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A B S T R A C T

A general ordinary state-based peridynamic formulation to model anisotropic materials in 2D
and 3D is proposed. The new peridynamic constitutive model introduces two bond stiffness
functions depending on the bond orientations. These functions are defined such that the
components of the elasticity tensor evaluated by using the new formulation exactly reproduce
those of classical continuum mechanics in the case of homogeneous deformation. Several
numerical examples in 2D and 3D illustrate the validity of the proposed formulation for
fully anisotropic materials. This formulation is also suitable to model monoclinic, orthotropic,
transversely isotropic, and isotropic materials.

1. Introduction

Engineers often approximate the constitutive behavior of materials with the assumption of isotropic properties. However, most
materials are intrinsically anisotropic due to the asymmetry in the arrangement of atoms, molecules, or microstructures, exhibiting
distinct physical and mechanical characteristics at the macro-scale when measured along different directions [1]. The broad class of
anisotropic materials embeds both natural materials, such as bones [2], woods [3] and rocks [4], and artificial materials, such
as composites [5]. In particular, advanced composite materials are frequently used in many aerospace applications to exploit
their superior (even if anisotropic) mechanical properties. Isotropic materials may also present anisotropic responses due to some
manufacturing processes, like the cold-rolling of aluminum [6]. Furthermore, the initiation and propagation of cracks may also be
influenced by the anisotropic properties of the material, such as in the failure of composites [7] and the bone fracture [8–10].

Peridynamics (PD) is a nonlocal continuum theory devised to model fracture phenomena [11,12]. This theory is able to predict
realistic crack paths that are closer to experimental observations if compared with other numerical methods based on classical
continuum mechanics (CCM), such as the interface elements with cohesive zone modeling [13], the extended finite element method
(XFEM) [13], and the phase field model [14]. Bond-based peridynamics [11] was the first version of the peridynamic theory in
which the material points interact through long-range forces with the same orientation and magnitude, as shown in Fig. 1(a).
The interaction between two points is called bond. This formulation restricts the value of the Poisson’s ratio to 1∕4 in 3D and in
plane strain conditions, and to 1∕3 in plane stress conditions [15]. The state-based version of the peridynamic theory [12] allows to
overcome this limitation since the force that one point exerts on another may be different from the force that the second point exerts
on the first one. Furthermore, this new formulation can be subdivided into ordinary and non-ordinary state-based peridynamics, in
which the force is aligned and unaligned to the bond direction, respectively (see Figs. 1(b) and 1(c)).
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Fig. 1. Interaction forces for the three different versions of the peridynamic theory.

Peridynamics has been used to predict fracture phenomena (see, for example, [16–21]), or to solve multi-physics problems
nvolving fracture, such as thermo-mechanical problems [22–24], corrosion [25–27], piezoelectricity [28,29], and oxidation
henomena [30–33]. However, most of these applications adopted the assumption of isotropic materials. Bond-based peridynamics
as generalized to model composites [34–41] or materials with some degree of anisotropy [42–46] by modifying the bond force as
function of its direction. However, since the bond force is defined by a pair potential function in the bond-based formulation, the

lastic coefficients must satisfy the Cauchy’s relations and some of them have a fixed value [45]. Therefore, bond-based peridynamics
s not suitable to model fully anisotropic media.

Apart from the state-based formulation of the peridynamic theory, other methods have been developed to overcome these
imitation on the elastic coefficients. The continuum-kinematics-inspired peridynamics [47,48] reformulates the interactions between
oints such that the nonlocal kinematics coincide with that of classical continuum kinematics, capturing the Poisson’s effect correctly
n isotropic materials. This formulation was generalized for 2D orthotropic and 3D transversely isotropic materials [49], but still
he values of some elastic coefficients are fixed a priori. Another method to overcome the Poisson’s ratio limitation in peridynamic
sotropic media is to add shear deformability to the bond-based formulation by introducing the rotational degrees of freedom at the
eridynamic points [50–52], and this allows to model the proper stiffness characteristics of orthotropic materials as well [53,54].
owever, the inclusion of new degrees of freedom in the peridynamic framework increases the complexity and the computational
ost of the numerical simulations. The authors of [55] recast the peridynamic equations by using the peridynamic operator method
o model 2D anisotropic materials.

Ordinary state-based peridynamics was used to model 2D orthotropic media by introducing two new bond stiffness coefficients
long the two principal axes of the material [56], but the off-axis stiffness exhibits different values with respect to that obtained
ith classical continuum mechanics. Furthermore, this method cannot be easily generalized to 3D models. Non-ordinary state-based
eridynamics allows one to incorporate constitutive models directly from classical continuum mechanics, i.e., without the calibration
f peridynamic properties to the classical ones [12]. These types of models are often called peridynamic correspondence models.
herefore, several non-ordinary state-based peridynamic models were developed to simulate anisotropic material properties [57–
1]. Nevertheless, non-ordinary state-based peridynamics suffer from instability issues, such as zero-energy modes, and these models
equire additional stabilization techniques to obtain reasonable numerical results [62–64].

In this work, we propose a new ordinary state-based formulation of the peridynamic theory able to model fully anisotropic,
inear elastic materials both in 2D and 3D. We introduce two micromoduli, i.e., the bond stiffness properties, that depend on the
ond orientations. These micromoduli are defined such that all the components of the CCM elasticity tensor are exactly reproduced
y the peridynamic constitutive laws, without any limitations on their values. This new formulation is verified by several numerical
xamples in 2D and 3D. The formulation presented in this paper is the first step towards the possibility to use PD to describe the
racture behavior of anisotropic materials.

The paper is structured as follows. Sections 2 and 3 review the classical constitutive model for anisotropic linear elastic materials
nd the ordinary state-based peridynamic formulation for isotropic materials, respectively. Section 4 proposes the new peridynamic
ormulation for anisotropic materials based on the definition of two micromoduli depending on the bond orientation. Section 5
escribes the numerical implementation of the new formulation and Section 6 shows the numerical results of several 2D and 3D
xamples. Section 7 draws the conclusions of the work.

. Classical constitutive model for linear elastic materials

In classical continuum mechanics, the constitutive model for a linear elastic material with an initial unstressed configuration is
iven by the generalized Hooke’s law [5] as

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝓁 𝜀𝑘𝓁 , (1)

here 𝜎𝑖𝑗 are the components of the 2nd-order stress tensor, 𝐶𝑖𝑗𝑘𝓁 are the components of the 4th-order elasticity tensor, and 𝜀𝑘𝓁 are
he components of the 2nd-order strain tensor. In Eq. (1) Einstein summation convention for repeated indices is used.

The symmetry of the stress and strain tensors is inherited by the elasticity tensor, which exhibits the so-called minor symmetries:

𝐶 = 𝐶 = 𝐶 . (2)
2
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Fig. 2. Body modeled with peridynamics in the reference configuration (𝑡 = 0) and deformed configuration (𝑡 > 0).

Furthermore, since 𝐶𝑖𝑗𝑘𝓁 can be derived as a double derivative of the strain energy density 𝑊 with respect to the strain
components [5], the elasticity tensor also has the so-called major symmetries:

𝐶𝑖𝑗𝑘𝓁 = 𝜕2𝑊
𝜕𝜀𝑖𝑗 𝜕𝜀𝑘𝓁

= 𝜕2𝑊
𝜕𝜀𝑘𝓁 𝜕𝜀𝑖𝑗

= 𝐶𝑘𝓁𝑖𝑗 . (3)

The Cauchy’s relations [65] impose a further symmetry to the elasticity tensor:

𝐶𝑖𝑗𝑘𝓁 = 𝐶𝑖𝑘𝑗𝓁 . (4)

If a material meets the conditions in Eq. (4), such as a material described by a pair potential function, then the elasticity tensor is
completely symmetric, i.e., the value of an elastic coefficient 𝐶𝑖𝑗𝑘𝓁 is the same when arbitrarily switching the order of the indices
, 𝑗, 𝑘, and 𝓁 [45,65]. However, real materials rarely satisfy the Cauchy’s relations.

. Ordinary state-based peridynamics for isotropic materials

The equation of motion at a point 𝐱 at time 𝑡 ≥ 0 in a body  modeled with peridynamics is given by [11,12]

𝜌(𝐱) 𝐮̈(𝐱, 𝑡) = ∫𝐱

𝐟 (𝐱, 𝐱′, 𝑡)d𝑉𝐱′ + 𝐛(𝐱, 𝑡) , (5)

here 𝜌 is the density of the material, 𝐮̈ is the acceleration field, 𝐟 is the bond force (force per unit volume squared), 𝐱 is the
ntegration region around point 𝐱, 𝑉𝐱′ is the volume of a point 𝐱′ within 𝐱, and 𝐛 is the external force density. Fig. 2 shows the

bond forces arising within a bond due to the deformation of a body modeled with peridynamics. The interaction between 𝐱 and 𝐱′
is named bond and is defined as 𝝃 = 𝐱′ − 𝐱. The integration region 𝐱, called the neighborhood, is often chosen to be a circle in 2D
nd a sphere in 3D with a radius 𝛿, named horizon size: 𝐱 =

{

𝐱′ ∈ (𝑡 = 0) ∶ ‖𝝃‖ ≤ 𝛿
}

. Under static conditions, the peridynamic
quation is simplified as

− ∫𝐱

𝐟 (𝐱, 𝐱′)d𝑉𝐱′ = 𝐛(𝐱) . (6)

In state-based peridynamics [12], the bond force is defined as

𝐟 (𝐱, 𝐱′, 𝑡) = 𝐓[𝐱, 𝑡]⟨𝝃⟩ − 𝐓[𝐱′, 𝑡]⟨−𝝃⟩ , (7)

where 𝐓 is the force density vector state. By convention, the variables the state depends on are denoted within square brackets [⋅],
hereas the bond the state is applied to is denoted within angle brackets ⟨⋅⟩. Where possible, we will omit the square brackets. Note

hat 𝐓[𝐱, 𝑡]⟨𝝃⟩ and 𝐓[𝐱′, 𝑡]⟨−𝝃⟩ may have different magnitudes, as shown in Fig. 1(b).
For later use, the reference position scalar state and the displacement vector state [12,66] are respectively defined as

𝑥⟨𝝃⟩ = ‖𝝃‖ , (8)

𝐔[𝐱, 𝑡]⟨𝝃⟩ = 𝐮(𝐱′, 𝑡) − 𝐮(𝐱, 𝑡) , (9)
3
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where 𝐮 is a displacement field applied to the body . To describe the axial elongation of the bond, the extension scalar state is
defined as

𝑒[𝐱, 𝑡]⟨𝝃⟩ = ‖𝝃 + 𝐔⟨𝝃⟩‖ − ‖𝝃‖ . (10)

he direction vector state, or the unit vector state in the direction of the deformed bond is defined as

𝐌[𝐱, 𝑡]⟨𝝃⟩ =
𝝃 + 𝐔⟨𝝃⟩

‖𝝃 + 𝐔⟨𝝃⟩‖
. (11)

The integral of the product of two scalar states 𝑎 and 𝑏 can be denoted as

𝑎 ∙ 𝑏 = ∫𝐱

𝑎⟨𝝃⟩ 𝑏⟨𝝃⟩d𝑉𝐱′ . (12)

This notation allows to highlight the peridynamic ‘‘structure’’ of the following formulae. The weighted volume at a point 𝐱 is defined
as

𝑚(𝐱) = ∫𝐱

𝜔⟨𝝃⟩ ‖𝝃‖2d𝑉𝐱′

= (𝜔𝑥) ∙ 𝑥 , (13)

where 𝜔 is a scalar state called influence function. In this work, we adopt the Gaussian influence function: 𝜔⟨𝝃⟩ = 𝜔(‖𝝃‖) =
xp(−‖𝝃‖2∕𝛿2) [67]. It is worth noting that the choice of a different influence function may (slightly) change the peridynamic
olution, but it does not affect the validity of the theory presented in this work. The dilatation at a point 𝐱 is defined as

𝜃(𝐱, 𝑡) =
𝑐𝜃
𝑚 ∫𝐱

𝜔(‖𝝃‖) ‖𝝃‖ 𝑒⟨𝝃⟩d𝑉𝐱′

=
𝑐𝜃
𝑚
(𝜔𝑥) ∙ 𝑒 , (14)

here 𝑐𝜃 is the dilatation coefficient that is calibrated by equalizing 𝜃 and the CCM value of the dilatation in an infinite body
nder homogeneous deformation: 𝑐𝜃 = 3 in 3D, 𝑐𝜃 = 2 in 2D plane strain conditions, and 𝑐𝜃 = 2(1 − 2𝜈)∕(1 − 𝜈) in 2D plane stress

conditions [12,68]. Similarly to classical continuum mechanics, the deviatoric extension scalar state of a bond is defined as

