlined by authors of [148]. On

the contrary, the simulated scenario has been suitably overloaded to demonstrate the



5.2. OVERCOMING DC LIMITATION IN LORA NETWORKS 113

Table 5.6: Percentage of sent and received packets with respect to the generated ones, pure
ALOHA and hybAC.

SF Aloha SP(%) Aloha RP(%) hybAC SP(%) hybAC RP(%)

7 97.04 97.04 97.04 97.04
8 95.65 92.60 95.74 89.44
9 98.55 95.38 98.92 92.22
10 64.38 57.15 97.93 92.27
11 32.22 30.21 97.53 93.95
12 21.11 21.11 99.44 98.70

effectiveness of the usage of a Listen Before Talk strategy. The statistics reported in

Table 5.6 have a big impact also in the time between the measurements generation and

the reception of the packet from the gateway. The cumulative distribution function of

the aforementioned delay, both for the pure-ALOHA and hybAC methods are reported

in Figure 5.10. As a matter of fact, the CSMA methodology drastically decreases the

E2E delay, when in presence of high-traffic networks. This behavior is confirmed also

by Table 5.7, where both mean and standard deviation values of the delay are reported.

Table 5.7: Delay between measurements generation and reception: statistics.

Scenario Mean delay(s) Standard dev.(s)

Pure ALOHA 154.24 255.73
hybAC 1.59 2.38

As can be seen, when using a pure ALOHA mechanism, not only the mean value

but also the standard deviation are higher than the hybAC methodology. As said

before, this strongly impacts on the measurement uncertainty.

Finally, the hybACR methodology has been evaluated. To do so, I used the network

deployment of Figure 5.11.

Indeed, a random network will always make the D2D strategy perform poorly.
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Indeed, as SFs are tuned based on distance, each node will find as neighbors devices

with the same (or similar) SF, thus leading to a non-availability of DC left also on

nearby stations. For this reason, I simulated a situation where nodes with lower SFs

could help devices with no DC left. A comparison in terms of correctly received packets

and E2E are respectively presented in Table 5.8 and 5.9.

Table 5.8: Percentage of sent and received packets with the respect to the generated ones, both
using pure ALOHA and hybACR.

SF Aloha SP(%) Aloha RP(%) hybACR SP(%) hybACR RP(%)

7 97.78 94.38 97.72 92.78
12 22.22 22.22 96.67 80.37

Table 5.9: Delay between measurements generation and reception: ALOHA vs hybACR statis-
tics.

Scenario Mean delay(s) Standard dev.(s)

Aloha 25 15
hybACR 1.26 2.4

As can be seen, in such a situation hybACR increased the communication capa-

bilities of the sensor network. It is worth observing that, as before, the E2E has been

monitored for half an hour. Here, also in half an hour, the delay is very big and this

effect is only due to the two SF12 stations. This strategy is particularly useful when

a low number of nodes are in a critical situation (low SF, presence of obstacles that

lower the transmission range, etc) and suitable devices with lower SF can be used as

to relay the information to the GW. This will decrease the occupancy of the channel,

compared to enabling direct CSMA communication to the GW. Moreover, this strat-

egy will be particularly appealing if we take into consideration the D2D capability

when dynamically adapting the SF.
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Figure 5.10: Pure ALOHA and hybAC strategies delays CDF.
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Figure 5.11: Network used to simulate the hybACR.



Chapter 6

ML - Based Post Processing

Techniques

In the previous chapters, the work focused on the optimization of wireless connec-

tivity devoted to measurement transmission within the IoM concept. In this chapter,

I analyze the possibility to exploit ML techniques to derive measurement from images.

As already stated, AI techniques are a key enabler of the IoT, although if some research

challenges must still be investigated. ML - based post processing techniques have been

evaluated by using as a test-case a meaningful example of Vision - Based IoM, that is

presented in Section 6.1.

