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a b s t r a c t

This work defines a new correction for the likelihood ratio test for a two-sample prob-
lem within the multivariate normal context. This correction applies to decomposable
graphical models, where testing equality of distributions can be decomposed into lower
dimensional problems.
©2022 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Testing the equality of distributions in a two sample problem can conveniently be done resorting to the likelihood
atio test (LRT) statistic, Wn = −2 logΛn, where Λn is the likelihood ratio. In Wilks (1938), it is shown that for samples
oming from p-variate normal distributions, Wn is asymptotically distributed as a chi-square with f = p(p+3)/2 degrees
f freedom. It is well known (Muirhead, 1982) that the quality of the asymptotic approximation might be poor in finite
ample problems, even at moderate sample sizes. However, convergence to the asymptotic distribution can be improved
y multiplying the LRT statistic by a constant (Van der Vaart, 1998). Under the low-dimensional setting, where the
umber of variables p is considered fixed and n is large, the correction factor ρ proposed in Muirhead (1982) improves
he convergence rate, but when the value of p is close to n or increases with it, this correction is unable to provide an
mprovement. In the high-dimensional setting, where p is assumed to increase with n, Jiang and Qi (2015) proposed a
tandardization of the LRT statistic that allows to resort to the central limit theorem and, therefore, to switch to a normal
pproximation. This solution, however, proves to be inaccurate for small p, given the asymmetry of the LRT statistic.
In a recent work, He et al. (2021) studied the phase transition boundary, d in what follows, which characterizes the

pproximation accuracy by establishing the necessary and sufficient condition for the chi-square approximation to hold
hen p increases with n. The authors showed that the chi-square approximation holds if and only if p/nd

→ 0, with
= 1/2 for the raw LRT statistic and d = 2/3 for its ρ-corrected version.
In this paper, we propose a new multiplicative correction factor, δn hereafter, defined to be the ratio between the

egrees of freedom of the asymptotic chi-square approximation and an approximation of the expected value of the LRT
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statistic, under the null hypothesis, as a function of p and n. We prove that its phase transition boundary d is equal to 1,
o that the chi-square approximation holds in all situations in which p/n → 0. We show the usefulness of our proposal in
he context of Gaussian graphical models (GGM). Here, the problem of testing equality of two distributions Markov with
espect to a decomposable graph can be broken up into testing equality of lower dimensional Gaussian distributions.
ccording to the structure of the graph, these lower dimensional problems can lead to very different values of the p/n

ratio. Hence, it becomes crucial to rely on an approximation that guarantees a good finite sample accuracy even in extreme
cases, where p is close to n.

2. A quick tour of the state of art

Consider two p-dimensional multivariate normal distributions, Np(µ(j), Σ (j)), j = 1, 2, and the problem of testing their
equality based on two independent random samples of size nj. In detail, consider the hypothesis of equality of distributions

H0 : µ(1)
= µ(2), Σ (1)

= Σ (2) vs. Ha : H0 is not true. (1)

The LRT for testing (1), derived in Wilks (1938), can be written as

Λn =

∏2
j=1 det

(
Σ̂ (j)

)nj/2

det
(
Σ̂

)n/2 ,

here n = n1 + n2, Σ̂ and Σ̂ (j), j = 1, 2 are the maximum likelihood estimates of the covariance matrices under the null
nd alternative hypotheses, respectively, and det(Σ̂) denotes the determinant of Σ̂ . Under the null hypothesis in (1), the
RT statistic Wn = −2 logΛn, has an asymptotic chi-square distribution, with f = p(p + 3)/2 degrees of freedom.
In settings where p is fixed and n is allowed to grow, a first correction of the statistic Wn was proposed by Bartlett

1937), based on a rescaling aimed at making its mean exactly equal to the mean of the asymptotic chi-square distribution,
.e., equal to f . The corrected statistic, W B

n say, takes the following form

W B
n =

f
EH0 (Wn)

Wn, (2)

where EH0 (Wn) is the expected value of Wn under the null hypothesis; see for example Van der Vaart (1998). Later, Muir-
head (1982) proposed a version of Bartlett correction that leverages on an expansion of the correction factor, leading to
the following correction

ρ = 1 −
2p2 + 9p + 11

6(p + 3)n

⎛⎝ 2∑
j=1

n
nj

− 1

⎞⎠ . (3)

The author showed that the resulting corrected statistic, W ρ
n say, where W ρ

n = −2ρ logΛn, has a chi-square limit, with
n improved approximation rate with respect to Wn. Both corrections, however, fail when p and n grow at comparable
ates.

