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ARTICLE INFO ABSTRACT

Keywords: A general ordinary state-based peridynamic formulation to model anisotropic materials in 2D
Peridynamics and 3D is proposed. The new peridynamic constitutive model introduces two bond stiffness
Anisotropic material functions depending on the bond orientations. These functions are defined such that the
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Numerical implementation

components of the elasticity tensor evaluated by using the new formulation exactly reproduce
those of classical continuum mechanics in the case of homogeneous deformation. Several
numerical examples in 2D and 3D illustrate the validity of the proposed formulation for
fully anisotropic materials. This formulation is also suitable to model monoclinic, orthotropic,
transversely isotropic, and isotropic materials.

1. Introduction

Engineers often approximate the constitutive behavior of materials with the assumption of isotropic properties. However, most
materials are intrinsically anisotropic due to the asymmetry in the arrangement of atoms, molecules, or microstructures, exhibiting
distinct physical and mechanical characteristics at the macro-scale when measured along different directions [1]. The broad class of
anisotropic materials embeds both natural materials, such as bones [2], woods [3] and rocks [4], and artificial materials, such
as composites [5]. In particular, advanced composite materials are frequently used in many aerospace applications to exploit
their superior (even if anisotropic) mechanical properties. Isotropic materials may also present anisotropic responses due to some
manufacturing processes, like the cold-rolling of aluminum [6]. Furthermore, the initiation and propagation of cracks may also be
influenced by the anisotropic properties of the material, such as in the failure of composites [7] and the bone fracture [8-10].

Peridynamics (PD) is a nonlocal continuum theory devised to model fracture phenomena [11,12]. This theory is able to predict
realistic crack paths that are closer to experimental observations if compared with other numerical methods based on classical
continuum mechanics (CCM), such as the interface elements with cohesive zone modeling [13], the extended finite element method
(XFEM) [13], and the phase field model [14]. Bond-based peridynamics [11] was the first version of the peridynamic theory in
which the material points interact through long-range forces with the same orientation and magnitude, as shown in Fig. 1(a).
The interaction between two points is called bond. This formulation restricts the value of the Poisson’s ratio to 1/4 in 3D and in
plane strain conditions, and to 1/3 in plane stress conditions [15]. The state-based version of the peridynamic theory [12] allows to
overcome this limitation since the force that one point exerts on another may be different from the force that the second point exerts
on the first one. Furthermore, this new formulation can be subdivided into ordinary and non-ordinary state-based peridynamics, in
which the force is aligned and unaligned to the bond direction, respectively (see Figs. 1(b) and 1(c)).
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(a) Bond-based PD. (b) Ordinary state-based PD. (¢) Non-ordinary state-based PD.

Fig. 1. Interaction forces for the three different versions of the peridynamic theory.

Peridynamics has been used to predict fracture phenomena (see, for example, [16-21]), or to solve multi-physics problems
involving fracture, such as thermo-mechanical problems [22-24], corrosion [25-27], piezoelectricity [28,29], and oxidation
phenomena [30-33]. However, most of these applications adopted the assumption of isotropic materials. Bond-based peridynamics
was generalized to model composites [34-41] or materials with some degree of anisotropy [42-46] by modifying the bond force as
a function of its direction. However, since the bond force is defined by a pair potential function in the bond-based formulation, the
elastic coefficients must satisfy the Cauchy’s relations and some of them have a fixed value [45]. Therefore, bond-based peridynamics
is not suitable to model fully anisotropic media.

Apart from the state-based formulation of the peridynamic theory, other methods have been developed to overcome these
limitation on the elastic coefficients. The continuum-kinematics-inspired peridynamics [47,48] reformulates the interactions between
points such that the nonlocal kinematics coincide with that of classical continuum kinematics, capturing the Poisson’s effect correctly
in isotropic materials. This formulation was generalized for 2D orthotropic and 3D transversely isotropic materials [49], but still
the values of some elastic coefficients are fixed a priori. Another method to overcome the Poisson’s ratio limitation in peridynamic
isotropic media is to add shear deformability to the bond-based formulation by introducing the rotational degrees of freedom at the
peridynamic points [50-52], and this allows to model the proper stiffness characteristics of orthotropic materials as well [53,54].
However, the inclusion of new degrees of freedom in the peridynamic framework increases the complexity and the computational
cost of the numerical simulations. The authors of [55] recast the peridynamic equations by using the peridynamic operator method
to model 2D anisotropic materials.

Ordinary state-based peridynamics was used to model 2D orthotropic media by introducing two new bond stiffness coefficients
along the two principal axes of the material [56], but the off-axis stiffness exhibits different values with respect to that obtained
with classical continuum mechanics. Furthermore, this method cannot be easily generalized to 3D models. Non-ordinary state-based
peridynamics allows one to incorporate constitutive models directly from classical continuum mechanics, i.e., without the calibration
of peridynamic properties to the classical ones [12]. These types of models are often called peridynamic correspondence models.
Therefore, several non-ordinary state-based peridynamic models were developed to simulate anisotropic material properties [57—
61]. Nevertheless, non-ordinary state-based peridynamics suffer from instability issues, such as zero-energy modes, and these models
require additional stabilization techniques to obtain reasonable numerical results [62-64].

In this work, we propose a new ordinary state-based formulation of the peridynamic theory able to model fully anisotropic,
linear elastic materials both in 2D and 3D. We introduce two micromoduli, i.e., the bond stiffness properties, that depend on the
bond orientations. These micromoduli are defined such that all the components of the CCM elasticity tensor are exactly reproduced
by the peridynamic constitutive laws, without any limitations on their values. This new formulation is verified by several numerical
examples in 2D and 3D. The formulation presented in this paper is the first step towards the possibility to use PD to describe the
fracture behavior of anisotropic materials.

The paper is structured as follows. Sections 2 and 3 review the classical constitutive model for anisotropic linear elastic materials
and the ordinary state-based peridynamic formulation for isotropic materials, respectively. Section 4 proposes the new peridynamic
formulation for anisotropic materials based on the definition of two micromoduli depending on the bond orientation. Section 5
describes the numerical implementation of the new formulation and Section 6 shows the numerical results of several 2D and 3D
examples. Section 7 draws the conclusions of the work.

2. Classical constitutive model for linear elastic materials

In classical continuum mechanics, the constitutive model for a linear elastic material with an initial unstressed configuration is
given by the generalized Hooke’s law [5] as

61 = Cijke €ke » (€9)]

where o;; are the components of the 2nd-order stress tensor, C; ., are the components of the 4th-order elasticity tensor, and ¢, are
the components of the 2nd-order strain tensor. In Eq. (1) Einstein summation convention for repeated indices is used.
The symmetry of the stress and strain tensors is inherited by the elasticity tensor, which exhibits the so-called minor symmetries:

Cijke = Cjike = Cijer - 2
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Fig. 2. Body modeled with peridynamics in the reference configuration B(r = 0) and deformed configuration B(r > 0).

Furthermore, since C;;, can be derived as a double derivative of the strain energy density W with respect to the strain
components [5], the elasticity tensor also has the so-called major symmetries:
’ W >wW

Cpp=—2 =27 —C... 3
iiké Og;; 0g,  Ogyp Ogy) keij @

The Cauchy’s relations [65] impose a further symmetry to the elasticity tensor:
Cijke = Cikje - 4
If a material meets the conditions in Eq. (4), such as a material described by a pair potential function, then the elasticity tensor is

completely symmetric, i.e., the value of an elastic coefficient C;;;, is the same when arbitrarily switching the order of the indices
i, j, k, and ¢ [45,65]. However, real materials rarely satisfy the Cauchy’s relations.

3. Ordinary state-based peridynamics for isotropic materials

The equation of motion at a point x at time 7 > 0 in a body B modeled with peridynamics is given by [11,12]

p(x)ii(x, 1) = / f(x,x',NdVy +b(x,1), 5)
H

where p is the density of the material, i is the acceleration field, f is the bond force (force per unit volume squared), H, is the
integration region around point x, V,, is the volume of a point x’ within ,, and b is the external force density. Fig. 2 shows the
bond forces arising within a bond due to the deformation of a body modeled with peridynamics. The interaction between x and x’
is named bond and is defined as & = x’ — x. The integration region H,, called the neighborhood, is often chosen to be a circle in 2D
and a sphere in 3D with a radius 6, named horizon size: H, = {x’ eBt=0): ||| <6 } Under static conditions, the peridynamic
equation is simplified as

- / f£(x,x")dVy = b(x). (6)

X

In state-based peridynamics [12], the bond force is defined as
£(x, X', 1) = T[x, 1)(€) — TIx', 1(=¢), @

where T is the force density vector state. By convention, the variables the state depends on are denoted within square brackets [-],
whereas the bond the state is applied to is denoted within angle brackets (-). Where possible, we will omit the square brackets. Note
that T[x,7](¢) and T[x’,7](—£) may have different magnitudes, as shown in Fig. 1(b).