𝑒𝑑 [𝐱, 𝑡]⟨𝝃⟩ = 𝑒⟨𝝃⟩ −
𝜃 ‖𝝃‖
3

. (15)

The peridynamic strain energy density at a point 𝐱 of a linear elastic isotropic material is given as

𝑊 (𝐱, 𝑡) = 𝑘
2
𝜃2 + 𝛼

2𝑚 ∫𝐱

𝜔(‖𝝃‖)
(

𝑒𝑑⟨𝝃⟩
)2 d𝑉𝐱′

= 𝑘
2
𝜃2 + 𝛼

2𝑚
(𝜔𝑒𝑑 ) ∙ 𝑒𝑑 , (16)

where 𝑘 and 𝛼 are the peridynamic constants that are determined by comparison with the CCM strain energy density in an infinite
body under homogeneous deformation: 𝑘 = 𝐾 and 𝛼 = 15𝐺 in 3D, 𝑘 = 𝐾 + 𝐺∕9 and 𝛼 = 8𝐺 in 2D plane strain conditions, and
𝑘 = 𝐾 + 𝐺(𝜈 + 1)2∕(9(2𝜈 − 1)2) and 𝛼 = 8𝐺 in 2D plane stress conditions [12,68], where 𝐾 is the bulk modulus and 𝐺 is the shear

odulus. The bulk and shear moduli can be expressed in terms of the Young’s modulus 𝐸 and Poisson’s ratio 𝜈 as 𝐾 = 𝐸∕(3(1−2𝜈))
nd 𝐺 = 𝐸∕(2(1 + 𝜈)), respectively. Note that, by substituting Eq. (15) into Eq. (16), the peridynamic strain energy density can be
ewritten as

𝑊 (𝐱, 𝑡) = 𝑘
2
𝜃2 + 𝛼

2𝑚 ∫𝐱

𝜔(‖𝝃‖)
[

(

𝑒⟨𝝃⟩
)2 − 2

3
𝜃 ‖𝝃‖ 𝑒⟨𝝃⟩ +

𝜃2 ‖𝝃‖2

9

]

d𝑉𝐱′

= 𝛼
2𝑚 ∫𝐱

𝜔(‖𝝃‖)
(

𝑒⟨𝝃⟩
)2 d𝑉𝐱′ +

(

𝑘
2
− 𝛼

3𝑐𝜃
+ 𝛼

18

)

𝜃2

= 𝛼
2𝑚

(𝜔𝑒) ∙ 𝑒 +
(

𝑘
2
− 𝛼

3𝑐𝜃
+ 𝛼

18

)

𝜃2 , (17)

here the first term is similar to the strain energy density in bond-based peridynamics, whereas the second term is characteristic
f ordinary state-based peridynamics.

In ordinary state-based peridynamics [12], the force density vector state is aligned with the corresponding bond for any
eformation, and its magnitude is obtained as the Fréchet derivative of the strain energy density with respect to the extension
calar state:

𝐓[𝐱, 𝑡]⟨𝝃⟩ =
𝜔(‖𝝃‖)

𝑚

[

𝛼 𝑒⟨𝝃⟩ + 𝑐𝜃

(

𝑘 − 2𝛼
3𝑐𝜃

+ 𝛼
9

)

‖𝝃‖ 𝜃
]

𝐌⟨𝝃⟩ , (18)

herefore, by substituting Eq. (18) into Eq. (7) and by taking into account that 𝑒⟨𝝃⟩ = 𝑒⟨−𝝃⟩ and 𝐌⟨𝝃⟩ = −𝐌⟨−𝝃⟩, the bond force
ecomes

𝐟 (𝐱, 𝐱′, 𝑡) = 𝜔(‖𝝃‖)
[

𝛼
(

1 + 1
)

𝑒⟨𝝃⟩ + 𝑐𝜃

(

𝑘 − 2𝛼 + 𝛼
)

‖𝝃‖
(

𝜃(𝐱, 𝑡)
+

𝜃(𝐱′, 𝑡)
)]

𝐌⟨𝝃⟩ . (19)
4

𝑚(𝐱) 𝑚(𝐱′) 3𝑐𝜃 9 𝑚(𝐱) 𝑚(𝐱′)
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Fig. 3. Micromoduli used in the new anisotropic peridynamic formulation.

Furthermore, if a body modeled with ordinary state-based peridynamics is subjected to a small homogeneous deformation for any
time 𝑡, the coefficients 𝐶𝑖𝑗𝑘𝓁 of the elasticity tensor are given from [66] as

𝐶𝑖𝑗𝑘𝓁(𝐱) =
𝛼
𝑚 ∫𝐱

𝜔(‖𝝃‖)
𝜉𝑖𝜉𝑗𝜉𝑘𝜉𝓁
‖𝝃‖2

d𝑉𝐱′ +
𝑐2𝜃
𝑚2

(

𝑘 − 2𝛼
3𝑐𝜃

+ 𝛼
9

)

∫𝐱

𝜔(‖𝝃‖) 𝜉𝑖𝜉𝑗d𝑉𝐱′ ∫𝐱

𝜔(‖𝜻‖) 𝜁𝑘𝜁𝓁d𝑉𝐱′′ , (20)

where 𝝃 = 𝐱′ − 𝐱 and 𝜻 = 𝐱′′ − 𝐱 are two bonds in the neighborhood of point 𝐱, and the subscripts denote the components of the
bonds along 𝑖, 𝑗, 𝑘, or 𝓁 directions. These indices can be 𝑥 or 𝑦 in 2D, and 𝑥, 𝑦, or 𝑧 in 3D. As in classical continuum mechanics,
only two components of the elasticity tensor are independent from the others since the material is assumed to be isotropic.

Remark 1. It is worth noting that Eq. (20) is used to compute the PD elasticity tensor, which, in the case of non-homogeneous
deformation, may be different from the CCM elasticity tensor (see, for example, [69]). However, assuming small homogeneous
deformations within an entire neighborhood, the PD elasticity tensor coincide with the CCM one [66]. We consider this assumption
in this and the following sections. In practice, where non-homogeneous deformations are present, the elasticity tensor is the same
in PD and CCM in the limit of 𝛿 → 0 [70].

4. A new ordinary state-based formulation for anisotropic materials

Enhancing the peridynamic framework with the capability of modeling generally anisotropic materials is of paramount
importance. For instance, advanced composite materials, frequently used in many engineering fields, such as aerospace, mechanical,
civil, and many others, are anisotropic. We propose in the following an ordinary state-based formulation capable of handling any
degree of material anisotropy.

To model the material anisotropy in ordinary state-based peridynamics, we introduce two distinct bond stiffness (scalar)
functions, which are called micromoduli and denoted by 𝑘⟨𝝃⟩ and 𝜆⟨𝝃, 𝜻⟩. The former is named single-bond micromodulus because its
value depends on the orientation of a single bond 𝝃 (see Fig. 3(a)), whereas the latter is named double-bond micromodulus because its
value depends on the orientations of a pair of bonds 𝝃 and 𝜻 (see Fig. 3(b)). Note that, according to the definitions given in [12,66],
𝑘⟨𝝃⟩ is a scalar-valued state and 𝜆⟨𝝃, 𝜻⟩ is a scalar-valued double state. These micromoduli have the same units of measurements as
the components of the CCM elasticity tensor, i.e., a force per unit area. The micromoduli 𝑘⟨𝝃⟩ and 𝜆⟨𝝃, 𝜻⟩ will be defined for the
2D and 3D cases in the following sections. In particular, to satisfy the major symmetry of the elasticity tensor in the peridynamic
anisotropic model, 𝜆 must have the following property (see Appendix A): 𝜆⟨𝝃, 𝜻⟩ = 𝜆⟨𝜻 , 𝝃⟩.

For brevity of notation, we also introduce a new scalar quantity, named the microforce, at a point 𝐱 that depends on the bond 𝝃:

𝛬(𝝃, 𝐱, 𝑡) = 1
𝑚 ∫𝐱

𝜆⟨𝝃, 𝜻⟩𝜔(‖𝜻‖) ‖𝜻‖ 𝑒⟨𝜻⟩d𝑉𝐱′′

= 1
𝑚

𝜆 ∙ (𝜔𝑥 𝑒) . (21)

here possible, we will omit the dependence on position 𝐱 and on time 𝑡: 𝛬(𝝃) = 𝛬(𝝃, 𝐱, 𝑡). As shown in Fig. 3(b), the double-bond
icromodulus depends on a pair of bonds, i.e., 𝝃 and 𝜻 , both associated to the same point 𝐱. On the other hand, the microforce

xplicitly depends on a single bond 𝝃, since the contribution of the bond 𝜻 is integrated over the neighborhood of point 𝐱. The
icroforce embeds information about the deformation state of the whole neighborhood of point 𝐱, similarly to the dilatation defined

n the ordinary state-based peridynamic formulation for isotropic materials (see Eq. (14)). Nonetheless, the microforce also contains
nformation about the stiffness of the bonds within the neighborhood (through the double-bond micromodulus), which is not true
5
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for the dilatation. The microforce has the same units of measurements as the double-bond micromodulus, i.e., a force per unit area.
This is the reason why the quantity computed in Eq. (21) is named microforce.

The strain energy density is reformulated such that the stiffness coefficients of the bonds depend on their orientations:

𝑊 (𝐱, 𝑡) = 1
2𝑚 ∫𝐱

𝑘⟨𝝃⟩𝜔(‖𝝃‖)
(

𝑒⟨𝝃⟩
)2 d𝑉𝐱′ +

1
2𝑚 ∫𝐱

𝜔(‖𝝃‖) ‖𝝃‖ 𝑒⟨𝝃⟩𝛬(𝝃)d𝑉𝐱′

= 1
2𝑚

(𝑘𝜔 𝑒) ∙ 𝑒 + 1
2𝑚2

(𝜔𝑥 𝑒) ∙ 𝜆 ∙ (𝜔𝑥 𝑒) . (22)

The first and second terms of the strain energy density depend on the single-bond and double-bond micromoduli, respectively.
The difference between the strain energy density for isotropic and anisotropic materials lies only in the bond stiffness functions:
for isotropic materials the stiffness functions are constant and can be pulled out from the integrals (see Eq. (17)), whereas for
anisotropic materials the stiffness functions, i.e., the micromoduli, depend on bond orientations and must be kept inside the integrals
(see Eq. (22)).

Therefore, the force density vector state, whose magnitude is the Fréchet derivative of 𝑊 with respect to 𝑒 (see Appendix A for
details), is given as

𝐓[𝐱, 𝑡]⟨𝝃⟩ =
𝜔(‖𝝃‖)

𝑚
[

𝑘⟨𝝃⟩ 𝑒⟨𝝃⟩ + ‖𝝃‖𝛬(𝝃)
]

𝐌⟨𝝃⟩ . (23)

Note that the first term depends on a single bond (as in bond-based peridynamics), whereas the second term substitutes the term
containing the dilatation in ordinary state-based peridynamics for isotropic materials. The force of any bond in the new formulation
is obtained by substituting Eq. (23) into Eq. (7):

𝐟 (𝐱, 𝐱′, 𝑡) = 𝜔(‖𝝃‖)
[(

1
𝑚(𝐱)

+ 1
𝑚(𝐱′)

)

𝑘⟨𝝃⟩ 𝑒⟨𝝃⟩ +
(

𝛬(𝝃, 𝐱, 𝑡)
𝑚(𝐱)

+
𝛬(𝝃, 𝐱′, 𝑡)
𝑚(𝐱′)

)

‖𝝃‖
]

𝐌⟨𝝃⟩ , (24)

here 𝑒⟨𝝃⟩ = 𝑒⟨−𝝃⟩, 𝐌⟨𝝃⟩ = −𝐌⟨−𝝃⟩, 𝑘⟨𝝃⟩ = 𝑘⟨−𝝃⟩ (see definitions of the single-bond stiffness function in Eq. (28) in 2D and in
q. (32) in 3D), and 𝛬(𝝃, 𝐱, 𝑡) = 𝛬(−𝝃, 𝐱, 𝑡) since 𝜆⟨𝝃, 𝜻⟩ = 𝜆⟨−𝝃, 𝜻⟩ (see definitions of the double-bond stiffness function in Eq. (29)
n 2D and in Eq. (33) in 3D).

