
RESEARCH ARTICLE

A spatio-temporal methodology for

greenhouse microclimatic mapping

Elia BrentarolliID
1*, Silvia Locatelli2, Carlo Nicoletto2, Paolo Sambo2, Davide QuagliaID

1,

Riccardo Muradore3

1 Department of Computer Science, University of Verona, Verona, Italy, 2 DAFNAE Department, University of

Padua, Padua, Italy, 3 Department of Engineering for Innovation Medicine (DIMI), University of Verona,

Verona, Italy

* elia.brentarolli@univr.it

Abstract

Greenhouse internal microclimate has been proven to be non-homogeneous in many

aspects. However, this variability is only sometimes considered by greenhouse models,

which often calculate climatic variables without any spatial reference. Farmers, on the

other hand, may wish to have these differences highlighted as they could lead to aimed

actions only for a specific area of the greenhouse, while at the same time, they are not will-

ing to invest in sensors to be installed everywhere. This paper presents a data-driven

methodology to generate a virtual 2D map of a greenhouse, which allows farmers to con-

trol any critical parameter they desire with minimum investment, as monitoring is done via

soft sensing with only a few actual sensors. The proposed flow starts with a set of tempo-

rary sensors placed in the points of interest; then, a model for each of them is developed

via linear regression and, finally, a map of the entire area can be derived by interpolating

values from these models. This allows the generation of accurate models at a reduced

cost as temporary sensors can be reused at other locations. The methodology has been

tested on adjacent greenhouses and in two farms, where temperature and other climatic

variables have been monitored. Experimental results show that the proposed methodology

can reach an adjusted R2 value of 98% for predicting values in different greenhouse

locations.

1 Introduction

Monitoring climate conditions is a well-known problem in agriculture, as their changes signif-

icantly impact plants’ health and growth, even leading to irreversible damages if left uncon-

trolled [1]. Greenhouses significantly help since farmers can have more control over plants’

microclimate [2]. This has opened new opportunities that researchers have deeply studied,

such as finding the best values of climatic variables to either maximize yield [1] or reduce

energy consumption [3], water waste [4], and pesticide usage [5]. All these approaches require

modeling the climatic behavior of the greenhouse itself to estimate the behavior of the climatic

variables and eventually modify it. There are two classes of models. The mechanistic models
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are described by equations derived from physical laws, such as energy or mass conservation. In

the first part of their work, Singh et al. [6] sum up the history of mechanistic models, shortly

describing the most important works since 1970. The stochastic models aim to find relation-

ships between given sets of input and output data in order to minimize prediction error by

using techniques from Statistics, such as regressions [7], or Artificial Intelligence, such as neu-

ral networks [8].

Past works in both fields have assumed the environment to be uniform [9] to reduce model

complexity, while climate heterogeneity can be observed inside the greenhouse [10]. These dif-

ferences in the climate may lead to irregular growth of crops and, if not considered, may hin-

der plant disease prediction. In fact, a particular disease may appear at a specific point with

favorable conditions and spread from there, even if the average climate behavior seems unfa-

vorable. Nowadays, various models can predict the insurgence of specific diseases based on cli-

matic conditions, e.g., in [11]; therefore, a fine-grain vision of the greenhouse microclimate

can greatly help detect possible critical points and act preemptively.

To take into account this heterogeneity, different monitoring strategies have been pro-

posed, ranging from sensors scattering as in [12] to Computational Fluid Dynamics (CFD),

which links temperature to its physical causes, e.g., sunlight absorption, reflection, and refrac-

tion [13, 14]. In [15], authors took a step further and introduced virtual sensors inside the

greenhouse via regression techniques using outside data as inputs and then generated a micro-

climatic model in real-time by using CFD. Such solutions can produce accurate results to

describe the greenhouse’s microclimate heterogeneity. However, many sensors (and related

infrastructure) are needed in the case of sensor scattering, whereas, in the case of CFD models,

hundreds of physical parameters should be specified. Furthermore, farmers are usually not

interested in climate variable values for every point of their greenhouse but rather in particular

points of interest, e.g., in correspondence of plant rows. Finally, not every greenhouse location

can host a sensor because of spatial and working constraints.

In this paper, a new approach is proposed by combining permanent and temporary sensors,

external sources of information, and statistical regression to create a microclimatic map of the

greenhouse and to extend the concept of soft sensors (also called “virtual sensors”) with differ-

ent categories depending on the modeling technique and their usage. As depicted in Fig 1, the

proposed infrastructure mainly consists of the following entities:

1. Persistent sensors, installed permanently in low number to reduce costs and encumbrance,

provide accurate data regarding the inside of the greenhouse (red circle in the figure) and

its outside (green box in the figure).

2. additional information sources, e.g., for weather forecasting.

3. Sparse Soft Sensors; each of them is created by correlating data from persistent sensors to

data sampled by a temporary sensor in the same location (black crosses in the figure).

4. A 2D-Sensor is a soft sensor describing the 2-dimensional behavior of a climatic variable

obtained by interpolating data from Sparse Soft Sensors.

A more accurate definition of Sparse Soft Sensors and 2D-Sensor will be given in subsection

2.4: Soft Sensors development, while the mathematical procedure to obtain them is provided

in subsection 3.2: Sparse Soft Sensors and Forecast Sparse Sensors and subsection 3.4: 2D-Sensor
respectively. In the initial setup, only persistent and temporary sensors are placed, accumulat-

ing readings in the points of interest. Then, from those data, Sparse Soft Sensors can be mod-

eled and the temporary sensors removed. Finally, the 2D-Sensor is created, covering locations
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not directly considered in the sampling process. Temporary sensors can be moved to different

locations to restart the sampling process, thus increasing the covered area or map accuracy.

