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Abstract

Contemporary individuals are the combination of genetic fragments inherited from ancestors belonging to multiple populations, as

the result of migration and admixture. Isolating and characterizing these layers are crucial to the understanding of the genetic history

of a given population. Ancestry deconvolution approaches make use of a large amount of source individuals, therefore constraining

theperformanceofLocalAncestry Inferenceswhenonly fewgenomesareavailable fromagivenpopulation.HerewepresentWINC,

a local ancestry framework derived from the combination of ChromoPainter and NNLS approaches, as a method to retrieve local

genetic assignments when only a few reference individuals are available. The framework is aided by a score assignment based on

source differentiation to maximize the amount of sequences retrieved and is capable of retrieving accurate ancestry assignments

when only two individuals for source populations are used.
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Introduction

In the last decade, the advent of dense genotyping arrays and

high-throughput sequencing technologies has paved the way

to the development of methods aimed at reconstructing Local

Ancestry patterns along the chromosomes.

A large variety of local ancestry deconvolution methods

have been proposed, harnessing different statistical algo-

rithms such as Hidden Markov Models (HMM) (HapMix

[Price et al. 2009], LAMP-LD [Baran et al. 2012], ELAI

[Guan, 2014], MOSAIC [Salter-Townshend and Myers,

2019]), Principal Component analysis (PCAdmix [Brisbin
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et al. 2012]) and machine learning classification tools (RF-Mix

[Maples et al. 2013]).

Most Local Ancestry Inference (LAI) methods available to

date, identify fragments putatively descending from a limited

number of reference populations, for which tens of individu-

als are typically required. Although a reasonable amount of

data for most of the contemporary human groups are avail-

able (Yelmen et al. 2019), this is not the case for many key

populations. Some human groups remain poorly sampled

(hindered by social, geographic, or ethical factors), and histor-

ical populations are often incompletely captured by ancient

DNA, which is reliant on preservation conditions, burial prac-

tice, extent of archeological activity, and other biasing factors.

Furthermore and beyond the human realm, for contemporary

or extinct species, few individuals are usually available to rep-

resent source populations due to the limited availability of

samples or resources. A limited number of source individuals

causes an under-estimation of the genetic diversity within

populations, increasing the assignment error of the traditional

LAI methods.

In this study, we propose that leveraging a larger panel of

populations to genetically characterize both the sources and

the admixed population could yield a better performance

even when little amounts of source individuals are available

for the analyses.

ChromoPainter provides the best approach to overcome

the issue of lack of data for the sources of the target admixed

population, as it uses the genetic information acquired from a

large panel of populations, even unrelated to the admixture

event, to describe (or paint) both sources and target individ-

uals. A NNLS (Nonnegative Least Squares) is then used to

summarize the painting information.

ChromoPainter/NNLS (Lawson et al. 2012; Hellenthal et al.

2014; Leslie et al. 2015) approach has been successfully

employed to reconstruct the global ancestry of modern day

and ancient populations, and simulation-based comparisons

showed that it yields high accuracy at a genome wide level,

even when a limited number of reference samples are avail-

able (Montinaro et al. 2015; van Dorp et al. 2015; Busby et al.

2016; Hofmanov�a et al. 2016; J€arve et al. 2019; Ongaro et al.

2019).

We propose to turn the ChromoPainter/NNLS framework

into a LAI tool, by applying the NNLS step on genetic win-

dows, instead of the entire genomes. This approach could

leverage on a large number of donor populations to charac-

terize not only the admixed targets, but also the source pop-

ulations, and thus provide a versatile solution when only a few

samples are available for source populations.

We tested the performance of the proposed approach

through coalescent simulations, validated it on an additional

set of simulated individuals and applied it to real case scenar-

ios. All simulated individuals were admixed 100 generations

ago, a limit date for which most dating tools can detect an

admixture event (Moorjani et al. 2011).

We benchmarked our performance against three Local

Ancestry tools: a machine learning-based tool (RFmix, a com-

monly used LAI software), a Principal Component analysis-

based tool (PCAdmix), and a HMM-based tool (ELAI, shown

to outperform many of the state-of-the-art methods [Geza

et al. 2019] and to perform well even in regions with small

ancestral track length [Guan, 2014]).

The results showed that our method is capable of outcom-

peting all methods and particularly ELAI, which shows higher

performances than PCAdmix and RFmix, when harnessing

admixed individuals whose sources diverged at least 30 kilo

years ago (ka), using as little as two individuals as sources.

Materials and Methods

Simulating Admixed Individuals: Test Set

We simulated 13 populations with changing population sizes

and divergence times ranging from 250 to 4,000 generations

(7.5–120 ka), to represent current European, East Asian, and

African groups. We simulated approximately 250Mb (for a

total of 4,745,025 SNPs) which mimics the length of chromo-

some 1. We used a constant mutation and recombination

rate, both set at 1.25 � 10�8 (Scally and Durbin, 2012). In

detail, we assigned 20,000 and 10,000 as effective population

size (Ne) for African and Eurasian populations, respectively and

followed a similar model as in Van Dorp et al. 2015 (2015).