In the linearized state-based peridynamic theory [66], the material response is described by the modulus state, that can be obtained
as the second Fréchet derivative of the strain energy density. In the present formulation for anisotropic materials, the modulus
(double) state is given from Appendix A as

K⟨𝝃, 𝜻⟩ =
𝜔(‖𝝃‖)

𝑚

[

𝑘⟨𝝃⟩
𝛥(𝜻 − 𝝃)
‖𝝃‖ ‖𝜻‖

+ 1
𝑚

𝜆⟨𝝃, 𝜻⟩𝜔(‖𝜻‖)
]

𝝃 ⊗ 𝜻 , (25)

where 𝛥 is the Dirac delta function and ⊗ indicates a dyadic product. This means that any of the results in [66] are valid for
the proposed formulation without further proofs. As a result, the coefficients of the elasticity tensor in an anisotropic material are
derived as

𝐶𝑖𝑗𝑘𝓁(𝐱) =
1
𝑚 ∫𝐱

𝑘⟨𝝃⟩𝜔(‖𝝃‖)
𝜉𝑖𝜉𝑗𝜉𝑘𝜉𝓁
‖𝝃‖2

d𝑉𝐱′ +
1
𝑚2 ∫𝐱

∫𝐱

𝜆⟨𝝃, 𝜻⟩𝜔(‖𝝃‖)𝜔(‖𝜻‖) 𝜉𝑖𝜉𝑗𝜁𝑘𝜁𝓁d𝑉𝐱′′d𝑉𝐱′ . (26)

Remark 1 applies also to Eq. (26). As it can be seen by comparing Eqs. (20) and (26), the only difference with the peridynamic
model for isotropic materials is that, for anisotropic materials, the bond stiffness functions, i.e., the micromoduli, are inside the
integrals because they depend on the bond direction.

Notably, the PD elasticity tensor computed with Eq. (26) exhibit the major and minor symmetries, i.e., 𝐶𝑖𝑗𝑘𝓁 = 𝐶𝑘𝓁𝑖𝑗 and
𝑖𝑗𝑘𝓁 = 𝐶𝑗𝑖𝑘𝓁 = 𝐶𝑖𝑗𝓁𝑘, as in classical continuum mechanics (see Section 2). It is clear that the order of the indices in the first

erm in the right-hand side of Eq. (26), which is similar to the bond-based peridynamic term, is irrelevant. This is the reason why
he bond-based formulation must satisfy the Cauchy’s relations (𝐶𝑖𝑗𝑘𝓁 = 𝐶𝑖𝑘𝑗𝓁) [45]. Hence, there is the need of the additional term
o model fully anisotropic materials not following Cauchy’s relations, as it was done in ordinary state-based peridynamics to model
he Poisson’s effect in isotropic materials [12] (see Section 3). In fact, the second term in the right-hand side of Eq. (26) does not
ecessarily satisfy the Cauchy’s relations.

.1. 2D micromoduli

In CCM, the elasticity tensor for 2D fully anisotropic materials has 6 independent components due to the major and minor
ymmetries:

⎡

⎢

⎢

⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐶𝑥𝑥𝑥𝑥 𝐶𝑥𝑥𝑦𝑦 𝐶𝑥𝑥𝑥𝑦
⋅ 𝐶𝑦𝑦𝑦𝑦 𝐶𝑦𝑦𝑥𝑦
⋅ ⋅ 𝐶𝑥𝑦𝑥𝑦

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜀𝑥𝑥
𝜀𝑦𝑦
2𝜀𝑥𝑦

⎤

⎥

⎥

⎦

, (27)

here Voigt notation was used. Furthermore, in 2D there is one Cauchy’s relation, i.e., 𝐶𝑥𝑦𝑥𝑦 = 𝐶𝑥𝑥𝑦𝑦.
The choice of the bond stiffness functions is not univocal. These functions should be chosen so that the number of their constants

atches the number of independent components of the elasticity tensor, namely 6 in 2D. Inspired by [45], we define the single-bond
icromodulus as a 4th-order polynomial of the bond direction components:

𝑘⟨𝝃⟩ = 1 (

𝑘𝑥𝑥𝑥𝑥 𝜉
4
𝑥 + 𝑘𝑥𝑥𝑥𝑦 𝜉

3
𝑥 𝜉𝑦 + 𝑘𝑥𝑥𝑦𝑦 𝜉

2
𝑥 𝜉

2
𝑦 + 𝑘𝑦𝑦𝑥𝑦 𝜉𝑥𝜉

3
𝑦 + 𝑘𝑦𝑦𝑦𝑦 𝜉

4
𝑦

)

, (28)
6
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Fig. 4. Point 𝐱 in the bulk of the body has a complete neighborhood, whereas point 𝐱′ close to the boundary has an incomplete neighborhood.

where the constants will be determined by equalizing the components of the CCM elasticity tensor with those obtained with
peridynamics in Eq. (26). It is worth noting that there are 5 unknown constants in Eq. (28), but 6 independent components of the
CCM elasticity tensor. In fact, the sixth constant (that would have been 𝑘𝑥𝑦𝑥𝑦) cannot be modeled with the single-bond micromodulus
due to the Cauchy’s relation. Therefore, we define the double-bond micromodulus 𝜆 to ‘‘release’’ the last constant 𝜆𝑥𝑦𝑥𝑦 from the
above-mentioned restriction:

𝜆⟨𝝃, 𝜻⟩ = 1
‖𝝃‖2‖𝜻‖2

𝜆𝑥𝑦𝑥𝑦 𝜉𝑥𝜉𝑦𝜁𝑥𝜁𝑦 . (29)

ote that 𝜆⟨𝝃, 𝜻⟩ = 𝜆⟨𝜻 , 𝝃⟩ to retain the major symmetry of the PD elasticity tensor (see Appendix A).
Therefore, we use Eq. (26) for a peridynamic point with a complete neighborhood to write 6 equations corresponding to the

6 independent components of the CCM elasticity tensor. The unknowns of this system of equations are the 6 constants appearing
in the micromoduli in Eqs. (28) and (29), as shown in Appendix B. Therefore, by solving these equations, one can determine the
unknown constants as functions of the components of the CCM elasticity tensor as

𝑘𝑥𝑥𝑥𝑥 = 5𝐶𝑥𝑥𝑥𝑥 − 10𝐶𝑥𝑥𝑦𝑦 + 𝐶𝑦𝑦𝑦𝑦 , (30a)

𝑘𝑥𝑥𝑥𝑦 = 40𝐶𝑥𝑥𝑥𝑦 − 24𝐶𝑦𝑦𝑥𝑦 , (30b)

𝑘𝑥𝑥𝑦𝑦 = 76𝐶𝑥𝑥𝑦𝑦 − 10𝐶𝑥𝑥𝑥𝑥 − 10𝐶𝑦𝑦𝑦𝑦 , (30c)

𝑘𝑦𝑦𝑥𝑦 = 40𝐶𝑦𝑦𝑥𝑦 − 24𝐶𝑥𝑥𝑥𝑦 , (30d)

𝑘𝑦𝑦𝑦𝑦 = 5𝐶𝑦𝑦𝑦𝑦 − 10𝐶𝑥𝑥𝑦𝑦 + 𝐶𝑥𝑥𝑥𝑥 , (30e)

𝜆𝑥𝑦𝑥𝑦 = 64𝐶𝑥𝑦𝑥𝑦 − 64𝐶𝑥𝑥𝑦𝑦 . (30f)

These bond stiffness constants are then used in Eqs. (28) and (29) to ultimately define the micromoduli in the 2D anisotropic
peridynamic model.

Remark 2. The proposed peridynamic formulation is able to model, in general, anisotropic materials. Since isotropic materials are
a special case of anisotropic ones, they also can be modeled with the proposed formulation. In 2D classical continuum mechanics,
isotropic materials are characterized by 𝐶𝑦𝑦𝑦𝑦 = 𝐶𝑥𝑥𝑥𝑥, 𝐶𝑥𝑦𝑥𝑦 = (𝐶𝑥𝑥𝑥𝑥 − 𝐶𝑥𝑥𝑦𝑦)∕2, 𝐶𝑥𝑥𝑥𝑦 = 𝐶𝑦𝑦𝑥𝑦 = 0, where 𝐶𝑥𝑥𝑥𝑥 and 𝐶𝑥𝑥𝑦𝑦 are the
only components of the elasticity tensor that are independent from the others. It is worth noting that, differently from the ordinary
state-based formulation in [12] (see Section 3), the micromoduli 𝑘 and 𝜆 may still depend on the bond orientation to model isotropic
materials. Nonetheless, the macroscopic stiffness properties of the proposed model exhibit an isotropic behavior, as shown in Fig. 8
in Section 6.1.

Remark 3. Note that some constants of the micromoduli, computed with Eq. (30), may be negative. However, the macroscopic
stiffness properties are correctly reproduced in any case because Eq. (26) was used to determine the micromoduli. Positive
micromoduli is a sufficient, but not necessary, condition for the peridynamic constitutive model to be numerically stable [43,71].
The possible presence of negative micromoduli, and its consequences on the numerical results, will be further investigated in the
future.

Remark 4. Since the constants of the micromoduli are determined for a peridynamic point with a complete neighborhood, the
oints close to the boundaries of the body (with an incomplete neighborhood, as shown in Fig. 4) exhibit an undesired stiffness
ariation. This phenomenon, called surface effect, is well-known in peridynamics [72–74], and is the cause of differences between PD

and CCM solutions close to the boundaries of the body. The stiffness variation due to the surface effect can be reduced by decreasing
the value of the horizon size 𝛿.
7
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4.2. 3D micromoduli

The elasticity tensor for a 3D fully anisotropic material is expressed by means of Voigt notation as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶𝑥𝑥𝑥𝑥 𝐶𝑥𝑥𝑦𝑦 𝐶𝑥𝑥𝑧𝑧 𝐶𝑥𝑥𝑦𝑧 𝐶𝑥𝑥𝑥𝑧 𝐶𝑥𝑥𝑥𝑦
⋅ 𝐶𝑦𝑦𝑦𝑦 𝐶𝑦𝑦𝑧𝑧 𝐶𝑦𝑦𝑦𝑧 𝐶𝑦𝑦𝑥𝑧 𝐶𝑦𝑦𝑥𝑦
⋅ ⋅ 𝐶𝑧𝑧𝑧𝑧 𝐶𝑧𝑧𝑦𝑧 𝐶𝑧𝑧𝑥𝑧 𝐶𝑧𝑧𝑥𝑦
⋅ ⋅ ⋅ 𝐶𝑦𝑧𝑦𝑧 𝐶𝑦𝑧𝑥𝑧 𝐶𝑦𝑧𝑥𝑦
⋅ ⋅ ⋅ ⋅ 𝐶𝑥𝑧𝑥𝑧 𝐶𝑥𝑧𝑥𝑦
⋅ ⋅ ⋅ ⋅ ⋅ 𝐶𝑥𝑦𝑥𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
2𝜀𝑥𝑦
2𝜀𝑥𝑧
2𝜀𝑥𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (31)

where the 21 independent components are highlighted. Furthermore, there are 6 Cauchy’s relations in 3D: 𝐶𝑦𝑧𝑦𝑧 = 𝐶𝑦𝑦𝑧𝑧, 𝐶𝑥𝑧𝑥𝑧 =
𝐶𝑥𝑥𝑧𝑧, 𝐶𝑥𝑦𝑥𝑦 = 𝐶𝑥𝑥𝑦𝑦, 𝐶𝑦𝑧𝑥𝑧 = 𝐶𝑧𝑧𝑥𝑦, 𝐶𝑦𝑧𝑥𝑦 = 𝐶𝑦𝑦𝑥𝑧, 𝐶𝑥𝑧𝑥𝑦 = 𝐶𝑥𝑥𝑦𝑧.

