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Abstract
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reaction and uncertainty mean reversion. We find that monetary policy shocks are
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"[T]he reduction in risk associated with an easing of monetary policy and the resulting
reduction in precautionary saving may amplify the short-run impact of policy [...]. Likewise,
reduced risk and volatility may provide an extra kick to capital expenditure in the short run, as firms

are more likely to undertake investments in new structures or equipment in a more stable

macroeconomic environment."

Governor Ben S. Bernanke

Remarks at the London School of Economics Public Lecture

London, England, October 9, 2003

"So when uncertainty is high, [firm] units optimally postpone hiring and investment decisions for a few

months until business conditions become clearer. [...] [U]nits evaluate the uncertainty of their

discounted value of marginal returns over the lifetime of an investment or hire, so high current

uncertainty only matters to the extent that it drives up long-run uncertainty. When uncertainty is
mean reverting, high current values have a lower impact on expected long-run values than

if uncertainty were constant."

Nicholas Bloom

The Impact of Uncertainty Shocks, Econometrica, 2009

1 Introduction

The COVID-19 shock has generated a level of uncertainty in the US economy similar to

that realized during the Great Recession. Right after such a shock, the Federal Reserve

has quickly intervened to inject liquidity in the system in an attempt of limiting the

extent of the recession which will inevitably come. The contemporaneous occurrence

of high uncertainty and policy interventions has naturally reignited the debate on the

interferences of high levels of uncertainty on the transmission of monetary policy shocks

to the business cycle. However, there is still limited empirical research on the role that

uncertainty might play in influencing the effectiveness of unexpected policy stimuli.

This paper’s purpose is to shed new light on the uncertainty-dependent effects of

monetary policy shocks and, in particular, to show that taking into account the evolution

of uncertainty after monetary stimuli is key in order not to disregard two unexplored

channels of endogenous uncertainty that quantitatively affect the monetary policy trans-

mission mechanism.1 On the one hand, uncertainty is mitigated by monetary policy

easings (Bekaert et al. (2013)). This uncertainty mitigation, according to Bernanke’s

quote above, may temporarily enhance policy effectiveness by reducing precautionary

1In our study —differently from close studies, i.e., Aastveit et al. (2017), Eickmeier et al. (2016), and
Castelnuovo & Pellegrino (2018), to which we relate later in more detail —uncertainty is modeled among
endogenous (or dependent) variables in the non-linear (Structural) VAR, thus allowing it to endogenously
move after a monetary policy shock hits. In general, an endogenous variable in a non-linear VAR can
move because of two reasons after a shock: either because of the shock or irrespectively from it (depending
on its value at the time of the shock).
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savings and by providing an extra kick to investment via a "more stable macroeconomic

environment". On the other hand, uncertainty proxies also tend to mean revert in the

short to medium run, a fact potentially playing a role in a state-dependent analysis (or

in a "non-linear territory"). According to Bloom’s quote above, in a context of mean

reverting uncertainty, high current uncertainty will have a lower impact on expected fu-

ture uncertainty than in a context of constant uncertainty, implying that consumers’and

firms’expectations, and hence decisions, will be less extreme. In principle, the conse-

quences of these two channels may be economically relevant provided that precautionary

savings play a significant role in consumption fluctuations (Caballero (1990) and Parker

& Preston (2005)), that uncertainty significantly affects firms’"wait and see" attitude in

investment and hiring (Bernanke (1983), Bertola & Caballero (1994), Dixit & Pindyck

(1994), Bloom et al. (2007), Bloom (2009)), and that expected future uncertainty is im-

portant for decision making (Guiso & Parigi (1999) and Bloom et al. (2017)). However,

the literature is still silent on the importance of these two channels for the monetary

policy transmission mechanism.2

The paper’s purpose is tackled by proposing a Self-Exciting Interacted VAR (SEIVAR)

model which we estimate with quarterly post-WWII US data. This non-linear VAR

augments an otherwise standard VAR with an interaction term including two variables,

i.e., the variable used to identify the monetary policy shock (the policy rate) and the

conditioning variable that identifies the “uncertain times” and “tranquil times” states

(the proxy for uncertainty). This framework is particularly appealing to address our

research question in that it enables us to model the interaction between monetary policy

and uncertainty in a parsimonious manner and yet to precisely estimate the economy’s

response conditional on very high/low uncertainty (we use the ninth and first deciles of

the empirical distribution of the uncertainty proxy to define our two states). Crucially, we

model both interaction variables endogenously and accordingly compute fully non-linear

Generalized Impulse Response Functions (GIRFs) à la Koop et al. (1996).

This modeling strategy contributes to the literature in two respects. Methodolog-

ically, it represents a novel and more general framework in the IVAR literature that

allows to endogenize conditioning variables.3 The current paper scrutinizes for the first

2We review some of the other mechanisms why the monetary policy transmission mechanism may be
affected by uncertainty in the next Section.

3Contributions that have recently employed IVARs are Towbin & Weber (2013), Sá et al. (2014),
Lanau & Wieladek (2012) and Aastveit et al. (2017). Unlike the present study, they use a fixed condi-
tioning variable in computing empirical responses. One exception is Caggiano et al. (2017), who employ
a fully non-linear IVAR model similar to ours and compute GIRFs to enquire whether the real effects of
uncertainty shocks are magnified at the zero lower bound.
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time the advantages and the implications of endogenizing conditioning variables within

IVARs. Application-wise, it contrasts with the strategy employed by recent VAR analy-

ses on the uncertainty-dependent effectiveness of monetary policy shocks —e.g., Aastveit

et al. (2017), Eickmeier et al. (2016) and Castelnuovo & Pellegrino (2018) —, which work

with non-linear VAR models featuring an exogenous conditioning variable and there-

fore compute conditionally-linear IRFs for a fixed value of the uncertainty proxy. Our

strategy enables us to consider both the possibly endogenous move of uncertainty (our

conditioning indicator) after the policy shock and its feedback effects on the dynamics

of the system.4 In this way, we are able to capture both the effects of the endogenous

move of uncertainty on precautionary savings and firms’willingness to invest and their

state-dependent consequences.

Our baseline IVAR models a standard set of real aggregate variables —including GDP,

investment and consumption—, the GDP price index, the policy rate, and an uncertainty

proxy. Specifically, we use two baseline proxies for uncertainty: the Inter Quartile Range

(IQR) of sales growth, a cross-sectional firm-level uncertainty proxy computed by Bloom

et al. (2018), and the VIX, a measure for the implied stock market volatility extensively

used after Bloom’s (2009) seminal paper.5

Our main results can be summarized as follows. First, we find that the historical

effectiveness of monetary policy shocks is inversely correlated with the level of uncertainty

at the time of the shock, a finding robust also to unconventional monetary shocks during

the ZLB period.6

Second, we find that there is clear and robust statistical evidence of weaker real effects

of monetary policy shocks during uncertain times relatively to tranquil times. More

specifically, the peak reaction of real activity, in particular GDP, is approximately 50%-

75% stronger when the shock occurs in tranquil times than when it occurs in uncertain

times, an economically important difference. We also find that uncertainty is mitigated

by expansionary monetary policy shocks in both states, a finding which further supports

the importance of treating uncertainty as an endogenous variable.

4These feedback effects make the model Self-Exciting, or "fully" non-linear, in the iteration after a
monetary policy shock. The term "Self-Exciting" is borrowed from the time series literature (see, e.g.,
the SETAR model presented in Terasvirta et al. (2010)) and here reflects the fact that the "state" and the
iteration of the system over time are determined by the values of the endogenous conditioning variable.

5We also use Jurado, Ludvigson, and Ng’s (2015) macro and firm-level uncertainty indices and Baker,
Bloom, and Davis’(2016) Economic Policy Uncertainty (EPU) index to check the robustness of our main
results.