We then added seven sister groups, characterized by a

divergence time from their sister group of 100 generations

(3 ka), for a total of 20 simulated populations. These addi-

tional sister groups were not present in the model of Van

Dorp et al. and were labeled as “Ghost” (GST) (supplementary

fig. S1, Supplementary Material online). These populations

were later used to create admixed groups, but were not in-

cluded in any following step, as in a real scenario it would not

be possible to perform Ancestry Deconvolution with the ac-

tual sources of the admixture.

Simulations were carried out with mspms (Kelleher et al.

2016) software using the following command:

mspms 2000 1 -t 15000 -r 12500 -I 20 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 -p 10 -n 1 20.0 -n 2 20.0 -n 3 20.0 -n 4

20.0 -n 5 20.0 -n 6 20.0 -n 7 20.0 -n 8 10.0 -n 9 10.0 -n

10 10.0 -n 11 10.0 -n 12 10.0 -n 13 10.0 -n 14 20.0 -n

15 10.0 -n 16 10.0 -n 17 10.0 -n 18 10.0 -n 19 10.0 -n

20 10.0 -ej 0.025 14 4 -ej 0.025 15 8 -ej 0.025 16 9 -ej

0.025 17 10 -ej 0.02 5 18 11 -ej 0.025 19 12 -ej 0.025 20

13 -ej 0.0625 13 12 -ej 0.075 12 11 -ej 0.1 9 8 -ej 0.125

3 2 -ej 0.175 6 5 -en 0.175 11 2.0 -ej 0.2 10 8 -ej 0.25 11

8 -ej 0.25 7 5 -ej 0.425 5 4 -ej 0. 45 4 2 -en 0.45 2 10.0 -

en 0.45 8 2.0 -ej 0.625 8 2 -ej 1.0 2 1 -en 1.0 1 1

We generated 8 admixed populations (50 individuals each)

combining pairs of simulated Ghost demes, with admix-simu

Molinaro et al. GBE

2 Genome Biol. Evol. 13(4) doi:10.1093/gbe/evab025 Advance Access publication 15 February 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/13/4/evab025/6135079 by guest on 15 January 2025



(https://github.com/williamslab/admix-simu) with the propor-

tions of 70–30%, constant recombination rate (1.25� 10�8)

and admixture time of 100 generations. We included an ad-

ditional population obtained from a three-way admixture

with the proportion of 40–30–30%, using the same param-

eters of the two-way admixture runs.

The pairs of admixing Ghosts were selected to cover a

broad spectrum of divergence times, allowing us a deeper

evaluation of the framework performance. The resulting

data were combined with the previously simulated data set,

after the removal of Ghosts demes.

Admix-simu records the source for each SNP in a “truth

file,” which was harnessed to infer the accuracy of the Local

Ancestry methods.

We analyzed the pairwise genetic distances among all pairs

of simulated populations and elected populations from the

1000 Genome Project with smartpca (Patterson et al. 2006)

(eigensoft-7.2.0), with the option fstonly: YES.

Simulating Admixed Individuals: Empirical Set

We simulated three admixed populations (N¼ 50 individuals

each), from the 1000 Genome Project (1000 Genomes Project

Consortium, 2015), using admix-simu (https://github.com/wil-

liamslab/admix-simu) and using chromosome 1 (943,790

SNPs) as input; with admixture time of 100 generations ago

and 70–30% proportions. We simulated the admixture

events between a European (TSI, Toscani in Italy) and

African (YRI, Yoruba in Nigeria) population (comparable to

approximately 75 ka TMRCA of the Test Set [Pagani et al.

2016]), European (TSI) and Asian (CHB, Han Chinese in

Beijing) population (comparable to approximately 30 ka

TMRCA of the Test Set [Pagani et al. 2016]), within

European populations (TSI and FIN, Finnish in Finland, com-

parable to approximately 7.5 ka TMRCA of the Test Set

[Pagani et al. 2016]) and created a three-way continental ad-

mixture between YRI, CHB, and TSI (with the proportion of

40–30–30%, respectively). We used CEU (Utah residents with

European ancestry) as a source population to retrieve TSI frag-

ments, ESN (Esan in Nigeria) for YRI and CHS (Han Chinese

South) for CHB. To retrieve FIN fragments, we set as source all

FIN individuals not used to create the admixed population TSI-

FIN. We then run WINC using first 45 individuals from each

source then we downsampled to two individuals. As donor

panel, we used all populations from the 1000 Genome

Project.