The choice of the bond stiffness functions is not univocal. These functions should be chosen so that the number of their constants
matches the number of independent components of the elasticity tensor, namely 21 in 3D. Inspired by [45], we define the single-bond
micromodulus as a 4th-order polynomial of the bond direction components:

𝑘⟨𝝃⟩ = 1
‖𝝃‖4

(

𝑘𝑥𝑥𝑥𝑥 𝜉
4
𝑥 + 𝑘𝑥𝑥𝑥𝑦 𝜉

3
𝑥 𝜉𝑦 + 𝑘𝑥𝑥𝑥𝑧 𝜉

3
𝑥 𝜉𝑧 + 𝑘𝑥𝑥𝑦𝑦 𝜉

2
𝑥 𝜉

2
𝑦 + 𝑘𝑥𝑥𝑦𝑧 𝜉

2
𝑥 𝜉𝑦𝜉𝑧 + 𝑘𝑥𝑥𝑧𝑧 𝜉

2
𝑥 𝜉

2
𝑧 + 𝑘𝑦𝑦𝑥𝑦 𝜉𝑥𝜉

3
𝑦

+𝑘𝑦𝑦𝑥𝑧 𝜉𝑥𝜉 2
𝑦 𝜉𝑧 + 𝑘𝑧𝑧𝑥𝑦 𝜉𝑥𝜉𝑦𝜉

2
𝑧 + 𝑘𝑧𝑧𝑥𝑧 𝜉𝑥𝜉

3
𝑧 + 𝑘𝑦𝑦𝑦𝑦 𝜉

4
𝑦 + 𝑘𝑦𝑦𝑦𝑧 𝜉

3
𝑦 𝜉𝑧 + 𝑘𝑦𝑦𝑧𝑧 𝜉

2
𝑦 𝜉

2
𝑧 + 𝑘𝑧𝑧𝑦𝑧 𝜉𝑦𝜉

3
𝑧 + 𝑘𝑧𝑧𝑧𝑧 𝜉

4
𝑧

)

, (32)

here there are 15 single-bond stiffness constants to be determined. Similarly to the proposed 2D model, the double-bond
icromodulus 𝜆 is defined to correctly reproduce the components of the elasticity tensor that are restrained in the single-bond

micromodulus by the Cauchy’s relations:

𝜆⟨𝝃, 𝜻⟩ = 1
‖𝝃‖2‖𝜻‖2

[

𝜆𝑦𝑧𝑦𝑧 𝜉𝑦𝜉𝑧𝜁𝑦𝜁𝑧 + 𝜆𝑥𝑧𝑥𝑧 𝜉𝑥𝜉𝑧𝜁𝑥𝜁𝑧 + 𝜆𝑥𝑦𝑥𝑦 𝜉𝑥𝜉𝑦𝜁𝑥𝜁𝑦 +
𝜆𝑦𝑧𝑥𝑧
2

(

𝜉𝑦𝜉𝑧𝜁𝑥𝜁𝑧 + 𝜉𝑥𝜉𝑧𝜁𝑦𝜁𝑧
)

+
𝜆𝑦𝑧𝑥𝑦
2

(

𝜉𝑦𝜉𝑧𝜁𝑥𝜁𝑦 + 𝜉𝑥𝜉𝑦𝜁𝑦𝜁𝑧
)

+
𝜆𝑥𝑧𝑥𝑦
2

(

𝜉𝑥𝜉𝑧𝜁𝑥𝜁𝑦 + 𝜉𝑥𝜉𝑦𝜁𝑥𝜁𝑧
)

]

. (33)

Note that the double-bond micromodulus is defined such as 𝜆⟨𝝃, 𝜻⟩ = 𝜆⟨𝜻 , 𝝃⟩ to retain the major symmetry of the PD elasticity tensor
see Appendix A).

Appendix C shows how to write 21 equations with Eq. (26) corresponding to the independent components of the CCM elasticity
ensor and to solve for the 21 bond stiffness constants in Eq. (32) and (33):

𝑘𝑥𝑥𝑥𝑥 = 15𝐶𝑥𝑥𝑥𝑥 +
15
8

(

𝐶𝑦𝑦𝑦𝑦 + 𝐶𝑧𝑧𝑧𝑧
)

− 45
2

(

𝐶𝑥𝑥𝑦𝑦 + 𝐶𝑥𝑥𝑧𝑧
)

+ 15
4

𝐶𝑦𝑦𝑧𝑧 , (34a)

𝑘𝑦𝑦𝑦𝑦 = 15𝐶𝑦𝑦𝑦𝑦 +
15
8

(

𝐶𝑥𝑥𝑥𝑥 + 𝐶𝑧𝑧𝑧𝑧
)

− 45
2

(

𝐶𝑥𝑥𝑦𝑦 + 𝐶𝑦𝑦𝑧𝑧
)

+ 15
4

𝐶𝑥𝑥𝑧𝑧 , (34b)

𝑘𝑧𝑧𝑧𝑧 = 15𝐶𝑧𝑧𝑧𝑧 +
15
8

(

𝐶𝑥𝑥𝑥𝑥 + 𝐶𝑦𝑦𝑦𝑦
)

− 45
2

(

𝐶𝑥𝑥𝑧𝑧 + 𝐶𝑦𝑦𝑧𝑧
)

+ 15
4

𝐶𝑥𝑥𝑦𝑦 , (34c)

𝑘𝑥𝑥𝑦𝑦 =
765
4

𝐶𝑥𝑥𝑦𝑦 −
75
4

(

𝐶𝑥𝑥𝑧𝑧 + 𝐶𝑦𝑦𝑧𝑧
)

− 45
2

(

𝐶𝑥𝑥𝑥𝑥 + 𝐶𝑦𝑦𝑦𝑦
)

+ 15
4
𝐶𝑧𝑧𝑧𝑧 , (34d)

𝑘𝑥𝑥𝑧𝑧 =
765
4

𝐶𝑥𝑥𝑧𝑧 −
75
4

(

𝐶𝑥𝑥𝑦𝑦 + 𝐶𝑦𝑦𝑧𝑧
)

− 45
2

(

𝐶𝑥𝑥𝑥𝑥 + 𝐶𝑧𝑧𝑧𝑧
)

+ 15
4
𝐶𝑦𝑦𝑦𝑦 , (34e)

𝑘𝑦𝑦𝑧𝑧 =
765
4

𝐶𝑦𝑦𝑧𝑧 −
75
4

(

𝐶𝑥𝑥𝑦𝑦 + 𝐶𝑥𝑥𝑧𝑧
)

− 45
2

(

𝐶𝑦𝑦𝑦𝑦 + 𝐶𝑧𝑧𝑧𝑧
)

+ 15
4
𝐶𝑥𝑥𝑥𝑥 , (34f)

𝑘𝑥𝑥𝑥𝑦 = 105𝐶𝑥𝑥𝑥𝑦 −
105
2

(

𝐶𝑦𝑦𝑥𝑦 + 𝐶𝑧𝑧𝑥𝑦
)

, (34g)

𝑘𝑦𝑦𝑥𝑦 = 105𝐶𝑦𝑦𝑥𝑦 −
105
2

(

𝐶𝑥𝑥𝑥𝑦 + 𝐶𝑧𝑧𝑥𝑦
)

, (34h)

𝑘𝑧𝑧𝑥𝑦 = 420𝐶𝑧𝑧𝑥𝑦 −
105
2

(

𝐶𝑥𝑥𝑥𝑦 + 𝐶𝑦𝑦𝑥𝑦
)

, (34i)

𝑘𝑥𝑥𝑥𝑧 = 105𝐶𝑥𝑥𝑥𝑧 −
105
2

(

𝐶𝑦𝑦𝑥𝑧 + 𝐶𝑧𝑧𝑥𝑧
)

, (34j)

𝑘𝑦𝑦𝑥𝑧 = 420𝐶𝑦𝑦𝑥𝑧 −
105
2

(

𝐶𝑥𝑥𝑥𝑧 + 𝐶𝑧𝑧𝑥𝑧
)

, (34k)

𝑘𝑧𝑧𝑥𝑧 = 105𝐶𝑧𝑧𝑥𝑧 −
105
2

(

𝐶𝑥𝑥𝑥𝑧 + 𝐶𝑦𝑦𝑥𝑧
)

, (34l)

𝑘𝑥𝑥𝑦𝑧 = 420𝐶𝑥𝑥𝑦𝑧 −
105
2

(

𝐶𝑦𝑦𝑦𝑧 + 𝐶𝑧𝑧𝑦𝑧
)

, (34m)

𝑘𝑦𝑦𝑦𝑧 = 105𝐶𝑦𝑦𝑦𝑧 −
105
2

(

𝐶𝑥𝑥𝑦𝑧 + 𝐶𝑧𝑧𝑦𝑧
)

, (34n)

𝑘𝑧𝑧𝑦𝑧 = 105𝐶𝑧𝑧𝑦𝑧 −
105
2

(

𝐶𝑥𝑥𝑦𝑧 + 𝐶𝑦𝑦𝑦𝑧
)

, (34o)

𝜆𝑥𝑦𝑥𝑦 = 225
(

𝐶𝑥𝑦𝑥𝑦 − 𝐶𝑥𝑥𝑦𝑦
)

, (34p)
( )
8

𝜆𝑥𝑧𝑥𝑧 = 225 𝐶𝑥𝑧𝑥𝑧 − 𝐶𝑥𝑥𝑧𝑧 , (34q)
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𝜆𝑦𝑧𝑦𝑧 = 225
(

𝐶𝑦𝑧𝑦𝑧 − 𝐶𝑦𝑦𝑧𝑧
)

, (34r)

𝜆𝑦𝑧𝑥𝑧 = 450
(

𝐶𝑦𝑧𝑥𝑧 − 𝐶𝑧𝑧𝑥𝑦
)

, (34s)

𝜆𝑦𝑧𝑥𝑦 = 450
(

𝐶𝑦𝑧𝑥𝑦 − 𝐶𝑦𝑦𝑥𝑧
)

, (34t)

𝜆𝑥𝑧𝑥𝑦 = 450
(

𝐶𝑥𝑧𝑥𝑦 − 𝐶𝑥𝑥𝑦𝑧
)

. (34u)

Note that Remarks 2, 3, and 4 are valid also in the 3D case.

4.3. Comparison with other peridynamic formulations for anisotropic materials

Most of the peridynamic literature has treated materials with isotropic properties, but some formulations and numerical methods
have been developed to model anisotropic materials. Among these approaches, most have been applied within the framework
of bond-based peridynamics, due to the simplicity of the formulation, or non-ordinary state-based peridynamics, thanks to the
possibility of incorporating any constitutive law of classical continuum mechanics.

In order to model uni-directional fiber-reinforced composites, the authors of [34] proposed to distinguish in the bond-based
formulation between two types of bonds, i.e., the fiber bonds (parallel to the fiber direction) and matrix bonds (in all other
directions). Each bond stiffness is fitted to the bulk elastic modulus of the corresponding type. This approach is used to model with
the meshfree method the composite plies with 2D nodal grids, but it can be extended to 3D laminates by adding interlaminar bonds
between the plies. Several works [35–37] followed this type of approach to model composite materials. A similar method was also
used to model polycrystalline materials [39]. Since the classical mechanical theory assumes a continuous variation of the mechanical
properties with the orientation of the fibers, the authors of [38,41–44] proposed continuous functions to describe the dependency
of the bond stiffness with respect to its orientation. The problem of determining the stiffness of the bonds in the discretized model
for bond-based peridynamics to reproduce the anisotropic properties of a medium, can also be solved by means of the least-square
method [46]. All these models allowed to obtain numerical results of fracture phenomena in good agreement with experimental
observations. However, in bond-based peridynamics the bond force is defined by a pair potential function, which implies that the
components of the elasticity tensor must satisfy the Cauchy’s relations [45,65]. This means that bond-based peridynamics is not
suitable to model fully anisotropic media because some of the elastic coefficients have a fixed value. Since the model in this work
is set in the context of ordinary state-based peridynamics, it is not affected by these limitations.

To overcome the restrictions given by Cauchy’s relations, the bond-based formulation can be extended to include shear
deformability of the bonds [50–54]. However, to avoid an incorrect description of the mechanical behavior of bodies under non-
homogeneous deformation, these models should introduce the rotational degrees of freedom for the peridynamic points [51]. These
models have been shown to provide the possibility of modeling 2D orthotropic materials without the restrictions given by the
Cauchy’s relations. Nonetheless, a 3D model including bond shear deformability would require a doubling of the number of the
degrees of freedom for each node with respect to a 2D model (from 3 to 6), notably increasing the computational cost of the
simulation. The proposed model for anisotropic materials relies only on translational degrees of freedom for the peridynamic points,
and does not consider rotational degrees of freedom.