For later use, the reference position scalar state and the displacement vector state [12,66] are respectively defined as

x(&) = 1Igll (®

Ulx, 7(¢) = ux',H —u(x,1), ©)]
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where u is a displacement field applied to the body B. To describe the axial elongation of the bond, the extension scalar state is
defined as

e[x, 1K) = 1€+ U - lI€]l- (10)
The direction vector state, or the unit vector state in the direction of the deformed bond is defined as
&+ U(8)
M[x, ¢ = amn
M1 = e e

The integral of the product of two scalar states g and b can be denoted as
asb= / a(§) b(&)dVy . (12)
Hy

This notation allows to highlight the peridynamic “structure” of the following formulae. The weighted volume at a point x is defined
as

m(x) = / (&) I1E12V;
Hy

=(@x)ex, (13)

where w is a scalar state called influence function. In this work, we adopt the Gaussian influence function: w(&) = w(||&])) =
exp(—||€|?/6%) [67]. It is worth noting that the choice of a different influence function may (slightly) change the peridynamic
solution, but it does not affect the validity of the theory presented in this work. The dilatation at a point x is defined as

o0 =2 /H w(IEN) €]l e(&)dVy
= C_"(QE).g, 14
m

where ¢, is the dilatation coefficient that is calibrated by equalizing 6§ and the CCM value of the dilatation in an infinite body
under homogeneous deformation: ¢y = 3 in 3D, ¢, = 2 in 2D plane strain conditions, and ¢, = 2(1 — 2v)/(1 — v) in 2D plane stress
conditions [12,68]. Similarly to classical continuum mechanics, the deviatoric extension scalar state of a bond is defined as

0
1 1) = o8y - TLEL as)
The peridynamic strain energy density at a point x of a linear elastic isotropic material is given as
k o a d 2

=L+ L avy
Wi =50+ 5 [ o (@)

_kp @ o a,

=27 T e (16)

where k and « are the peridynamic constants that are determined by comparison with the CCM strain energy density in an infinite
body under homogeneous deformation: k = K and « = 15G in 3D, k = K + G/9 and « = 8G in 2D plane strain conditions, and
k =K+ G+ 1)2/(92v —1)?) and a = 8G in 2D plane stress conditions [12,68], where K is the bulk modulus and G is the shear
modulus. The bulk and shear moduli can be expressed in terms of the Young’s modulus E and Poisson’s ratio v as K = E/(3(1 —2v))
and G = E/(2(1 + v)), respectively. Note that, by substituting Eq. (15) into Eq. (16), the peridynamic strain energy density can be
rewritten as

02 2
W“‘””%"“ﬁ/ w<||§||>[e<f> -2 oliel ey + T ]dVX/
==X k_ o  a\p
- /ng(nan(g@» de,+<2 L 18>9
- * . k_ o 2
=5 (@9 g+<2 3 18)0 an

where the first term is similar to the strain energy density in bond-based peridynamics, whereas the second term is characteristic
of ordinary state-based peridynamics.

In ordinary state-based peridynamics [12], the force density vector state is aligned with the corresponding bond for any
deformation, and its magnitude is obtained as the Fréchet derivative of the strain energy density with respect to the extension
scalar state:

1 = 220 faete) + e (k- 22 +.£ ) teio| Mo, ag)

Therefore, by substituting Eq. (18) into Eq. (7) and by taking into account that e(£) = e(—¢£) and M(&) = —M(—£), the bond force
becomes

22 a ox,n 0.1
f(x,x',1) —w(||§||)[ < s m(x’)) (5)"’59( 3 5) [t < mx) + mx') >] M(¢) . (19)

4
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(a) The single-bond micromodulus depends on the orienta- (b) The double-bond micromodulus depends on the orien-

tion of a single bond. tations of a pair of bonds.

Fig. 3. Micromoduli used in the new anisotropic peridynamic formulation.

Furthermore, if a body modeled with ordinary state-based peridynamics is subjected to a small homogeneous deformation for any
time 7, the coefficients C;;;, of the elasticity tensor are given from [66] as

&&i&se < 2

a o) 4 0 a o

C.. = — —dV., — | k- — + = E.dV, dVen , 20
ijke (X) m/HxQ(II-fll) ier o2 < 3ep + 9>/HXQ(IIEII)§,§, X /HXQ(IICII)Eka x (20)
where &€ = X’ —x and ¢ = x” — x are two bonds in the neighborhood of point x, and the subscripts denote the components of the
bonds along i, j, k, or ¢ directions. These indices can be x or y in 2D, and x, y, or z in 3D. As in classical continuum mechanics,

only two components of the elasticity tensor are independent from the others since the material is assumed to be isotropic.

Remark 1. It is worth noting that Eq. (20) is used to compute the PD elasticity tensor, which, in the case of non-homogeneous
deformation, may be different from the CCM elasticity tensor (see, for example, [69]). However, assuming small homogeneous
deformations within an entire neighborhood, the PD elasticity tensor coincide with the CCM one [66]. We consider this assumption
in this and the following sections. In practice, where non-homogeneous deformations are present, the elasticity tensor is the same
in PD and CCM in the limit of § — 0 [70].

4. A new ordinary state-based formulation for anisotropic materials

Enhancing the peridynamic framework with the capability of modeling generally anisotropic materials is of paramount
importance. For instance, advanced composite materials, frequently used in many engineering fields, such as aerospace, mechanical,
civil, and many others, are anisotropic. We propose in the following an ordinary state-based formulation capable of handling any
degree of material anisotropy.

To model the material anisotropy in ordinary state-based peridynamics, we introduce two distinct bond stiffness (scalar)
functions, which are called micromoduli and denoted by k(&) and A(&, ¢). The former is named single-bond micromodulus because its
value depends on the orientation of a single bond & (see Fig. 3(a)), whereas the latter is named double-bond micromodulus because its
value depends on the orientations of a pair of bonds & and ¢ (see Fig. 3(b)). Note that, according to the definitions given in [12,66],
k(&) is a scalar-valued state and A(£, {) is a scalar-valued double state. These micromoduli have the same units of measurements as
the components of the CCM elasticity tensor, i.e., a force per unit area. The micromoduli k(&) and A(¢,{) will be defined for the
2D and 3D cases in the following sections. In particular, to satisfy the major symmetry of the elasticity tensor in the peridynamic
anisotropic model, A must have the following property (see Appendix A): A(€, &) = K¢, €).

For brevity of notation, we also introduce a new scalar quantity, named the microforce, at a point x that depends on the bond &:

aExn =% [ ae0 0N Igl vy

Hy

L je@xe). (21)
m

Where possible, we will omit the dependence on position x and on time #: A(€) = A(&, x,1). As shown in Fig. 3(b), the double-bond
micromodulus depends on a pair of bonds, i.e., £ and ¢, both associated to the same point x. On the other hand, the microforce
explicitly depends on a single bond &, since the contribution of the bond ¢ is integrated over the neighborhood of point x. The
microforce embeds information about the deformation state of the whole neighborhood of point x, similarly to the dilatation defined
in the ordinary state-based peridynamic formulation for isotropic materials (see Eq. (14)). Nonetheless, the microforce also contains
information about the stiffness of the bonds within the neighborhood (through the double-bond micromodulus), which is not true
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for the dilatation. The microforce has the same units of measurements as the double-bond micromodulus, i.e., a force per unit area.
This is the reason why the quantity computed in Eq. (21) is named microforce.
The strain energy density is reformulated such that the stiffness coefficients of the bonds depend on their orientations:

W =5 [ k@ ailé (@) v + 5 [ otiEb el e@) a@an,

=L(ka)e)-e+ L(cuxe)-/l-(coxe). 22)
PRI PR R e

The first and second terms of the strain energy density depend on the single-bond and double-bond micromoduli, respectively.
The difference between the strain energy density for isotropic and anisotropic materials lies only in the bond stiffness functions:
for isotropic materials the stiffness functions are constant and can be pulled out from the integrals (see Eq. (17)), whereas for
anisotropic materials the stiffness functions, i.e., the micromoduli, depend on bond orientations and must be kept inside the integrals
(see Eq. (22)).