Additionally, this approach can also take into account weather forecasts and detect anomalous

readings of persistent sensors. Weather forecasting is an important aspect to be considered in

agriculture since it allows us to act in advance according to future climatic conditions. Our

methodology allows us to correlate weather forecasts with actual data read from the field to

estimate future climatic conditions at the various points of the greenhouse. Using the same sta-

tistical techniques, we also create a model of each persistent sensor to detect possible anomalies

that can significantly compromise the global reliability of the monitoring system. We will label

models that use forecast data Forecast Sparse Sensors, while models for anomalies detection

Anomaly-Detection Soft Sensors.
Soft sensing is well-known in statistics and traditionally applied to process control, being

used as methods to control industrial plants from early ‘90s, as show in [16–18], and generally

it focuses on the idea of developing approaches and algorithms to estimate or predict physical

quantities in industrial processes based on the available measurements and knowledge, as

defined in Jiang et al.’s review on the topic [19]. In agriculture, however, soft sensing has been

employed only recently. In [20], the authors developed soft sensors to monitor crop transpira-

tion, for which affordable sensors were not available, while in [15] soft sensors were used to

run in real-time the CFD model developed in that work. Authors of [21] first created a com-

plete CFD model of the greenhouse whose outputs were then used to train the soft sensors.

Vice versa, our approach is purely data-driven, and we train soft sensors directly with data

from persistent and temporary sensors. We claim that building a CFD microclimatic model of

the greenhouse is more complex than simply considering data from both persistent and tem-

porary sensors.

Fig 1. Scheme for the proposed methodology. Proposed methodology for monitoring multiple points of interest based on a single sensor.

https://doi.org/10.1371/journal.pone.0310454.g001
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The main contribution of our paper is a methodology that:

• models greenhouses’ microclimate by using only sensed data and statistical methods;

• can be implemented in a software system that allows farmers to easily create the model in

autonomy by just collecting data sensed by the persistent and temporary sensors;

• is scalable since new readings from temporary sensors can be added to progressively increase

the accuracy of the microclimate estimation and the coverage of the points of interest;

• can dynamically detect possible failures in persistent sensors, as already pointed out in [22];

• predicts future values of the microclimate variables by using weather forecasts.

This paper is organized as follows: in section 2: Material and methods the experimental

setup is described, and regression techniques are recalled; in section 3: Soft Sensors modeling,

a hierarchy of soft sensors is defined based on their modeling techniques and usage and for

each category its design methodologies are presented; in section 4: Results experimental results

are shown while their discussion is given in section 5: Discussion; finally conclusions are

drawn in section 6: Conclusion.

2 Material and methods

2.1 Greenhouse

The research was conducted in greenhouse tunnels of two farms located near Verona (45˚ 200

25.900N 11˚ 050 12.300E and 45˚ 200 47.1300N 11˚ 10 46.400E respectively) in north-eastern Italy.

The climate of this area is characterized by warm, humid summers and moderately cold win-

ters. The experiment spanned from late August 2021 to early July 2022.

Each tunnel is 275.6 m2 (50 m x 5.3 m) northeast-southwest oriented and covered with

transparent plastic film. It represents the module of a multispan greenhouse structure typical

of this geographical area. Before crop transplanting, the soil was tilled and subsequently

mulched with a semitransparent green polyethylene film. For the duration of the experiment,

both farms changed cultivated crops according to the season: the first farm cycled through egg-

plants, then lettuce, and finally cucumbers; the second one cycled through tomatoes, lettuce

and, finally, eggplants.

2.2 Networked persistent sensors

The primary permanent data sources consist of two microclimatic stations by Evja s.r.l.
installed in each farm. The stations (Fig 2) have been installed in the greenhouses’ center and

attached to telescopic poles, which allow farmers to move them into a position that does not

hinder working practices. Each station is equipped with the following sensors: an air tempera-

ture (AT) sensor (range of -40 to 85˚C), a relative humidity (RH) sensor (range 0 to 100%), a

solar radiation sensor (range 0—250 000 lx or 0—316 W m−2), a soil humidity sensor (0—80%

VWC) and a soil temperature sensor (-40 to 60˚C). Furthermore, the stations are also

equipped with a leaf wetness sensor, which is not used in this work due to drip irrigation, and

a soil electrical conductivity sensor, which is not used as this metric does not play a significant

role in temperature estimation. The stations are equipped with a photovoltaic unit to recharge

their internal battery. Sampling time was set to fifteen minutes, the minimum interval allowed

by the stations; data were stored in the cloud through a SIM-based Internet connection and

accessed using MQTT protocol.

A Davis Vantage Pro2 weather station (Fig 3) was also installed relatively close to the green-

houses to give our system a full view of the external climatic conditions. The station is
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equipped with various sensors (such as barometric pressure, temperature, relative humidity,

wind speed, rainfall, and solar radiation) capable of computing dew point, wet bulb tempera-

ture, and heat index. This station has a sample time of fifteen minutes and is synchronized

with the Evja sensors.

Fig 2. The Evja station. The Evja station hosting persistent sensors.

https://doi.org/10.1371/journal.pone.0310454.g002

Fig 3. Weather station and its position. Aerial photo of the greenhouse with the positions of the weather station and

of the Evja sensors.

https://doi.org/10.1371/journal.pone.0310454.g003
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2.3 Definition of points of interest with placement of temporary sensors

A total of nine points of interest between two adjacent greenhouses were chosen for each farm:

in positions 1 to 8 HOBO S-TMB-M0xx air temperature sensors have been placed and con-

nected to two UX120–006M loggers providing four channels each; in position 9 a HOBO

UX100–011A Data Logger was used to monitor both air temperature and relative humidity.

Fig 4 shows the positioning of all sensors.

2.4 Soft sensors development

For each point of interest identified in the previous section, a soft sensor has been modeled to

monitor the temperature in such a location, using data from temporary sensors as a base.