Another approach to model the mechanical properties of materials without the restrictions of the Cauchy’s relations is to use
multi-body potentials. Using this approach, a recent theory, called continuum-kinematics-inspired peridynamics [47,48], reformulates
the interactions between points such that the nonlocal kinematics coincide with that of classical continuum kinematics. This
formulation was generalized for 2D orthotropic and 3D transversely isotropic materials [49], but some values of the elastic
coefficients are fixed a priori. Conversely, all the elastic coefficients can be correctly reproduced by the proposed model (see
Sections 6.1 and 6.2).

In the literature, the most commonly used approach to overcome the limitations of bond-based peridynamics is to adopt the
state-based version of the theory [12]. This theory makes use of pointwise deformation measures that allow for the mechanical
properties to be independent from the Cauchy’s relations. Ordinary state-based peridynamics was used to model 2D orthotropic
media by introducing two additional bond stiffness coefficients along the two principal axes of the material [56]. However, the
off-axis stiffness exhibits considerable differences with respect to that predicted by classical continuum mechanics. Furthermore,
it is not clear if this method can be generalized to 3D models. The ordinary state-based model proposed in this work overcomes
these limitations, since it allows to accurately reproduce any component of the CCM elasticity tensor both in 2D and 3D cases (see
Sections 6.1 and 6.2).

Non-ordinary state-based peridynamics is a generalization of the ordinary version. Since this formulation uses a classical stress
tensor to compute the force state, it allows to directly incorporate the constitutive laws of classical continuum mechanics within the
peridynamic framework. This approach is often called correspondence model. The correspondence model that allows to reproduce all
the components of the CCM elasticity tensor for a fully anisotropic material was developed in [58] for the 2D case and in [61] for
the 3D case. Several other correspondence models in the framework of non-ordinary state-based peridynamics were developed to
simulate phenomena that included an anisotropic material behavior, such as the plastic deformation and fracture of unidirectional
laminates [57], the fluid-driven fracturing in orthotropic poroelastic media [59], and the anisotropic plasticity of sheet metals [60].
However, non-ordinary state-based peridynamic models suffer from instability issues, such as zero-energy modes. Therefore, they
require additional stabilization techniques to obtain reasonable numerical results [62–64]. On the other hand, the model proposed
9

in this work does not require any stabilization method.
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Fig. 5. Discretization of a body modeled with peridynamics (𝑚 = 𝛿∕𝛥𝑥 = 3.3) by means of the meshfree method with a uniform grid spacing. The neighborhood
f a node is highlighted in blue and the quadrature coefficients (fraction of nodal volume that lies within the neighborhood) of two nodes are shown.

. Numerical implementation

We adopt here the so-called meshfree method to discretize the peridynamic equations [75]. To reduce the computational cost, the
oupling with CCM-based methods [76–79], the Fast Convolution-Based Method (FCBM) [80,81], or the hybrid method developed
n [82,83] can be used, but this is not pursued in this work. In the meshfree method, the body is often discretized with a regular
rid of nodes, as shown in Fig. 5. Each node represents a finite volume of 𝛥𝑥3 in 3D and 𝑡𝛥𝑥2 in 2D, where 𝛥𝑥 is the uniform grid
pacing and 𝑡 is the thickness of the body.

The spatial integration of the peridynamic integral operator is carried out by transforming the integral over the neighborhood
nto a summation of integrals over nodal volumes, to which the midpoint quadrature rule is then applied [75]. Thus, the peridynamic
quation of motion, discretized from Eq. (5), at a time 𝑡 ≥ 0 at a node 𝐱𝑝 is given as

𝜌(𝐱𝑝) 𝐮̈(𝐱𝑝, 𝑡) =
∑

𝑞∈𝑝

𝐟 (𝐱𝑝, 𝐱𝑞 , 𝑡) 𝛽𝑝𝑞 𝛥𝑉 + 𝐛(𝐱𝑝, 𝑡) , (35)

where 𝜌 is the density of the material, 𝐮̈ is the acceleration field, 𝑝 is the neighborhood of node 𝐱𝑝, 𝐟 is the bond force (force per
nit volume squared), 𝛽𝑝𝑞 is the quadrature coefficient associated with the bond between nodes 𝐱𝑝 and 𝐱𝑞 , and 𝐛 is the external
orce density field. Under static conditions, the peridynamic equilibrium equation in the discretized model is given as

−
∑

𝑞∈𝑝

𝐟 (𝐱𝑝, 𝐱𝑞) 𝛽𝑝𝑞 𝛥𝑉 = 𝐛(𝐱𝑝) . (36)

he quadrature coefficient 𝛽 is introduced because the contribution of each node should be proportional to the fraction of its volume
hat actually lies within the neighborhood [84–86]. Hence, 𝛽𝑝𝑞 = 1 for nodes 𝐱𝑞 that have the whole volume inside the neighborhood
𝑝 and 0 < 𝛽𝑝𝑞 < 1 for those that have only a portion of volume inside 𝑞 (see Fig. 5). In this work, we adopt the method developed
in [86] for the computation of 𝛽.

The extension scalar state and the direction vector state are numerically evaluated, respectively, as

𝑒𝑝𝑞 = ‖𝝃𝑝𝑞 + 𝐮(𝐱𝑞 , 𝑡) − 𝐮(𝐱𝑝, 𝑡)‖ − ‖𝝃𝑝𝑞‖ , (37)

𝐌𝑝𝑞 =
𝝃𝑝𝑞 + 𝐮(𝐱𝑞 , 𝑡) − 𝐮(𝐱𝑝, 𝑡)

‖𝝃𝑝𝑞 + 𝐮(𝐱𝑞 , 𝑡) − 𝐮(𝐱𝑝, 𝑡)‖
, (38)

where the bond between the nodes 𝐱𝑝 and 𝐱𝑞 is 𝝃𝑝𝑞 = 𝐱𝑞 − 𝐱𝑝 and 𝐮 is the displacement field. Under the assumption of small
displacements, these quantities can be simplified as 𝐌𝑝𝑞 = 𝝃𝑝𝑞∕‖𝝃𝑝𝑞‖ and 𝑒𝑝𝑞 = [𝐮(𝐱𝑞 , 𝑡) − 𝐮(𝐱𝑝, 𝑡)] ⋅ 𝐌𝑝𝑞 . The weighted volume
𝑚𝑝 = 𝑚(𝐱𝑝) is computed in the discretized PD model as

𝑚𝑝 =
∑

𝑞∈𝑝

𝜔(‖𝝃𝑝𝑞‖) ‖𝝃𝑝𝑞‖2 𝛽𝑝𝑞 𝛥𝑉 , (39)

where the adopted influence function is 𝜔(‖𝝃𝑝𝑞‖) = exp(−‖𝝃𝑝𝑞‖2∕𝛿2). Similarly, the microforce is evaluated as

𝛬(𝝃𝑝𝑞 , 𝐱𝑝, 𝑡) =
1
𝑚𝑝

∑

𝑟∈𝑝

𝜆⟨𝝃𝑝𝑞 , 𝜻𝑝𝑟⟩𝜔(‖𝜻𝑝𝑟‖) ‖𝜻𝑝𝑟‖ 𝑒𝑝𝑟 𝛽𝑝𝑟 𝛥𝑉 , (40)

where 𝜻𝑝𝑟 = 𝐱𝑟 − 𝐱𝑝. Therefore, the force in a bond 𝝃𝑝𝑞 for the new ordinary state-based peridynamic formulation for anisotropic
materials is given as

𝐟 (𝐱𝑝, 𝐱𝑞 , 𝑡) = 𝜔(‖𝝃𝑝𝑞‖)
[(

1 + 1
)

𝑘⟨𝝃𝑝𝑞⟩ 𝑒𝑝𝑞 +
(𝛬(𝝃𝑝𝑞 , 𝐱𝑝, 𝑡) +

𝛬(𝝃𝑝𝑞 , 𝐱𝑞 , 𝑡)
)

‖𝝃𝑝𝑞‖
]

𝐌𝑝𝑞 . (41)
10
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Table 1
Properties of an orthotropic material (graphite fabric-carbon matrix composite material) and an isotropic material (steel) [5].

Material Elastic moduli Shear moduli Poisson’s ratios

𝐸1 = 173.06GPa 𝐺12 = 9.38GPa 𝜈12 = 0.036
Composite material 𝐸2 = 33.09GPa 𝐺13 = 8.27GPa 𝜈13 = 0.25

𝐸3 = 5.17GPa 𝐺23 = 3.24GPa 𝜈23 = 0.171

Steel 𝐸 = 206.84GPa 𝐺 = 80.17GPa 𝜈 = 0.29

For static problems, a linear system of equations can be obtained by substituting Eq. (41) into Eq. (36). Dirichlet boundary conditions
are imposed over a fictitious layer of thickness 𝛿, whereas Neumann boundary conditions are distributed over a layer of thickness 𝛿
within the region of the body closest to the boundary [87]. For simplicity, more accurate methods to impose peridynamic boundary
conditions, such as the mirror node method [88] and the surface node method [89], are not used in this work. We iteratively solve
the system of equations by means of the conjugate gradient method [90]. The relative tolerance for convergence is chosen as 10−6

in 2D models and, to reduce the computational cost, as 10−4 in 3D models.
The components of the elasticity tensor in an anisotropic material are evaluated in the discretized model as

𝐶𝑖𝑗𝑘𝓁(𝐱𝑝) =
1
𝑚𝑝

∑

𝑞∈𝑝

𝑘⟨𝝃𝑝𝑞⟩𝜔(‖𝝃𝑝𝑞‖)
𝜉𝑖𝜉𝑗𝜉𝑘𝜉𝓁
‖𝝃𝑝𝑞‖2

𝛽𝑝𝑞 𝛥𝑉

+ 1
𝑚 2
𝑝

∑

𝑞∈𝑝

𝜔(‖𝝃𝑝𝑞‖) 𝜉𝑖𝜉𝑗
∑

𝑟∈𝑝

𝜆⟨𝝃𝑝𝑞 , 𝜻𝑝𝑟⟩𝜔(‖𝜻𝑝𝑟‖) 𝜁𝑘𝜁𝓁 𝛽𝑝𝑟 𝛽𝑝𝑞 𝛥𝑉 2 , (42)

here 𝜉𝑖, 𝜉𝑗 , 𝜉𝑘, 𝜉𝓁 , 𝜁𝑘, and 𝜁𝓁 are the components of the bonds 𝝃𝑝𝑞 = 𝐱𝑞 − 𝐱𝑝 and 𝜻𝑝𝑟 = 𝐱𝑟 − 𝐱𝑝.

. Numerical examples

In this section, we verify the proposed peridynamic model for anisotropic materials by means of several numerical examples.
he first two examples show that the components of the 2D and 3D elasticity tensor, computed numerically with the proposed
D formulation, are very close to the corresponding components obtained with CCM. The last three numerical examples simulate
ealistic applications with anisotropic materials. In these last three cases PD solutions are compared to FEM solutions. Differences
re unavoidable between the two due to three main reasons:

1. The PD surface effect (see, for example, [72–74]);
2. The way boundary conditions are imposed (see, for example, [88,89]);
3. The fact that PD and CCM in general provide different solutions to the same problem (see, for example, [69,91]).

owever, a good agreement between PD and FEM solutions is usually expected.

.1. Verification of 2D elastic coefficients

Table 1 reports the mechanical properties of an orthotropic material and an isotropic one taken from [5]. The mechanical
roperties of an orthotropic material are often given in the material coordinate system, which is here denoted by 1- and 2-axes.
his is, for instance, the case of the components of the elasticity tensor for the composite material in Table 1. However, stresses and
trains are evaluated in the problem coordinate system, denoted by 𝑥- and 𝑦-axes, which may be different from the material coordinate
ystem. Therefore, the components of the elasticity tensor in the problem coordinate system vary depending on its orientation with
espect to the material coordinate system.