6This result is a prerogative of our econometric strategy. Our SEIVAR model has the additional
advantage —over previous related studies —of allowing historical initial conditions to play a meaningful
role (Koop et al. (1996)), something which enables us to gain further insights on the effects of monetary
policy shocks from a historical perspective.
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Third, when analyzing the role of endogenous uncertainty through counterfactual

exercises, we find that it has a non-negligible quantitative effect on the estimated state-

conditional responses. Monetary policy effectiveness becomes around half as uncertainty-

dependent when uncertainty is treated as an endogenous variable versus when it is not,

e.g., in the case of exogenous uncertainty, we erroneously find monetary policy being

approximately 100%-180% more effective on GDP during tranquil times than uncertain

times. We show that this different result is driven by the interaction of two endogenous

uncertainty channels which is captured by our baseline analysis but which cannot be

captured by conditionally-linear responses (which are computed by assuming uncertainty

to be exogenous, i.e., fixed and constant after the shock). On the one hand, there is

the "uncertainty endogenous reaction" channel that Bernanke refers to in his statement,

which operates through the reduction of uncertainty after a monetary policy easing.

Such channel, ceteris paribus, works as an amplifier of the real effects of monetary policy

shocks, irrespectively from the initial level of uncertainty. On the other hand, there is the

"uncertainty mean reversion" channel that Bloom refers to in his passage, which operates

through the mean reversion in uncertainty occurring after, but independently from, the

monetary easing. Such a channel, whose direction of effects depends on the initial level

of uncertainty, works in favor of making state-dependent responses of real variables less

extreme. Our exercises, designed to disentangle the effects of each of these two channels,

find that, although both channels are empirically relevant, the uncertainty mean reversion

channel is the main responsible for making the real effectiveness of monetary policy shocks

half as uncertainty-dependent when uncertainty is treated endogenously.7 In other words,

consistently with theory, we find that the first channel matters for the average effect of

monetary policy shocks and the second one for the magnitude of state-dependence.

Our findings are relevant both from a policy and from a modeling standpoint. From a

policy perspective, we lend support to theoretical studies that recommend more aggressive

stimuli in uncertain times (see, e.g., Bloom (2009) and Bloom et al. (2018)). Even after

endogenizing uncertainty, we still find that during uncertain times monetary policy is

way less effective than during tranquil times, although to a lesser extent than what found

in previous studies. With respect to previous studies, we find that allowing for mean

reversion in uncertainty after monetary policy shocks increases the estimated effectiveness

7When we use the EPU index, the uncertainty mean reversion channel almost cancels out all the state-
dependence in the real effects of monetary policy shocks that one would instead find in the exogenous
uncertainty case. Hence, endogenous uncertainty can also imply qualitative differences with respect to
the case of exogenous uncertainty. In particular, with our methodology, we are able to uncover that
economic policy uncertainty is not an important determinant for the overall effectiveness of monetary
policy shocks in the US.

4



of monetary policy shocks when it is most needed, i.e., during uncertain times. This

suggests that policymakers should use fully non-linear empirical models when designing

monetary policies to achieve a desired real effect. From a theoretical perspective, our

analysis suggests that both modeling the endogenous reaction of uncertainty to policies

(rather than considering it as an exogenous process) and modeling empirically-grounded

mean-reverting uncertainty processes is crucial to correctly assess alternative policies in

environments characterized by uncertainty.8

Our study is also relevant for applied researchers because it shows the perils of not

modeling endogenously the conditioning variable in a non-linear VAR. In the context of

fiscal spending shocks Ramey and Zubairy (2018) show that the difference of their findings

on the US fiscal multipliers with respect to Auerbach and Gorodnichenko’s (2012) ones

are largely driven by the simplifying assumptions about the (exogenous) conditioning

variable in the computation of (conditionally-linear) impulse responses adopted in the

latter study’s non-linear VAR.9 Our work adds to this applied literature by proposing

both a framework to study the relevance of endogenizing conditioning variables in non-

linear VARs and a method to investigate the specific reason/channel why it is important.

Understanding the latter is important to build theoretical models that account for the

empirically relevant channels of propagation of a shock.

The present paper is organized as follows. Section 2 reviews the related literature.

Section 3 describes our empirical methodology. Section 4 presents the main results on

the effectiveness of monetary policy shocks in tranquil vs. uncertain times. Section 5

focuses on the role of endogenous uncertainty and analyzes the two channels that arise.

Section 6 concludes.

2 Related literature

The work closest to ours is Aastveit et al. (2017). With respect to them, we: adopt

a more general econometric framework where at the same time uncertainty is modeled

endogenously and initial conditions play a meaningful role thanks to the computation of

non-linear GIRFs; show that taking into account endogenous uncertainty can have both

quantitative implications (e.g., for our micro- and macro-level uncertainty proxies, where

8To the best of our knowledge, the only work that takes into account the endogenous uncertainty
reaction to a monetary policy shock in the context of a micro-founded model is Mumtaz & Theodoridis
(2019).

9Our framework takes full account of RZ’s (2018, p. 888) point according to which "[c]onstructing
impulse responses in nonlinear VAR models is far from straightforward since many complexities arise
when one moves from linear to nonlinear systems" (see also Caggiano et al. (2015)).
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monetary policy effectiveness becomes half uncertainty-dependent with respect to exoge-

nous uncertainty) and qualitative implications (e.g., for the Baker, Bloom, and Davis’

(2016) EPU index, where monetary policy almost loses all its uncertainty-dependence);

explore the empirical relevance of two so far unexplored channels of endogenous uncer-

tainty and explain their role in making monetary policy effectiveness less uncertainty-

dependent.

Other related recent empirical works are Eickmeier et al. (2016), Castelnuovo & Pelle-

grino (2018) and Caggiano et al. (2020). The aim of the first two studies is to investigate

more structurally through the New-Keynesian framework how uncertainty influences the

effectiveness of monetary policy shocks. They establish facts with non-linear VAR models

and interpret these facts via, respectively, a state-dependent calibration or estimation of

a New-Keynesian Dynamic Stochastic General Equilibrium (DSGE) model. With respect

to their conditionally-linear Threshold VAR frameworks, this study endogenizes uncer-

tainty and shows how important it is for the estimation of the effects of monetary policy

shocks. Caggiano et al. (2020) estimate a Smooth-Transition VAR model to investigate

the stabilizing role of systematic monetary policy in presence of heightened uncertainty

during recessions and expansions. Our work is complementary to theirs, in that it focuses

on the effects of monetary policy shocks conditional on different levels of uncertainty.10

On the theoretical side, several explanations point to a lower effectiveness of monetary

policy shocks when uncertainty is high. First, in the presence of some form of fixed costs

or partial irreversibilities in the investment or hiring processes heightened uncertainty can

increase firms’option value of waiting to hire and invest, thus making the real economy

less sensitive to any policy stimulus because of a "cautionary effect" (Bloom et al. (2007),

Bloom (2009), Bloom et al. (2018)).11 Bloom et al. (2018) simulate their general equilib-

rium model featuring time-varying volatility, non-convex adjustment costs in both capital

10Further connected empirical works are Weise (1999), Mumtaz & Surico (2015), Tenreyro & Thwaites
(2016), and Alpanda et al. (2019), who investigate the transmission mechanism of monetary policy in
good and bad business cycle circumstances. Their results suggest that monetary policy shocks are less
effective during bad times. Unlike these studies, ours explicitly focuses on the relevance of uncertainty
in the transmission of monetary policy shocks. This is important for two reasons. First, because by
focusing on uncertainty we can empirically test the predictions of the theoretical papers reviewed below
which suggest uncertainty-related explanations for a state-conditional impact of monetary policy shocks.
Second, because conditioning on recessions could lead to spurious results since recessions can have a
range of causes —financial distress, oil shocks, policy switches, and so on —and uncertainty is just one
of these. Empirically, the fact that periods of high uncertainty levels and recessionary periods, and vice
versa, have not always coincided in the recent US history allows us to focus on the role of uncertainty
by explicitly using uncertainty as our "conditioning" variable.
11Aastveit et al.’s (2017) work includes a stylized theoretical model that makes explicit how the in-

vestment response to interest rate moves can depend on the level of uncertainty due to a "caution effect"
at play in a world with non-convex adjustment costs and irreversible investment.
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and labor, and firm-level idiosyncratic shocks and find that heightened uncertainty makes

firms less responsive to a policy stimulus. According to the authors, and in their words,

their exercise implies that "uncertainty shocks not only impact the economy directly, but

also indirectly change the response of the economy to any potential reactive stabilization

policy." Our empirical results, obtained with a framework that allows us to take account

of the indirect effects of endogenous uncertainty on monetary effectiveness, lend support

to the theoretical results of these works.