Moreover, besides soft sensors at specific positions, we also modeled a soft sensor capable of

computing a temperature map that evolves through time, thus extending the monitored area

to previously unmonitored positions. In addition, we also implemented soft sensors capable of

using general weather forecasts and localizing them for the points of interest considered.

Finally, we computed soft sensors to detect abnormal readings from permanent sensors, iden-

tify their faulted state, and temporarily substitute their reading until reparations to guarantee

operational continuity.

Since the main differences between different types of soft sensors lie in the mathematical

operations used to compute them, a hierarchy was developed as depicted in Fig 5. At the top

Fig 4. Indoor sensors positioning. Position of the Evja persistent and temporary sensors across the two greenhouses.

Sensors denoted by letters were added in a second moment for validation purpose.

https://doi.org/10.1371/journal.pone.0310454.g004

Fig 5. Soft sensor’s hierarchy. Hierarchy of Soft Sensors and their relationships with available data sources.

https://doi.org/10.1371/journal.pone.0310454.g005
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are two main types of soft sensors, i.e., Regressed Soft Sensors, or R-Soft Sensors, obtained by

using regression techniques with different inputs and outputs, and Interpolated Soft Sensors, or

I-Soft Sensors, which are instead modeled via interpolation. R-Soft Sensors can then be divided

as: Sparse Soft Sensors, which model the current temperature value at specific locations as a

function of data provided by the weather station and the microclimatic station; Forecast Sparse
Sensors, that model future temperature at given positions using general weather forecast down-

loaded by a web portal; Anomaly Detection Soft Sensors, which model the current output of a

single sensor of either the microclimatic station or the weather station as a function of data

provided by other remaining persistent sensors. On the other hand, 2D-Sensors are a subtype

of I-Soft Sensors which computes temperature at any location in the greenhouse through a

2-dimensional interpolation of data provided both by persistent sensors and either Sparse Soft
Sensors, when requesting current temperature or Sparse Forecast Sensors, if future values are

needed instead.

In total, our work led to the creation of nine Sparse Soft Sensors, nine Forecast Sparse Sen-
sors, one for each point of interest identified (and later increased to fifteen each), more than

ten Anomaly Detection Soft Sensors between the Evja stations and the Davis station to account

for all installed sensors, and an unspecified amount of 2D-Sensor, as with each new set of mea-

sures a new sensor has to be computed, regardless of measure coming from Sparse Soft Sensors
or Forecast Sparse Sensors.

2.5 Linear regression techniques

Linear regression is a statistical approach to develop a model capable of estimating an output

variable value starting from one or more input variables. The model is obtained by finding the

linear correlation between historical recordings of such input and output variables.

Y ¼ XAþ E ð1Þ

In Eq 1 Y ¼ y1 y2 . . . yn �
T�

is the output column vector storing values over a window of

n sample periods and

X ¼

x1
1

x2
1
� � � xm

1
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. ..
. ..

.
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n � � � xmn
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is an n by m input matrix where m is the number of different input variables xi and n is the

temporal sampling window. A ¼ a1 . . . am �
T�

is the unknown linear estimator to be com-

puted from historical data and E is the error vector. Objective of the regression is to find the

coefficients a1, . . ., am that minimize the error vector; by using the least square method we

have

Â ¼ â1 â2 . . . ân½ � ¼ ðXTXÞ� 1XTY ð2Þ

where âi is the predictor of yi with respect to xi. The matrix Â can be used to estimate other

unknown values Ŷ only using the available inputs:

Ŷ ¼ XÂ ð3Þ

The linear regression employs all given inputs to create a model for the output. This means

that if unrelated variables are present among the input variables, they will act as disturbances
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for the regression, reducing its accuracy. For this reason, improved regression methods have

been developed to remove the uncorrelated inputs automatically. Here, two of them will be

recalled.

The first method is the lasso [23], which reduces the size of the vector Â simply by setting to

zero coefficients which do not contribute to the estimation of the output. Lasso estimates pre-

dictors’ coefficients by solving the following minimization problem [24]

Â lasso ¼ argmin
ai

Xn

i¼1

 

yi � a0 �
Xm

j¼1

xi;jaj

!2

ð4Þ

subject to
Xm

j¼1

jajj � l ð5Þ

where y and x are elements of Y and X, {aj} are the coefficients of Â lasso and a0 is the intercept.

It is worth highlighting that λ is a free parameter that can be used to choose how much the

lasso will shrink: for smaller values of λ more coefficients will be rounded to zero, hence elimi-

nating the corresponding predictors from the model. A second method is the stepwise selection
[24, 25]. This method determines a relevant subset of coefficients by starting from the intercept

and adding predictors one-by-one, selecting those which maximize the model accuracy (with a

process known as forward stepwise); then eliminates the predictors which contribute the least

to the estimation of the output (the backward stepwise).

2.6 Two-dimensional interpolation

Interpolation is a type of estimation that aims to find new data points based on a finite set of

known ones, typically by calculating intermediate values between two available points using a

specific function. Two-dimensional interpolation methods are needed to interpolate points in

a plane. A common technique is to recur first to triangulation to generate a 2D surface by con-

necting given points via triangles, respecting specific rules given by the triangulation tech-

nique. For example, the Delunay triangulation [26] creates a set of triangles with the property

of not including any other point inside the circumscribed circle. When the value at an arbitrary

point is queried, the 2D surface is first visited to find inside which triangle the point falls in

and, second, interpolation algorithm such as nearest-neighbor [27], linear [28], cubic [29] is

applied, using only points belonging to the selected triangle for the estimation.

3 Soft sensors modeling

This section presents a stochastic approach for designing different soft sensors capable of esti-

mating climatic parameters for different purposes, following the hierarchy presented in Fig 5.

For each type of soft sensors, we present the mathematical procedure used to obtain them and

their application to estimate climatic condition within a greenhouse.