The 2D elasticity tensor for an orthotropic material expressed in the material coordinate system is given as

⎡

⎢

⎢

⎣

𝜎11
𝜎22
𝜎12

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐶1111 𝐶1122 0
⋅ 𝐶2222 0
⋅ ⋅ 𝐶1212

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜀11
𝜀22
2𝜀12

⎤

⎥

⎥

⎦

, (43)

here, in plane stress conditions,

𝐶1111 =
𝐸1

1 + 𝜈12𝜈21
, (44a)

𝐶2222 =
𝐸2

1 + 𝜈12𝜈21
, (44b)

𝐶1122 =
𝜈12 𝐸2

1 + 𝜈12𝜈21
, (44c)

𝐶1212 = 𝐺12 , (44d)
11
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Fig. 6. Rotation by an angle 𝜙 of the material coordinate system with respect to the problem reference system.

with 𝜈21 = 𝜈12𝐸2∕𝐸1. By rotating the material coordinate system by an angle 𝜙, as shown in Fig. 6, the elasticity tensor in the
problem coordinate system [5, ch. 2.3] is expressed as

⎡

⎢

⎢

⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐶𝑥𝑥𝑥𝑥 𝐶𝑥𝑥𝑦𝑦 𝐶𝑥𝑥𝑥𝑦
⋅ 𝐶𝑦𝑦𝑦𝑦 𝐶𝑦𝑦𝑥𝑦
⋅ ⋅ 𝐶𝑥𝑦𝑥𝑦

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜀𝑥𝑥
𝜀𝑦𝑦
2𝜀𝑥𝑦

⎤

⎥

⎥

⎦

, (45)

with

𝐶𝑥𝑥𝑥𝑥 = 𝑐4𝐶1111 + 2𝑐2𝑠2(𝐶1122 + 2𝐶1212) + 𝑠4𝐶2222 , (46a)

𝐶𝑦𝑦𝑦𝑦 = 𝑐4𝐶2222 + 2𝑐2𝑠2(𝐶1122 + 2𝐶1212) + 𝑠4𝐶1111 , (46b)

𝐶𝑥𝑥𝑦𝑦 = (𝑐4 + 𝑠4)𝐶1122 + 𝑐2𝑠2(𝐶1111 + 𝐶2222 − 4𝐶1212) , (46c)

𝐶𝑥𝑦𝑥𝑦 = (𝑐4 + 𝑠4)𝐶1212 + 𝑐2𝑠2(𝐶1111 + 𝐶2222 − 2𝐶1122 − 2𝐶1212) , (46d)

𝐶𝑥𝑥𝑥𝑦 = 𝑐3𝑠(𝐶1111 − 𝐶1122 − 2𝐶1212) − 𝑐𝑠3(𝐶2222 − 𝐶1122 − 2𝐶1212) , (46e)

𝐶𝑦𝑦𝑥𝑦 = 𝑐𝑠3(𝐶1111 − 𝐶1122 − 2𝐶1212) − 𝑐3𝑠(𝐶2222 − 𝐶1122 − 2𝐶1212) , (46f)

where 𝑐 = cos(𝜙) and 𝑠 = sin(𝜙). It is worth noting that the material in the problem coordinate system (for 𝜙 ≠ 𝑛𝜋∕2 with
𝑛 = 0, 1, 2,… ) appears to be fully anisotropic.

To obtain the mechanical properties in Eq. (46), we used multiple values for the angle 𝜙, one at each interval of 𝛥𝜙 = 1.8◦. The
𝑚-ratio, defined as the ratio between the horizon size 𝛿 and the grid spacing 𝛥𝑥, is equal to 10, which is a relatively high value for
his parameter. This choice is driven by the need of reducing the numerical errors due to the numerical integration [86], in order
o highlight the possible errors due to the constitutive model of the material. For simplicity, the grid spacing is unitary. Therefore,
e compute numerically the peridynamic components of the elasticity tensor for nodes with a complete neighborhood thanks to
q. (42), and compare the numerical results with the corresponding CCM value given in Eq. (46).

Fig. 7 shows the polar plots of the components of the elasticity tensor, in plane stress conditions, for the different values of the
ngle 𝜙 for the composite (orthotropic) material, whose properties are reported in Table 1. Note that the components 𝐶𝑦𝑦𝑦𝑦 and
𝑦𝑦𝑥𝑦 are not shown in Fig. 7 since their polar plots are the same as those of 𝐶𝑥𝑥𝑥𝑥 and 𝐶𝑥𝑥𝑥𝑦, respectively, rotated by 90◦. The PD
omponents of the elasticity tensor coincide with the CCM ones, which means that the proposed model is able to capture all the
D elastic properties of a fully anisotropic material. Furthermore, Fig. 8 shows the polar plots of the components of the elasticity
ensor, in plane stress conditions, for an isotropic material (steel), whose mechanical properties are reported in Table 1. Also in this
ase, the PD stiffness properties coincide with those obtained with CCM.

.2. Verification of 3D elastic coefficients

Similarly to Section 6.1, we verify the correctness of the PD components of the 3D elasticity tensor for an orthotropic material
hen the material reference system, denoted by 1-, 2-, and 3-axes, is rotated by an angle 𝜙 around the 3-axis with respect to the
roblem reference system, denoted by 𝑥-, 𝑦-, and 𝑧-axes (see Fig. 6). The 3D elasticity tensor for an orthotropic material expressed
n the material coordinate system [5] is given as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝜎11
𝜎22
𝜎33
𝜎23
𝜎13

⎤

⎥

⎥

⎥

⎥

⎥

⎥

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝐶1111 𝐶1122 𝐶1133 0 0 0
⋅ 𝐶2222 𝐶2233 0 0 0
⋅ ⋅ 𝐶3333 0 0 0
⋅ ⋅ ⋅ 𝐶2323 0 0
⋅ ⋅ ⋅ ⋅ 𝐶1313 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝜀11
𝜀22
𝜀33
2𝜀23
2𝜀13

⎤

⎥

⎥

⎥

⎥

⎥

⎥

, (47)
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Fig. 7. Components of the 2D elasticity tensor for an orthotropic material depending on the angle 𝜙 between the material and problem reference systems.

Fig. 8. Components of the 2D elasticity tensor for an isotropic material depending on the angle 𝜙 between the material and problem reference systems.
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where

𝐶1111 =
𝐸1(1 − 𝜈23𝜈32)

1 + 𝜈12𝜈21 + 𝜈13𝜈31 + 𝜈23𝜈32 + 2𝜈21𝜈31𝜈23
, (48a)

𝐶2222 =
𝐸2(1 − 𝜈13𝜈31)

1 + 𝜈12𝜈21 + 𝜈13𝜈31 + 𝜈23𝜈32 + 2𝜈21𝜈31𝜈23
, (48b)

𝐶3333 =
𝐸3(1 − 𝜈12𝜈21)

1 + 𝜈12𝜈21 + 𝜈13𝜈31 + 𝜈23𝜈32 + 2𝜈21𝜈31𝜈23
, (48c)

𝐶1122 =
𝐸2(𝜈12 + 𝜈13𝜈32)

1 + 𝜈12𝜈21 + 𝜈13𝜈31 + 𝜈23𝜈32 + 2𝜈21𝜈31𝜈23
, (48d)

𝐶1133 =
𝐸3(𝜈13 + 𝜈12𝜈23)

1 + 𝜈12𝜈21 + 𝜈13𝜈31 + 𝜈23𝜈32 + 2𝜈21𝜈31𝜈23
, (48e)

𝐶2233 =
𝐸3(𝜈23 + 𝜈21𝜈13)

1 + 𝜈12𝜈21 + 𝜈13𝜈31 + 𝜈23𝜈32 + 2𝜈21𝜈31𝜈23
, (48f)

𝐶1212 = 𝐺12 , (48g)

𝐶1313 = 𝐺13 , (48h)

𝐶2323 = 𝐺23 , (48i)

ith 𝜈21 = 𝜈12𝐸2∕𝐸1, 𝜈31 = 𝜈13𝐸3∕𝐸1, and 𝜈32 = 𝜈23𝐸3∕𝐸2. The mechanical properties of the composite material in Table 1 are used.
or a rotation of an angle 𝜙 of the material reference system, the elasticity tensor in the problem coordinate system [5, ch. 2.3] is
xpressed as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶𝑥𝑥𝑥𝑥 𝐶𝑥𝑥𝑦𝑦 𝐶𝑥𝑥𝑧𝑧 0 0 𝐶𝑥𝑥𝑥𝑦
⋅ 𝐶𝑦𝑦𝑦𝑦 𝐶𝑦𝑦𝑧𝑧 0 0 𝐶𝑦𝑦𝑥𝑦
⋅ ⋅ 𝐶𝑧𝑧𝑧𝑧 0 0 𝐶𝑧𝑧𝑥𝑦
⋅ ⋅ ⋅ 𝐶𝑦𝑧𝑦𝑧 𝐶𝑦𝑧𝑥𝑧 0
⋅ ⋅ ⋅ ⋅ 𝐶𝑥𝑧𝑥𝑧 0
⋅ ⋅ ⋅ ⋅ ⋅ 𝐶𝑥𝑦𝑥𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
2𝜀𝑦𝑧
2𝜀𝑥𝑧
2𝜀𝑥𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (49)

where some components are the same as those obtained in Eq. (46) for the 2D case and the others are given as

𝐶𝑧𝑧𝑧𝑧 = 𝐶3333 , (50a)

𝐶𝑥𝑥𝑧𝑧 = 𝑐2𝐶1133 + 𝑠2𝐶2233 , (50b)

𝐶𝑦𝑦𝑧𝑧 = 𝑐2𝐶2233 + 𝑠2𝐶1133 , (50c)

𝐶𝑧𝑧𝑥𝑦 = 𝑐𝑠(𝐶1133 + 𝐶2233) , (50d)

𝐶𝑥𝑧𝑥𝑧 = 𝑐2𝐶1313 + 𝑠2𝐶2323 , (50e)

𝐶𝑦𝑧𝑦𝑧 = 𝑐2𝐶2323 + 𝑠2𝐶1313 , (50f)

𝐶𝑥𝑧𝑦𝑧 = 𝑐𝑠(𝐶1313 − 𝐶2323) , (50g)

where 𝑐 = cos(𝜙) and 𝑠 = sin(𝜙). Note that the material in the problem coordinate system (for 𝜙 ≠ 𝑛𝜋∕2 with 𝑛 = 0, 1, 2,… ) behaves
as a monoclinic material.

In the numerical model, to reduce the numerical errors due to the numerical integration, we used 𝑚 = 𝛿∕𝛥𝑥 = 10, with a unitary
grid spacing for simplicity. The PD components of the elasticity tensor, obtained with Eq. (42), are compared with the corresponding
CCM value given in Eq. (50). Each elastic coefficient is computed for the following values of the angle between the material and
problem reference system: 𝜙 = 𝑛𝛥𝜙 with 𝑛 = 0, 1, 2,… and 𝛥𝜙 = 1.8◦.

Fig. 9 shows the polar plots of the components of the elasticity tensor for the composite (orthotropic) material, whose properties
re reported in Table 1. It is worth noting that the components 𝐶𝑥𝑥𝑥𝑥, 𝐶𝑥𝑥𝑦𝑦, 𝐶𝑥𝑦𝑥𝑦, and 𝐶𝑥𝑥𝑥𝑦 are not shown here since their plots
re almost identical to those of the 2D case in Fig. 7 (the shape is exactly the same, only the values of the components of the
lasticity tensor in the material reference system are slightly different). The plots of the components 𝐶𝑦𝑦𝑧𝑧 and 𝐶𝑦𝑧𝑦𝑧 can be obtained
y rotating the plots of 𝐶𝑥𝑥𝑧𝑧 and 𝐶𝑥𝑧𝑥𝑧 by 90◦. Furthermore, the component 𝐶𝑧𝑧𝑧𝑧 is not plotted since it has a constant value when
arying 𝜙 (see Eq. (50a)).

As evident in Fig. 9, the components of the 3D elasticity tensor computed by means of the PD numerical model coincide with
hose obtained with CCM. The components of the elasticity tensor that were not considered in this analysis, i.e., the components that
re equal to 0 in Eq. (49), can be verified by rotating the material reference system about the 𝑥-axis and 𝑦-axis. By doing so, plots
imilar to those shown in Fig. 9 can be obtained. Therefore, all 21 elastic coefficients can be modeled by the proposed formulation
or anisotropic materials. Clearly, since monoclinic, orthotropic, transversely isotropic, and isotropic materials are special cases of
ully anisotropic materials, they can be modeled with the proposed method as well.
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Fig. 9. Components of the 3D elasticity tensor for an orthotropic material depending on the angle 𝜙 between the material and problem reference systems.

Table 2
Properties of an orthotropic material (glass fiber-epoxy matrix composite material) [92].