Therefore, the force density vector state, whose magnitude is the Fréchet derivative of W with respect to e (see Appendix A for
details), is given as

(€1

m

T[x, t){&) = [K(E) e(&) + | EIl AC®)] M(E). (23)

Note that the first term depends on a single bond (as in bond-based peridynamics), whereas the second term substitutes the term
containing the dilatation in ordinary state-based peridynamics for isotropic materials. The force of any bond in the new formulation
is obtained by substituting Eq. (23) into Eq. (7):

fx,x", 1) = w(lI€I) [(L - >1_€(§>§<§) + < > |I§I|] M(¢), 24

mx) m(x’)
where e(&) = e(—&), M(&) = -M(=¢), k(&) = k(—¢&) (see definitions of the single-bond stiffness function in Eq. (28) in 2D and in
Eq. (32) in 3D), and A(&,x,1) = A(=&,x,1) since A(&, &) = A(—¢&,¢) (see definitions of the double-bond stiffness function in Eq. (29)
in 2D and in Eq. (33) in 3D).

In the linearized state-based peridynamic theory [66], the material response is described by the modulus state, that can be obtained
as the second Fréchet derivative of the strain energy density. In the present formulation for anisotropic materials, the modulus
(double) state is given from Appendix A as

o€l AL-8 1

K60 = S0 o T+ e o oaen|ewe, 25)

where 4 is the Dirac delta function and ® indicates a dyadic product. This means that any of the results in [66] are valid for
the proposed formulation without further proofs. As a result, the coefficients of the elasticity tensor in an anisotropic material are
derived as

Coet0 = [ &) olel)

A x, 1) | AEX, D)
m(x) m(x’)

Sigjbkée
i

Remark 1 applies also to Eq. (26). As it can be seen by comparing Egs. (20) and (26), the only difference with the peridynamic
model for isotropic materials is that, for anisotropic materials, the bond stiffness functions, i.e., the micromoduli, are inside the
integrals because they depend on the bond direction.

Notably, the PD elasticity tensor computed with Eq. (26) exhibit the major and minor symmetries, i.e., C;;;, = Cyy;; and
Cijkr = Cjixg = Cijpx»> as in classical continuum mechanics (see Section 2). It is clear that the order of the indices in the first
term in the right-hand side of Eq. (26), which is similar to the bond-based peridynamic term, is irrelevant. This is the reason why
the bond-based formulation must satisfy the Cauchy’s relations (C; ., = Cy;,) [45]. Hence, there is the need of the additional term
to model fully anisotropic materials not following Cauchy’s relations, as it was done in ordinary state-based peridynamics to model
the Poisson’s effect in isotropic materials [12] (see Section 3). In fact, the second term in the right-hand side of Eq. (26) does not
necessarily satisfy the Cauchy’s relations.

W+ L [ agoromen e g vy, (26)
m? Sy, S,

4.1. 2D micromoduli

In CCM, the elasticity tensor for 2D fully anisotropic materials has 6 independent components due to the major and minor
symmetries:

Oxx Cxxxx Cxxyy Cxxxy Exx
O |=] Coy  Copxy || &y | @7)
Oyy . . Cypxy 1264y

where Voigt notation was used. Furthermore, in 2D there is one Cauchy’s relation, i.e., C,, = Cyy),-

The choice of the bond stiffness functions is not univocal. These functions should be chosen so that the number of their constants
matches the number of independent components of the elasticity tensor, namely 6 in 2D. Inspired by [45], we define the single-bond
micromodulus as a 4th-order polynomial of the bond direction components:

k(g) = —

W (kxxxx 5)? + kxxxy ‘fxaéy + kxxyy ‘:xzéyz + kyyxy §x§y3 + kyyyy §4> ’ (28)

y
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Fig. 4. Point x in the bulk of the body has a complete neighborhood, whereas point x’ close to the boundary has an incomplete neighborhood.

where the constants will be determined by equalizing the components of the CCM elasticity tensor with those obtained with
peridynamics in Eq. (26). It is worth noting that there are 5 unknown constants in Eq. (28), but 6 independent components of the
CCM elasticity tensor. In fact, the sixth constant (that would have been kyxy) CANNOL be modeled with the single-bond micromodulus
due to the Cauchy’s relation. Therefore, we define the double-bond micromodulus A to “release” the last constant 4,,,, from the
above-mentioned restriction:

Mé. ) = Axyxy 6x6y6xEy - (29

1
€121

Note that A(£,{) = A(¢, €) to retain the major symmetry of the PD elasticity tensor (see Appendix A).

Therefore, we use Eq. (26) for a peridynamic point with a complete neighborhood to write 6 equations corresponding to the
6 independent components of the CCM elasticity tensor. The unknowns of this system of equations are the 6 constants appearing
in the micromoduli in Egs. (28) and (29), as shown in Appendix B. Therefore, by solving these equations, one can determine the
unknown constants as functions of the components of the CCM elasticity tensor as

Kixsx = SCxxxx = 10Csyyy + €y (30a)
Kixxy = 40Cyxxy = 24Cy iy s (30b)
Kyxyy = T6Cxyy = 10C 1 = 10C,, (30¢)
Kyyxy = 40C, 1y = 24Cyry s (30d)
kyyyy = 5Cyppy = 10C 1y + Crxxx > (30e)
Axyxy = 04C 0y = 64C ) . (30

These bond stiffness constants are then used in Egs. (28) and (29) to ultimately define the micromoduli in the 2D anisotropic
peridynamic model.

Remark 2. The proposed peridynamic formulation is able to model, in general, anisotropic materials. Since isotropic materials are
a special case of anisotropic ones, they also can be modeled with the proposed formulation. In 2D classical continuum mechanics,
isotropic materials are characterized by C,,,, = Cyyxxs Cryxy = (Crxxx = Crxyp)/2s Crxxy = Cypxy = 0, where C,, and C,,,, are the
only components of the elasticity tensor that are independent from the others. It is worth noting that, differently from the ordinary
state-based formulation in [12] (see Section 3), the micromoduli k and 4 may still depend on the bond orientation to model isotropic
materials. Nonetheless, the macroscopic stiffness properties of the proposed model exhibit an isotropic behavior, as shown in Fig. 8

in Section 6.1.

Remark 3. Note that some constants of the micromoduli, computed with Eq. (30), may be negative. However, the macroscopic
stiffness properties are correctly reproduced in any case because Eq. (26) was used to determine the micromoduli. Positive
micromoduli is a sufficient, but not necessary, condition for the peridynamic constitutive model to be numerically stable [43,71].
The possible presence of negative micromoduli, and its consequences on the numerical results, will be further investigated in the
future.