3.1 Regressed soft sensors

These sensors are models capable of estimating the value of a climatic variable in a given loca-

tion in terms of readings from a set of sensors placed elsewhere by using coefficients obtained

as results of a linear regression.

As subsection 2.5: Linear regression techniques explains, the key elements to perform

regression are the X matrix and the Y vector. We distinguish the training phase, in which X and

Y are given and the regression coefficients are computed, from the operational phase, in which
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Y is computed. In the training phase, the column vector Y ¼ yðt1Þ yðt2Þ . . . yðtnÞ �
T�

stores the measurements taken at time t1 . . . tn by the sensor we want to model (defined as tar-
get model), while

X ¼

x1ðt1Þ x2ðt1Þ � � � xmðt1Þ

..

. ..
. ..

.

x1ðtnÞ x2ðtnÞ � � � xmðtnÞ

2

6
6
6
6
4

3

7
7
7
7
5
¼

xðt1Þ

..

.

xðtnÞ

2

6
6
6
6
4

3

7
7
7
7
5

is an n by m matrix collecting measurements taken at the same n instants from m other sensors

(defined as input sensors). In general, inside the X matrix, any sensed data can be inserted, such

as temperature, solar radiation, relative humidity, wind speed, and so forth. In fact, in the next

step of the methodology, the lasso and stepwise, described in subsection 2.5: Linear regression

techniques, automatically remove variables that do not contribute to, or may even reduce,

regression accuracy. This step allows turning the X matrix into a smaller matrix, denoted as �X .

However, using data from input sensors is only sometimes sufficient to explain all phenom-

ena that affect target models. While the model can represent some recurring events (such as

the day-night cycle of air temperature) by observing persistent sensors (e.g., AT sensor or light

sensor), other phenomena are not captured by persistent sensors, being “local” phenomena.

If local phenomena are time-dependent (e.g., shades), they can still be included in the

model by adding to the input set some variables explicitly representing the time at which each

measurement has been collected. This leads to a new matrix ~X defined as ~X ¼
M j D j H j �X �½ where M, D and H are binary maps defined as:

M ¼

m1ðt1Þ � � � m12ðt1Þ

� � �

m1ðtnÞ � � � m12ðtnÞ

2

6
6
6
4

3

7
7
7
5

D ¼

d1ðt1Þ � � � d31ðt1Þ

� � �

d1ðtnÞ � � � d31ðtnÞ

2

6
6
6
4

3

7
7
7
5

H ¼

h1ðt1Þ � � � h24ðt1Þ

� � �

h1ðtnÞ � � � h24ðtnÞ

2

6
6
6
4

3

7
7
7
5

M, D, and H stand for Month, Day, and Hour, respectively. The i-th row of M, D, and H
encodes the timestamp of the samples at the i-th row of the matrix �X , such that only the entry

that has column index matching the month, day and hour of the timestamp is set to one, while

other the row elements are set to zero. For instance, if the i-th row of �X has the timestamp

2021–10-15 13:00, then the i-th rows of M, D ad H will have a 1 in column index 10, 15 and 13,
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respectively:

Mi =
hm1 : : : m9 m10 m11 m12

0 : : : 0 1 0 0

i

Di =
h d1 : : : d14 d15 d16 : : : d31

0 : : : 0 1 0 : : : 0

i

Hi =
hh1 : : : h12 h13 h14 : : : h24

0 : : : 0 1 0 : : : 0
i

It is worth noting that such a procedure can capture local phenomena that should be included

in the model and mitigate the effect of phenomena that affect only input sensors and thus

should be excluded from the model to avoid altering the estimation process.

Having defined what the Y vector and the X matrix mean for R-Soft Sensors and which

form they should have, it is now possible to give a more mathematical definition for such soft

sensors. Assuming Sk to be a source of data (defined as target) placed in a point of interest that

monitors the value of the variable V, then Sk can be described as the function

VðtÞ ¼ SkðtÞ ð6Þ

that for each instant of time t produces a value V(t). The corresponding R-Soft Sensor Ŝk,
which generates the estimate V̂ ðtÞ of Sk, can then be described as

V̂ ðtÞ ¼ Ŝkð~xtÞ ð7Þ

¼ ~xðtÞÂ ð8Þ

¼ ~xðtÞð~XT ~XÞ� 1 ~XTY ð9Þ

Where ~xðtÞ is a row related to the timestamp t of the matrix ~X calculated before, and Y is the

column vector described at the beginning of the section.

The following two sections present the three types of R-Soft Sensors.

3.2 Sparse Soft Sensors and Forecast Sparse Sensors
In this paper, we define as Sparse Soft Sensor a special R-Soft Sensor where the matrix ~X is gen-

erated from historical data gathered from all persistent sensors while the training vector Y con-

sists of historical data coming from a single temporary sensor placed for a certain amount of

time in a point of interest of the greenhouse. The temporary sensor plays the target role, and

the corresponding Sparse Soft Sensor is the target model that keeps producing reliable data

throughout time, even if the source of data is removed. Fig 6 shows the complete set of opera-

tions to create the model for a given temporary sensor placed in a point of interest starting

from data collected from the set of fixed ones, whereas Fig 7 shows runtime operations to use

such model to estimate the variable at time t in the corresponding point of interest.

Sparse Soft Sensors allow the modeling of greenhouse microclimate in real-time according

to data obtained from persistent sensors. However, there are many cases in which the knowl-

edge of the internal status of a greenhouse is not enough to choose which agricultural actions

need to be undertaken. For instance, crop protection against pests or diseases needs informa-

tion about the near future to determine which risks the crop can undergo and take action to
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avoid future damages. Typically, information about climatic conditions for the near future is

provided by weather forecasts, which often refer to a wide geographical area. To model future

values of climatic variables in specific points of interest of the greenhouse, we can slightly

change the described regression methodology such that the X matrix is filled with the weather

forecast data while the Y vector contains data read from persistent or temporary sensors

depending on the point of interest; the readings should be aligned to the time instant weather

forecast is referred to. This new type of soft sensor is defined as Forecast Sparse Sensor.
Weather forecast values typically have a lower time granularity than sensor readings; there-

fore, they cannot be directly put in relation in the regression operation. To solve this problem,

sensor readings are averaged over the same time window forecasts refer to, so that both sensed

and forecast values have the same time granularity, and Eq 9 can be used.