6.1 A Van Herick Vision Based Measurement System

Glaucoma and other eye diseases are affecting more and more people in the last few

years. Prevention is essential to avoid the progression of that disease, but in some cases,

the screening exams are invasive or quite expensive, and it is not possible to periodically

monitor the eye condition [149]. It has been demonstrated that people with a narrower

Anterior Chamber Angle (ACA), i.e. the iridocorneal angle, are more vulnerable to

the most aggressive form of glaucoma, the Primary Angle Closure Glaucoma (PACG)

[150]. Nowadays, the gold technique used for ACA measurement is the gonioscopy,

117
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but it is invasive and requires high medical skills [151]. Among the various assessed

techniques, one of the most interesting is theVan Herick (VH) maneuver, which exploits

the correlation between the thickness of the cornea and the ACA [152]. The ratio

between these two thicknesses represents the width of the ACA, hence allowing to

detect the PACG. VH approach requires a slit lamp, illuminating the limbus with a

60 degrees angle between the light source and the eye optical axis [153]. Despite the

simplicity of the approach, any PACG diagnosis derived from the estimation of the

ACA with the VH technique must be performed by direct observation of an expert

ophthalmologist with the help of a traditional slit lamp and a microscope. It appears

then clear that, necessarily, this type of diagnosis is intrinsically subjective and results

are strictly related to the ability and experience of the observing ophthalmologist [151].

In the following, the developed VH instrument is presented, and some ML based

post processing techniques are adopted.

6.2 Experimental Setup and Research Goals

The Van Herick procedure used to measure the ACA must be accomplished with

specific alignment constraints [151]. It has been shown by authors of [154] that both

illumination and observation angles affect the ACA openness assessment. As a conse-

quence, particular attention was paid during the realization of the optical setup for

such an experimental evaluation. A schematic diagram of the optical setup used to

perform the Van Herick measurement is shown in Figure 6.1.

The optical setup consists of two main devices. Firstly, a digital CMOS camera

Basler Dart (daA1600-60uc S-Mount, Basler© AG, Ahrensburg, Germany) is posi-

tioned in front of the analyzed eye, aligned with its optical axis. A 16 mm focal length

lens (Evetar Lens M12B1618IRM12 F1.8) is also used in the optical setup. Secondly, a

LED Digital Light Projector (DLP) (DLP2010EVM-LC, Texas Instruments©, Dallas,

Texas, U.S.) was used as the illumination unit, instead of the traditional slit light.

The DLP relies on modern micro-mirror technology to project structured light onto

a specific target. The illumination unit was placed at a 60-degree rotation angle with

respect to the eye and camera optical axis as shown in Figure 6.1. Moreover, the DLP
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Figure 6.1: Schematic diagram of the optical setup.

has been configured to emit a uniform red slit light that scans the whole surface of

the eye under examination. Thus, during the measurement procedure, the emitted slit

light scans the eye from the external corner of the sclera towards the nose. This scan

takes place during the frames acquisition with the digital CMOS camera. A fixation

target, i.e. a small light pointer, was placed on the eye-camera optical axis, through

a 45 degrees semi-reflecting mirror, to help the patient to look straight ahead. The

patient’s head is then placed on a chin rest to guarantee the steadiness and alignment

to the optical setup. A single measurement procedure has been designed to perform

two entire scans of the eye in 4 seconds, allowing for a total of 120 raw pictures to be

collected at 30 fps. The entire system is connected to a Windows® based embedded

computer (Lattepanda Alpha 864s) with an Intel® Core™ m3-8100Y processor unit.

The computer runs a Python-based Graphical User Interface (GUI) that is in charge of

peripheral control (Camera and DLP) as well as real-time image processing. Actually,

the set of images previously acquired by the camera are then processed by the ML

algorithm, aiming at the identification of the central images.

As previously mentioned, the VH technique foresees the comparison of the depth

of the peripheral anterior chamber with the thickness of the cornea. This measure
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can be derived when a narrow slit of light shines within the limbus, i.e. the edge

between the cornea and the sclera. As a consequence, within the entire set of images

acquired during the scan, only a few of these (referred to as central images) can be

used to measure the ACA. Both previous and subsequent acquisitions, where the light

is placed respectively on the left and on the right of the limbus, must be discarded.

Indeed, since the patient eye position may change between different measurements, an

a-priori images selection can not be performed. Consequently, a wider area must be

scanned.

The outcome of a single measurement, that is, the dataset coming from the acqui-

sition system consists of two scans of the entire eye, each one composed of 60 images

with a 1600x1200 px resolution. As an example, a set of images acquired during a scan

is represented in Figure 6.2.

60 Images

approx 3 “Center” Images“Left” “Right” 

Figure 6.2: Example of a set of images acquired during a scan.

The approach followed in this work is based on a CNN, solving a three-class image

classification problem. The CNN takes as inputs the images acquired by the setup

and performs the classification activity by tagging the images as left, central or right

respectively labeled with 0, 1, 2.

In the following, after a comparative analysis among different ML approaches, two

CNNs that revealed most suitable to solve the classification problem, will be identified.