Second, uncertainty can influence firms’price-setting behavior. Vavra’s (2014) gen-

eral equilibrium price-setting menu cost model suggests that a greater price flexibility

induced by firm-level uncertainty can have monetary policy shocks lose up to 50% of

their effectiveness relative to tranquil times. Baley & Blanco (2019) find that nominal

shocks have smaller effects on output during firm-specific uncertain times also in the

context of a price-setting model that includes information frictions in addition to menu

costs. Bachmann et al. (2013) use firm micro data and find that firms change prices more

frequently when uncertainty is high, consistently with Vavra’s model.

Lastly, in the presence of risk-averse agents, there will be higher precautionary savings

during uncertain times (see Bloom’s (2014) survey and references therein). The fact that

uncertainty is endogenous in our framework enables us to account for the link between

uncertainty, precautionary savings, and the effectiveness of monetary policy shocks that

Bernanke refers to in his statement in the Introduction.

Turning to the other side of the interaction between uncertainty and monetary policy,

i.e., how monetary policy influences uncertainty, Bekaert et al. (2013) find that uncer-

tainty decreases in the medium run after an expansionary monetary policy shock identified

with a linear VAR framework. Mumtaz & Theodoridis (2019) find the same result and

explain it structurally in the context of a New-Keynesian model. Lutz (2014) works with

a Factor-Augmented linear VAR model and finds that uncertainty decreases also after

unconventional monetary policy shocks. Our framework allows us to take account of both

the endogenous reaction of uncertainty and the influence it has on the effectiveness of

monetary policy.

3 The empirical methodology

3.1 The Self-Exciting Interacted-VAR

Specification. We employ a fully non-linear, or Self-Exciting, Interacted VAR model to

empirically study whether the real effects of monetary policy shocks are different across
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tranquil and uncertain times. This model augments an otherwise standard linear VAR

with an interaction term, which in this work involves two endogenously modeled vari-

ables: the variable via which we identify exogenous monetary policy changes, i.e., the

policy rate, and the variable whose influence on the effects of monetary shocks is under

assessment, i.e., uncertainty. This latter variable will serve as a conditioning variable

allowing us to obtain the impact of monetary policy shocks in tranquil versus uncer-

tain times. In addition to the policy rate and an uncertainty indicator, the vector of

endogenous variables also includes measures of real activity and prices.

The estimated SEIVAR model is the following:

Yt = α+ γ· linear trend+
L∑
j=1

AjYt−j +

[
L∑
j=1

cjRt−j · unct−j

]
+ ut (1)

unct = e
′

uncYt (2)

Rt = e
′

RYt (3)

E(utu
′
t) = Ω (4)

where Yt is the (n × 1) vector of the endogenous variables, α is the (n × 1) vector of
constant terms, γ is the (n × 1) vector of slope coeffi cients for the time trend included,
Aj are (n × n) matrices of coeffi cients, and ut is the (n × 1) vector of error terms,
whose variance-covariance (VCV) matrix is Ω. The interaction term in brackets makes

an otherwise standard VAR a SEIVAR model. It includes a (n× 1) vector of coeffi cients,
cj, a measure of uncertainty, unct, and the policy rate, Rt. ey is a selection vector for

the endogenous variable y in Y. In other words, uncertainty and the policy rate are both

treated as endogenous variables.

The model is estimated by OLS.12We follow Ventzislav and Kilian’s (2005) suggestions

and select the number of lags as suggested by the Hannan-Quinn criterion. As a result,

we use L = 2 (both for the non-linear and the nested linear model).

The SEIVAR model presents several advantages for our purposes over alternative

non-linear specifications that also feature an observed conditioning variable like Smooth-

Transition (ST-)VARs and Threshold (T-)VARs. First, our SEIVAR directly captures the

non-linearity in which we are interested (which has to do with the interaction between

the monetary policy instrument and uncertainty) without appealing to the estimation

of more parameterized and computationally intensive models. In this regard, it does
12This is possible since, although non-linear in variables, the model is linear in parameters and does not

depend on unobservable variables or nuisance parameters. Conversely from some of the most commonly
used non-linear state-dependent models that reach non-linearity by combining two or more regime-
specific linear VARs (e.g., Threshold VARs and Smooth Transition VARs), the Interacted-VAR model
is non-linear because of its interaction terms.
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not require us to identify thresholds, as in TVARs, or to estimate/calibrate transition

functions, as in STVARs. The specific functional form (1)-(4) employed, based on the

simple product between the policy rate and uncertainty lagged values, was chosen based

on its parsimony and to avoid instability problems.13 Second, unlike abrupt change

models featuring regime-specific coeffi cients like TVARs, the SEIVAR is estimated on

the full sample (in other words, any regime is imposed prior to estimation).14 This

allows us to avoid the issue of not having enough degrees of freedom to precisely estimate

empirical responses in different states of the world referring to the extreme events of the

uncertainty distribution. This is particularly relevant for the research question at hand.

Our IVAR directly captures the non-linearity of one (or, potentially, more) monetary

transmission channel(s) with respect to uncertainty via a parsimonious specification. Is

this parsimony problematic? It is well known that the policy functions which represent

the solution of non-linear DSGE frameworks feature many interaction terms involving

endogenous variables. However, a Montecarlo exercise recently proposed by Andreasen

et al. (2021) shows that our IVAR is able to recover the true non-linear impulse responses

as implied by a state-of-the-art non-linear DSGE framework solved via a third-order

approximation around its risky steady-state. This evidence corroborates the use of par-

simonious IVAR specifications for the investigation of non-linear dynamic responses to

identified macroeconomic shocks like the one conducted in this paper.

Notice that the SEIVAR model (1)-(4) is non-linear but symmetric and hence is not

well suited to study the asymmetric effects of positive versus negative shocks.15 Without

loss of generality, we focus on expansionary monetary policy shocks.

Identification and statistical motivation. To identify the monetary policy shocks

from the vector of reduced-form residuals, we adopt the conventional short-run restrictions

implied by the Cholesky decomposition. The vector of endogenous variables is ordered in

13 An IVAR might be seen as a special case of a Generalized Vector Autoregressive (GAR) model
(Mittnik (1990)), i.e., a polynomial system involving monomials of increasing order of products of the
vector of endogenous variables, and hence might share its possible problems. In particular, GAR models
might feature instability when the squares or other higher moments of the endogenous variables are
included as covariates (Granger (1998) and Aruoba et al. (2017)) and it is diffi cult to impose conditions
to ensure their stability in general (Ruge-Murcia (2015)). Our model appears not to suffer from these
problems because of its parsimonious specification that features the simple products of the lags of the
policy rate and those of the uncertainty indicator. Still, the dynamics captured by our IVAR could
depend on the specific functional form employed. Section A4.2 of the Appendix further elaborates on
the specific form of nonlinearity adopted and also shows that the main results are robust to the use of a
richer specification of the interaction between uncertainty and monetary policy (check iv).
14This can let the dynamics captured by the IVAR model be less dependent on the presence of outliers

in a particular regime.
15See Barnichon & Matthes (2018) for a novel approach to directly investigate the role of the sign of

shocks.
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the following way: Y = [P,GDP, Inv, Cons,R, Unc]
′
, where, in order, we have a price

index, the GDP, investment, consumption, the policy rate, and an uncertainty proxy

(data are described in Section 3.3). Notice that, while the policy rate is allowed to react

instantaneously to the price index and the real variables, these variables are not allowed

to react on-impact to policy rate changes (like in Christiano et al. (1999), Christiano et al.