Remark 4. Since the constants of the micromoduli are determined for a peridynamic point with a complete neighborhood, the
points close to the boundaries of the body (with an incomplete neighborhood, as shown in Fig. 4) exhibit an undesired stiffness
variation. This phenomenon, called surface effect, is well-known in peridynamics [72-74], and is the cause of differences between PD
and CCM solutions close to the boundaries of the body. The stiffness variation due to the surface effect can be reduced by decreasing
the value of the horizon size 6.
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4.2. 3D micromoduli

The elasticity tensor for a 3D fully anisotropic material is expressed by means of Voigt notation as

O-XX CXXXX Cxxyy CXXZZ Cxxyz CXXXZ Cxxxy EXX

Oy Cyyyy  Cpyzz Cypyz Cypz Copy || €y

Ozz - . . Cizzz szyz Crzxz szxy €2z (31)

0y : : : Cyzyz Cyzxz Cyzxy ngy ’

Oxz . : : . Cyzxz szxy 2‘€xz

Oy . . . . . Copyl 1264,
where the 21 independent components are highlighted. Furthermore, there are 6 Cauchy’s relations in 3D: C,,,, = C).;, Cy;y; =
Cxxzzf nyxy Cxxyy’ Cyzxz = szxy’ Cyzxy nyxz’ szxy = Cxxyz'

The choice of the bond stiffness functions is not univocal. These functions should be chosen so that the number of their constants
matches the number of independent components of the elasticity tensor, namely 21 in 3D. Inspired by [45], we define the single-bond
micromodulus as a 4th-order polynomial of the bond direction components:

ke =1 §”4 (kmx EFH Ky EJE) F Kz €062+ Koy EZET + Ky ETEVE + Kz EJE2 + Ky 6]
oz ExE E F Koy Gy &0 honr 8D H ke E Ky €08 ko EXET H iz 6,80 Kz 5;‘) . (32)

where there are 15 single-bond stiffness constants to be determined. Similarly to the proposed 2D model, the double-bond
micromodulus A is defined to correctly reproduce the components of the elasticity tensor that are restrained in the single-bond
micromodulus by the Cauchy’s relations:

i(‘; &= m }‘yzyz ‘fyfzgycz + )’xzxz ﬁx‘fzgxcz + j'xyxy éxfygxgy + ylxz

A’Zx
: y(fszC +ELL) +

(£,6:8:8: +6:8:6,82)

xzxy

(6:8:8:8, +E:6,6:82) | - (33)

Note that the double-bond micromodulus is defined such as A(&,{) = A({, €) to retain the major symmetry of the PD elasticity tensor
(see Appendix A).

Appendix C shows how to write 21 equations with Eq. (26) corresponding to the independent components of the CCM elasticity
tensor and to solve for the 21 bond stiffness constants in Eq. (32) and (33):

45 15

15
kxxxx = lscxxxx + ? (nyyy + szzz) - 2 (Cxxyy + Cxxzz) + I nyzz s (343)
15 45 15
kyyyy = 15nyyy + E (Cxxxx + szzz) - ? (Cxxyy + nyzz) + T Cxxzz s (34b)
15 45 15
kzzzz = 15szzz + ? (Cxxxx + nyyy) - 7 (Cxxzz + nyzz) + T Cxxyy s (34(1)
765 75 45 15
kxxyy = T Cxxyy - I (Cxxzz + nyzz) - 7 ( XXXX yyyy) + Iczzzz ’ (34d)
765 75 45 15
kxxzz = T Cxxzz - I (Cxxyy + nyzz) - 7 (Cxxxx + szzz) + Tcyyyy ’ (346)
765 75 45 15
kyyzz = 4 nyzz 4 (Cxxyy + XXZZ) (nyyy + CZZZZ) Tcxxxx ’ (34f)
105
kxxxy loscxxxy - T (nyxy + szxy) ) (343)
105
kyyxy ]Oscyyxy - T (Cxxxy + szxy) > (34h)
105 .
kzzxy = 420szxy - T (Cxxxy + nyxy) > (34i)
105 .
kyxxz = 105C ;= 7 (nyxz + szxz) s (34J)
105
kyyxz = 420nyxz - T (Cxxxz + szxz) > (34k)
105
kzzxz = losczzxz 7 (Cxxxz + nyxz) > (341)
105
kxxyz 420Cxxyz T (nyyz + szyz) > (34m)
105
kyyy, = 105C,y,, = > (Cxxyz + szyZ) , (34n)
105
kzzyz = 1OSszyz T (Cxxyz + nyyz) > (340)
)'xyxy =225 (nyxy Cxxyy) > (34[))
Axzxz =225 (szxz - Cxxzz) ’ (349)
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Ayzyz = 225 (Cyzyz - nyZZ) ’ (34r)
Ayzxz =450 (Cprz = Cizy) (34s)
Ayzry =450 (Cpoy = Cypcz) (34)
Axzxy = 450 (Cyzy = Cryz) - (34u)

Note that Remarks 2, 3, and 4 are valid also in the 3D case.
4.3. Comparison with other peridynamic formulations for anisotropic materials

Most of the peridynamic literature has treated materials with isotropic properties, but some formulations and numerical methods
have been developed to model anisotropic materials. Among these approaches, most have been applied within the framework
of bond-based peridynamics, due to the simplicity of the formulation, or non-ordinary state-based peridynamics, thanks to the
possibility of incorporating any constitutive law of classical continuum mechanics.

In order to model uni-directional fiber-reinforced composites, the authors of [34] proposed to distinguish in the bond-based
formulation between two types of bonds, i.e., the fiber bonds (parallel to the fiber direction) and matrix bonds (in all other
directions). Each bond stiffness is fitted to the bulk elastic modulus of the corresponding type. This approach is used to model with
the meshfree method the composite plies with 2D nodal grids, but it can be extended to 3D laminates by adding interlaminar bonds
between the plies. Several works [35-37] followed this type of approach to model composite materials. A similar method was also
used to model polycrystalline materials [39]. Since the classical mechanical theory assumes a continuous variation of the mechanical
properties with the orientation of the fibers, the authors of [38,41-44] proposed continuous functions to describe the dependency
of the bond stiffness with respect to its orientation. The problem of determining the stiffness of the bonds in the discretized model
for bond-based peridynamics to reproduce the anisotropic properties of a medium, can also be solved by means of the least-square
method [46]. All these models allowed to obtain numerical results of fracture phenomena in good agreement with experimental
observations. However, in bond-based peridynamics the bond force is defined by a pair potential function, which implies that the
components of the elasticity tensor must satisfy the Cauchy’s relations [45,65]. This means that bond-based peridynamics is not
suitable to model fully anisotropic media because some of the elastic coefficients have a fixed value. Since the model in this work
is set in the context of ordinary state-based peridynamics, it is not affected by these limitations.

To overcome the restrictions given by Cauchy’s relations, the bond-based formulation can be extended to include shear
deformability of the bonds [50-54]. However, to avoid an incorrect description of the mechanical behavior of bodies under non-
homogeneous deformation, these models should introduce the rotational degrees of freedom for the peridynamic points [51]. These
models have been shown to provide the possibility of modeling 2D orthotropic materials without the restrictions given by the
Cauchy’s relations. Nonetheless, a 3D model including bond shear deformability would require a doubling of the number of the
degrees of freedom for each node with respect to a 2D model (from 3 to 6), notably increasing the computational cost of the
simulation. The proposed model for anisotropic materials relies only on translational degrees of freedom for the peridynamic points,
and does not consider rotational degrees of freedom.

Another approach to model the mechanical properties of materials without the restrictions of the Cauchy’s relations is to use
multi-body potentials. Using this approach, a recent theory, called continuum-kinematics-inspired peridynamics [47,48], reformulates
the interactions between points such that the nonlocal kinematics coincide with that of classical continuum kinematics. This
formulation was generalized for 2D orthotropic and 3D transversely isotropic materials [49], but some values of the elastic
coefficients are fixed a priori. Conversely, all the elastic coefficients can be correctly reproduced by the proposed model (see
Sections 6.1 and 6.2).

In the literature, the most commonly used approach to overcome the limitations of bond-based peridynamics is to adopt the
state-based version of the theory [12]. This theory makes use of pointwise deformation measures that allow for the mechanical
properties to be independent from the Cauchy’s relations. Ordinary state-based peridynamics was used to model 2D orthotropic
media by introducing two additional bond stiffness coefficients along the two principal axes of the material [56]. However, the
off-axis stiffness exhibits considerable differences with respect to that predicted by classical continuum mechanics. Furthermore,
it is not clear if this method can be generalized to 3D models. The ordinary state-based model proposed in this work overcomes
these limitations, since it allows to accurately reproduce any component of the CCM elasticity tensor both in 2D and 3D cases (see
Sections 6.1 and 6.2).

Non-ordinary state-based peridynamics is a generalization of the ordinary version. Since this formulation uses a classical stress
tensor to compute the force state, it allows to directly incorporate the constitutive laws of classical continuum mechanics within the
peridynamic framework. This approach is often called correspondence model. The correspondence model that allows to reproduce all
the components of the CCM elasticity tensor for a fully anisotropic material was developed in [58] for the 2D case and in [61] for
the 3D case. Several other correspondence models in the framework of non-ordinary state-based peridynamics were developed to
simulate phenomena that included an anisotropic material behavior, such as the plastic deformation and fracture of unidirectional
laminates [57], the fluid-driven fracturing in orthotropic poroelastic media [59], and the anisotropic plasticity of sheet metals [60].
However, non-ordinary state-based peridynamic models suffer from instability issues, such as zero-energy modes. Therefore, they
require additional stabilization techniques to obtain reasonable numerical results [62-64]. On the other hand, the model proposed
in this work does not require any stabilization method.
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Fig. 5. Discretization of a body modeled with peridynamics (m = §/4x = 3.3) by means of the meshfree method with a uniform grid spacing. The neighborhood
of a node is highlighted in blue and the quadrature coefficients (fraction of nodal volume that lies within the neighborhood) of two nodes are shown.