3.3 Anomaly detection soft sensors

Detection of anomalous readings from a sensor is essential to discover failures and avoid tak-

ing wrong agricultural actions. Furthermore, in our approach, anomalous readings from per-

sistent sensors introduce noise in soft sensors based on them and thus their early detection is

crucial.

To validate the measurements obtained from each persistent sensor, the proposed stochas-

tic modeling was exploited again. For each persistent sensor, its historical data (Y vector) is put

in relationship with those of the other persistent sensors (X matrix) to create a regression

model, and thus a soft sensor defined as Anomaly Detection Soft Sensor. As explained in Fig 8

these soft sensors are used at runtime to estimate the climatic variable associated with each

persistent sensor in terms of readings from the other ones. Then, the estimation is compared

to the actual sensor reading and a difference is interpreted as an anomaly. It is worth noting

that this mechanism can implement a reciprocal supervision of the persistent sensors and

models can be continuously re-trained with new incoming data.

Fig 6. Creation flow of Sparse Soft Sensors starting from acquired data.

https://doi.org/10.1371/journal.pone.0310454.g006

Fig 7. Runtime usare of Sparse Soft Sensors at time t.

https://doi.org/10.1371/journal.pone.0310454.g007
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3.4 2D-Sensor
Sparse Soft Sensors and Forecast Sparse Sensors allow monitoring a fixed number of locations

without needing physical permanent sensors. However, it might be interesting to monitor the

same variables in arbitrary locations of the greenhouse area without introducing other tempo-

rary sensors and training new Sparse Soft Sensors. The 2D-interpolated estimation of a physical

variable is given by Eq 10, which estimates the variable values V̂ px ;py
t for a given location (px, py)

at time t. This type of soft sensor is defined as 2D Sensor.

V̂ px ;py
t ¼ S2Dðpx; py; tÞ ð10Þ

The 2D-Sensor takes three parameters as input, i.e., the spatial position of the point to mon-

itor (px, py) and the time t for which the estimation has to be done. It is worth highlighting the

presence of the time parameter: the interpolation process uses data from sensors (persistent or

soft) to create a surface and compute the value for the desired position. However, since cli-

matic variables evolve over time, it becomes crucial to explicitly choose the time the wished

result will refer to, forcing the interpolation function to use input data obtained in that specific

time moment.

The interpolation mechanism is flexible and can be combined with the previously described

R-Soft Sensors. A 2D-Sensor can create a microclimatic map referring to either the current time

if it is fed by persistent sensors and Sparse Soft Sensors or a future time if it is fed by Forecast
Sparse Sensors.

4 Results

This section will show results for the case study presented in section 2: Material and methods,

where microclimatic data have been acquired from nine sensors located between two adjacent

greenhouses. The experimental setup has been replicated in two different farms to show the

portability of the methodology. In particular, we:

• create a microclimatic map by using the methodology described in section 3: Soft Sensors

modeling;

• model Forecast Sparse Sensors by using weather forecast as input to forecast temperature in

the various points of interest instead of predicting current temperature values;

• design an Anomaly Detection Soft Sensor for each persistent sensor for fault detection

purposes.

Fig 8. Runtime detection of anomalies. Runtime exploitation of models to estimate the correctness of data read from

a persistent sensor.

https://doi.org/10.1371/journal.pone.0310454.g008
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4.1 Sparse Soft Sensors design and validation

Data from temporary sensors were acquired for about eleven months, from late August 2021

to early June 2022, and used to create nine vectors Yk to apply the methodology previously

described. The input matrix X collected data from the Evja microclimatic station and the

weather station, such as internal and external air temperature, relative humidity, solar radia-

tion, air pressure, wind speed, and also more complex indexes such as dew point and wet-

bulb temperature, for a total of 24 different input variables and more than 14, 000 readings

over the observation period. Furthermore, in each row, we collected the measurements of

the three previous time instants (hence up to 45 minutes in the past) from the weather station

and Evja station

X ¼

x1ðt3Þ � � � xmðt3Þ x1ðt2Þ � � � xmðt2Þ x1ðt1Þ � � � xmðt1Þ

..

. ..
. ..

.

x1ðtnÞ � � � xmðtn � 1Þ x1ðtn � 1Þ � � � xmðtn � 1Þ x1ðtn � 2Þ � � � xmðtn � 2Þ

2

6
6
6
6
4

3

7
7
7
7
5

bringing the total input matrix’s size up to 72 columns.

A MATLAB script was created to perform the regression procedure automatically. The

script first takes the X matrix and the Y vectors and splits them into two parts, one constituted

by 80% (first 40% and last 40%) of the total measurements to train the model and the remain-

ing 20% to test it. The script then proceeds by using MATLAB’s stepwiselm function,

which computes a stepwise regression by applying a forward selection in sequence to add all

needed variables to the model and a backward selection to eliminate previously added but not

statistically significant. Before computing the regression, the input matrix X and output vector

Y have been normalized to feature zero mean and unitary variance. In our case, the selection

criterion was set to adjrsquared, meaning that the function will focus on obtaining the

highest Adjusted-R2 value by adding input variables to the current set as long as they increase

it by at least 0.0001 (the set threshold). After this operation, the matrix was enhanced with tem-

poral information as described in subsection 3.1: Regressed Soft Sensors; the resulting ~X
matrix is used in a final regression process to obtain the coefficients of the models representing

the Sparse Soft Sensors.
The following three evaluation metrics have been used:

• adjusted-R-squared

R2
Adj ¼ 1 �

n � 1

n � k � 1

Pn
i¼1
ðyi � ŷiÞ

2

Pn
1
ðyi � �yÞ2

;

• Adjusted Root Mean Square

(RMSEAdj), calculated as the ratio between the Root Mean Square Error (RMSE) and the

Root Mean Square (RMS) of y

RMSEAdj ¼
RMSEðY; Ŷ Þ
RMSðYÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ðyi � ŷiÞ

2

Pn
i¼1
y2
i

s

;
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• Relative Root Squared Error (RRSE), calculated as the ratio between the Root Mean Square

Error the standard deviation σ

RRSE ¼
RMSEðY; Ŷ Þ

sðYÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ðyi � ŷiÞ

2

Pn
i¼1
ðyi � �yÞ2

s

:

Where n is the number of samples, k the row number of coefficient vector A, yi and ŷi are

elements belonging respectively to vectors Y and Ŷ , and �y is vector Y’s mean value.

In S1 and S2 Tables results for all sensors of both farms have been reported. Table 1 lists the

metrics for air temperature and humidity for the two points of interest further away from the

Evja station (number 9 in Fig 4).

As it is possible to see in those tables, each model has a precision better than 85% both for

training and testing and most reach the accuracy of 98–99%, meaning that Sparse Soft Sensors
can estimate very precisely temperatures at the given points in space. The time series for the

temperature Sparse Soft Sensor of the First Farm of Table 1 is reported in Fig 9 and compared

to the actual value of the temporary sensor used for training and to the values provided by the

Evja station. Estimated values follow the actual ones as desired, whereas the behavior of the

Evja station serves as proof of the heterogeneity of the greenhouse’ microclimate and of the

potentiality of our methodology that can transform inaccurate readings of a single central sen-

sor into much more accurate local information.

Table 1. Accuracy results (R-squared, Adjusted Root Mean Square Error, and Relative Root Squared Error) for air temperature and RH models relative to the far-

thest point of interest from the Evja station in both farms.

Sensor R2
Adj Adj RMSE RRSE

First Farm Temperature 0.99 0.03 0.11

RH 0.94 0.05 0.24

Second Farm Temperature 0.87 0.10 0.30

RH 0.94 0.04 0.21

https://doi.org/10.1371/journal.pone.0310454.t001

Fig 9. Validation phase. Plot for validation phase of regression for sensor #9.

https://doi.org/10.1371/journal.pone.0310454.g009
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4.2 Impact of temporal information on the model

In order to test how much the time information impacts the regression model, two tests were

conducted. The first one called the Unmodified-output test, aimed to check the difference

between a standard regression model obtained from a given set of data and a regression model

obtained by adding temporal information to available inputs (timed model). The second test,

labeled the Modified-output test, repeats what was done in the previous one, but outputs were

altered in order to introduce a local daily event, by forcing a temperature decrease of 5˚C only

between the 16:00 and 18:00 every day. By doing this an important recurring event, although

synthetic, was introduced in the output dataset, to see how well-timed and un-timed regression

models were capable of handling it.

Table 2 reports the values of the accuracy metrics for each test and each model. In the case

named “Modified-output”, the timed model is more accurate since it allows for coping with

the variation introduced by the presence of the local phenomenon, which cannot be detected

by persistent sensors. However, even for the Unmodified-output, the timed model performs

better than the un-timed one with an average accuracy increase of 2% (0.99 against 0.97). Such

difference can be explained by the presence of local phenomena which may also affect the per-

sistent sensors and which the timed model still manages to capture, differently from the un-

timed one, thus resulting in an increase in accuracy. Fig 10 compares the behavior of the two

models in the Modified-output case: the timed model (red line) is much closer to real values

(black line) with respect to the un-timed one (blue line), with a difference in accuracy of 4%.

4.3 Integration of weather forecast

The process described in subsection 3.2: Sparse Soft Sensors and Forecast Sparse Sensors has

been used to establish a relationship between the weather forecasts and the temperature values

Table 2. Metrics for each model and test. The timed model is always more accurate than the un-timed one.

Output Metric Timed Model Un-timed model

Unmodified-output R2
Adj 0.99 0.97

Adj RMSE 0.03 0.04

RRSE 0.11 0.16

Modified-output R2
Adj 0.99 0.95

Adj RMSE 0.07 0.07

RRSE 0.21 0.21

https://doi.org/10.1371/journal.pone.0310454.t002

Fig 10. Comparison between timed and un-timed models. Accuracy comparison for un-timed and timed models when a local recurring event occurs.

https://doi.org/10.1371/journal.pone.0310454.g010

PLOS ONE A spatio-temporal methodology for greenhouse microclimatic mapping

PLOS ONE | https://doi.org/10.1371/journal.pone.0310454 September 19, 2024 15 / 23

https://doi.org/10.1371/journal.pone.0310454.t002
https://doi.org/10.1371/journal.pone.0310454.g010
https://doi.org/10.1371/journal.pone.0310454


of the weather station with the aim of obtaining temperature forecasts for this specific location.

The weather forecasts for the geographical zone were retrieved from a specialized website, pro-

viding an estimation of temperature, air pressure, and relative humidity for each hour of the

day. Such measurements have been assumed as average values for the one-hour span the fore-

cast refers to. Therefore, we applied the same assumption to the sensed values used in the Y
vector for the regression, i.e., each value was the average between readings from thirty minutes

before up to thirty minutes after the time stamp of the corresponding forecast value. For exam-

ple, if a forecast refers to 10:00 am, the corresponding value in the Y vector was computed as

the average between the sensors’ readings from 9:30 am to 10:30 am.