Both of them have been then specifically analyzed, through an objective approach

presented in Section 6.5. As a last remark, it is worth observing that there are no

other contributions in the literature addressing an automatic procedure to perform

the VH maneuver, whereas other works focus on the of ML techniques to process



6.3. ML–BASED CLASSIFICATION TECHNIQUE 121

images acquired with the standard manual VH technique.

6.3 ML–based classification Technique

In the following, the NN design is specifically addressed. At first, the best ML tech-

niques for the considered application has been chosen, by exploiting a comparative

approach. An investigation of the adopted CNNs is then proposed. Several networks

structures have been trained, since the level of complexity of the given problem does

not preclude the selection of any specific model, nor imposes an a priori choice of

one model with respect to another. Therefore, classification performance has been

tested and compared, by using the metrics introduced in Section 2.10, of some ML

algorithms. In particular, SVM, K-Means and CNN structures have been compared.

The latter have been chosen, with the respect to non-convolutional NN, as they gen-

erally shown a better behavior when dealing with image classification problems. In

general, it would be important to obtain high values of both recall and precision, but

for the application considered in this work, the precision is more important. Indeed,

if some left or right images are wrongly interpreted as central, the measurement out-

come taken from those images becomes intrinsically less accurate. Results are shown

in Table 6.1.The performance of the different machine learning approaches over a test

data-set, composed by 8677 non-augmented images, have been assessed in terms of

validation accuracy (VAL-ACC), center class prediction recall (CTR-REC) and pre-

cision (CTR-PR), single frame prediction time (SFPD) and the respective standard

deviation over the whole test data set. It is worth observing that, the test data-set

used for the comparison has not been used before during the training phase. Moreover,

the total number of parameters of each CNN, regarding convolutional layers only, have

been reported to give an idea of overall networks complexity.

Among the different ML techniques, CNNs show a superior performance in terms of

accuracy if compared to both the linear SVM classifier and the unsupervised k-means

approaches. It is worth noting that the SVM accuracy is quite high while prediction

of center images is not equally acceptable. Indeed, the linear classifier can correctly

predict most of the left or right images, while confusing the central images. The same
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Table 6.1: Classification Method Comparison

Method VAL-ACC CTR-PR CTR-REC SFPD (ms) σ SFPD (ms) Parameters

AlexNet 98.82 % 86.04 % 86.04 % 29.98 3.43 6088768
VGG16 99.02 % 88.44 % 87.18 % 33.42 3.53 14713536

ResNet50 98.29 % 79.56 % 82.05 % 39.94 6.28 23581440
SVM 92.90 % 26.92 % 7.98 % 0.39 0.21 -

K-means 59.31 % 3.73 % 12.82 % 0.71 0.25 -

can be said for the k-means ML algorithm, but with even worst performances: in

this case, the unsupervised method failed to recognize a common pattern among the

presented training images, hence resulting in a significantly lower performance in the

validation phase.

From Table 6.1, AlexNet and VGG16 [155] are the networks providing the best

performance in terms of precision and recall, and in general with respect to all the

paramenters. In the table are reported also the mean and the standard deviation of the

so-called SFPD. As can be seen, CNNs present higher values of SFPD. From Table

6.1 Alexnet revealed a lower complexity in terms of total parameters (last column

of Table 6.1) and showed to be slightly faster than VGG16, that is however able to

provide better values of precision and recall. For these reasons, both will be considered

in the following analysis, and as potential candidates for the implementation within

the proposed VBMs.

6.3.1 Convolutional Neural Network Design

As described in the previous section, both AlexNet [45] and VGG-16 [155] struc-

tures can be finally chosen for this application. Different Alexnet and VGG-16 settings

have been tested during an extensive experimental campaign, where a trial and error

methodology has been adopted. In particular, several typical parameters, such as pre-

cision and recall, have been used to optimize the training activity. Afterwards, the best

training configuration for this application has been chosen and it is presented in this

section. Moreover, as the adopted method is a supervised ML technique, I took par-

ticular care of the labelling process. The collected images have been carefully divided

into the three classes, by exploiting the guidelines of expert ophthalmologists. Relu
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has been adopted, both for AlexNet and VGG-16, as it is a commonly used activation

function [156], that is in charge to manage the Input-Output behavior of neurons, as

already discussed in Section 2.5. Moreover, in this situation, it achieves excellent per-

formances and it demonstrated to learn faster. A slight modification has been made in

respect to the typical AlexNet structure: a bilinear interpolation algorithm has been

exploited to obtain resized 400x300 px input images. It is worth noting that downsized

images are used only for classification purposes, while the ACA measurement will be

performed with native resolution ones. Indeed, there are no network performance im-

provements when using the typical 227x227 px AlexNet input size. Likely, an higher

quality of the image is more important than a fine tuning of layers and kernel sizes.