Recent studies have considered the problem when the dimension p changes with the sample size n. In these
ettings, Jiang and Yang (2013) and Jiang and Qi (2015) established the following result based on the central limit theorem
CLT):

logΛn − µn

nσn

d
−→ N(0, 1), (4)

where µn and σn > 0 are functions of both n and p and are the asymptotic mean and standard deviation of logΛn,
respectively. The use of the central limit theorem has the advantage of being appropriate in a high dimensional setting;
however, it is less accurate when p is small, due to the asymmetric shape of the LRT distribution.

3. Our proposal

In this section, we propose a Bartlett-type correction of the LRT statistic, under the assumption that p changes with the
sample size n. This correction replaces the denominator of (2) with a function of the approximated mean given in Eq. (4).
In a two sample problem, the term µn defined by Jiang and Qi (2015) is

µn =
1
4

⎡⎣−4p −

2∑ p
nj

+ nr2n (2p − 2n + 3) −

2∑
njr2n′

j
(2p − 2nj + 3)

⎤⎦ , (5)

j=1 j=1

2
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where n′

j = nj − 1 and rx = (− log(1 − p/x))1/2, for x > p, and n = n1 + n2. Let µwn = −2µn, we define the adjusted
tatistic Tn as

Tn = δn Wn, δn =
f

µwn

, (6)

where f = p(p + 3)/2 are the degrees of freedom of the chi-square asymptotic null distribution of Wn. We now prove
that Tn is asymptotically chi-square distributed.

Theorem 1. Let p = (pn)n∈N be a sequence of integers 1 ≤ pn < nj − 1. Under H0, for Tn defined as in (6), minj=1,2 nj → ∞

and p/n → 0, we have that

sup
−∞<x<∞

|P(Tn < x) − P(χ2
fn < x)| → 0

and the phase transition boundary of Tn is d = 1.

Proof. See Appendix A. □

In Theorem 1, the condition nj > p+1 is assumed to ensure the existence of the LRT. Moreover, the condition p/n → 0
defines the phase transition of the adjusted statistic, as introduced in He et al. (2021), which represents the boundary
in which the chi-square approximation starts to fail as p increases and characterizes the approximation accuracy. This
boundary is an improvement over Wn and W ρ

n , whose approximations hold for p/nd
→ 0, with d = 1/2 and d = 2/3,

respectively.

4. Simulation study

In this section we present a simulation study to compare the performances of the LRT statistics based on four different
approximations: the classic chi-square approximation, the ρ-adjusted approach of Muirhead (1982), the CLT approach
of Jiang and Qi (2015) and our proposed δ-adjusted approach.

We study how the correction acts considering a fixed sample size and letting the dimension p change. Data are drawn
from a multivariate normal distribution, with fixed covariance matrix and mean vector and we set n1 = n2 = 50 and
p = 2, 30, 40. For each scenario, five thousand simulations are run. Results are shown in Fig. 1. For each value of p we
plot the histograms of the empirical distribution of the four statistics, namely Wn, W

ρ
n , Tn and W clt

n , and compare them
with the chi-square distribution with p(p+ 3)/2 degrees of freedom in the first three cases and a standard normal in the
last case. The top row of Fig. 1 shows how the statistic Wn departs from the theoretical χ2 distribution as p grows. This
is expected and motivates the need of an adjustment when dealing with testing problems in which the dimension grows
with n. In fact, if 50 observations might be enough for testing a problem of dimension 2, this is not the case for other
values of p, especially when p and n have comparable values. The second row shows the results for the statistic corrected
with ρ. Note that, also in this case, the approximation to the χ2 fails as p approaches the group sample size, nj. With
respect to the previous case, however, the departure from the chi-square distribution occurs for higher values of p. The
third row highlights the problem of applying the CLT when p is small. For example, when p = 2 the approximation to the
normal distribution fails, while it improves as p increases. This approach works well also for values of p very close to nj.
The bottom row shows the accuracy of the approximation of the proposed adjusted statistic Tn. Note that this correction
leads to a good approximation regardless of the dimension of the testing problem, as long as p/n → 0, and could be used
as a unique tool for correcting Wn at different values of p and n.