Elastic moduli Shear modulus Poisson’s ratio

𝐸1 = 44GPa 𝐺12 = 3.74GPa 𝜈12 = 0.36
𝐸2 = 10.5GPa

6.3. Plate under traction on half edge

In this section, we numerically solve a 2D problem of a plate made of a single ply of glass fiber-epoxy matrix composite material
nder plane stress conditions. The mechanical properties of this orthotropic material are reported in Table 2. The elasticity tensor
s obtained by substituting the material properties into Eqs. (43) and (44). The material reference system is rotated by an angle
= 40◦ with respect to the problem reference system. Therefore, since Eqs. (45) and (46) are used to compute the elasticity tensor

in the problem reference system, the material appears to be fully anisotropic.
The geometry and the boundary conditions of the plate are shown in Fig. 10. The plate has the dimensions 𝓁𝑥 = 0.3m and

𝑦 = 0.2m, and its thickness is 𝑡 = 0.001m. The plate is clamped on the left edge and a traction load in 𝑥 direction 𝑝𝑥 = 10MPa is
applied on the upper half of the right edge. The constraints on the left edge of the plate are imposed over a fictitious layer outside
the body (the blue region in Fig. 10), whereas the applied load is equally distributed over the nodes within a region of the body
close to the boundary (the red region in Fig. 10).

The plate is discretized with a uniform grid of nodes with an equal spacing 𝛥𝑥 = 0.001m in both directions. Therefore, the
total number of nodes of the 2D peridynamic model is 300 × 200 = 60 000. The 𝑚-ratio is chosen as 𝑚 = 𝛿∕𝛥𝑥 = 5. To obtain a
reference solution, the same problem is solved by means of the finite element method (FEM). For the FEM analysis, quadrilateral
(square) elements with sides of 𝛥𝑥∕2 = 0.0005m are used. Therefore, the magnitude of the relative difference between PD and FEM
s evaluated at each peridynamic node as

𝜖 =

√

(

𝑢𝑃𝐷𝑥 − 𝑢𝐹𝐸𝑀
𝑥

)2 +
(

𝑢𝑃𝐷𝑦 − 𝑢𝐹𝐸𝑀
𝑦

)2

max

(
√

(

𝑢𝐹𝐸𝑀
𝑥

)2 +
(

𝑢𝐹𝐸𝑀
𝑦

)2
) , (51)

here 𝐮𝑃𝐷 and 𝐮𝐹𝐸𝑀 are the displacement fields computed with PD and FEM, respectively.
Fig. 11 shows the deformed shapes obtained with the FEM and PD solutions. It is evident that the two solutions are similar. The

agnitude of the relative difference, computed with Eq. (51) and shown in Fig. 12, is indeed smaller than 1% in the whole body.
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Fig. 10. Geometry and boundary conditions for the problem of a plate under traction on half edge. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 11. Deformed shape of a plate under traction on half edge magnified by a scale factor of 50 for the FEM and PD solution.
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Fig. 12. Magnitude of the relative differences between PD and FEM solutions for a plate under traction on half edge.

Fig. 13. Geometry and boundary conditions for the problem of a plate with hole under traction.

Note that the highest differences are located at nodes close to the boundary where the PD solution is affected by the surface effect
(see Remark 4) and the simplified way of imposing nonlocal boundary conditions.

6.4. Plate with hole under traction

Similarly to the previous section, we address a 2D problem of a plate with a central hole under plane stress conditions. The
material properties are the same as those in the previous example (see Table 2), but the rotation of the material reference system
is 𝜙 = −25◦ with respect to the problem reference system. Fig. 13 shows the geometry of the plate with dimensions 𝓁𝑥 = 0.4m
and 𝓁𝑦 = 0.2m, and thickness 𝑡 = 0.001m. The central hole is a circle of radius 𝑟 = 0.05m. The plate is subjected to traction by
constraining the displacements 𝑢𝑥 = 0 in 𝑥 direction of a fictitious layer close to the left edge and by moving of 𝑢𝑥 = 0.0001m a
fictitious layer close to the right edge, as shown in Fig. 13. Furthermore, the lower side of the fictitious layer close to the left edge
is constrained in 𝑦 direction.

The uniform grid spacing is 𝛥𝑥 = 0.001m and the total number of nodes is 72 140. The 𝑚-ratio is chosen as 𝑚 = 𝛿∕𝛥𝑥 = 5. The
magnitude of the relative difference is evaluated with Eq. (51) by comparing the PD solution with the FEM one, obtained with
quadrilateral (square) elements with sides of 𝛥𝑥∕2 = 0.0005m.

The deformed shapes for the FEM and PD solutions, shown in Fig. 14, are similar. In particular, the influence of the component
𝐶𝑥𝑥𝑥𝑦 of the elasticity tensor can be seen in Fig. 14 since the shear deformation is triggered by a traction in 𝑥 direction. Fig. 15
shows the magnitude of the relative difference at each peridynamic node, which is smaller than 3% in the whole body.

6.5. 3D bar under traction

In this section, we deal with the problem of a 3D bar under traction made of polyphenylene sulfide (PPS) reinforced with 40%
weight of carbon fibers. The components of the elasticity tensor in the material reference system are reported in Table 3. The
material is rotated by an angle 𝜙 = 30◦ in the 𝑥𝑦 plane, and the components of the elasticity tensor used to solve the problem are
computed with Eqs. (46) and (50). Therefore, the material appears to be monoclinic in the problem reference system (see Eq. (49)).

The dimensions of the 3D bar are 𝓁𝑥 = 0.6m, 𝓁𝑦 = 0.15m, and 𝓁𝑧 = 0.12m. As shown in Fig. 16, one end of the bar is clamped and
the other one is displaced in 𝑥 direction by 𝑢𝑥 = 0.001m. In the peridynamic model, these constraints are imposed over two fictitious
layers close to the ends of the bar. The body is discretized with a uniform grid of nodes with a constant spacing 𝛥𝑥 = 0.01m in all
17
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Fig. 14. Deformed shape of a plate with a hole under traction magnified by a scale factor of 50 for the FEM and PD solution.

Fig. 15. Magnitude of the relative difference between PD and FEM solutions for a plate with a hole under traction.
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Table 3
Properties of an orthotropic material (PPS reinforced with 40% weight of carbon fibers) [93].

Components of elasticity tensor

𝐶1111 = 36GPa 𝐶2222 = 15.1GPa 𝐶3333 = 10.9GPa
𝐶2233 = 6.3GPa 𝐶1133 = 6.4GPa 𝐶1122 = 6.7GPa
𝐶2323 = 2.78GPa 𝐶1313 = 3.28GPa 𝐶1212 = 5.8GPa

Fig. 16. Geometry and boundary conditions for the problem of a 3D bar under traction.

directions, for a total number of nodes equal to 10 800. The 𝑚-ratio is chosen as 𝑚 = 𝛿∕𝛥𝑥 = 3. A reference solution is obtained by
solving the same problem by means of FEM with hexahedral (cubic) elements with edges of 𝛥𝑥∕2 = 0.005m, so that the magnitude
of the relative difference can be evaluated at each peridynamic node as

𝜖 =

√

(

𝑢𝑃𝐷𝑥 − 𝑢𝐹𝐸𝑀
𝑥

)2 +
(

𝑢𝑃𝐷𝑦 − 𝑢𝐹𝐸𝑀
𝑦

)2
+
(

𝑢𝑃𝐷𝑧 − 𝑢𝐹𝐸𝑀
𝑧

)2

max

(
√

(

𝑢𝐹𝐸𝑀
𝑥

)2 +
(

𝑢𝐹𝐸𝑀
𝑦

)2
+
(

𝑢𝐹𝐸𝑀
𝑧

)2
) , (52)

here 𝐮𝑃𝐷 and 𝐮𝐹𝐸𝑀 are the displacement fields computed with PD and FEM, respectively.
The FEM and PD solutions are shown Fig. 17. It is clear that the PD model is able to reproduce the components of the elasticity

ensor in excellent agreement with a model based on FEM. For instance, it is worth noting that, in both models, there is a deformation
n 𝑦 direction due to shear strain in 𝑥𝑦 plane, which is triggered by the non-zero component 𝐶𝑥𝑥𝑥𝑦 of the elasticity tensor and the
raction in 𝑥 direction. The magnitude of the relative differences, evaluated with Eq. (52), is shown in Fig. 18. The maximum
agnitude of the relative differences remains below 3% in all peridynamic nodes.

. Conclusions

For the first time, a general ordinary state-based peridynamic formulation to model anisotropic materials in 2D and 3D was
roposed in this work. The novelty of this formulation is the introduction of two distinct bond stiffness functions, i.e., the single-bond
icromodulus and the double-bond micromodulus. The former depends on the orientation of a single bond, whereas the latter depends
n the orientations of a pair of bonds. These micromoduli were calibrated such that the components of the elasticity tensor evaluated
ith the proposed formulation exactly match those of classical continuum mechanics in the case of homogeneous deformation. The
ew formulation is validated by several numerical examples in 2D and 3D, highlighting the excellent agreement of the PD results
ith FEM solutions.

The proposed formulation is suitable to model fully anisotropic materials, which is the most general type of material in nature.
ince monoclinic, orthotropic, transversely isotropic, and isotropic materials are special cases of fully anisotropic ones, they can be
odeled with the proposed constitutive model as well.
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Fig. 17. Deformed shape of a 3D bar under traction magnified by a scale factor of 100 for the FEM and PD solution.

Fig. 18. Magnitude of the relative difference between PD and FEM solutions for a 3D bar under traction.
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Appendix A. Derivation of the force density vector state and elasticity tensor in the new formulation

In ordinary state-based peridynamics [12], the magnitude of the force density vector state is defined as the Fréchet derivative
of the peridynamic strain energy density with respect to the extension scalar state:

‖𝐓⟨𝝃⟩‖ = ∇𝑊 (𝑒) . (A.1)

The definition of Fréchet derivative [12] applied to 𝑊 as a function of the extension scalar state 𝑒 is given as

𝑊 (𝑒 + 𝑑𝑒) = 𝑊 (𝑒) + ∫𝐱

∇𝑊 (𝑒⟨𝝃⟩) 𝑑𝑒⟨𝝃⟩d𝑉𝐱′ + 𝑜(‖𝑑𝑒‖) , (A.2)

where 𝑑𝑒 is an increment of the extension scalar state and 𝝃 = 𝐱′ − 𝐱. The definition of strain energy density (Eq. (22)) in the new
formulation of ordinary state-based peridynamics for anisotropic materials yields

𝑊 (𝑒 + 𝑑𝑒) = 1
2𝑚 ∫𝐱

𝑘⟨𝝃⟩𝜔(‖𝝃‖)
(

𝑒⟨𝝃⟩ + 𝑑𝑒⟨𝝃⟩
)2 d𝑉𝐱′

+ 1
2𝑚2 ∫𝐱

∫𝐱

𝜆⟨𝝃, 𝜻⟩𝜔(‖𝝃‖)𝜔(‖𝜻‖) ‖𝝃‖ ‖𝜻‖
(

𝑒⟨𝝃⟩ + 𝑑𝑒⟨𝝃⟩
) (

𝑒⟨𝜻⟩ + 𝑑𝑒⟨𝜻⟩
)

d𝑉𝐱′′d𝑉𝐱′

= 𝑊 (𝑒) + 1
𝑚 ∫𝐱

𝑘⟨𝝃⟩𝜔(‖𝝃‖) 𝑒⟨𝝃⟩ 𝑑𝑒⟨𝝃⟩d𝑉𝐱′

+ 1
2𝑚2 ∫𝐱

∫𝐱

𝜆⟨𝝃, 𝜻⟩𝜔(‖𝝃‖)𝜔(‖𝜻‖) ‖𝝃‖ ‖𝜻‖ 𝑒⟨𝜻⟩ 𝑑𝑒⟨𝝃⟩d𝑉𝐱′′d𝑉𝐱′

+ 1
2𝑚2 ∫𝐱

∫𝐱

𝜆⟨𝝃, 𝜻⟩𝜔(‖𝜻‖)𝜔(‖𝝃‖) ‖𝜻‖ ‖𝝃‖ 𝑒⟨𝜻⟩ 𝑑𝑒⟨𝝃⟩d𝑉𝐱′′d𝑉𝐱′ + 𝑜(‖𝑑𝑒‖) , (A.3)

where in the last double integral the integration variables are interchanged (𝝃 ↔ 𝜻). As we shall see later, the stiffness coefficient
𝜆⟨𝝃, 𝜻⟩ must be chosen to satisfy the condition 𝜆⟨𝝃, 𝜻⟩ = 𝜆⟨𝜻 , 𝝃⟩ in order for the PD elasticity tensor to have the major symmetry.
Thanks to this property, the last two double integrals in Eq. (A.3) are equal to each other, and the force density vector state is thus
given as