Figure 6.3 shows the employed network structure.

As it is possible to see from Figure 6.3, a Dropout Rate has been set to 50%.

The VGG-16 architecture, is basically formed by the same components already

discussed for the AlexNet one. Actually, the difference resides in the number and

dimensions of the various layers.

Data preparation is a fundamental task to be done before the training stage. Hun-

dreds of acquisitions were made and the data have been manually split into the three

classes to train the network. Data are normalized between 0 and 1, and then 70% of

the total have been used to train the network, while the other portion for validation

purposes. One important feature of the available dataset is the low number of cen-

tral images (i.e. those ones to be identified with the network), usually three or four

out of 120 images acquired during the measurement procedure. To over the hump,

data augmentation techniques have been adopted. Data augmentation usually foresees

the generation of modified training examples, applying different and pre–tuned image

transformations, e.g. horizontal and vertical shifts, rotations and brightness modifica-

tion, only to name a few. This technique is typically used to generalize the behavior of

the network, trying to generate new and meaningful examples targeted for the applica-

tion. Instead, data augmentation has been used also to generate more central images,

this way giving the possibility to train the network with comparable amounts of left,

right and central images. The data augmentation technique has been applied to the

already labelled images, to ensure that the augmented images are correctly labelled.
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Figure 6.3: AlexNet [45] structure.
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In Table 6.2 are listed the chosen data augmentation parameters.

Table 6.2: Data Augmentation Setup Parameters.

Horizontal Shift Range (% of the width) (−1%, 1%)
Vertical Shift Range (% of the height) (−1%, 1%)

Rotation Range (deg) (−7, 7)
Brightness Multiplication Factor Range (0.5 − 1.75)

Zoom Range (% of the picture size) (90% − 110%)
Indeed, little movements to the right and to the left, rotations and zooms may

occur. Furthermore, different brightness levels could take place in different surround-

ing environments. After the data preparation stage, the prepared data set had the

properties listed in Table 6.3

Table 6.3: Train Data Set Properties.

Original Original Training Augmented Total Training

Left 8537 5976 5711 11637

Central 593 416 14994 15410

Right 7877 5513 5471 10984

In Table 6.3, as said before, the original images have been splitted in validation

and training data, being respectively the 30% and 70% of the total. Afterwards, only

the training images have been augmented.

6.4 Neural Network Evaluation

The CNN AlexNet and VGG-16 described in Section 6.3.1 have been implemented

in Python, within the Keras (Tensorflow Version 2.1.0) framework and trained accord-

ing to the set–up described in Table 6.4. Clearly, as the hyper-parameters have been

chosen after a trial-and-error stage, the final settings can be slightly different for each

CNN.

At each training stage, the error gradient was calculated through the Stochastic
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Table 6.4: CNN training settings.

AlexNet VGG-16

Optimizer SGD Adam
Learning Rate (LR) 10−2 2 ⋅ 10−4

Epochs 75 150

Batch Number (BN) 128 332

Loss Function SCC SCC
Validation Data (% of original images) 30 30

Gradient Descent (SGD) algorithm for Alexnet, and by exploiting the Adam optimizer

[157] for the VGG-16 approach. By controlling the error gradient the optimizer updated

the weights so that the error decreased step by step. The next weights choice was done

by evaluating the error cost, through a specific loss function. Given the training settings

of Table 6.4, considering the n–th observation was labeled as a specific class c with

probability pn,c and N was the total number of observations, the Sparse Categorical

Crossentropy (SCC) loss function was expressed as:

Loss(pn,c) = − 1

N

N

∑
n=1

[log(pn,c)]. (6.1)

The resulting accuracy curves for train and test data (as an example, only for the

Alexnet structure) are shown in Figure 6.4.

It is worth noting that in this test case the train dataset was used several times

to feed the network, 75 and 150 Epochs for AlexNet and VGG-16, respectively. The

training has been stopped when the loss and accuracy did not improve for several

consecutive epochs, to avoid overfitting. Results are encouraging since it is possible

to achieve high accuracyvalues, already presented in Table 6.1. Despite this, a more

accurate analysis is needed, and a deeper evaluation is now conducted by means of

different metrics. Indeed, the objective of the network is to identify images belonging to

the center class, that has very low validation examples. For this reason, high accuracy

values can be obtained also if the central class is not well predicted. Moreover, there

is an impact of the threshold value on the precision. The threshold is defined as the
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Figure 6.4: Training and Validation Accuracy improvement during the training phase.

probability level above which an observation is labeled as center. The resulting recall

and precision curves obtained are shown in Figure 6.5 and Figure 6.6 for AlexNet and

VGG-16, respectively.