5. Numerical implementation

We adopt here the so-called meshfree method to discretize the peridynamic equations [75]. To reduce the computational cost, the
coupling with CCM-based methods [76-79], the Fast Convolution-Based Method (FCBM) [80,81], or the hybrid method developed
in [82,83] can be used, but this is not pursued in this work. In the meshfree method, the body is often discretized with a regular
grid of nodes, as shown in Fig. 5. Each node represents a finite volume of Ax in 3D and r4x? in 2D, where 4x is the uniform grid
spacing and ¢ is the thickness of the body.

The spatial integration of the peridynamic integral operator is carried out by transforming the integral over the neighborhood
into a summation of integrals over nodal volumes, to which the midpoint quadrature rule is then applied [75]. Thus, the peridynamic
equation of motion, discretized from Eq. (5), at a time ¢ > 0 at a node x,, is given as

PN, 1) = Y F(X,X,.1) By AV +(x,,,1), (35)
q€H,

where p is the density of the material, ii is the acceleration field, 77, is the neighborhood of node x,, f is the bond force (force per
unit volume squared), f,, is the quadrature coefficient associated with the bond between nodes x, and x,, and b is the external

P
force density field. Under static conditions, the peridynamic equilibrium equation in the discretized model is given as
= Y £(X,X,) B AV =b(x,). (36)
qEHp

The quadrature coefficient g is introduced because the contribution of each node should be proportional to the fraction of its volume
that actually lies within the neighborhood [84-86]. Hence, f,, = 1 for nodes x, that have the whole volume inside the neighborhood
H, and 0 < f,, < 1 for those that have only a portion of volume inside #, (see Fig. 5). In this work, we adopt the method developed
in [86] for the computation of 8.

The extension scalar state and the direction vector state are numerically evaluated, respectively, as

gl’q = ”51)[1 +ll(Xq7t) - “(Xp’t)” - ”51;4” 5 (37)
Epg F U, 1) —u(x,, 1)

=P IE,, Fux,, ) —ux,, Dl

where the bond between the nodes x, and x, is §,, = x, — x, and u is the displacement field. Under the assumption of small
displacements, these quantities can be simplified as M =¢, /1I€ 1l and e, = ;.0 —ukx,.n-M, . The weighted volume
m, = m(x,) is computed in the discretized PD model as

my= > o€l 1€, By AV . 39)

qGHP

(38)

where the adopted influence function is w(||£,, ) = exp(-[1& pqllz /8%). Similarly, the microforce is evaluated as

A% 1) = == . Mg 8 (I, D 18,11y, By AV (40)

P reM,

where ¢, = x, — x,,. Therefore, the force in a bond &,, for the new ordinary state-based peridynamic formulation for anisotropic
materials is given as

1 1
£(x,,x,,1) = @(ll€,41D) [(m_ + m_> k(&) ey, t+ (
p q

A€y X 1) . A€y, %o 1)
m m

P q

) ||§pq||] M, (41)

10
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Table 1
Properties of an orthotropic material (graphite fabric-carbon matrix composite material) and an isotropic material (steel) [5].
Material Elastic moduli Shear moduli Poisson’s ratios
E, = 173.06GPa G,, =9.38GPa vip = 0.036
Composite material E, =33.09GPa G; =827GPa vi3 =025
E, =5.17GPa Gy, = 3.24GPa vy =0.171
Steel E =206.84 GPa G =80.17GPa v=0.29

For static problems, a linear system of equations can be obtained by substituting Eq. (41) into Eq. (36). Dirichlet boundary conditions
are imposed over a fictitious layer of thickness §, whereas Neumann boundary conditions are distributed over a layer of thickness &
within the region of the body closest to the boundary [87]. For simplicity, more accurate methods to impose peridynamic boundary
conditions, such as the mirror node method [88] and the surface node method [89], are not used in this work. We iteratively solve
the system of equations by means of the conjugate gradient method [90]. The relative tolerance for convergence is chosen as 10~°
in 2D models and, to reduce the computational cost, as 10~# in 3D models.

The components of the elasticity tensor in an anisotropic material are evaluated in the discretized model as

&i&i&g
Cure () = == D k&) @)

2
) &, I1Z,1

+# Z @18 ,541D &:; Z MEpgr € pr) @UIE 5 1D CiCr By g Av?, (42)

P qEH,

Bpg AV

&H,

where &, &;, &, &, §, and ¢, are the components of the bonds &,, =x, —x, and {,, = x, —X,,.
6. Numerical examples

In this section, we verify the proposed peridynamic model for anisotropic materials by means of several numerical examples.
The first two examples show that the components of the 2D and 3D elasticity tensor, computed numerically with the proposed
PD formulation, are very close to the corresponding components obtained with CCM. The last three numerical examples simulate
realistic applications with anisotropic materials. In these last three cases PD solutions are compared to FEM solutions. Differences
are unavoidable between the two due to three main reasons:

1. The PD surface effect (see, for example, [72-74]);
2. The way boundary conditions are imposed (see, for example, [88,89]);
3. The fact that PD and CCM in general provide different solutions to the same problem (see, for example, [69,91]).

However, a good agreement between PD and FEM solutions is usually expected.

6.1. Verification of 2D elastic coefficients

Table 1 reports the mechanical properties of an orthotropic material and an isotropic one taken from [5]. The mechanical
properties of an orthotropic material are often given in the material coordinate system, which is here denoted by 1- and 2-axes.
This is, for instance, the case of the components of the elasticity tensor for the composite material in Table 1. However, stresses and
strains are evaluated in the problem coordinate system, denoted by x- and y-axes, which may be different from the material coordinate
system. Therefore, the components of the elasticity tensor in the problem coordinate system vary depending on its orientation with
respect to the material coordinate system.

The 2D elasticity tensor for an orthotropic material expressed in the material coordinate system is given as

o Cin Cun 0 €11
on|=| - Con 0 £ | (43)
o1 : : Ciai2][2¢12

where, in plane stress conditions,

E

Ciyy = ———. (44a)
14+ vipvy

E,
Cppy = —2 44b
2T vy (44b)

vip By

Crpp = —1272 44c¢
2 = T (440)
Cip =06y, (444d)

11
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Fig. 6. Rotation by an angle ¢ of the material coordinate system with respect to the problem reference system.

with v,; = v, E,/E,. By rotating the material coordinate system by an angle ¢, as shown in Fig. 6, the elasticity tensor in the
problem coordinate system [5, ch. 2.3] is expressed as

Oxx Coxx  Covy Crxxy || Exx

Oy | = Comy Gy || v | (45)

Oyy . . nyxy 26Xy

with

Crnx = €*Cyy1y +2625%(Cypp +2C110) + 5* Cony (46a)
Cyyyy = ¢*Cony +26°57(Clizp +2C1p10) + 5*Chyyy (46b)
Cryy = (c* + 5MCy 120 + 52 (Cpy + Coggy — 4C110) (46¢)
Cypxy = (c¢* + 5%)Ca1p + 252 (Cp 11y + Coggy = 2C) 155 = 2C1a10) (46d)
Crxxy = ¢*s(Cy111 = Crim = 2C115) — €5*(Cazzy = Cyygp — 2C1010) s (46e)
Cpxy = es*(Chy11 = Chiz = 2C1512) — €25(Canpy — Crizy = 2C1012) » (46f)

where ¢ = cos(¢) and s = sin(¢). It is worth noting that the material in the problem coordinate system (for ¢p # nx/2 with
n=0,1,2,...) appears to be fully anisotropic.