Finally, we run some simulations to examine the phase transition boundary in Theorem 1, under the null hypothesis.
We consider p = ⌊nε

1⌋, n1 = n2, n =
∑2

j=1 nj and nj ∈ {100, 500, 1000} and finally ε ∈ {6/24, . . . , 23/24, 23.5/24}.
⌊·⌋ denotes the rounding to the nearest integer function. We plot the empirical type-I error rate (over 1000 simulations)
versus ε, for each chi-square approximation: Wn, W

ρ
n and Tn. Results are plotted in Fig. 2. The first two panels confirm the

results in He et al. (2021), while the one on the right hand side shows how the phase transition boundary of the adjusted
statistic Tn is close to 1. The particular case with ε exactly equal to one is excluded, to ensure the identifiability of the
covariance matrix.

5. Testing equality of distributions in Gaussian graphical models

In the remaining sections of the paper, we assume the reader is familiar with the basic theory of (decomposable)
undirected graphical models, as presented for instance in Lauritzen (1996); see also Whittaker (1990). We adopt a standard
terminology and a rather intuitive notation: we let G = (V , E) denote an undirected graph, with V a finite set of nodes
and E = {(v, t) : v ̸= t; v, t ∈ V } a finite set of edges between vertices. We denote its cliques, separators and residuals
by C , S and R, respectively.

Our proposal finds a natural application in the context of decomposable graphical models. One prominent advantage of
decomposable graphs is that their cliques can be arranged so as to satisfy the running intersection property (RIP), and the
joint probability distribution of the associated random vectors factorizes accordingly. In detail, if a graph G = (V , E)
3
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Fig. 1. Simulation results with n1 = n2 = 50 and p = 2, 30, 40. From the top to the bottom row: empirical distribution of Wn , W
ρ
n , W clt

n , and Tn .
he solid line in the first, second, and fourth rows shows the nominal χ2 distribution, with 5, 495 and 860 degrees of freedom (from left to right)
espectively. The solid line in the third row, corresponding to the W clt

n statistic, shows the standard normal distribution.

Fig. 2. Chi-square approximation of Wn , W
ρ
n and Tn . Empirical type-I error rate for nj ∈ {100, 500, 1000}, j = 1, 2 over 1000 simulations. The vertical

dotted lines represents the phase transition boundaries for the three statistics: 1/2, 2/3 and 1, respectively. The horizontal dashed line represents
the nominal significance level, 0.05.

decomposes into k, say, cliques, let Ci, i = 1, . . . , k, be a sequence of cliques satisfying the RIP and Si = Ci ∩ Ci−1
and Ri = Ci \ Ci−1, i = 2, . . . , k the set of corresponding separators and residuals, respectively. Then, the probability
distribution of the random vector XV factorizes as f (XV ) = f (XC1 )f (XR2 |XS2 ) . . . f (XRk |XSk ). See Lauritzen (1996) for an
exhaustive explanation. Such factorization renders tractable inference in the setting of large-scale graphical models, where
the dimension p of the problem is higher that the available sample size n. Even when p < n, using the information on
the graphical structure allows us both to improve the power of detecting a difference between the two distributions
under study (the size of the model is reduced by constraints on the covariance matrix), and to localize that difference,
thanks to the modular nature of graphical models (Djordjilović and Chiogna, 2022). This potential has fed the increasing
prominence of graph–theoretic representations of probability distributions in fields such as statistical and quantum
physics, bioinformatics, signal processing, econometrics and information theory. In our problem setting, this factorization
assumes a crucial role as it allows to decompose the global problem of testing equality of distribution in two samples
into a sequence of local tests of equality of distributions defined on a smaller set of variables, as follows