An evident effect is that, as the threshold increases, recall decreases with increasing

precision. Indeed, a threshold increase reflects on a lower number of total positive, i.e.

TotP = TP + FP. The growth of the precision is a clear indication that the total

positive decrease goes together with a decrease of false positives that mostly become

true negatives. The recall decrease is slighter than the precision increase. This allows

choosing a high value of the threshold to increase the precision of the whole network.

It is worth observing that all the reasoning is made on the global number of test

sequences, but high values of the threshold may involve in a small number of total

positive for a single data–set. For this reason, in this work the chosen threshold is

89%, allowing to achieve a precision much greater than the 80% for both the CNNs.

The trained network can be finally used to predict central images on the newly
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Figure 6.5: Precision and Recall: AlexNet
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Figure 6.6: Precision and Recall: VGG-16
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acquired data set. The classification algorithm can be run in the described embedded

system, with additional few seconds of execution that does not increase the acquisition

time, as it is performed after the scans are completed. This is surely an important

aspect to underline, as it is demonstrated that patient’s ability to look steady toward

the fixation target, is time-limited.

6.5 Test results

As already stated, one of the big challenges on the usage of ML technique in

the IoM panorama, is the need for a metrological evaluation. In this section, the

goodness of the CNNs performance is evaluated, from a metrological point of view,

through the study of the difference in pixels between the position of the limbus and

the position of the light line on the eye surface: the lower this difference the higher

the CNN accuracy. This procedure has been divided into 4 steps: i) recognition of the

iris from a reference image to have a reference for the intensity profile extraction; ii)

extraction of the limbus position from a reference image captured at the first instant

of the measurement procedure; iii) evaluation of the line position for every image

labeled as central; iv) computation of the difference between these two positions. It

is worth observing that all the procedure is conducted in a semi-automatic way, thus

revealing to be not directly applicable to identify the center images. Indeed, the aim

is to build a totally automatic VBMs system. Aiming at a metrological evaluation of

the NN behavior, the algorithm has been tested with a new dataset, that was not

used for training, neither for previous validation purposes. The dataset was collected

by expert ophthalmologists at IRCCS Fondazione G.B.Bietti. The dataset consist of

a total of 36 different subjects by expert ophthalmologists in a clinical environment.

As before, the number of center images chosen by the network ranged from 3 to 5 per

each measurement. The total amount of analyzed central images was 140. The dataset

includes eyes of four different colors: brown, blue, black, and green. The number of

measurements comprised in this new dataset for each color is presented in Table 6.5.

Results are summarized in Table 6.6.

It is worth observing that the mean error is always positive. Indeed, by suitably
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Table 6.5: New dataset properties.

Color Number of Measurements

Black 14

Brown 13

Green 11

Blue 12

Table 6.6: Mean and standard deviation of the error E between the limbus and the light line
position for different iris pigmentation.

AlexNet VGG-16
Color µ (px) σ (px) µ (px) σ (px)

Black 1.09 4.36 2, 6 3, 2

Brown 1.20 4.28 3, 7 5, 9

Green 6.69 5.19 6, 2 5, 6

Blue 7.51 5.48 7, 2 6, 2

Total 4.12 5.67 5, 37 6, 1

labeling the training data, the network has been instructed to choose central images

which present the line slightly inside the iris, rather than slightly outside. Actually,

when the line is somewhat inside the iris, it is still possible to see the refraction of

the light, and derive the VH grade. Results depend on the specific hardware used

(in particular the light line thickness) which makes substantially this error totally

negligible, as the thickness of the light line is always greater than the obtained error.
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Conclusions

In this Ph.D. thesis the novel concept of smart and distributed measurement sys-

tem has been deeply analyzed. In the first chapters, the key enabling technologies

(IoT, AI and ML and wireless communication protocols) have been deeply analyzed.