To obtain the mechanical properties in Eq. (46), we used multiple values for the angle ¢, one at each interval of A¢ = 1.8°. The
m-ratio, defined as the ratio between the horizon size § and the grid spacing 4x, is equal to 10, which is a relatively high value for
this parameter. This choice is driven by the need of reducing the numerical errors due to the numerical integration [86], in order
to highlight the possible errors due to the constitutive model of the material. For simplicity, the grid spacing is unitary. Therefore,
we compute numerically the peridynamic components of the elasticity tensor for nodes with a complete neighborhood thanks to
Eq. (42), and compare the numerical results with the corresponding CCM value given in Eq. (46).

Fig. 7 shows the polar plots of the components of the elasticity tensor, in plane stress conditions, for the different values of the
angle ¢ for the composite (orthotropic) material, whose properties are reported in Table 1. Note that the components C,,,, and
C,,x, are not shown in Fig. 7 since their polar plots are the same as those of C,,,, and C,,,,, respectively, rotated by 90°. The PD
components of the elasticity tensor coincide with the CCM ones, which means that the proposed model is able to capture all the
2D elastic properties of a fully anisotropic material. Furthermore, Fig. 8 shows the polar plots of the components of the elasticity
tensor, in plane stress conditions, for an isotropic material (steel), whose mechanical properties are reported in Table 1. Also in this

case, the PD stiffness properties coincide with those obtained with CCM.
6.2. Verification of 3D elastic coefficients

Similarly to Section 6.1, we verify the correctness of the PD components of the 3D elasticity tensor for an orthotropic material
when the material reference system, denoted by 1-, 2-, and 3-axes, is rotated by an angle ¢ around the 3-axis with respect to the
problem reference system, denoted by x-, y-, and z-axes (see Fig. 6). The 3D elasticity tensor for an orthotropic material expressed
in the material coordinate system [5] is given as

o1 Cin Cun Cuss 0 0 0 £

022 ' Con Oz 0 0 0 €22

o33 | _ : Gy 0 0 0 ] €33 47)
033 : Crs3 0 0 |[2e]’

013 : : : : Ciai3 0 2e 3

o1 : : : : : Ciindl2epy

12
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where

E{(1 =vy3v3,)
Ciiy = 1 23V32 ’ (482)
L+ vipvar +vizvay + vazvap +2vp V3103
Comnr = Ey(1 —vi3v31) (48b)
P2 T vipvay  Vi3va) F VazVay 20y V3 vy

Es(1—vivy)
L+ vipvyp + vizvay + vazvay + 2vp V3103
Ey(vip +vi3v3y)

Ci333 = (48¢)

Ciip = N (484)
L+ vipvyy +vizvay + vazvap +2vp V3103

Ciins = E3(vi3 +viava3) (48¢)
T T4 vy +vizvag + vasvar +2v1v31vp3

Copss = E3(va3 + va1vi3) (48f)
T Ty +viava +vasvas + 2vp1v3yvp3

Cia1p =Gy, (48g)

Ci313=Gy3, (48h)

Crzpz = G35 (48i)

with vy, = v, E,/E}, v3; = vi3E3/E;, and v3, = v,3 E3/ E,. The mechanical properties of the composite material in Table 1 are used.
For a rotation of an angle ¢ of the material reference system, the elasticity tensor in the problem coordinate system [5, ch. 2.3] is
expressed as

UXX CXXX.X CXny CXXZZ 0 O CXXXy SXX

Oyy ) Coyy Cyyzz 0 0 Copxy || €y

Ozz — : : szzz 0 0 szxy €2z (49)
0y : : : Cyzyz Cyzxz 0 2Eyz ’

Oxz : ) ) : szxz 0 ngz

Oy . . . . . Crpay |26,

where some components are the same as those obtained in Eq. (46) for the 2D case and the others are given as

Cozzz = Caazz, (50a)
Crxzz = ¢*Cliz3 + 5°Ciy (50b)
Cyyzz = ¢ Cop3 + 5°Chiy (50c)
Crzyy = ¢5(Criz3 + Cpo33) » (50d)
Crzxz = € Crapz + 5°Cogs s (50e)
Cyzyz = *Copz + 5°Craz s (50f)
Crzyz = ¢5(Cr313 — Coz3) (50g)

where ¢ = cos(¢p) and s = sin(¢). Note that the material in the problem coordinate system (for ¢ # nz/2 with n =0,1,2,...) behaves
as a monoclinic material.

In the numerical model, to reduce the numerical errors due to the numerical integration, we used m = §/Ax = 10, with a unitary
grid spacing for simplicity. The PD components of the elasticity tensor, obtained with Eq. (42), are compared with the corresponding
CCM value given in Eq. (50). Each elastic coefficient is computed for the following values of the angle between the material and
problem reference system: ¢ = nd¢ with n=10,1,2,... and 4¢ = 1.8°.

Fig. 9 shows the polar plots of the components of the elasticity tensor for the composite (orthotropic) material, whose properties
are reported in Table 1. It is worth noting that the components Cy,,, Cyyy» Cxyxy» and Cy,,, are not shown here since their plots
are almost identical to those of the 2D case in Fig. 7 (the shape is exactly the same, only the values of the components of the
elasticity tensor in the material reference system are slightly different). The plots of the components C,,., and C,,,. can be obtained
by rotating the plots of C,,,, and C,,,, by 90°. Furthermore, the component C__, is not plotted since it has a constant value when
varying ¢ (see Eq. (50a)).

As evident in Fig. 9, the components of the 3D elasticity tensor computed by means of the PD numerical model coincide with
those obtained with CCM. The components of the elasticity tensor that were not considered in this analysis, i.e., the components that
are equal to 0 in Eq. (49), can be verified by rotating the material reference system about the x-axis and y-axis. By doing so, plots
similar to those shown in Fig. 9 can be obtained. Therefore, all 21 elastic coefficients can be modeled by the proposed formulation
for anisotropic materials. Clearly, since monoclinic, orthotropic, transversely isotropic, and isotropic materials are special cases of
fully anisotropic materials, they can be modeled with the proposed method as well.

14
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Fig. 9. Components of the 3D elasticity tensor for an orthotropic material depending on the angle ¢ between the material and problem reference systems.

Table 2

Properties of an orthotropic material (glass fiber-epoxy matrix composite material) [92].
Elastic moduli Shear modulus Poisson’s ratio
E, = 44GPa G,, = 3.74GPa Vi, =036
E, = 10.5GPa

6.3. Plate under traction on half edge

In this section, we numerically solve a 2D problem of a plate made of a single ply of glass fiber-epoxy matrix composite material
under plane stress conditions. The mechanical properties of this orthotropic material are reported in Table 2. The elasticity tensor
is obtained by substituting the material properties into Egs. (43) and (44). The material reference system is rotated by an angle
¢ = 40° with respect to the problem reference system. Therefore, since Egs. (45) and (46) are used to compute the elasticity tensor
in the problem reference system, the material appears to be fully anisotropic.

The geometry and the boundary conditions of the plate are shown in Fig. 10. The plate has the dimensions #, = 0.3m and
¢, =0.2m, and its thickness is # = 0.001 m. The plate is clamped on the left edge and a traction load in x direction p, = 10MPa is
applied on the upper half of the right edge. The constraints on the left edge of the plate are imposed over a fictitious layer outside
the body (the blue region in Fig. 10), whereas the applied load is equally distributed over the nodes within a region of the body
close to the boundary (the red region in Fig. 10).

The plate is discretized with a uniform grid of nodes with an equal spacing Ax = 0.001 m in both directions. Therefore, the
total number of nodes of the 2D peridynamic model is 300 x 200 = 60000. The m-ratio is chosen as m = §/4x = 5. To obtain a
reference solution, the same problem is solved by means of the finite element method (FEM). For the FEM analysis, quadrilateral
(square) elements with sides of Ax/2 = 0.0005 m are used. Therefore, the magnitude of the relative difference between PD and FEM
is evaluated at each peridynamic node as

2
PD _ ,FEM PD _ ,FEM
\/(ux uy, ) + (uy uy )

€= , (51
max <\/(ufEM)2 + (ufEM)2>

where u”? and uf£M are the displacement fields computed with PD and FEM, respectively.
Fig. 11 shows the deformed shapes obtained with the FEM and PD solutions. It is evident that the two solutions are similar. The
magnitude of the relative difference, computed with Eq. (51) and shown in Fig. 12, is indeed smaller than 1% in the whole body.