(2005) and Christiano et al. (2016)). Instead, uncertainty is allowed to react on-impact

to policy rate moves. Here the degree of endogeneity of uncertainty is maximized, but

later we do show, however, that our results are robust to modeling uncertainty as the

first variable of the vector. Our results are robust also to the case monetary policy shocks

are identified using fed funds futures surprises around policy announcements as external

instruments in a Proxy SVAR as in Gertler & Karadi (2015) (Appendix A6 shows how

to apply the external instrument identification to IVAR models).16

Importantly, a likelihood-ratio test for the overall exclusion of the interaction terms

from model (1)-(4) allows us to reject the null hypothesis of linearity at any conventional

level in favor of the alternative of our SEIVAR model. In particular, when uncertainty

is proxied by the IQR of sales growth, the LR test suggests a value for the test statistic

χ12 = 29.26, with an associated p-value of 0.005, whereas in the VIX uncertainty case we

have a value χ12 = 27.53, with an associated p-value of 0.007. Similar evidence relates to

the Jurado et al. (2015) uncertainty indicators that are used for robustness.

3.2 Generalized Impulse Response Functions

Unlike existing related studies, our conditioning variable, i.e., uncertainty, is also included

in the vector of modeled endogenous variables. This is important to compute responses

conditional on high/low uncertainty because, as shown later, uncertainty is found to en-

dogenously move after a monetary policy shock, both because it directly reacts to the

shock and because it mean reverts after the shock. Without accounting for this uncer-

tainty endogenous movement, biased responses would arise as the feedbacks from such

uncertainty movement on the dynamics of the economy would be disregarded. In order

to correctly estimate empirical responses from a non-linear model in the presence of an

16Given our interest in a quarterly sample with key macroeconomic indicators, we preferred not to
use the latter identification method as our baseline because taking quarterly averages of the Gertler
and Karadi’s fed funds futures monthly surprises series can cause important losses of information, e.g.,
since there are more FOMC meetings than quarters in a year. Consistently with this interpretation, our
Appendix documents that the Proxy Interacted VAR with the quarterly instrument gives results overall
in line with our baseline results for real variables, although, differently from what Gertler & Karadi
(2015) find in their monthly linear VAR, it still implies some VAR "puzzles" such as the price puzzle
and a negative short-run response of real activity. Based on this consideration, we preferred to adopt a
Cholesky decomposition in our baseline analysis.
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endogenous conditioning variable, we compute Generalized Impulse Response Functions

(GIRFs) à la Koop et al. (1996) accounting for an orthogonal structural shock as in Kilian

& Vigfusson (2011).17 GIRFs take into account the fact that, in a fully non-linear model,

the state of the system and therefore system’s future evolution can vary endogenously

after a shock. As a result, GIRFs return fully non-linear empirical responses that depend

nontrivially on the initial conditions in place when the system is shocked (as well as on

the sign and size of the shock). Theoretically, the GIRF at horizon h of the vector Y to

a shock in date t, δt, computed conditional on an initial history (or initial conditions),

$t−1 = {Yt−1, ...,Yt−L}, is given by the following difference of conditional expectations
between the shocked and non-shocked paths of Y:

GIRFY,t(h, δt,$t−1) = E [Yt+h | δt,$t−1]− E [Yt+h |$t−1] . (5)

In principle, we have as many history-dependent GIRFs referring to a generic initial

quarter t − 1 as there are quarters in our estimation sample. Once these GIRFs are
averaged, per each horizon, over a particular subset of initial conditions of interest, we

can obtain our state-dependent GIRFs, which reflect the average response of the economy

to a shock in a given state. Consistently with Vavra (2014) and Bloom et al. (2007), we

assume the "tranquil times" state to be characterized by initial quarters with uncertainty

around the first decile of its empirical distribution, and the "uncertain times" state by

initial quarters around its ninth decile (a five-percentiles tolerance band around the top

and bottom deciles is used).18 Conditioning responses on extreme events, rather than on

normal events, may be important in order not to confound similar states and hence miss

empirical responses in favor of non-linearity (Caggiano et al. (2015)). Theoretically, our

state-dependent GIRFs can be defined as:

GIRFY,t
(
h, δt,Ω

uncertain times
t−1

)
= E

[
GIRFY,t

(
h, δt,

{
$t−1 ∈ Ωuncertain times

t−1
})]

(6)

GIRFY,t

(
h, δt,Ω

tranquil times
t−1

)
= E

[
GIRFY,t

(
h, δt,

{
$t−1 ∈ Ωtranquil times

t−1

})]
(7)

where Ωi
t−1 denotes the set of histories characterizing regime

i = {uncertain times, tranquil times}. The algorithm at the basis of the simulation

17The reader is informed about two different definitions of GIRFs available in the literature that may
create confusion: one, in Koop et al. (1996), which is about the simulation of structural impulse responses
to shocks in a non-linear VAR and has nothing to do with identification (indeed in our case the Cholesky
order continues to be valid); the other, in Pesaran & Shin (1998) and meant for linear VARs, which is
about finding (non-structural) impulse responses that are invariant to the order of variables in the VAR
(and that hence is incompatible with a Cholesky decomposition).
18This definition allows both each given state to feature a number of GIRFs large enough to obtain

representative state-conditional responses and to have results that do not depend on particularly extreme
observations.
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of our history-dependent and state-dependent GIRFs is provided in Section A1 of the

Appendix.

An alternative methodology to GIRFs to compute non-linear empirical responses

would be to use Local Projections à la Jordà (2005). Similarly to GIRFs, this method-

ology allows estimated responses to implicitly incorporate the average evolution of the

economy between the time the shock hits and the time the shock effects are evaluated.

Owyang et al. (2013) use Local Projections to extract empirical responses to an exoge-

nously identified shock from a univariate Threshold Autoregressive model. This strategy

is not, however, used here as the tool to estimate empirical responses for three reasons.

First, Local Projections IRFs are not as informative as GIRFs because they provide only

the average reaction of the economy in a given state, whereas GIRFs allow us to obtain

fully non-linear empirical responses for each given initial quarter in the sample, in line

with our purposes. Second, provided that Local Projections implicitly catpure the evo-

lution of uncertainty after the shock, they do not easily allow us to study the role of

endogenous uncertainty. Third, in our application they would suffer significantly from

the issue of insuffi cient degrees of freedom to estimate precisely the empirical responses

referring to extreme events.

3.3 Data

Our VAR jointly models an indicator of uncertainty, measures of US real activity, the

GDP deflator, and the monetary policy instrument. Real activity is captured by real

GDP, real gross private domestic investment, and real personal consumption expendi-

tures. Investment and consumption are considered in addition to GDP since they allow

us to investigate the different transmission mechanism of monetary policy shocks between

uncertain and tranquil times. In theoretical models uncertainty influences investment

through real-option effects and consumption through precautionary savings. The federal

funds rate (FFR) is meant to be the instrument of monetary policy as commonly as-

sumed in the empirical literature studying the impact of monetary shocks. For the part

of our sample that overlaps with the binding zero lower bound period in the U.S. we use

the commonly used Wu and Xia’s (2016) "shadow rate" instead of the FFR and label

shocks as "unconventional" monetary policy shocks. Wu and Xia’s shadow rate turned

negative since July 2009 (or quarterly, since 2009Q3) and consequently we take this as

an indication that the ZLB constraint became actually binding for the FFR.19 Both real

19The shadow rate is a model-implied interest rate that Wu & Xia (2016) estimate on the basis of
a multifactorial shadow rate term structure model. It is allowed to turn negative over the ZLB period
and they show that it can be used to proxy unconventional monetary policy at the ZLB. The quarterly
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variables and prices are taken in logs and multiplied by 100. This implies that their VAR

responses can be interpreted as percent deviations from the trend. The sample period

starts in 1971Q1.20 Further details on the data sources are available in Section A7 of the

Appendix.

Uncertainty is measured by a number of different indicators proposed in the literature.

As baseline indicators we use alternatively a micro-level and a macro-level uncertainty

measure. Regarding the first indicator, we use a cross-sectional firm-level measure of

uncertainty constructed by Bloom et al. (2018), i.e., the interquartile range (IQR) of

sales growth for a sample of Compustat firms, which is available up to 2009Q3. Unlike

aggregate volatility indicators, this disaggregate indicator is also likely to capture idio-

syncratic (i.e., firm-specific) shocks. These firm-level factors, it is suggested by several

studies, constitute one of the most important factors in explaining both firms’ invest-

ment behavior (see, among others, Bernanke (1983), Bertola & Caballero (1994), Dixit &

Pindyck (1994)) and price-setting behavior (see Vavra (2014) and references therein), and

an important driver behind aggregate time-varying volatility (Carvalho & Grassi (2015)).