Real Case Scenario: ASW and MXL

We applied the developed framework on ASW and MXL

(American of African Ancestry in SW and Mexican Ancestry

from Los Angeles, USA) from the 1000 Genome Project (1000

Genomes Project Consortium, 2015). We painted 61 ASW

individuals using all the non-American populations in the

data set. We set as source populations CEU (Utah residents

with European ancestry) and ESN (Esan in Nigeria), first per-

forming Local Ancestry analyses using 45 individuals each and

then downsampled to 2 individuals per source. We deconvo-

luted 64 MXL with CEU, ESN, and PEL (Peruvians from Lima in

Peru), using first 45 and then only 2 individuals. We applied

both WINC and WINC with the addition of the Reference C-

AS matrix for several AS. Given that in this case we could not

compare our result with a “truth file”, we used ELAI results on

ASW and MXL obtained using 45 individuals as sources as

benchmark.

ChromoPainter

We estimated the nuisance parameters mu (mutation rate)

and Ne (effective population size), through an Expectation-

Maximization algorithm for both the Testing Set and Empirical

Set. For the Test Set, we set the mu parameter as 0.0011, and

Ne as 2,516.3133, whereas for the Empirical Set mu was set

as 0.0008281 and Ne as 939.2658. The parameters used for

the Empirical Set were also used for MXL and ASW analyses.

Splitting Copying Vector

We splitted both sources and target populations’ copying

vectors in windows each containing 500 kb. The expected

tile length of the ancestry block in a population is:

L ¼ ½1�m�r½t � 1�Þ̂ � 1

with L¼ expected length, m¼mixing proportion, r¼ recom-

bination rate, t ¼ time (in generations) since the admixture

event (Racimo et al. 2015).

The expected length of the ancestry tiles in our data set, in

which all populations admixed 100 generations ago, is �1

Mb. We thus chose the length of 500 kb genomic windows

in order to retrieve ancestry blocks that fall within the

expected tile length.

Nonnegative Least Squares

We performed the NNLS on the window-based copying vec-

tors. In this step, for each genomic window, we summarized

the copying vector of the target individuals as a combination

of the copying vectors of the sources.

We used the NNLS function, as described in Hellenthal

et al. (2014), Leslie et al. (2015), Ongaro et al. (2019), which

is a modification of the Lawson–Hanson NNLS implementa-

tion of nonnegative least squares function (Lawson and

Hanson, 1995) available in the statistical software package

R 3.5.1 (R Core Team, 2020).

Taken together all steps should take the following running

time at the current level of software optimization:

ChromoPainter, which can be run upstream, can take up to

3 h per sample, while splitting windows and NNLS steps

should take less than 10 min per sample. However, we note

Chromosome-Painting-Based Pipeline GBE
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that these estimates are highly dependent on the study design

(e.g., number of ChromoPainter donor samples and overall

number of SNPs: 4,745,025 for the simulated data set and

943,790 SNPs for the empirical data set in our case), hence

these running time are to be intended for the current design

only.

Evaluating WINC Performance on Different Window
Lengths

The expected ancestry tiling length of a population that

admixed 100 generations ago is �1 Mb long. We chose to

show WINC results with genomic window length set at 500

kb, to select a haplotype block that could be contained en-

tirely within a given ancestry tile.

Additionally, we applied our method on the Test Set using

a longer window length (1 million base pairs) and a shorter

one (100 kb per window) (supplementary fig. S14,

Supplementary Material online).

We also took into account the amount of markers

ChromoPainter can harness in the analyses and therefore

the density of the biological information contained in each

window. Thus, we tested our approach by splitting the copy-

ing vectors based on the average number of markers per 500

kb window, so that the length of the windows would be

dependent on the number of SNPs within. We ran the SNP

density analyses only on the Empirical Set, since the Test Set

SNP density had low variance, on windows containing 1,892

SNPs (supplementary fig. S15, Supplementary Material

online).

Benchmarks

In order to provide a comparative measure of the perfor-

mance of the newly developed framework, we performed

LAI using different Local Ancestry softwares.

ELAI

We performed 10 independent runs and averaged the

“estimated ancestral allele dosages for each individual at

each SNP” (Guan, 2014). ELAI analyses were performed on

phased data using the following parameters: -C 2, for two

upper clusters when inferring a two-way admixture, and -C 3

when inferring a three-way admixture. We used -c 10 for 10

lower-layer clusters when harnessing 50 individuals and -c

8 when harnessing 2, -mg 100 for 100 admixture genera-

tions, -s 20 for 20 EM iterations, as recommended in ELAI

manual. All the ELAI inferences have been obtained by aver-

aging the results of all individuals tested.

PCAdmix

We used PCAdmix (Brisbin et al. 2012) with default parame-

ters with windows size set to 0.5 cM for all analyses.

RFmix

We performed RFmix (Maples et al. 2013) with the following

parameters: -w 0.5 for 0.5 cM window size, -G 100 to indi-

cate 100 generation since admixture, -e 2 to perform 2 num-

ber of EM iterations, –forward-backward to output the

forward-backward probabilities. The parameters not listed

here were set as default.