2
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Fig. 10. Geometry and boundary conditions for the problem of a plate under traction on half edge. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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(a) FEM solution of the displacement field in meters.

Displacement Magnitude

0 0.0001 0.0002 0.0003
— ' C—

0.0004 0.0005

(b) PD solution of the displacement field in meters.

Fig. 11. Deformed shape of a plate under traction on half edge magnified by a scale factor of 50 for the FEM and PD solution
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Fig. 12. Magnitude of the relative differences between PD and FEM solutions for a plate under traction on half edge.
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Fig. 13. Geometry and boundary conditions for the problem of a plate with hole under traction.

Note that the highest differences are located at nodes close to the boundary where the PD solution is affected by the surface effect
(see Remark 4) and the simplified way of imposing nonlocal boundary conditions.

6.4. Plate with hole under traction

Similarly to the previous section, we address a 2D problem of a plate with a central hole under plane stress conditions. The
material properties are the same as those in the previous example (see Table 2), but the rotation of the material reference system
is ¢ = —25° with respect to the problem reference system. Fig. 13 shows the geometry of the plate with dimensions 7, = 0.4m
and #, = 0.2m, and thickness ¢ = 0.001 m. The central hole is a circle of radius r = 0.05m. The plate is subjected to traction by
constraining the displacements u, = 0 in x direction of a fictitious layer close to the left edge and by moving of u, = 0.0001 m a
fictitious layer close to the right edge, as shown in Fig. 13. Furthermore, the lower side of the fictitious layer close to the left edge
is constrained in y direction.

The uniform grid spacing is Ax = 0.001 m and the total number of nodes is 72 140. The m-ratio is chosen as m = §/4Ax = 5. The
magnitude of the relative difference is evaluated with Eq. (51) by comparing the PD solution with the FEM one, obtained with
quadrilateral (square) elements with sides of Ax/2 = 0.0005 m.

The deformed shapes for the FEM and PD solutions, shown in Fig. 14, are similar. In particular, the influence of the component
Cyxxy Of the elasticity tensor can be seen in Fig. 14 since the shear deformation is triggered by a traction in x direction. Fig. 15
shows the magnitude of the relative difference at each peridynamic node, which is smaller than 3% in the whole body.

6.5. 3D bar under traction

In this section, we deal with the problem of a 3D bar under traction made of polyphenylene sulfide (PPS) reinforced with 40%
weight of carbon fibers. The components of the elasticity tensor in the material reference system are reported in Table 3. The
material is rotated by an angle ¢ = 30° in the xy plane, and the components of the elasticity tensor used to solve the problem are
computed with Egs. (46) and (50). Therefore, the material appears to be monoclinic in the problem reference system (see Eq. (49)).

The dimensions of the 3D bar are #, = 0.6 m, £,=0.15m, and 7, = 0.12 m. As shown in Fig. 16, one end of the bar is clamped and
the other one is displaced in x direction by u, = 0.001 m. In the peridynamic model, these constraints are imposed over two fictitious
layers close to the ends of the bar. The body is discretized with a uniform grid of nodes with a constant spacing Ax = 0.0l m in all
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Displacement Magnitude
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(a) FEM solution of the displacement field in meters.

Displacement Magnitude
0.0 0.00026 0.00052 0.00078 0.00104 0.0013

! ' O —
(b) PD solution of the displacement field in meters.

Fig. 14. Deformed shape of a plate with a hole under traction magnified by a scale factor of 50 for the FEM and PD solution.

Difference Magnitude
0.005 0.01 0.015 0.02 0.025 0.03

—— ' —

Fig. 15. Magnitude of the relative difference between PD and FEM solutions for a plate with a hole under traction.
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Table 3
Properties of an orthotropic material (PPS reinforced with 40% weight of carbon fibers) [93].

Components of elasticity tensor

Ciy11 =36GPa Cyyp = 15.1GPa Cy333 = 10.9GPa
Cyryy = 63GPa Ci133 = 6.4GPa Cippy = 6.7GPa
Cypy = 2.78GPa Cp313 = 3.28GPa Cp1a = 5.8 GPa

Fig. 16. Geometry and boundary conditions for the problem of a 3D bar under traction.

directions, for a total number of nodes equal to 10800. The m-ratio is chosen as m = §/Ax = 3. A reference solution is obtained by
solving the same problem by means of FEM with hexahedral (cubic) elements with edges of 4x/2 = 0.005m, so that the magnitude
of the relative difference can be evaluated at each peridynamic node as

2
\/(ufD _ u)leM)2 + (ufl) _ ufEM) + (uPP - ufEM)2

€= , (52)
max (\/(ufEM)z + (ufEM)z + (ufEM)z)

where u”? and uf£M are the displacement fields computed with PD and FEM, respectively.

The FEM and PD solutions are shown Fig. 17. It is clear that the PD model is able to reproduce the components of the elasticity
tensor in excellent agreement with a model based on FEM. For instance, it is worth noting that, in both models, there is a deformation
in y direction due to shear strain in xy plane, which is triggered by the non-zero component C,,,, of the elasticity tensor and the

traction in x direction. The magnitude of the relative differences, evaluated with Eq. (52), is shown in Fig. 18. The maximum
magnitude of the relative differences remains below 3% in all peridynamic nodes.

7. Conclusions

For the first time, a general ordinary state-based peridynamic formulation to model anisotropic materials in 2D and 3D was
proposed in this work. The novelty of this formulation is the introduction of two distinct bond stiffness functions, i.e., the single-bond
micromodulus and the double-bond micromodulus. The former depends on the orientation of a single bond, whereas the latter depends
on the orientations of a pair of bonds. These micromoduli were calibrated such that the components of the elasticity tensor evaluated
with the proposed formulation exactly match those of classical continuum mechanics in the case of homogeneous deformation. The
new formulation is validated by several numerical examples in 2D and 3D, highlighting the excellent agreement of the PD results
with FEM solutions.

The proposed formulation is suitable to model fully anisotropic materials, which is the most general type of material in nature.
Since monoclinic, orthotropic, transversely isotropic, and isotropic materials are special cases of fully anisotropic ones, they can be
modeled with the proposed constitutive model as well.
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Displacement Magnitude
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(a) FEM solution of the displacement field in meters.

Displacement Magnitude
0.0 0.0002  0.0004  0.0006  0.0008 0.001 0.0012
|

(b) PD solution of the displacement field in meters.

Fig. 17. Deformed shape of a 3D bar under traction magnified by a scale factor of 100 for the FEM and PD solution.

Difference Magnitude
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! | ‘ b —

Fig. 18. Magnitude of the relative difference between PD and FEM solutions for a 3D bar under traction.
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Appendix A. Derivation of the force density vector state and elasticity tensor in the new formulation

In ordinary state-based peridynamics [12], the magnitude of the force density vector state is defined as the Fréchet derivative
of the peridynamic strain energy density with respect to the extension scalar state:

IT¢E) = VIW(e). (A1)

The definition of Fréchet derivative [12] applied to W as a function of the extension scalar state e is given as

Wi(e+de)=W(e)+ / VW (e(€)) de(€)dVy + o(ldell) (A.2)

X

where de is an increment of the extension scalar state and £ = x’ — x. The definition of strain energy density (Eq. (22)) in the new
formulation of ordinary state-based peridynamics for anisotropic materials yields

Wierdo= g [ KO ED (e +e®) %
v 5 [, 260D LD 1NN (e(€) + de(@)) (o6) + def)) by
=W+ [ KO e o) dea
* 3 [ 26 020D IED 121101 £66) deteraVioave

+21—2/ / HE.O) o(IZID 2UIEID NI IEN () de(§)dVin dVyy + ollldelD) , (A.3)
m= Ju, JH,

where in the last double integral the integration variables are interchanged (& < ¢). As we shall see later, the stiffness coefficient
A(&,¢) must be chosen to satisfy the condition A(£,¢) = A(¢, &) in order for the PD elasticity tensor to have the major symmetry.
Thanks to this property, the last two double integrals in Eq. (A.3) are equal to each other, and the force density vector state is thus
given as

w22 [

k(€>£<§)+llléll/ A& O @(lIgD 161 e(€)aVir | M(E) . A4
m Hy

Assuming that the deformation is small, i.e., U(¢) < 6, the extension scalar state (Eq. (10)) and the direction vector state
(Eq. (11)) are respectively simplified as e(£) = U(&) - M(€) and M(¢&) = &/||£]|. Thus, the force density vector state can be linearized
as follows [66]:

Tix, (1) = / KIXI(E. £) UL, (K )V . (A5)

Hy
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where K is the modulus state, i.e., a double state (a state applied to a pair of bonds). The modulus state is defined as the Fréchet
derivative of the force density vector state with respect to the displacement vector state:

K=VIU), (A.6)
where T(U) is derived from Eq. (A.4) as
1 1
TU) = [; k(&) oI U(E) - M(E) + ﬁ@(llé‘ll)llﬁll/}{ A& 0 oI NN TLE) - MUE)dVr | M(E) . (A7)
The definition of Fréchet derivative [12] applied to T as a function of the displacement vector state U is given as

T(U + dU) = TQU) + / VIU(E) dU(E)dVyr + o(lldU]) . A8

X

where dU is an increment of the displacement vector state and ¢ = x”" —x. To express the first term in the right-hand side of Eq. (A.7)
as a function of U(¢), the Dirac delta function is defined as

| ife-g=0,
A<c—¢>={ re-s (A9

0 otherwise.