In particular, from the derived literature statistics it was possible to underline that the

application of IoT systems to derive measurements (for example in the field level of the

novel smart factory) is gaining much research interest during the last years. Moreover,

from an extensive analysis of the literature, the requirements for these novel smart

systems have been introduced and analyzed. Between others, the most important ones

are surely related to timeliness and real-time behavior of the system. We demonstrated

that these requirements have an impact on the measurement accuracy of the sensor

network. In particular, following the GUM, we have derived the relationship between

measurement uncertainty and uncertainty on the knowledge of the delay introduced by

the communication network. In substance, the measurement uncertainty is proportion-

ally dependent from the uncertainty on the knowledge of the delay. This observation

underlines, again, the need for deterministic systems.

Being the communication delay such an important parameter, one of the big chal-

lenges, in this context, revealed to be the specific communication protocol adopted, es-

pecially if wireless communication is needed. For this reason, widespread used wireless

communication strategies have been deeply analyzed, and the novel TSN standard-

ization activity has been introduced. The latter, being specifically designed for time

critical systems, is surely attractive in the field.

The experimental part of the thesis started with an analysis of RA strategies for

133



Wi-Fi networks, as they proved to increase the performances of IEEE 802.11 networks

in terms of network delay. Despite this, an analysis of the impact of the RAA has been

investigated. The presented experimental results proved that the impact on the round

trip time is limited, and that algorithms that take more time to execute are more

efficient from a RA point of view, thus proving to be efficient in the field. Despite this,

different RA strategies have different execution times, so an analysis of this aspect

before choosing the RAA is needed. As a matter of fact, also if not included in this

thesis for sake of brevity, we investigated a RL RA strategy for Wi-Fi in a literature

work [158], that proved to be efficient. Moreover, a RL strategy is interesting from a

computational point of view, as it foresees only to choose the rate from a Look-Up

Table.

Subsequently, LoRa networks have been addressed. A meaningful test case has

been presented; from the latter it was possible to underline that also LoRa networks,

characterized by long communication ranges, low power consumption and low data

rates can be used in IoM. Moreover, it was possible to underline which problems

of LoRa technologies need to be overcame, such as an optimization of the trade-off

between packets correctly received and energy consumption and the DC limitation.

The former has been solved by using an RL based parameter adaptation strategy.

Subsequently, the DC limitations have been solved by introducing hybrid channel

access strategies.

As a matter of fact, the proposed techniques underline that both Wi-Fi and LoRa

can be applied in the IoM scenario, after a careful optimization of the protocols. In

particular, Wi-Fi together with 5G, can be applied when high data rates are needed.

Some simulations on 5G are presented in Appendix A, that revealed to introduce

very low latency (in the order of 10 ms). I contextualized 5G in a meaningful IoM

application.

As a secondary project, I also tried some ML based post-processing techniques.

These techniques are surely important in the IoM scenario, but a precise characteriza-

tion of their impact in the measurement accuracy is needed.

As a matter of fact the IoM context exploits a plethora of different and interdis-
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ciplinary techniques. Indeed, IoT systems (also the ones used to smartly derive mea-

surements) are complex systems, that still pose several different research challenges,

that this work helps to underline. Wireless communication and Artificial Intelligence

techniques are, in facts, surely between them, together with a metrological charac-

terization of IoT systems. In particular, this work underlined that these technologies,

that deeply modified our everyday life, must be optimized to cope with the stringent

requirements coming from the IoM. Also the aforementioned IoM concept (i.e. the

design and analysis of smart and distributed measurement systems) is somehow new.

It was common practice to refer to the industrial measurement systems for example,

but the reality is more complex, and the same requirements can be generalized. The

same technologies, analysis, methodologies can be applied into different fields where

accurate measurements are needed. In Appendix A, for example, I will present a totally

different application field where the same concept can be applied. For this reason, this

work is deliberately a cross-party thesis, comprising the analysis of different technolo-

gies and applications. I hope to have been part of the process that will bring to the

development of complete, accurate and innovative systems devoted to measurements.
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Appendix A

IEC 61850 over 5G

In this appendix, the results of some simulations carried out in a 5G network as-

sessment are presented. These last results have been added in order to demonstrate

the interdisciplinary nature of this thesis, and in general the IoM context. Indeed, as

already stated from the first chapters of this work, the IoM paradigm can be applied

to different application fields. At the end, it is possible to see from this chapter that

the already discussed requirements are the same also for this specific test-case. These

results have been added in appendix only because can be considered preliminary re-

sults and further analysis is needed. These results were obtained in order to test the

suitability of 5G networks in the IEC 61850 context, that is briefly presented in Sec-

tion A.1. After the analysis of the simulated scenario, some results on the latency

introduced by the 5G network are presented in Section A.3.