Refining WINC Inference Using Window-Based Affinity

among Sources

We evaluated the performance of WINC with respect to the

similarity of the copying vectors for each window in the Test

Set. For each analyzed window, we estimated the Pearson

correlation among the averaged copying vectors from the

two sources. In order to increase the number pairs at a given

correlation, we performed WINC resampling N source individ-

uals 10 times, with N 2 (2, 10, 20, 30, 40, 45).

We then binned Assignment Scores (AS) and Pearson’s r in

10 and 20 intervals respectively, and summarized the accu-

racy of WINC. In doing so, we obtained a Correlation

Assignment Score (C-AS) reference matrix.

The C-AS matrix generated is suited for human populations

at cross-continental level, or populations with pairwise genetic

distances values similar to the groups we simulated (indicated

in supplementary fig. S2, Supplementary Material online). We

note that the C-AS matrix can be re-calibrated by any user

through a new set of simulations believed to be more fitting

to the case study. The advised procedure would be simulating

a data set as similar as possible to the one the user would like

to apply WINC on and recreate a C-AS matrix that is more

suited to the data set of interest.

Results

Proposed Window-Based ChromoPainter/NNLS

Framework

As the core of our strategy, we used the recently developed

approach implemented in the ChromoPainter/NNLS (Lawson

et al. 2012; Hellenthal et al. 2014; Leslie et al. 2015) algorithm

(the combination of ChromoPainter and NNLS algorithms).

In a given phased data set, ChromoPainter (Lawson et al.

2012) identifies the closest neighbor “donor” for any

“recipient” individual haplotype. Along the chromosome,

the combination of all the identified closest neighbors sum-

marizes the different ancestry of an individual. Given the high

complexity and computational resources needed for comput-

ing the whole set of genealogies, ChromoPainter exploits the

approximation provided in the HMM developed by Li and

Stephens (2003), reconstructing recipient individuals as a

combination of genomic segments, or chunks, “donated”

by any other individual in the data set. The information is

then stored in a copying vector, an array that summarizes
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the amount of genome copied by a given recipient from each

donor sample. However, the coalescent events in natural

groups may predate the time of population split, therefore

creating only small differences in the amount of genetic frag-

ments copied by closely related populations, adding a con-

founding factor in the ancestral deconvolution approach. This

limitation is solved using a multiple linear regression approach,

in which a modification of the NNLS is exploited to reconstruct

the painting profile of a given individual as a combination of

copying vectors from a set of source individuals or popula-

tions. In this approach, the target admixed individuals are

usually set as recipients, and the putative sources of the ad-

mixture as donors. We propose to set as recipients both the

admixed individuals and the unadmixed sources, in order to

paint them with a large panel of donor populations not nec-

essarily related with the admixture event.

Here we develop a framework for performing Local

Ancestry Decolvolution using ChromoPainter/NNLS onto ge-

nomic windows that approximate the expected ancestry tiling

in an admixed individual, and named it WINC as short for

Window-based NNLS/ChromoPainter.

Unlike the regular pipeline, we applied it on 500 kb geno-

mic windows, rather than the whole genomes. The length of

500 kb genomic windows has been chosen to fall within the

expected chunk length of an admixture event that happened

100 generations ago (see Materials and Methods). In doing

so, we aim to convey ChromoPainter/NNLS accuracy as a

global ancestry estimator onto a genomic localized context,

hence turning it into a local ancestry tool.

A schematic representation of the process is shown in fig-

ure 1. More in detail 1) we performed a ChromoPainter run in

which source and target individuals are painted using the

entire donor panel. The donor panel is composed of presum-

ably unadmixed groups. The admixed target populations

were set as recipients, along with the source populations.

Setting as recipients both the target and the source individuals

allowed us to obtain the copying vectors for both, which were

then used for the following step. 2) For each painted haplo-

type, we splitted the copying vector into genomic windows of

the same length. For any window, we averaged the amount

of genome copied from any donor populations and normal-

ized the resulting copying vector to sum 1. 3) We then moved

to the NNLS step, in which we described each target individual

as a mixture of the selected source populations. The NNLS

approach identifies the sources’ copying vector that better

match the copying vector of recipient populations as esti-

mated by ChromoPainter. In this way, for each window be-

longing to admixed individuals, we used NNLS to assign the

window to one of the putative sources. The assignment indi-

cates the proportion of the admixed copying vector that

matches each source’s copying vector. 4) Each ancestry as-

signment proportion can be seen as a score (AS), on which we

apply several cutoffs. We then averaged the window-based

copying vectors through all the individuals.