Regression results show that model accuracy reached an R-squared value greater than 0.8

for both the calibration and validation phases. Fig 11 shows the real temperature measure-

ments (in blue) of the weather station near the greenhouse, the temperature forecast of the day

before relative to a nearby town (in black), and the corresponding predicted greenhouse tem-

perature forecast (in red). The obtained model provides a good estimation of future conditions

near the greenhouse for most of the time. However, it is worth noting that such results were

obtained by using a free weather forecast web service hence with limited accuracy, meaning

that a better forecast service can easily surpass the reported performance.

4.4 2D map generation and validation

To further increase the area covered by 2D-Sensor, six more temporary sensors were placed;

they are denoted by letters in Fig 4. Such sensors were installed in intermediate positions

between the ones already present, to avoid having too much distance between two modeled

sensors.

After modeling fourteen temperature points of interest as Sparse Soft Sensors, the area

delimited by them was split into a grid whose points were used to design the 2D map. The

2D-Sensor was implemented by using the griddata interpolation function of MATLAB fed

by positions and estimated values of all the Sparse Soft Sensors. This function is called every

time a new set of measurements is available for the Sparse Soft Sensors (i.e., when new samples

from the persistent sensors are available).

The validation of the interpolation procedure was done by comparing, for each of the four-

teen monitored spots, the actual value (obtained with a real sensor), the value from the corre-

sponding Sparse Soft Sensor, and the 2D-Sensor’s estimation obtained through interpolation of

all the Sparse Soft Sensors except the examined one. Fig 12 shows the values for a central loca-

tion (upper plot) and for a corner location (bottom plot). Results show that the difference

between the Sparse Soft Sensors and the interpolated values increases for the points closer to

the border of the examined area; in some points at the center of the area, the interpolation is

even more accurate than the Sparse Soft Sensors. We can conclude, then, that Sparse Soft Sen-
sors are necessary for peripheral points of interest, while for central points of interest the

Fig 11. Validation of forecast model. Validation data for the forecast model against the original forecast and the

values sensed by the weather station.

https://doi.org/10.1371/journal.pone.0310454.g011
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2D-Sensor is enough, and the creation of specific Sparse Soft Sensors is not needed. Fig 13 gives

instead an idea of how the final result of the interpolation process should look like, basically

creating a heat map of the monitored area to let farmers know at first glance how the situation

inside the greenhouse is.

4.5 Validation of anomaly detection

To validate the anomaly detection methodology explained in subsection 3.3: Anomaly Detec-

tion Soft Sensors, a model of each Evja sensor was built based on data coming from the

Fig 12. Comparison between Sparse Soft Sensors and 2D-Sensor for two positions. Comparison between estimated

values with Sparse Soft Sensors and interpolation for two locations in the map. The first plot refers to a central location

where interpolation estimates temperature precisely, while the second one refers to a corner of the working area where

interpolation is less accurate than Sparse Soft Sensors.

https://doi.org/10.1371/journal.pone.0310454.g012

Fig 13. Temperature map obtained by combining estimation from Sparse Soft Sensors and the 2D-Sensor.

https://doi.org/10.1371/journal.pone.0310454.g013
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weather station and vice versa. Results showed that for physical variables that were monitored

by both stations, the prediction accuracy was very high (R2 > 0.8), whereas the prediction of

variables not sensed in the other station (e.g., the soil moisture not present in the weather sta-

tion) was imprecise. Fig 14 shows the original behavior of the Evja temperature sensor, its

fault-injected version, and the predicted behavior by using data from the weather station. The

anomalous behavior of the sensor is denoted by the difference between its output and the cor-

responding prediction. Therefore, it is possible to continuously check the validity of a data

source simply by using incoming data from the other one.

5 Discussion

We are proposing an approach to predict the value of a climatic variable in the greenhouse at a

given time and space location by using available data for that time either obtained from real

sensors, in case of current time, or from weather forecast in case of future time. For each cli-

matic variable of interest, its behavior as a function of the space is modeled either by correlat-

ing it to that of temporary sensors previously placed in the same location or by interpolating

known values in the neighborhood. The introduction of temporal information as input to the

training phase further enhances accuracy by modeling recurring daily or monthly phenomena

that locally affect the specific point of interest.

As shown in Fig 15, there could be up to five Celsius degrees of difference in temperature

between two points of the greenhouse used for our experiments; according to well-known dis-

ease prediction models [11], such temperature differences may lead, over time, to significantly

different probabilities of new infection. Therefore, the proposed approach, by going beyond

the homogeneity assumption for climatic variables, allows to implicitly increase the effective-

ness of state-of-art agronomic prediction models. In the future, it enables the adoption of

space-customized use of fertilizers and pesticides, as expected by the development of agricul-

tural robots [30].

We adopted the concept of soft sensors, i.e., predicted data for a given point of interest that

behaves as a sort of virtual sensor placed in that point. This concept has the following

advantages:

• Affordability: the number of actual network-connected sensors can be kept small, while less

expensive sensors (a.k.a. data loggers) can be used to acquire data needed for training. Such

Fig 14. Comparison between the faulted sensors and model’s predicted values. Comparison between temperature readings from the Evja sensor and

the same variable modeled through the weather station. The regression model detects the fault injected in the sensor.

https://doi.org/10.1371/journal.pone.0310454.g014

PLOS ONE A spatio-temporal methodology for greenhouse microclimatic mapping

PLOS ONE | https://doi.org/10.1371/journal.pone.0310454 September 19, 2024 18 / 23

https://doi.org/10.1371/journal.pone.0310454.g014
https://doi.org/10.1371/journal.pone.0310454


sensors can be re-used in different positions to extend monitored points without any extra

cost. In some specific cases, a very good forecast service and a high quality monitoring sta-

tion (e.g., that provided by public authorities for environmental monitoring) are enough to

put in place the micro-climatic mapping of the greenhouse.