Our second indicator of uncertainty is the stock market Volatility IndeX (VIX) used

by Bloom (2009). We update the Bloom’s series up to 2015Q4. The VIX index has

been widely used in the empirical literature on the impact of uncertainty shocks and

represents the degree of real-time implied volatility as quantified by financial markets.

Along with these baseline uncertainty indicators, for which detailed results are presented,

we also use the macro and firm-level uncertainty indices developed by Jurado et al. (2015)

and the Baker, Bloom, and Davis’(2016) economic policy uncertainty (EPU) index to

check the robustness of our main results. The Jurado et al. (2015) indices are based

on the purely unforecastable components extracted from two large US datasets, whereas

the EPU index aims to capture uncertainty over economic policy by selecting articles in

major U.S. newspapers that discuss something about (i.e., contain terms about) the three

topics of uncertainty, the economy, and policy.

Figure 1 plots the baseline uncertainty indicators against their mean (represented by

dashed green lines) and NBER recessionary periods (represented by grey vertical bars).

Two considerations follow. First, the uncertainty proxies tend to fluctuate around their

mean. Typically, they remain very high/low only for a while before mean reverting. Our

Wu-Xia shadow rate was 75 and 22 basis points (bp) in 2009Q1 and 2009Q2, respectively, whereas the
FFR value was 18 bp in both quarters.
20The starting date is dictated by the availability of the uncertainty measures (i.e., to have a com-

mon initial date across all the four uncertainty indicators employed). It also proves useful, given our
employment of the series for inflation expectations that we use in our robustness check (available since
1970Q2).
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econometric strategy allows us to take this empirical feature into account in the computa-

tion of the uncertainty-dependent responses to monetary stimuli. Second, periods of high

uncertainty and recessionary periods have not always coincided in the recent US history

and hence in principle they are empirically distinguishable, a fact that allows us to have

enough empirical identification to study the influence of "uncertainty" as opposed to "re-

cessions". In fact, although the global maximum of both uncertainty indicators occurred

during the recent Great Recession, and, more generally, uncertainty is on average higher

in recessions, many spikes occurred during expansions.21 Moreover, some recessions, e.g.,

the 1980 and 1990-91 ones, have not been characterized by particularly high levels of

uncertainty.

4 The uncertainty-dependent effects of monetary pol-
icy shocks

4.1 Historical evidence for the full sample

We start our empirical analysis by examining whether the effectiveness of monetary pol-

icy shocks has evolved through time according to the level of historical uncertainty. One

characteristic of endogenously modeling uncertainty and computing fully non-linear re-

sponses is indeed the possibility to recover an empirical response for each given quarter in

the sample. Consider a fixed-size monetary shock equal to a 25 basis points unexpected

decrease in the policy rate hitting each quarter. Figure 2 presents summary evidence of

the time-variation of GIRFs (whereas the full evidence is available in the form of a tridi-

mensional graph in Figure A1 in the Appendix).22 The upper panels of Figure 2 present

the temporal evolution of the peak (i.e., maximum) and cumulative percent response

of real GDP for the expansionary monetary shock happening in quarter t and put this

response in comparison with the initial level of uncertainty in the previous quarter. The

lower panels use a scatter plot to further analyze the relationship between the initial level

of uncertainty at time t− 1 and the GDP peak response for a shock happening in t. Left
(right) panels refer to the case the IQR of sales growth (VIX) is used as the uncertainty

proxy.

Two considerations are in order. First, the real effects of monetary policy shocks

21Referring to the VIX case (for which we can use the major volatility episodes identified by Bloom
(2009, Table A.1)), see, among others, the spikes associated with the Black Monday Market crash at the
end of 1987, the Asian crisis in 1997, the Worldcom and Enron financial scandals in 2002 and the Gulf
War in 2003.
22As Figure A1 documents, our estimated SEIVAR model is in-sample stable, meaning that we are

able to obtain a non-diverging GIRF for each initial quarter in our sample.
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depend on the initial level of uncertainty. The shape of time variation of the GDP peak

and 5-year cumulative effects in the upper panels of Figure 2 tracks closely the historical

behavior (with the reversed sign) of uncertainty. This evidence suggests that the effects

of policy shocks are less powerful, and hence monetary policy is less effective, if the shock

hits the economy in an uncertain phase relative to a tranquil one.

Second, as lower panels of Figure 2 show, the relationship between initial uncertainty

and the effectiveness of monetary policy shocks is not perfect —although clearly negative

on average—, in the sense that once a given initial level of uncertainty is selected, we can

observe different quantitative responses to an equally sized monetary policy shock. The

linear correlation coeffi cient between the peak effect of monetary policy shocks and the

initial level of uncertainty is -0.70 (-0.52) for the IQR of sales growth (VIX). This is a clear

indication that historical initial conditions (besides just uncertainty) play a meaningful

role in our responses.23 Thanks to our framework we are able to find that, among other

historical conditions, the period of binding ZLB and unconventional monetary policy

shocks clearly introduced an important instability in the effects of monetary policy shocks

(a result suggesting that the effects of a cut in the FFR and an equally-sized cut in the

shadow rate are not easily comparable).24 Interestingly for us, even in the binding ZLB

period we can observe a clear negative relationship between uncertainty and the power

of (unconventional) monetary policy shocks (refer at the VIX case for which we have a

longer sample).

Since the purpose of the next part of our analysis is to study the average response of the

economy to a monetary policy shock conditional on the state of uncertainty (high versus

low), from now on we exclude from our estimation sample the period with unconventional

monetary policy shocks (i.e., shocks to the Wu & Xia (2016) shadow rate for its implied

period of binding ZLB 2009Q3-2015Q4) and focus on shocks to the FFR. We do this

for three reasons. First, given the clear instability documented in Figure 2, it would be

diffi cult to obtain a representative state-conditional, i.e., averaged over uncertainty levels,

response of the effects of monetary policy shocks if we mix shocks to the FFR with shocks

to the shadow rate. Second, Bauer & Rudebusch (2016) find that estimated shadow rates

23Notice that, if instead uncertainty was exogenously modeled, and therefore conditionally-linear IRFs
were computed, we would observe a perfect relationship between initial uncertainty and the effectiveness
of monetary policy shocks (given that no temporal dimension could be associated with responses, as
shown in Figure A2 of the Appendix).
24The findings suggest that unconventional monetary policy has been apparently more effective on

average than conventional monetary policy shocks. This is consistent with Wu and Xia (2016, Fig. 9, p.
271) that find a cut in their shadow rate to be more effective in affecting unemployment than an equally-
sized cut in the FFR. However, this result is beyond the purposes of this paper and the investigations of
the reasons behind it are left to future research.
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are quite sensitive to several modeling assumptions and hence argue that the use of shadow

rates as indicators of monetary policy at the ZLB may be problematic. Some exercises

conducted in the Appendix (Figure A3) document that the power of unconventional

monetary policy shocks depends on the specific shadow rate used, something that affects

also the power of conventional monetary policy shocks and that hence would be reflected

with a bias in the averaged response. Third, the presence of the binding ZLB period

itself complicates the comparison between the effects of conventional and unconventional

monetary policy shocks, as the mitigating power of expansionary monetary policy shocks

on uncertainty (that we will show in the next Section) may be more beneficial for the

economy in ZLB, when, as documented by Caggiano et al. (2017), the effects of heightened

uncertainty are particularly strong.

4.2 Average evidence for conventional monetary policy shocks

Baseline results. This Section analyzes the state-dependent effects of monetary policy

shocks. We start with the empirical quantification of the averaged effects in our "uncertain

times" and "tranquil times" states (which refer to the extreme deciles of uncertainty as

defined in Section 3.2) and then turn to test their statistical difference.