We tested the performance of the proposed approach

through coalescent simulations, validated it on an additional

simulated data set and finally on real individuals, and bench-

marked our performance against other LAI tools. Each analysis

was performed twice, first using 50 individuals as sources and

then only 2 (100 and 4 haplotypes, respectively), but main-

taining in both cases a large number of donor populations

unrelated to the admixture event.

Evaluation Parameters

All LAI tools tested here assign a probability of ancestry to

each genomic window. On the other hand, our approach

employs the proportion assignment given by the NNLS (see

Materials and Methods). In both cases, we refer to the value

assignments as AS. The AS values range from 0 to 1 and they

are used to evaluate the performance of all tools by applying

several cutoffs.

We set different thresholds for each run in order to remove

windows with an AS (or ancestry assignment probability/pro-

portion) lower than the threshold. All removed windows are

then labeled as “Unassigned.” We set for all LAI tools the

following AS thresholds: 0.55, 0.6, 0.65, 0.7, 0.75, 0.8,

0.85, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99.

Given the presence of unassigned values, we accounted

for accuracy and assignation separately. We set Accuracyg as

the portion of windows correctly assigned given all genome

windows, taking into consideration both the assigned and the

unassigned windows. We set Accuracya as the portion of

windows correctly assigned given only the windows that

passed the threshold, therefore not taking into account the

“Unassigned” blocks. We calculated separately “Assigned

Genome” as the portion of all the windows that reached

the AS threshold.

Simulating Admixed Individuals

We simulated a Test Set of 13 populations with different

population sizes and with divergence times ranging from

250 to 4,000 generations (7.5–120 ka), to represent current

European, East Asian, and African groups, following a mod-

ified Van Dorp et al. model (van Dorp et al. 2015).

We then added seven sister groups, characterized by a

divergence time from their sister group of 100 generations

(3 ka), for a total of 20 simulated populations. These addi-

tional sister groups were not present in the model of Van

Dorp et al. and were labeled as “Ghost” (GST) (supplementary

fig. S1, Supplementary Material online). These populations

were later used to create admixed groups, but were not in-

cluded in any following step, as in a real scenario it would not

be possible to perform Ancestry Deconvolution with the ac-

tual sources of the admixture.

We generate eight two-ways admixed populations

combining pairs of simulated Ghost demes, and one

three-ways admixed population with admix-simu
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(https://github.com/williamslab/admix-simu) with an ad-

mixture time of 100 generations and proportions of 70–

30% and 40–30–30%, respectively (see supplementary

table S1, Supplementary Material online).

Similarly, we also simulated an Empirical Set of three two-

ways admixed populations and one three-ways admixed pop-

ulation from the 1000 Genome project (1000 Genomes

Project Consortium 2015) using admixture proportions and

generation times as per the Test Set (70–30% for the two

ways, 40–30–30% for the three ways, and 100 generations

since the admixture in all cases). We simulated the admixture

events between a European (TSI, Toscani in Italy) and African

(YRI, Yoruba in Nigeria) population, European (TSI) and Asian

(CHB, Han Chinese in Beijing) population, and within

European populations (TSI and FIN, Finnish in Finland). The

three-way continental admixture was created between YRI,

CHB, and TSI. We used CEU (Utah residents with European

ancestry) as a source population to retrieve TSI fragments, ESN

(Esan in Nigeria) for YRI and CHS (Han Chinese South) for

CHB. To retrieve FIN fragments, we set as source all FIN indi-

viduals not used to create the admixed population TSI-FIN. As

donor panel, we used all populations from the 1000

Genomes Project.

Global Ancestry Estimates

First, we analyzed the pairwise genetic distance among all

pairs of simulated populations from the Test Set and showed

that they are consistent with those observed among modern

populations (supplementary figs. S2 and S3, Supplementary

Material online). We then applied ChromoPainter/NNLS

global ancestry methodology on the entire chromosome

and showed that it correctly assigns the two ancestries (sup-

plementary fig. S4, Supplementary Material online), with a

FIG. 1.—Schematic representation of WINC approach. WINC is based on the ChromoPainter/NNLS framework, with the additional step of splitting the

copying vectors resulting from the ChromoPainter (CP) run before analyzing them through the NNLS step. First step: ChromoPainter run. CP identifies the

closest neighbor “donor” for any “recipient” individual haplotype. ChromoPainter then reconstructs the recipient individuals as a combination of genomic

segments, or chunks, “donated” by any other individual in the data set. The information is then stored in copying vectors, where, for each recipient

haplotype, it is indicated which donor individual is the closest neighbour. In this way, we obtain the copying vectors of our target populations: both the

sources and the admixed individuals. Second step: splitting copying vectors. We then split the copying vectors in genomic windows of the same length.

Window size depends on the ancestry chunks, which in turn depends on the amount of generations since the admixture. Third step: performing NNLS

analyses on the copying vector’s genomic windows obtained from the previous step. The NNLS step assigns a window to a specific ancestry, by

reconstructing the painting profile of a given individual as a combination (or proportion) of copying vectors from the source individuals.
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discrepancy of 0.01% when the sources diverged 75 ka and

10% when they diverged just 7.5 ka.