Therefore, the force density vector state due to the increment dU({) is given as
T(U +dU) = [ﬁ K& () /H A = HUE) +dUE) - M(E)dVy
+# o(lI€1D I|§||/H ME ) o(ICIDIISNULE) + dE(C))-M(C)de'/] M(¢&)

10+ | [ L KO0 4¢ - Haue) M@

+# ME, &)y o(lIEID oD NN dU(E) - M(C)] M(&)dVyr + o([|dU) . (A.10)
The modulus state is then computed as
a(ll€lD
k(.o = 2001 [ (@ TR+ a0 w(ucu)] 8¢, (A1D)

where ® indicates a dyadic product. The coefficients of the PD elasticity tensor are given as [66]

Cyr = / / K (6.0 E L,dVigndVy
HX Hx

(gl AL -§) ]
- k —/1 AVdVy , Al
/ /Hx - [_(é‘) ENE] K&, ) oIS &i; CiCpdVindVy ( )
where K, are the components of the modulus state. Eq. (A.12) can be simplified by using the definition in Eq. (A.9) as
&igi&ié
=1 / k&) elEN = + / / HE O (€D (IEI) &, EErdVirdVy (A13)

The peridynamic elasticity tensor must satisfy the minor and major symmetries as in classical continuum mechanics (see
Section 2). The minor symmetries (C;;,, = C;;, = Cy;4) are satisfied because switching the order of the indices i and j, or k and
¢, does not make any difference in the computation of the peridynamic integrals. The major symmetry (C;;,, = Cyz;;) is satisfied
by the first term on the right-hand side of Eq. (A.13), for which the order of the indices is irrelevant during integration, but it is
not necessarily satisfied by the second term. To obtain the condition for the major symmetry of the PD elasticity tensor, we write

the latter term for Cy,;; and interchange the integration variables (§ < {):

5[] seneteneenas coavean =L [ [ aesetenoiien s ey, (A14)
m= Sy, S, m= iy Iy

Therefore, by comparing the corresponding terms in Egs. (A.13) and (A.14) the major symmetry of the PD elasticity tensor is satisfied
if }&,¢) = XK¢.8).

Appendix B. Computation of the components of the 2D elasticity tensor

Hereinafter, we will compute the PD components of the 2D elasticity tensor with Eq. (26) by considering a complete
neighborhood. Thanks to the symmetry of the integration domain, the integral of terms with at least one odd power of any component
of the bond is zero. Therefore, the non-null integrals that appear in Eq. (26) for a 2D peridynamic model are the following ones:

oUED 0 m
dI/Xr ==, B].
/Hx EERE 3 ®12)
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o€l g _ 35m ) B

/H 116 éfp dvy = s with p=x,y, (B.1b)
@) L¢.o 0 5m ) ~

/Hx l&ne %W = 158 with p,g=x,yand p # ¢, (B.1c)
oWED 44, 3m

/Hx iere oY =g B.1d)

where the definition of the weighted volume m in Eq. (13) was used. These integrals are solved by employing polar coordinates.
By substituting the bond micromoduli in Egs. (28) and (29) into the formula for the computation of the components of the PD
elasticity tensor in Eq. (26) and using the solutions to the integrals in Eq. (B.1), we obtain the following system of equations:

Crxxx = % xoxx T 1578 Kyxyy + 1378 kyyyy s (B.2a)
Curxyy = % xone + % Kecxyy + 1578 Kyyyy (B.2b)
Cyyyy = 13% Kyexx % Kyxyy + % kyyyy s (B.2¢c)
Cxxy = % Kecexy + 1% Kyyxy s (B.2d)
Coyxy = % Keexxy + lizg Kyyxy s (B.2e)
Ciyxy = Caxyy + 6_14 Axyxy - (B.2f)

Egs. (B.2a)—(B.2c), Egs. (B.2d)-(B.2e), and Eq. (B.2f) are actually three decoupled systems of equation. The solution of these systems
of equations is shown in Eq. (30). Note that A,,,, appears only in the component C,,,,, which is the component that would have
been prescribed by the Cauchy’s relation in a bond-based peridynamic formulation.

yxy?

Appendix C. Computation of the components of the 3D elasticity tensor

Similarly to the 2D case, we will compute the PD components of the 3D elasticity tensor with Eq. (26) by considering a complete
neighborhood. Thanks to the symmetry of the integration domain, the only non-null integrals that appear in Eq. (26) for a 3D
peridynamic model are:

/ Qll(gﬁll) .f;é’qdex/ = % with p,g=x,y,zand p # ¢, (C.1a)
/Hx Qli!ﬁll) Gae=g  withp=xyz. (C.1b)
/Hx a_)ll(gflfl’l) GEWy =g withpg=xyzandpsa, (C.10)
—/Hx (i)ll(‘lglflll) 5;5;‘1Vx’ = % with p,g=x,y,zand p # ¢, C.1d)
/Hx Qligﬁll) 5;542@2‘”/;" = % with p,q,r=x,y,zand p#£ q#r, (C.10)

where m is the weighted volume (Eq. (13)). These integrals are solved by employing spherical coordinates.
By substituting the micromoduli in Egs. (28) and (29) into the formula for the computation of the components of the PD elasticity
tensor in Eq. (26) and using the solutions to the integrals in Eq. (C.1), we obtain the following system of equations:

T S Sy (20
e 9 105 105 63 63 315
C. = Ksxxx M Kazzz Koy Kaxzz @ (C.2b)
vy 105 9 105 63 315 63’
szzz — kxxxx kyyyy + kzzzz kxxyy kxxzz kyyzz , (C.ZC)
105 105 9 315 63 63
C — % kyyyy kzzzz kxxyy kxxzz kyyzz (C2d)
oy 63 63 315 105 315 315 °
C - M kyyyy kzzzz kxxyy kxxyy kyyzz (CZe)
ez 63 315 63 315 105 315 °
C — kxxxx kyyyy kzzzz kxx}’y kxxzz kyyzz (C2f)
Tyez 315 63 63 315 315 105 °
kxxxy kyyxy kZZX,V
Cor="63 05 315 (C.28)
k k k
o= 05 * &3 T 315 (c.2h)
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Coaxy = % + % + % , (c.2)
Cixxz = % + % + leg ; (C.2))
Copez = % + k;fgz + % (C.2K)
Cozyz = kfggz + k;f; + k;gx = (c.21)
oo = S+ T+ 555 (cam
o= S o2
Coe = gt 4 22 3 L2 €20
Cayxy = Caxyy + % , (C.2p)
Cizxz = Crxzz + /1225 : (C.29)
Cr = Copec + 222 20
Cpres = Comy + 222 €29
Cprny = Cpa+ 22 2
Corny = Cop + 222 2w

Egs. (C.2a)—(C.2f), Egs. (C.2g)—(C.2i), Egs. (C.2j)—(C.2]), Egs. (C.2m)—(C.20), Eq. (C.2p), Eq. (C.2q), Eq. (C.2r), Eq. (C.2s), Eq. (C.2t),
and Eq. (C.2u) are actually ten decoupled systems of equation. The solution of these systems of equations is shown in Eq. (34).
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