Figure 3 presents the point estimates for the state-conditional GIRFs of real GDP

together with the corresponding IRFs coming from the linear VAR nested in our SEIVAR

model (throughout the analysis we consider the same 25 basis points expansionary shock

in the FFR). Two results can be drawn from the Figure. First, the GIRFs suggest that

monetary policy shocks are on average less effective during uncertain times. Specifically,

focusing on peak (cumulative) reactions, real GDP reacts on average 47% (55%) and 74%

(75%) more during tranquil times for the IQR of sales growth case and the VIX case,

respectively. Second, linear responses are within our state-conditional responses. Hence,

standard linear VARs are likely to capture the average effects of a monetary policy shock,

which, however, underestimate (overestimate) the impact of monetary policy shocks in

tranquil (uncertain) times.25

We now consider the state-dependent evidence for all our six endogenous variables in

our SEIVAR. Figure 4 (5) shows baseline results conditional to the use of the IQR of sales

25We note that having the Great Recession period in the estimation sample sharpens the identification
of the effects of monetary policy shocks in presence of high uncertainty. This because the Great Reces-
sion was characterized both by a dramatic jump in uncertainty and by a spectacular drop in the FFR
engineered by the Federal Reserve in the attempt of slowing down the fall of real GDP. Indeed, these are
the facts that motivated this paper. Unsurprisingly, the exclusion of the Great Recession period would
drastically reduce the precision of the estimated impulse responses and blur the difference between the
cumulative effects of monetary policy shocks in the two states considered in this study.
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growth (VIX) as the uncertainty indicator. These figures present the GIRFs conditional

on the uncertain times (left panels) and tranquil times states (right panels) along with

their 68 and 90% bootstrapped confidence bands. Looking first at real variables, GDP,

investment and consumption all increase in both states after the expansionary shock.

However, both the magnitude and the persistence of this increase depend on the state

of the economy. During tranquil times investment increases by a maximum of around

1% and consumption and GDP by around 0.25%. During uncertain times, instead, their

maximum reactions are roughly between three-fifths and two-thirds of those during tran-

quil times. This suggests not only that monetary policy shocks are less effective when

they occur during economic phases characterized by high uncertainty, but also that they

are so in an economically important manner.

Figures 4 and 5 also document a significant decrease in uncertainty in response to the

considered expansionary monetary policy shock. To appreciate the size of the decrease in

uncertainty, notice that a one standard deviation monetary policy shock would cause a

maximum decrease in uncertainty of around 1/3 of the standard deviation of uncertainty

shocks when uncertainty is proxied by the IQR of sales growth and of around 1/6 when

uncertainty is proxied by the VIX.26 This significant and sizable decrease in uncertainty

confirms the necessity of modeling uncertainty as an endogenous variable and, accordingly,

that of computing GIRFs à la Koop et al. (1996). The next Section digs deeper into

the role of endogenous uncertainty and shows its relevance for the estimated responses.

There we will see that our estimated GIRFs for real variables take also implicitly into

account the fact that uncertainty mean reverts after the monetary stimulus.27

Turning to the response of prices, Figures 4 and 5 document the appearance of a "price

puzzle". The price response predicts, contrary to conventional wisdom, a significant

short-run decrease in prices following a monetary policy expansion, with prices starting

to increase with respect to trend only later. This is a result often found in the monetary

VAR literature.28 The literature has proposed two main ways to interpret this apparent

puzzle. One way is to interpret the reaction of prices as a VAR-fact while the other

26The fact that the VIX is less endogenous to monetary policy shocks is consistent with the findings
by Ludvigson et al. (2015) according to which financial uncertainty is more exogenous to the business
cycle.
27This is not directly evident from the uncertainty responses in Figures 4 and 5 since the GIRF

represents the deviation of uncertainty from its mean reversion path as caused by the monetary policy
shock (see equation 5). Hence, for example, the negative response of uncertainty during tranquil times in
the figures implies that, because of the monetary policy shock, uncertainty will mean revert more slowly
to its higher unconditional level.
28The price puzzle is a common finding especially for sample periods that include Pre-Volcker obser-

vations (as ascertained in our checks below). As our robustness checks show, it occurs also in case we
identify monetary policy shocks by means of an external instrument following Gertler & Karadi (2015).
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one is to interpret it as a VAR-artefact due to omitted variables.29 In Section A4 of the

Appendix we perform a check considering inflation expectations and Divisia money as

further variables in our VAR (following, respectively, Castelnuovo & Surico (2010) and

Keating et al. (2014)). The puzzling response of prices is significantly mitigated and

the non-linear response of real activity to a monetary policy shock documented with our

benchmark analysis turns out to be robust. A further consideration in relation to the

reaction of prices is that notwithstanding the very different responses of real activity

indicators, price responses hardly exhibit any different behavior between states.30

Finally, to examine whether the response of real variables is statistically different be-

tween states, a test is proposed in Figure 6, both for the IQR of sales growth (left panels)

and the VIX case (right panels). The computation of this test is based on the distribu-

tion of the difference between state-conditional responses stemming from the bootstrap

procedure used.31 This allows us to take into account the correlation between the esti-

mated impulse responses. We report the percentiles referring to the 68 and 90 percent

confidence levels. The confidence bands point to a statistically different response of real

activity between uncertain and tranquil times in the medium run, i.e., in the period in

which monetary policy exerts the maximum of its power before becoming neutral in the

long run.

Robustness checks. The robustness of our baseline results is assessed along sev-

eral dimensions in Section A4.1 of our online Appendix (summary in Figure A4 and

the first row of Figure A6). We employ alternative firm- and macro-level uncertainty

measures (such as Jurado, Ludvigson, and Ng’s (2015) macro- and firm-level uncertainty

indexes), use the Baker, Bloom, and Davis’(2016) economic policy uncertainty (EPU)

index, sharpen the identification of the monetary policy shocks (by considering either in-

flation expectations or a different Cholesky ordering with uncertainty first) and consider

a NBER dummy as a potentially relevant omitted variable.

29As regards the "fact" interpretation, Christiano et al. (2005) rationalize the price puzzle via a
working capital channel which justifies the presence of a short-term interest rate in firms’marginal costs
due to the fact that firms must borrow money to finance their wage bill before the goods market opens.
The reduction in marginal costs after expansionary monetary policy shocks could hence be at the root
of the price puzzle. As regards the "artifact" interpretation, Sims (1992) and Castelnuovo & Surico
(2010) attribute the price puzzle evidence to variables that are omitted in the VAR but that are instead
considered by the monetary authority in taking their policy decisions.
30This is, at a first glance, evidence against the empirical relevance of Vavra’s (2014) mechanism

centered on price setting as the main driver behind our results. In Section A2 of our online Appendix
we clarify some reasons why it is important to be cautious in this respect when interpreting our results —
e.g., our VAR setting and our use of aggregate data —, and conclude on the need for more research using
microeconomic data (following, e.g., Bachmann et al. (2017)).
31The bootstrapped confidence bands take full account of sampling variability, i.e., of parameters

uncertainty.
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Section A4.2 motivates and presents the results from additional robustness checks we

performed (summary in Figure A5 and the last two rows of Figure A6). It is shown

that baseline results are robust to: i) the estimation over the post-Volcker sample; ii)

the case of a break in the variance-covariance matrix that accounts for lower volatility

during the Great Moderation period; iii) the employment of a richer specification of our

SEIVAR model that allows for higher-order interaction terms between the policy rate

and uncertainty; iv) the case where the linear trend is not included; v) the case trending

variables are modeled in growth rates; vi) the estimation of a smaller-scale SEIVAR; vii)

the employment of an alternative Cholesky ordering in which uncertainty is allowed to

contemporaneously react to real activity but not to monetary policy; viii) the ordering

of prices as the last variable so that to allow for its on-impact response to the policy

shock; ix) the case the CPI is used instead than the GDP deflator price index; x) the

case monetary policy shocks are identified using high-frequency surprises around policy

announcements as external instruments as in Gertler & Karadi (2015).32

Our main results are robust to all checks considered but to the use of the EPU

index, for which the uncertainty-dependence of the effectiveness of monetary policy shocks

almost vanishes. This implies that economic policy uncertainty does not seem important

for the transmission of monetary policy shocks. The next section clarifies the role that

endogenous uncertainty plays for this finding (given that, as shown in the Appendix, in

case we did not model the EPU index endogenously in the VAR, we would erroneously

find that it also implies state-dependent impulse responses of monetary policy shocks).