WINC Performance on the Testing Set

To test our approach, we applied WINC on a set of simulated

individuals (Test Set). All populations are characterized by a

distant admixture time (100 generation), which causes the

ancestral fragments to be relatively small in all target individ-

uals. On the other hand, all admixed populations vary on the

similarity of the sources of the admixture, given by the differ-

ent divergence time between sources. Thus, we expect that

the LAI tools more robust in inferring ancestries in small

regions will yield high performances. On the other hand, we

expect that each tool performance will decrease as the diver-

gence between sources decreases, despite the admixture gen-

erations. We compared WINC with RFmix, PCAdmix and ELAI.

To compare LAI tools, we considered both Assigned Genome,

the portion of the windows that reached the threshold, and

accuracya, an accuracy computed only on windows for which

ancestry assignment was performed.

Overall, RFmix performance does not exceed the accuracya

of 85% in any target population (fig. 2), probably due to the

high number of generation elapsed since the admixture (Dias-

Alves et al. 2018) (supplementary fig. S5, Supplementary

Material online). This is shown when using 50 individuals

per source as well as 2. WINC outcompetes RFMix, showing

that our framework could detect ancestries in a target popu-

lation with small ancestry tiles.

PCAdmix results are comparable with WINC and ELAI

when using 50 individuals per source. When two individuals

are employed to deconvolute the target population, PCAdmix

accuracya is always lower than 0.8, regardless of the diver-

gence between sources (fig. 2).

Of all tested tools, the only one matching WINC’s perfor-

mance appears to be ELAI (fig. 2). In fact, when using 50

samples for each source population, both ELAI and WINC

display a comparable amount of Assigned Genome and ac-

curacy levels for all divergences between the sources (fig. 2

and supplementary tables S2–S7, Supplementary Material

online).

Supported by the promising evidence, we moved to test

our approach using only two individuals per source, the main

focus of our investigation.

ELAI and WINC show comparable levels of accuracya and

Assigned Genome when only two individuals are used per

source. For populations with highly differentiated sources

and older split times, such as 75 ka or 30 ka, WINC assigns

up to 99% of the genome with a minimum accuracya of 0.9

(fig. 2, supplementary tables S2–S7, Supplementary Material

online). When tested on the 30-ka populations, WINC out-

performs ELAI in terms of accuracy levels reached and pro-

portion of Assigned Genome maintained. For more recent

split times (up to 24 ka), both WINC and ELAI show a decrease

in accuracya and amount of genome retrieved, as expected

when the sources of the admixture are genetically similar.

We further provide specific results for both WINC and ELAI

considering only one AS threshold (0.8), to provide perfor-

mance for a standard run under default parameters (supple-

mentary figs. S6–S9, Supplementary Material online).

Given that RFmix is suited for more recent admixture times

(supplementary fig. S5, Supplementary Material online) and

PCAdmix does not reach high performance levels when only

two individuals are used as sources, we performed the sub-

sequent tests using only ELAI as a benchmark.

WINC Calibration Using a Correlation-Assignment Score

Matrix

LAI approaches are expected to have a higher accuracy when

the admixing sources are genetically distant at the locus of

interest. The more two sources are differentiated at a given

genomic window, the easier it should be for NNLS to assign a

haplotype to one or the other source population. We can

leverage the similarity between sources to predict when

NNLS has sufficient information to correctly infer the local

ancestries, providing a calibration for WINC. To assess the

similarity between different sources, we computed a

Pearson correlation coefficient (rho) between

ChromoPainter copying vectors obtained on the same win-

dow for each pair of source populations. We then performed

the NNLS analysis applying different cutoffs, therefore remov-

ing all windows where the AS was lower than the specified

threshold. We calculated the accuracy obtained considering

windows in ten equally spaced rho values and AS thresholds.

In doing so, we obtained a C-AS matrix (fig. 3) that, given

different values of similarity between sources (correlation) and

AS, should inform on the expected accuracy values.

Application of Reference C-AS Matrix and Effects on WINC

Performance

We tested the applicability of the C-AS matrix (estimated on

the Test Set) on the Empirical Set (see fig. 3 and supplemen-

tary fig. S10, Supplementary Material online for a schematic

representation). For a given correlation in a specific window,

we used the minimum AS threshold needed to obtain the

desired accuracya value. We analyzed the overall performance

and transferability of the C-AS matrix on the Empirical Set and

compared it with the results obtained by selecting the win-

dows only by AS thresholds.