• Scalability: it is possible to start with a small number of Sparse Soft Sensors in specific points

of interest (e.g., close to a certain group of plants), then recur to a 2D-Sensor to obtain a

rough estimation of climatic variables in many other points and, finally, re-iterate training to

create new Sparse Soft Sensors if more accuracy is needed in new points of interest (as shown

in Fig 13).

• Flexibility: the same algorithm can be used for different purposes, i.e., local estimation, fore-

casting and anomaly detection; according to Fig 5 and Eq 10 a 2D-Sensor is independent of

the variable that feeds it, e.g., current data or forecast; finally, the set of temporary but static

sensors could be replaced by an array of sensors aboard a fleet of vehicles periodically mov-

ing in the greenhouse to perform agricultural operations.

• Architectural neutrality: a software tool encapsulating the prediction methodology can be

alternatively hosted in the cloud, on a machine in the farm, and even inside a smarter sensor.

• Compatibility with agricultural operations: the use of virtual sensors is compatible with

mechanical operations in the greenhouse which sometimes interfere with sensor cases and

cabling.

The main objective of a prediction methodology is to capture the rules that describe the

behavior of a system (in this case the greenhouse microclimate). A model-driven prediction

approach relies on the description of the physical and structural rules at the basis of an

observed behavior. Even if the results can be very good, it usually requires a high expertise in

system description (e.g., knowledge of complex physical laws and features of involved materi-

als). Vice versa, a data-driven prediction approach aims at capturing cause-effect relationships

by correlating data produced by the same causes. It always relies on sensing and data analysis,

e.g., by using regression techniques or neural networks. The proposed prediction approach is

fully data-driven and is based on linear regression. In the agricultural context, a data-driven

approach shows some important advantages over the model-driven approaches present in the

literature:

Fig 15. Greenhouse heat map. 2D temperature map of the greenhouse obtained by interpolating temperature values sensed in specific positions (blue

dots).

https://doi.org/10.1371/journal.pone.0310454.g015
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• it is easier and cheaper since it does not rely on expert people who build the physical model

of the environment;

• it can be “re-executed as is” for several different environments, e.g., for different kinds of

greenhouses, for a tunnel greenhouse which becomes open field in certain periods of the

year, for the same greenhouse in which a different kind of crop changes the fluid dynamical

characteristics of the space (e.g., because of a different height of the plants); this feature

allows to freeze the methodology in a software tool to be used many times together with a set

of temporary sensors to be placed for a given period of time and then moved.

Among the various data-driven approaches, linear regression (the one used in the proposed

methodology) allows the creation of a “white box” prediction model in which it is possible to

see which are the input variables that mostly affect the prediction output. We can say that it is

intrinsically more explainable than a deep learning technique. According to literature, explain-

ability is a desired feature for agronomic tools [31]. Furthermore, the training phase in regres-

sion techniques is usually less computationally expensive than for neural networks, which

often recur to special GPU-based hardware architectures and consume more energy. There-

fore, the computer requirements of the proposed approach better match the agricultural

domain.

Another important discussion point is related to the scheduling of the training phase, in

which the Sparse Soft Sensors are created, with respect to the operational phase in which they

are used for prediction. Ideally, the training phase should use data collected over a time span

of one year to capture all the seasonal phenomena that affect the climatic behavior. However, if

climatic conditions are quite stable over the year, it is possible to train over just a few months,

but clearly, a model trained on winter data hardly predicts accurately in summer. It is worth

noting that the shape of the plants may change air circulation and introduce shades, and there-

fore the model of an empty greenhouse is usually different from that of a greenhouse full of

plants. Usually, horticultural production in the greenhouse consists of a cycle of different

kinds of crops. In this case, an interesting possibility consists of training a model for each kind

of crop just for the time between sowing and harvesting. If this kind of cultivation is repeated

every year in the same period, a software tool can create for the farmer a “library” of models,

each of which can be reused in the following years.

6 Conclusion

Greenhouse internal microclimatic conditions frequently show high spatial variability that is

frequently neglected in greenhouse models, preferring to assume climatic variables to be uni-

form. Overcoming this gap can contribute to optimizing greenhouse internal environmental

conditions to enhance crop yields and quality and to optimize energy, water, and pesticide

application.

This paper proposes a cost-effective methodology to allow farmers to monitor greenhouse

climatic variables at different points of interest and to gradually extend to all greenhouse points

to create a complete microclimatic map. A data-driven machine-learning approach based on

linear regression has been developed to keep the computational effort low. Furthermore, linear

regression allows better explainability for the model, giving higher visibility to data compo-

nents on which inference is performed on. Indeed, the model can be fed directly with data

from sensors, weather forecasts, and time information to reduce costs, especially when com-

pared to a fixed sensing infrastructure. Moreover, the proposed approach also exploits infer-

ence to detect anomalies in the physical sensors, an essential functionality in an actual

agricultural setup. The presented results demonstrate that the greenhouse internal temperature
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estimation at different points is more accurate than assuming a homogeneous temperature for

the whole greenhouse, managing to reach a prediction accuracy of 99% for temperature and

94% for relative humidity; furthermore, false sensor readings are promptly detected. Finally,

although estimation errors are inevitable, they are balanced by the possibility of reaching a spa-

tial granularity that is impossible to achieve with real devices, thus allowing more precise agro-

nomic operations that reduce production costs and increase production sustainability.

Possible development for this research includes exploring other machine-learning methods

to achieve robustness in case of missing values, as well as exploiting forms of data collection,

such as using mobile sensors on agricultural robots and drones in place of temporary sensors,

taking advantage of their ability to reach multiple locations while performing their tasks.

Supporting information

S1 Table. First farm results. Accuracy results for each sensor in the first farm. For each sensor

the first row contains calibration results, while the second row contains validation results.

(TIF)

S2 Table. Second farm results. Accuracy results (R-squared, Adjusted Root Mean Square

Error and Relative Root Squared Error) for each sensor in the second farm. For each sensor
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