5 The role of endogenous uncertainty

This Section shows why modeling uncertainty as an endogenous variable in the non-linear

VAR is crucial to properly estimate the real effects of monetary policy shocks.

Figure 7 makes a comparison between our baseline state-conditional GIRFs and the

IRFs obtained from a counterfactual exercise based on the same estimated baseline

SEIVAR model but where responses are computed by keeping the level of uncertainty

at its pre-shock value (i.e., by considering uncertainty as exogenous).33 As the Figure

32Section A4.3 of our Appendix contains further robustness material: Figure A7 shows the robustness
of results to the use of a wider tolerance band in defining the two states; Figure A8 proposes a statistical
test for the difference of the cumulative effect of monetary policy shocks which is more directly related
to the overall policy effectiveness.
33Following the same logic of the counterfactual exercises in Sims & Zha (2006), we perform this exercise

by making uncertainty completely unresponsive to other variables in the system (i.e., uncertainty remains
fixed to its pre-shock value during all the iterations needed to compute the GIRFs). The response we
get is technically a conditionally-linear response for which starting conditions do not play any role.
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documents, state-conditional responses of real variables get more distant between states

when uncertainty is kept fixed in the computation of (conditionally-linear) counterfactual

responses than when its endogenous reaction is considered in computing (fully non-linear)

responses. Table 1 and Figure 8 complement the findings in Figure 7 by making a com-

parison between the difference in the state-conditional real effects of the monetary shock

for the cases of endogenous and exogenous uncertainty (black solid and green starred

lines in Figure 8, respectively).34 Overall, we find that the difference between both peak

and cumulative state-dependent responses of real variables gets halved when uncertainty

is treated as endogenous versus when is not, implying that with endogenous uncertainty

monetary policy effectiveness becomes around half as state-dependent as with exogenous

uncertainty. For example, in passing from endogenous uncertainty to exogenous uncer-

tainty, the GDP peak response turns from being 47% (74%) stronger during tranquil

times for the IQR of sales growth (VIX) to being 94% (181%) so.

To ensure that the counterfactual exercise above fully captures what happens when

uncertainty is exogenously modeled in the non-linear VAR (as in, e.g., Aastveit et al.

(2017)), Figure A9 in the Appendix shows IRFs obtained from an alternative estimated

IVAR comparable to equation (1) where uncertainty, which serves as our conditioning

variable, is not modeled in the vector of endogenous variables, i.e.,:

Ỹt = α+ γ·linear trend +
L∑
j=1

AjỸt−j +
L∑
j=1

Bjunct−j +

[
L∑
j=1

cjRt−j × unct−j

]
+ ut,

where Ỹ does not include unc. In order to obtain the impulse responses, uncertainty is

fixed either to its 9th decile value or to its 1st decile one —consistently with our baseline

IVAR and similarly to Aastveit, Natvik, and Sola (2013, 2017) —and the conditionally-

linear system is iterated onwards.35 As Figure A9 shows, virtually the same results as in

Figure 7 are obtained.36

The finding that under exogenous uncertainty monetary policy is erroneously found

twice as powerful during tranquil times as during uncertain times is mechanically ex-

plained by the neglect of the endogenous moves of uncertainty after the monetary policy

34Figure 8 does not report the confidence bands for clarity reasons and because they are not help-
ful to assess statistical significance (provided results come from a counterfactual exercise). However,
counterfactual responses are outside the 68% baseline confidence bands (results available upon request).
35A similar iterated procedure to get IRFs from a linear VAR is illustrated in Hamilton (1994, p. 319).

Notice that this model is fully linear conditional on an uncertainty value and hence, unlike our baseline
IVAR, the starting conditions do not matter.
36This reassures us against the relevance of the Lucas critique for the counterfactual exercise performed.

We prefer to work with the counterfactual analysis in the main paper because allows us to distinguish
between the two endogenous uncertainty channels, what we do next.
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shock hits. Specifically, the finding arises because conditionally-linear IRFs fail to con-

sider the two reasons why uncertainty can move after the monetary shock, or in other

words because they neglect the interaction between two endogenous uncertainty channels.

Figure 9 digs deeper into the drivers of the results in the first row of Figure 7 on the

real effects of monetary stimuli (in particular, the first panel of Figure 9 coincides with

the first panel of Figure 7). As the first row of Figure 9 documents, treating uncertainty

as an exogenous variable —like in Figure 7 —both i) shuts down the (endogenous) reac-

tion of uncertainty to the monetary policy shock and ii) prevents uncertainty to mean

revert after the shock (second and third column, respectively). These are two different

endogenous channels that can influence the GDP response to monetary policy shocks in

different ways. In what follows we disentangle the effect of each of them. The aim is to

decompose and rationalize the move from conditionally-linear IRFs —which do not take

account of endogenous uncertainty —to our baseline GIRFs —which do take account of

it.

On the one hand, the reduction in uncertainty induced by the expansionary monetary

shock works in favor of enhancing, ceteris paribus, the response of real variables in each

state with respect to a scenario with unreactive uncertainty. This is the "uncertainty

endogenous reaction" channel that Bernanke refers to in his statement in the Introduction,

according to which "the reduction in risk associated with an easing of monetary policy [...]

may amplify the short run impact of policy". The decrease in uncertainty will increase

monetary policy effectiveness via reduced precautionary savings and the shrinkage of

firms’inaction regions. The second row of Figure 9 presents a counterfactual exercise that

allows us to isolate the role played by this channel. Provided that this is the only channel

shut down (i.e., uncertainty still mean reverts as in the baseline analysis), the passage

from these counterfactual responses to baseline responses will only be explained by this

channel. Consistently with Bernanke’s predictions — and consistently with the short

run baseline decrease in uncertainty after the monetary shock —, the real effectiveness

of monetary policy shocks increases in the short run in the passage from counterfactual

GDP responses to baseline ones, for both uncertain and tranquil times.

On the other hand, the mean reversion in uncertainty occurring after — but inde-

pendently from —the monetary shock works in favor of making the state-dependent real

responses less different between states with respect to a scenario of non mean reverting

uncertainty. This is the mean reversion channel that Bloom refers to in his passage in

the Introduction, according to which "when uncertainty is mean reverting, high current

[uncertainty] values have a lower impact on expected long-run [uncertainty] values than
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if uncertainty were constant." Assuming non mean reverting uncertainty implies that un-

certainty will be forever high or low. Since agents take decisions based on expected future

uncertainty, then it is reasonable to expect that allowing uncertainty to mean revert will

imply a less extreme agents’response in each state. The third row of Figure 9 confirms

these intuitions with a counterfactual that isolates this "mean reversion" channel by shut-

ting it down.37 Consistently with what expected, in the passage from these counterfactual

responses to baseline ones, the real effects of monetary policy shocks increase in uncertain

times —provided that initially-high uncertainty mean reverts toward a lower value —and

decrease in tranquil times —provided that initially-low uncertainty mean reverts toward

a higher value.

Figure 8 also shows the difference in the state-conditional real effects of the monetary

shock for the cases in which, with respect to the baseline case of endogenous uncertainty,

either the Bernanke’s or the mean reversion channels are shut down (purple crossed and

orange circled lines, respectively).