Our tool operates with high accuracya values (over 0.9) also

on the Empirical Set when 50 individuals are available for the

LAIs, and the sources are genetically differentiated (see fig. 4A

and B and supplementary tables S8 and S9, Supplementary

Material online). In fact, similarly with the Test Set results on

populations with genetically similar sources, all LAI tools

tested do not reach satisfactory accuracya levels on TSI-FIN
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(fig. 4C and supplementary table S10, Supplementary

Material online).

We thus moved to study its performances when only two

individuals per source were set. We observed that, for both

TSI-YRI and TSI-CHB populations, WINC calibrated with the C-

AS matrix performs equally well to WINC alone in terms of

accuracya, but retrieves higher portions of the genome

(fig. 4A and B and supplementary tables S8 and S9,

Supplementary Material online), with the additional notable

difference that WINCþ C-AS is predictable in its outcome. By

applying the C-AS matrix to WINC, we could in fact assign

windows with the desired accuracya, with the only exception

being reaching an observed accuracya of �0.97 when the

expected one was set at 0.99 (see supplementary figs. S11

and S12 and table S8 and S9, Supplementary Material online).

Differently from WINC alone, WINC þ C-AS matrix tends

to not assign any genomic window of TSI-FIN (maximum

0.1%), when threshold values were set to 0.85 or higher

(fig. 4C and supplementary table S10, Supplementary

Material online), hence providing an effective way of drasti-

cally reducing false positives when true positives cannot be

obtained at all.

The C-AS matrix, created from the Test Set and applied to

the Empirical Set, returned windows that reached the selected

desired accuracya, showing its efficacy when used on a dif-

ferent data set. We also applied the C-AS matrix on the Test

set, as a control (supplementary fig. S13, Supplementary

Material online).

Additionally we investigated WINC performance of differ-

ent window lengths: 1,000 kb, 100 kb, and on variable
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FIG. 2.—WINC performance on the Test Set compared with several Local Ancestry tools: ELAI, PCAdmix, and RFmix. The eight panels represent results

for different admixed populations with different divergence times. Within each series, different data points linked by a gray line represent experiments run

using increasingly stringent AS thresholds, and for which a nonzero amount of genomes was assigned to at least one ancestry by that particular LAI method.

x axis shows accuracy(a) values, y axis shows the proportion of genome windows retrieved. Red points indicate the results obtained using ELAI, green dots

indicate PCAdmix results, orange dots list RFmix results, whereas blue points list WINC results. Triangles indicate Local Ancestry results using 50 individuals per

source, whereas dots list results using two individuals. We note that in the “12 ka” panel, when two individuals are used as reference, both PCAdmix and

WINC accuracy values decrease with increasingly stringent AS thresholds. This effect is however minor (PCAdmix accuracy values range from 0.44 to 0.43

and WINC values range from 0.51 to 0.49).
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lengths depending on the SNP density (see supplementary

figs. S14 and S15, Supplementary Material online) and con-

firmed 500 kb to be the optimal window size for the current

study.

Evaluating WINC Performance on Three-Way Admixtures

As a proof of principle, we show the analyses on the three-

ways admixtures simulated in the Test Set and Empirical Set

jointly. Results on the Test Set show that ELAI outcompetes

both WINC and WINC þ C-AS when harnessing the ances-

tries of a three-ways admixture, even when only a few indi-

viduals are used as source. On the other hand, on the

Empirical Set, WINC and WINC þ C-AS outperformed ELAI

when two individuals are set per source (see supplementary

figs. S16 and S17 and table S11 and S12, Supplementary

Material online).

Evaluating WINC Performance on Real Data

Lastly, we applied the WINC and WINC þ C-AS matrix

approaches to real genomes from ASW (American of

African Ancestry in SW) and from MXL (Mexican Ancestry

from Los Angeles, USA) (1000 Genomes Project

Consortium, 2015). To analyze ASW, we used CEU and

ESN as sources, whereas for MXL we used CEU, PEL, and

ESN. Each analysis was composed of either 45 or 2 of source

individuals. For comparison, we also performed ELAI analyses

on ASW and MXL using two individuals per source. To assess

WINC and ELAI accuracies, being a real case not resulting

from simulations, we chose to take as “truth” the results

with ELAI ancestry assignments using 45 individuals.

On ASW population, both ELAI (when using 2 individuals)

and WINC (when using 50 or 2 individuals as sources) show

accuracya levels of 0.9 or higher (see fig. 5A and supplemen-

tary table S13, Supplementary Material online). Consistently

with the highly divergent simulated populations of the Test

Set, WINC and WINC þ C-AS matrix both show accuracya

levels higher than 0.9. Discrepancies on the portions of the

assigned genome could be due to the fact that ELAI assigns

windows that WINC set as NA, or vice versa.

On MXL population (fig. 5B and supplementary table S14,

Supplementary Material online), WINC reaches accuracya of

0.9 or higher when using 45 individuals per source, but unlike

ELAI, it does not reach high accuracya levels when inferring

the three MXL ancestries when only two individuals are used

per source.