A.1 The IEC 61850 context

Modern power systems are experiencing a rapid transition from the traditional mon-

itoring and control paradigm, mainly based on analog quantities, to a novel framework

where both measured quantities and control messages are conveyed in a digital format

[159], [160]. In this context, Distributed Measurement Systems are becoming increas-

ingly important. The sensing infrastructure has being deployed in the most sensitive
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node of the grids, particularly the electrical substations, where different kinds of in-

struments allow for monitoring in real-time the main quantities of interest [161]. In

this context, Phasor Measurement Units (PMU)s represent one of the most promising

solutions as they produce time-stamped measurements of voltage and current phasor.

IEC/IEEE 60255-118-1 (PMU-Std) [162] is the reference standard in the field, and

defines the performance requirements in terms of measurement accuracy, latency, re-

sponse time. To this regards, it is important to underline that this application becomes

a good example of non-industrial IoM system, with the same requirements already dis-

cussed in the previous parts of this work. The aforementioned PMU-Std introduces

also some synchronization constraints: as already stated, synchronization between de-

vices is an undeniable requirement in time critical systems. Based on the associated

time-stamps, it is possible to aggregate and compare PMU measurements coming from

different nodes and perform other crucial analysis.

Another important standard is the IEC 61850 (IEC-Std) [163], that defines the

substation communication protocols and the need for interoperability between systems

from different vendors [164]–[166]. However, it is worth noticing that many communi-

cations within a digital substations are often time critical and fully cabled solutions

are not always feasible due to implementation or economical reasons [167], [168]. Based

on these considerations, the recent literature has been discussing the practicality and

potential benefits of 5G mobile communication technology in power systems, partic-

ularly in distribution grids where the distances between substations are expected to

be limited and a single or few antennas may be sufficient to cover the entire range of

interest [169], [170].

The IEC-Std has gained an ever-increasing research interest in the last years. In a

more quantitative approach, I carried out an extensive literature research on Scopus,

by using 5 different search parameters, applied on the keywords, abstract and title

fields. The total number of articles found is reported in Table A.1 and a per–year

statistic is reported in Figure A.1.

In this regard, it is interesting to observe how the highest number of research

contributions corresponds to the publication of the IEC Technical Report 61850-1

(IEC-TR) [171] in 2013 that defined the communication between intelligent electronic



A.1. THE IEC 61850 CONTEXT 139

Figure A.1: Scopus Literature Review: per - year number of articles per topic.

devices in such a system, and the related system requirements. Indeed, the IEC-TR

was the first attempt to extended the scope of the IEC-Std communication protocol

and to make it compatible with power quality and distributed monitoring and control

applications.

Despite the relevant number of publication, though, it is worth noticing a significant

lack of rigorous performance assessment and feasibility analysis in the I&M community,

Table A.1: Scopus Literature Review: Number of Articles per Topic

Search Parameter Total number of Articles

IEC 61850 3199
IEC 61850 1071
IEC Std 61850 15
IEC 61850-9-2 164
IEC 61850-9-2 66
IEC Std 61850-9-2 5
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Figure A.2: IEC 61850 Keywords: association to IEEE communities.

as testified by Figure A.2. Indeed, it is interesting to observe how only 1 % of the

listed research contributions address the topic from a measurement science or even

metrological perspective. In order to fill this gap, this Chapter focuses on the impact

of communication delay, that is still a metrological issue. In fact, as underlined in

Section 1.2 the transmission delay has an impact on the measurement uncertainty.

A.2 Simulation Setup

For this analysis, a real-world power grid is considered, namely a 10-kV three-phase

distribution network, located in the Netherlands and operated by the DSO Alliander.

The network topology as well as its main parameters are thoroughly described in [172].

W assume to populate each node with a PMU operating with a reporting rate of

50 fps and transmitting its measurements to the Phasor Data Concentrator located in

node 1. The behaviour of the 5G communication infrastructure has been properly anal-

ysed by means of a suitable simulation assessment, developed exploiting the popular

OMNeT++ simulator [173]. OMNeT++ has been extensively used to simulate com-
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munication networks in the last years, and it is a C++ discrete event simulator. It is

worth observing that, lately, OMNeT++ introduced several new communication tech-

nologies, comprising for example TSN and 5G. The latter is of particular importance

for this study, and it has been introduced in OMNeT++ thanks to the developers of

the Simu5G project.