Overall, this Section’s findings suggest two considerations. First, both channels can

be quantitatively relevant. As Figure 9 documents, in the case uncertainty is proxied by

the IQR of sales growth, their neglect would induce quantitatively important biases in the

estimated real responses to monetary policy shocks.38 ,39 Second, as Figure 8 documents,

37 In order to properly isolate this mean reversion channel, the right panels in Figure 8 plot
the average non-shocked uncertainty path following the shock at time t, for each given state, i.e.,

E
[
unct+h | {$t−1 ∈ Ωuncertain times

t−1 }
]
and E

[
unct+h | {$t−1 ∈ Ωtranquil timest−1 }

]
(see equation 5). In

this way the mean reversion in uncertainty is independent from the uncertainty endogenous reaction to
monetary policy shocks and only depends from the initial level of uncertainty.
38An attentive reader may wonder why both channels can be empirically relevant for GDP response

even though the changes they induce in uncertainty are of very different magnitude (probably he/she
would have compared Figure 9 second and third columns vertical axis scales). Remember, however, that
the GDP response is given by its average shocked minus non-shocked path (see equation 5). As regards
the Bernanke channel, the decrease in uncertainty induced by the shock will be directly translated into
the responses (since uncertainty will decrease only in the shocked path). Instead, the mean reversion in
uncertainty is something present in both uncertainty paths (shocked and non-shocked) and hence only a
part of it would be indirectly transmitted into the response, via the non-linear interaction terms (think
to the fact that only the interest rate would be different between paths — by definition of monetary
policy shock —and that it would be multiplied with mean reverting uncertainty in the interaction term).
Basically, in loose terms and over-simplifying on notation, the response of GDP for the endogenous
uncertainty case at horizon h ahead for a time t shock to the policy rate R (δR shock at horizon h = 0)
conditional on a history ωt−1 can be seen as:

∂GDP (h)

∂R(0)

∣∣∣∣end. unc.
$t−1

=
∂GDP (h)

∂R(0)

∣∣∣∣ex. unc.+∂GDP (h)∂unc

(
∂unc

∂R(0)
+
∂unc

∂time
·
[

∂ (R · unc)
∂ (R(0) & time)

− ∂ (R · unc)
∂ (time)

])∣∣∣∣
$t−1

, for h = 0, 1, ...,H. It is easy to see that when uncertainty is exogenously modeled and fixed to a constant
to recover state-dependent responses, then both endogenous uncertainty channels are shut down, i.e.,
∂unc
∂R(0) = 0 (Bernanke’s channel turned off) and

∂unc
∂time = 0 (mean reversion turned off). Notice that in a

non-linear model the two channels may also interact (think to a negligible extra term in the parenthesis
which our baseline GIRFs can also capture).
39In case uncertainty is instead proxied by the VIX, the only channel that would induce a quantitatively

relevant bias is the mean reversion channel (see Figure A10 in the Appendix). This is consistent with
the fact that the decrease in the VIX induced by the monetary policy shock is of smaller relevance than
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the mean reversion channel is the main responsible for reducing (in this case halving)

the difference between state-dependent responses of real variables when uncertainty is

treated as endogenous. Indeed, when the mean reversion channel is the only channel shut

down the difference is similar to the (fully) exogenous uncertainty case, whereas when

it is the only channel active the difference is similar to the baseline case of endogenous

uncertainty. This is consistent with the fact that the mean reversion channel, as seen

above, is the only channel that makes impulse responses less distant between the two

states.40

6 Conclusion

We propose a non-linear VAR framework in order to study the macroeconomic effects of

monetary policy shocks during tranquil versus uncertain times while taking into account

that uncertainty may endogenously move after monetary stimuli. We show that modeling

uncertainty as endogenous is key, both economically and econometrically, in order not

to disregard important transmission channels and hence to correctly estimate the effects

of unexpected monetary stimuli. We find that, on average, an unexpected monetary

policy shock has real effects around 50%-75% stronger during tranquil times than during

uncertain times. While being an important difference, we show that it is considerably

smaller —for our baseline analysis around a half —than what one would get by disregarding

the endogenous move of uncertainty after the stimulus. Our results lend support to real

option effects in investment and durable goods as a potential theoretical explanation

behind the reduced effectiveness of monetary policy shocks. Further, our results point to

the existence of two novel endogenous uncertainty channels, the "uncertainty endogenous

reaction" and "uncertainty mean reversion" channels, which we find empirically relevant

for the propagation of monetary policy shocks. The uncertainty mean reversion channel

is the one connected to monetary policy effectiveness becoming half as state-dependent

with endogenous uncertainty as with exogenous uncertainty.

Our findings have implications for policy because they suggest that, even when con-

sidering the “endogenous uncertainty” channels, monetary policy remains significantly

less effective during (firm- and macro-level) uncertain times than tranquil times. Hence

our evidence lends empirical support to the call for more aggressive policies in uncertain

times (Bloom (2009), Bloom et al. (2018)). Our findings also offer some suggestions

the one induced in the IQR of sales growth (as documented in Section 4.2).
40If strong enough, the mean reversion channel can also cancel out —while moving from exogenous

uncertainty to endogenous uncertainty —any uncertainty-dependence in the effects of monetary policy
shocks. This is the case of the EPU index, as shown in Figure A11 of the Appendix.
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for theoretical modeling, in particular pointing to the relevance of developing non-linear

micro-founded models where uncertainty can play a state-conditional role and possibly

where, instead of being a completely exogenous process, it can react to policy stimuli

while at the same time displaying empirically-grounded mean reversion.
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TABLE 1

Difference between state-conditional:
peak effects cumulative effects

GDP Inv. Cons. GDP Inv. Cons.
IQR of sales growth

endogenous uncertainty -0.10 -0.38 -0.11 -1.13 -4.63 -1.48
exogenous uncertainty -0.19 -0.69 -0.21 -1.99 -8.02 -2.59

endog. unc./exog. unc. 0.53 0.55 0.53 0.57 0.58 0.57

VIX
endogenous uncertainty -0.11 -0.43 -0.10 -1.18 -4.19 -1.12
exogenous uncertainty -0.22 -0.84 -0.21 -2.23 -7.70 -2.05

endog. unc./exog. unc. 0.49 0.52 0.48 0.53 0.55 0.55
Difference of the state-conditional peak and cumulative real effects of mon-
etary policy shocks between uncertain and tranquil times: endogenous vs.
exogenous uncertainty. The difference is computed as the effects in uncertain times
minus the effects in tranquil times.
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FIGURE 1

1975 1980 1985 1990 1995 2000 2005 2010 2015

0.15

0.2

0.25

0.3

IQR of sales growth

mean

1975 1980 1985 1990 1995 2000 2005 2010 2015

20

30

40

50

60

VIX

Uncertainty indicators. Orange dashed line: IQR of sales growth (sample: 1971Q1-
2009Q3). Peach solid line: VIX (sample: 1971Q1-2015Q4). Grey areas: NBER reces-
sionary quarters.
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FIGURE 2
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response (blue solid and cyan dotted lines respectively) along with the previous-quarter
level of uncertainty. The cumulative effects and uncertainty measures are standardized to
the mean and standard deviation of the peak effects. Lower row: GIRFs peak response in
relation with the initial level of uncertainty (with a differentiation between conventional
and unconventional monetary policy shocks). Unconventional monetary policy shocks
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FIGURE 3
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FIGURE 4
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FIGURE 5
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FIGURE 6
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FIGURE 7
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FIGURE 8
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previous difference for the case of fully exogenous uncertainty. Orange circled lines: dif-
ference for the counterfactual case with just the mean reversion channel shut down with
respect to the baseline case. Purple crossed lines: difference for the counterfactual case
with just the Bernanke’s channel shut down with respect to the baseline case. Note:
x -axis in quarters.
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FIGURE 9
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Comparison among counterfactual exercises to study the role of "Bernanke"’s
and "Mean reversion" channels (uncertainty proxy: IQR of sales growth). Upper
row: Baseline results vs. results obtained from the counterfactual in Figure 7. Middle
row: Baseline results vs. results obtained from a counterfactual that leaves inactive only
"Bernanke’s" channel (i.e., starting from baseline GIRFs computation, fictitious shocks
to uncertainty are used to zeroing the uncertainty response, similarly to Kilian & Lewis
(2011)). Lower row: Baseline results vs. results obtained from a counterfactual that
leaves inactive only the "Mean reversion" channel (i.e., starting from the counterfactual
explained in footnote 33, fictitious shocks to uncertainty are used to replicate the base-
line uncertainty response). The legend explains the different lines. Lines in the first
two columns refer to responses while lines in the last column refer to the non-shocked
uncertainty average (level) paths as explained in footnote 37. Note: x -axis in quarters.
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