Discussion

In this work, we describe WINC, a local ancestry approach

based on chromosome painting through ChromoPainter/

NNLS. The approach is aimed at characterizing genomic frag-

ments in admixed populations, with different degrees of re-

latedness and small sample sizes among source populations

and with as many as 100 generations since the admixture.

We applied the method on genomic data obtained

through coalescent simulations which also forms the basis

for the C-AS matrix, a reference grid to inform a priori on

0.380.42

0.430.44

0.46

0.5

0.5 0.5 0.5

0.51

0.51

0.52

0.52

0.52

0.52

0.52

0.53

0.53

0.53

0.53

0.54

0.540.54

0.54

0.54

0.55

0.55

0.56

0.56

0.56

0.57

0.57

0.58

0.58

0.58

0.58

0.58

0.59

0.59

0.59

0.59

0.6

0.6

0.6

0.6

0.61

0.61

0.62

0.62

0.62

0.62

0.62

0.62

0.63 0.63

0.63

0.64

0.64

0.64

0.65

0.65

0.650.66

0.66

0.67

0.67

0.67

0.68

0.68

0.68

0.69

0.7

0.7

0.72

0.72

0.72

0.73

0.74

0.75

0.75

0.75

0.75

0.77

0.77

0.79

0.79

0.8

0.8

0.81

0.83

0.83

0.83

0.84

0.84

0.85

0.86

0.86

0.87

0.87

0.9

0.92

0.92

0.93

0.94

0.95

0.95

0.96

0.97

0.98

0.98

0.99

0.99

0.99

1 1

1 1

1

1 1−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Threshold

rh
o

FIG. 3.—Reference C-AS matrix on Test Set, a correlation matrix obtained using rho values between sources and ASs. Each slot indicates accuracya values

obtained by selecting a given set of ASs (x axis) threshold and rho values of similarity between source populations (y axis). High accuracya values are listed with

lighter colors, low accuracya values are indicated by darker colors.

Chromosome-Painting-Based Pipeline GBE

Genome Biol. Evol. 13(4) doi:10.1093/gbe/evab025 Advance Access publication 15 February 2021 9

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/13/4/evab025/6135079 by guest on 15 January 2025



the accuracya to be expected by WINC for a given set of

Ancestry Assignments and local diversification between

sources.

When applied on a set obtained by admixing real

genomes, WINC and the C-AS matrix match ELAI for admix-

ture scenarios involving African and European sources and

outperform it for admixtures involving European and East

Asian sources when using as little as two individuals as refer-

ence. We speculate that the reduced diversity in the source

populations is compensated by the large donor panel used by

ChromoPainter. This factor allowed our method to reach high

accuracy levels when only two individuals were used per

source, but only when the sources retained a certain level

of genetic differentiation. In fact, in the case of a subconti-

nental admixture, the donor panel populations used were not

able to fully characterize and differentiate the two sources of

the admixture.

All the tested methods fail at yielding acceptable perfor-

mance when applied on admixtures between two European

populations, with the notable difference represented by the

ability of the C-AS matrix to filter out most of the potentially

inaccurate output, hence avoiding spurious ancestry

assignments.

Another unique feature of our method is the option to

know in advance (based on the ChromoPainter power to dis-

criminate between the source populations) what fraction of

FIG. 4.—WINC and WINC þ C-AS performances compared with ELAI on the Empirical Set. Panel A indicates the resuts of TSI-YRI population, panel B

shows the results of TSI-CHB population and panel C displays results of TSI-FIN population. Red points indicate the results obtained using ELAI, blue points list

WINC results, and light blue points list WINCþ C-AS performances. Triangles indicate Local Ancestry results using 45 individuals per source, whereas dots list

results using two individuals. On the x axis, we listed accuracya values, computed only on windows for which ancestry assignment was performed, and on the

y axis, we listed the proportion of genome windows retrieved.
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the genome will be assigned with satisfactory accuracya. This

feature can be exploited in the C-AS matrix, where specific

windows of the genome can be selected to obtain the desired

accuracya level.

Our method relies on biological information to perform

optimally: the user needs to set the window length of the

genome on which the local ancestry can be inferred, this in-

formation can be estimated from the admixture generation

time. Additionally, given that our approach relies on

ChromoPainter, it also uses phased data and a recombination

map in the ChromoPainter step.

In conclusion, since the majority of ChromoPainter discrim-

inatory power relies on the availability of a sufficiently diverse

panel of donors, we envisage that a constant improvement of

the donor panel may allow any user to maximize the perform-

ances of our approach even for trials where the admixing

populations are particularly similar and for which the number

of available source individuals is limited, like in the cases of

aDNA or of most nonhuman species. Future improvements of

the method, including a more flexible definition of the sliding

window used to perform the local ancestry, will contribute to

increase the fraction of the confidently assigned genome.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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