H =

k⋂
Hi, Hi : X (1)

Ri
|X (1)

Si
d
= X (2)

Ri
|X (2)

Si
, i = 1, . . . , k, (7)
i=1

4
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with S1 = ∅ and R1 = C1. Hence, to test the global hypothesis H , one can test the k local hypotheses {Hi, i = 1, . . . , k} of
equality of the conditional distributions of XRi |XSi . In the case of strong meta Markov models (Lauritzen, 1996; Edwards,
2000), as is the Gaussian case, Djordjilović and Chiogna (2022) showed that the local hypotheses Hi, i = 1, . . . , k, are
independent and that the LRT statistic for testing H also decomposes into k LRT statistics, one for testing each local
hypothesis. Specifically, the LRT, Wn, factorizes as

Wn =

k∑
i=1

[
W Ci

n − W Si
n

]
= W C1

n +

k∑
i=2

W Ci|Si
n , (8)

where W A
n , A ⊆ V , represents the LRT for the hypothesis of equality of distributions for XA, namely H(A) : µ

(1)
A =

µ
(2)
A , Σ

(1)
A = Σ

(2)
A , while W A|B

n is the LRT for the hypothesis of equality of distributions for XA|XB, B ⊆ V \ A, namely
H(A|B) : µ

(1)
(A|B) = µ

(2)
(A|B), Σ

(1)
(A|B) = Σ

(2)
(A|B), where µ(A|B) = µA − ΣABΣ

−1
B µB and Σ(A|B) = ΣA − ΣABΣ

−1
B ΣBA. As proved in

Theorem 1 of Djordjilović and Chiogna (2022), the k statistics W C1
n and W Ci|Si

n , i = 2, . . . , k, in the right-hand side of (8)
are all asymptotically independent and chi-square distributed, with fC1 and fCi − fSi , i = 2, . . . , k, degrees of freedom,
respectively, being fCi and fSi the degrees of freedom associated to the marginal test on the cliques and the separators,
respectively. It is worth noting that, since W A|B

n = W A
n −W B

n , the only quantities needed to compute Wn are the observed
values of the LRT on the marginal distributions defined over cliques and separators. It is easy to see that

W A
n =

2∑
j=1

nj log
det(Σ̂A)

det(Σ̂ (j)
A )

(9)

for A ∈ {C1, . . . , Ck, S1, . . . , Sk}. Here, Σ̂A is the maximum likelihood estimate of ΣA, the block submatrix corresponding
o the nodes in A in the null covariance matrix Σ = Σ (1)

= Σ (2)
; and Σ̂

(j)
A are the maximum likelihood estimates of

(j)
A , the block submatrices corresponding to the nodes in A of Σ (j), j = 1, 2. Moreover, each W A

n has a chi-square limit
with fA = pA(pA + 3)/2 degrees of freedom, where pA is the cardinality of the set A. One remarkable side effect of the
decomposition is that the dimension of each local problem is determined by the cardinality of the set of variables on
which it is defined, so that, for a fixed sample size n, dimensionality regimes of local problems vary as a function of their
cardinality. Local problems for which p ≪ n might coexist with problems for which p ≈ n.

Our proposal naturally steps in this context, providing a convenient solution able to accommodate such variety of
situations. The extension of our correction to the test statistics of the kind W C |S

n does not represent an obstacle, resulting
ndeed to be straightforward. In fact, being E(W C |S

n ) = E(W C
n ) − E(W S

n ), it results µ
C |S
n = µC

n − µS
n. The corrected statistics

for the tests relative to the decomposition (7) simply become

T C1
n = δC1n W C1

n , δC1n =
fC1
µ

C1
n

(10)

T Ci|Si
n = δ

Ci|Si
n W Ci|Si

n , δ
Ci|Si
n =

fCi|Si
µ

Ci|Si
n

, i = 2, . . . , k. (11)