The Simu5G simulator [174] is an OMNeT++ - based simulator, specifically de-

signed for 5G networks. This simulator comprises suitable modelizations of both 3GPP-

compliant protocol stack and the transmission channel [175]. The basic structure of a

5G network is depicted in Figure A.3.

User 

Device 

(UD)

5G Radio 

Access Network

(RAN)

5G Base Station

(gNB)

5G Core

Data Plane

User Plane 

Functions (UPF)

Figure A.3: 5G Architecture.

In particular, the 5G network is managed by a base station (gNodeB, gNB), that

can be considered an evolution of the older 4G ones (eNodeB, eNB). It is worth

observing that the simulator offers total compatibility with the 4G network, allowing

to simulate mixed 4G/5G scenarioes. As a matter of fact, each User Device (UD) can

forward messages to the nearest gNB, through the so-called Radio Access Network

(RAN) where data communication occurs at Open System Interconnection (OSI) layer

2. The used (and also developed in the considered simulator) protocols, are listed in

Table A.2.
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Table A.2: 3GPP modeled protocols for each OSI reference layer.

OSI Layer Protocols

Data Link Layer PDCP
RLS
MAC

Physical PHY

The simu5G simulator is a very interesting and powerful tool, that allows to accu-

rately analyse 5G networks. Simu5G gives also the possibility to perform emulation

activities [176], [177]. As a matter of fact, it is really important to underline that the

simulator used in this study has been properly validated and, with the respect to other

popular 5G simulators like the Matlab-based Vienna 5G SL [178], it allows to simulate

the whole stack and not only the lower layers.

The considered simulated network is depicted in Figure A.4.

As a matter of fact, the network in [172] has been reproduced by modelling the sub-

stations as UD, in charge of collecting measures and sending them through a network

of base stations. The 5G base stations have been chosen pointing to the full coverage

of the area, according to a maximum transmission range of 500m. From Figure A.4 it

is possible to recognise all the aforementioned parts of a 5G architecture: UDs, gNBs,

User Plane Functions (UPF)s and Data Planes, represented by the servers. In the next

section, some preliminary results, using a 5G ULL network, are discussed.

A.3 Latency Results

A 5G ULL network have been deployed, according to what already said in the

previous section. Simulations have been conducted by using the parameters listed in

Table A.3.

The 5G It is worth observing that, according to what said before, measurements

are generated periodically, and are all synchronized between stations. In particular,

I evaluated two different setups. Firstly, I set up the communication such as all the
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Figure A.4: Simulated network.

data are sent to the first substation (UE[0]) in Figure A.4. In the following, I will refer

to such configuration as D2D communication. Secondly, I set up a network where all

the stations send data to the server, namely UpLink (UL) configuration. Then, it is

possible to imagine that the server is placed exactly nearby UE[0]. The Cumulative

distribution function of the communication delay is depicted in Figure A.5.

The results in Figure A.5 are totally reasonable, as in order to perform D2D both

an UL to the server and DownLink (DL) phase from the server are needed. If the

server can be placed next to the first substation the UL strategy outperforms D2D.

Other useful statistics, for the chosen UL scenario, are reported in Table A.4.

Where the DER is calculated as per Eq. (1.2). As a matter of fact, the results are

encouraging. On one side, they present a significant reduction of the communication

delay if compared to the previously published results, related to a 4G communication

infrastructure. On the other side, the overall delay caused by the communication in-
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Table A.3: Parameters used for the simulations.

Parameter Value

Packet Size 34 (bytes)
Simulation Time 1 (h)

Packet Generation Frequency 50(pack
s

)
Transmission Tipology 5G ULL

Figure A.5: Cumulative Distribution Function of the communication delay, both D2D and UL.

frastructure and the limited amount of lost packets are perfectly in line with most

monitoring and control applications. In this regard, it is important to observe that

state estimation applications have update rates that depend on the slowest measure-
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Table A.4: Results of the simulations.

Parameter Value

Communication Delay: Mean Value 10.03 (ms)
Communication Delay: Standard Deviation 2.73 (ms)

DER 99.94 (%)

ment data stream included in the system, and they usually overcome the tens of ms.

Similarly, in control applications as under-frequency load shedding there exist waiting

and settling times in the order of hundreds of ms to let the system settle down after

each control action.

Based on these considerations, it is reasonable to say that the usage of 5G seems

convenient as it allows to handle dense networks, with a lot of devices, and points to

a very speed communication, giving the possibility to lower down the communication

delays until 1 to 4 ms. Current installations achieve slightly higher transmission times,

like the ones I experienced in this study.
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