6. Simulation in the graphical setting

In this section, we present a simulation study aimed at showing the performances of our corrected LRTs versus ordinary
LRTs when working with Gaussian graphical models. For a real data application, see the Supplementary Material. We
consider a p-variate Gaussian graphical model Markov with respect to a graph with p = 14 nodes and k = 4 cliques (see
Supplementary Material for a representation of the graph). We consider a RIP-respecting sequence C1, C2, C3, C4 of cliques,
ith cardinalities |C1| = 8, |C2| = 5, |C3| = 3, |C4| = 2, giving rise to the following cardinalities for the corresponding
equence of separators: |S2| = 2, |S3| = 1, |S4| = 1. We generate data assuming that differences between the two
onditions are attributable to nodes 1 and 2, located in C1. In particular, in one condition the means of the two elected
odes is set to be 1.5 times greater than the means of the same nodes in the other condition, while the variances are
ecreased by 50%. It follows that the null hypothesis of equality of distribution for XC1 is false, since C1 includes the two
ltered nodes. All remaining null hypotheses of equality of distribution for XRi |XSi , i = 2, 3, 4, are true, thanks to the

Markov properties of the graph. We run 10,000 simulations assuming n1 = n2 ∈ {10, 50, 100, 250}. For each sample, we
compute the following statistics: W C1

n , W Ci|Si
n , T C1

n , T Ci|Si
n , i = 2, 3, 4. The nominal Type I error rate is set to be α = 0.05.

Results are reported in Table 1 (see also the Supplementary Material for a simulation under the global null). Row 1 of
Table 1 shows the empirical power of the test, while rows 2–4 show the empirical Type I error rates. For what concerns
Wn, note that for small sample sizes, the empirical Type I error rate is significantly higher than the nominal one, due
to a large number of false rejections. This happens for all the local problems, but, for a fixed sample size, the number
of false rejections largely depends on the dimension of the problem. As expected, this behavior decreases as the sample
size increases, and asymptotically, the distribution of Wn can be approximated with a chi-square. On the other hand, the
adjusted statistic Tn reaches the nominal size of the test for each considered sample size, regardless of the dimension of
the local problems. The power of the test based on the adjusted statistic T on the clique C increases with the sample
n 1

5
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Table 1
Power and Type I error computed for each term of the decomposition. Proportion of rejected tests out of 10 thousand simulations, for different
sample sizes, with significance level α = 0.05.
nj Wn Tn

10 50 100 250 10 50 100 250

C1 0.985 0.730 0.970 1.000 0.066 0.535 0.946 1.000
C2|S2 0.445 0.082 0.065 0.056 0.048 0.051 0.050 0.049
C3|S3 0.167 0.061 0.056 0.051 0.049 0.044 0.048 0.049
C4|S4 0.109 0.060 0.051 0.057 0.047 0.052 0.048 0.055

size. The high power observed for Wn should not be misleading, as it highly depends on the false rejections due to the
approximation issues already highlighted in Section 4. The adjusted statistic meets the expectations, being able to identify
the altered clique, while controlling the Type I error of the remaining local tests.

7. Conclusions

In this paper, we proposed an adjusted LRT, which leads to valid inference at different dimensionality regimes. Our
proposal overcomes some weaknesses of alternative corrections reported in the literature, that occur at small sample sizes
and, in particular, when the dimension p is close to n. We showed that the phase transition boundary of the LRT statistic
corrected following our proposal is d = 1, indicating that the only condition needed to work is p/n → 0. Simulations
confirmed that the adjusted test statistic is well approximated by a chi-square distribution both for small and large values
of p.

In the context of decomposable Gaussian graphical models, where the problem of testing equality of two networks
breaks down into a sequence of problems defined on smaller sets of variables, our correction can help tackling the possibly
high heterogeneity resulting from the decomposition in terms of dimensionality regimes. Our simulation study showed
that the size of the test was reached for different configurations of p and n and, in the presence of a difference in two
conditions, the adjusted statistic is able to detect it, still controlling the Type I error in the other cliques.

Data availability

The data are publicly available in the R package ALL.
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