𝐓⟨𝝃⟩ =
𝜔(‖𝝃‖)

𝑚

[

𝑘⟨𝝃⟩ 𝑒⟨𝝃⟩ + 1
𝑚

‖𝝃‖∫𝐱

𝜆⟨𝝃, 𝜻⟩𝜔(‖𝜻‖) ‖𝜻‖ 𝑒⟨𝜻⟩d𝑉𝐱′′
]

𝐌⟨𝝃⟩ . (A.4)

Assuming that the deformation is small, i.e., 𝐔⟨𝝃⟩ ≪ 𝛿, the extension scalar state (Eq. (10)) and the direction vector state
(Eq. (11)) are respectively simplified as 𝑒⟨𝝃⟩ = 𝐔⟨𝝃⟩ ⋅𝐌⟨𝝃⟩ and 𝐌⟨𝝃⟩ = 𝝃∕‖𝝃‖. Thus, the force density vector state can be linearized
as follows [66]:

𝐓[𝐱, 𝑡]⟨𝝃⟩ = K[𝐱]⟨𝝃, 𝜻⟩𝐔[𝐱, 𝑡]⟨𝜻⟩d𝑉𝐱′′ , (A.5)
21

∫𝐱
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where K is the modulus state, i.e., a double state (a state applied to a pair of bonds). The modulus state is defined as the Fréchet
derivative of the force density vector state with respect to the displacement vector state:

K = ∇𝐓(𝐔) , (A.6)

where 𝐓(𝐔) is derived from Eq. (A.4) as

𝐓(𝐔) =
[

1
𝑚

𝑘⟨𝝃⟩𝜔(‖𝝃‖)𝐔⟨𝝃⟩ ⋅𝐌⟨𝝃⟩ + 1
𝑚2

𝜔(‖𝝃‖) ‖𝝃‖∫𝐱

𝜆⟨𝝃, 𝜻⟩𝜔(‖𝜻‖) ‖𝜻‖𝐔⟨𝜻⟩ ⋅𝐌⟨𝜻⟩d𝑉𝐱′′
]

𝐌⟨𝝃⟩ . (A.7)

The definition of Fréchet derivative [12] applied to 𝐓 as a function of the displacement vector state 𝐔 is given as

𝐓(𝐔 + 𝑑𝐔) = 𝐓(𝐔) + ∫𝐱

∇𝐓(𝐔⟨𝜻⟩) 𝑑𝐔⟨𝜻⟩d𝑉𝐱′′ + 𝑜(‖𝑑𝐔‖) , (A.8)

where 𝑑𝐔 is an increment of the displacement vector state and 𝜻 = 𝐱′′−𝐱. To express the first term in the right-hand side of Eq. (A.7)
s a function of 𝐔⟨𝜻⟩, the Dirac delta function is defined as

𝛥(𝜻 − 𝝃) =

{

1 if 𝜻 − 𝝃 = 𝟎 ,
0 otherwise.

(A.9)

Therefore, the force density vector state due to the increment 𝑑𝐔⟨𝜻⟩ is given as

𝐓(𝐔 + 𝑑𝐔) =
[

1
𝑚

𝑘⟨𝝃⟩𝜔(‖𝝃‖)∫𝐱

𝛥(𝜻 − 𝝃)(𝐔⟨𝜻⟩ + 𝑑𝐔⟨𝜻⟩) ⋅𝐌⟨𝜻⟩d𝑉𝐱′′

+ 1
𝑚2

𝜔(‖𝝃‖) ‖𝝃‖∫𝐱

𝜆⟨𝝃, 𝜻⟩𝜔(‖𝜻‖) ‖𝜻‖(𝐔⟨𝜻⟩ + 𝑑𝐔⟨𝜻⟩) ⋅𝐌⟨𝜻⟩d𝑉𝐱′′
]

𝐌⟨𝝃⟩

= 𝐓(𝐔) + ∫𝐱

[ 1
𝑚

𝑘⟨𝝃⟩𝜔(‖𝝃‖)𝛥(𝜻 − 𝝃) 𝑑𝐔⟨𝜻⟩ ⋅𝐌⟨𝜻⟩

+ 1
𝑚2

𝜆⟨𝝃, 𝜻⟩𝜔(‖𝝃‖)𝜔(‖𝜻‖) ‖𝝃‖ ‖𝜻‖ 𝑑𝐔⟨𝜻⟩ ⋅𝐌⟨𝜻⟩
]

𝐌⟨𝝃⟩d𝑉𝐱′′ + 𝑜(‖𝑑𝐔‖) . (A.10)

The modulus state is then computed as

K⟨𝝃, 𝜻⟩ =
𝜔(‖𝝃‖)

𝑚

[

𝑘⟨𝝃⟩
𝛥(𝜻 − 𝝃)
‖𝝃‖ ‖𝜻‖

+ 1
𝑚

𝜆⟨𝝃, 𝜻⟩𝜔(‖𝜻‖)
]

𝝃 ⊗ 𝜻 , (A.11)

where ⊗ indicates a dyadic product. The coefficients of the PD elasticity tensor are given as [66]

𝐶𝑖𝑗𝑘𝓁 = ∫𝐱
∫𝐱

𝐾 𝑖𝑘⟨𝝃, 𝜻⟩ 𝜉𝑗 𝜁𝓁d𝑉𝐱′′d𝑉𝐱′

= ∫𝐱
∫𝐱

𝜔(‖𝝃‖)
𝑚

[

𝑘⟨𝝃⟩
𝛥(𝜻 − 𝝃)
‖𝝃‖ ‖𝜻‖

+ 1
𝑚

𝜆⟨𝝃, 𝜻⟩𝜔(‖𝜻‖)
]

𝜉𝑖𝜉𝑗 𝜁𝑘𝜁𝓁d𝑉𝐱′′d𝑉𝐱′ , (A.12)

where 𝐾 𝑖𝑘 are the components of the modulus state. Eq. (A.12) can be simplified by using the definition in Eq. (A.9) as

𝐶𝑖𝑗𝑘𝓁(𝐱) =
1
𝑚 ∫𝐱

𝑘⟨𝝃⟩𝜔(‖𝝃‖)
𝜉𝑖𝜉𝑗𝜉𝑘𝜉𝓁
‖𝝃‖2

d𝑉𝐱′ +
1
𝑚2 ∫𝐱

∫𝐱

𝜆⟨𝝃, 𝜻⟩𝜔(‖𝝃‖)𝜔(‖𝜻‖) 𝜉𝑖𝜉𝑗 𝜁𝑘𝜁𝓁d𝑉𝐱′′d𝑉𝐱′ . (A.13)

The peridynamic elasticity tensor must satisfy the minor and major symmetries as in classical continuum mechanics (see
ection 2). The minor symmetries (𝐶𝑖𝑗𝑘𝓁 = 𝐶𝑗𝑖𝑘𝓁 = 𝐶𝑖𝑗𝓁𝑘) are satisfied because switching the order of the indices 𝑖 and 𝑗, or 𝑘 and
, does not make any difference in the computation of the peridynamic integrals. The major symmetry (𝐶𝑖𝑗𝑘𝓁 = 𝐶𝑘𝓁𝑖𝑗) is satisfied
y the first term on the right-hand side of Eq. (A.13), for which the order of the indices is irrelevant during integration, but it is
ot necessarily satisfied by the second term. To obtain the condition for the major symmetry of the PD elasticity tensor, we write
he latter term for 𝐶𝑘𝓁𝑖𝑗 and interchange the integration variables (𝝃 ↔ 𝜻):

1
𝑚2 ∫𝐱

∫𝐱

𝜆⟨𝝃, 𝜻⟩𝜔(‖𝝃‖)𝜔(‖𝜻‖) 𝜉𝑘𝜉𝓁 𝜁𝑖𝜁𝑗d𝑉𝐱′′d𝑉𝐱′ =
1
𝑚2 ∫𝐱

∫𝐱

𝜆⟨𝜻 , 𝝃⟩𝜔(‖𝜻‖)𝜔(‖𝝃‖) 𝜁𝑘𝜁𝓁 𝜉𝑖𝜉𝑗d𝑉𝐱′′d𝑉𝐱′ . (A.14)

Therefore, by comparing the corresponding terms in Eqs. (A.13) and (A.14) the major symmetry of the PD elasticity tensor is satisfied
if 𝜆⟨𝝃, 𝜻⟩ = 𝜆⟨𝜻 , 𝝃⟩.

Appendix B. Computation of the components of the 2D elasticity tensor

Hereinafter, we will compute the PD components of the 2D elasticity tensor with Eq. (26) by considering a complete
eighborhood. Thanks to the symmetry of the integration domain, the integral of terms with at least one odd power of any component
f the bond is zero. Therefore, the non-null integrals that appear in Eq. (26) for a 2D peridynamic model are the following ones:

𝜔(‖𝝃‖)
𝜉 2
1 𝜉

2
2 d𝑉𝐱′ =

𝑚 , (B.1a)
22

∫𝐱 ‖𝝃‖2 8
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∫𝐱

𝜔(‖𝝃‖)
‖𝝃‖6

𝜉 8
𝑝 d𝑉𝐱′ =

35𝑚
128

with 𝑝 = 𝑥, 𝑦 , (B.1b)

∫𝐱

𝜔(‖𝝃‖)
‖𝝃‖6

𝜉 6
𝑝 𝜉

2
𝑞 d𝑉𝐱′ =

5𝑚
128

with 𝑝, 𝑞 = 𝑥, 𝑦 and 𝑝 ≠ 𝑞 , (B.1c)

∫𝐱

𝜔(‖𝝃‖)
‖𝝃‖6

𝜉 4
1 𝜉

4
2 d𝑉𝐱′ =

3𝑚
128

, (B.1d)

where the definition of the weighted volume 𝑚 in Eq. (13) was used. These integrals are solved by employing polar coordinates.
By substituting the bond micromoduli in Eqs. (28) and (29) into the formula for the computation of the components of the PD

lasticity tensor in Eq. (26) and using the solutions to the integrals in Eq. (B.1), we obtain the following system of equations:

𝐶𝑥𝑥𝑥𝑥 = 35
128

𝑘𝑥𝑥𝑥𝑥 +
5

128
𝑘𝑥𝑥𝑦𝑦 +

3
128

𝑘𝑦𝑦𝑦𝑦 , (B.2a)

𝐶𝑥𝑥𝑦𝑦 =
5
128

𝑘𝑥𝑥𝑥𝑥 +
3
128

𝑘𝑥𝑥𝑦𝑦 +
5
128

𝑘𝑦𝑦𝑦𝑦 , (B.2b)

𝐶𝑦𝑦𝑦𝑦 =
3

128
𝑘𝑥𝑥𝑥𝑥 +

5
128

𝑘𝑥𝑥𝑦𝑦 +
35
128

𝑘𝑦𝑦𝑦𝑦 , (B.2c)

𝐶𝑥𝑥𝑥𝑦 =
5
128

𝑘𝑥𝑥𝑥𝑦 +
3
128

𝑘𝑦𝑦𝑥𝑦 , (B.2d)

𝐶𝑦𝑦𝑥𝑦 =
3
128

𝑘𝑥𝑥𝑥𝑦 +
5
128

𝑘𝑦𝑦𝑥𝑦 , (B.2e)

𝐶𝑥𝑦𝑥𝑦 = 𝐶𝑥𝑥𝑦𝑦 +
1
64

𝜆𝑥𝑦𝑥𝑦 . (B.2f)

Eqs. (B.2a)–(B.2c), Eqs. (B.2d)–(B.2e), and Eq. (B.2f) are actually three decoupled systems of equation. The solution of these systems
of equations is shown in Eq. (30). Note that 𝜆𝑥𝑦𝑥𝑦 appears only in the component 𝐶𝑥𝑦𝑥𝑦, which is the component that would have
een prescribed by the Cauchy’s relation in a bond-based peridynamic formulation.

ppendix C. Computation of the components of the 3D elasticity tensor

Similarly to the 2D case, we will compute the PD components of the 3D elasticity tensor with Eq. (26) by considering a complete
eighborhood. Thanks to the symmetry of the integration domain, the only non-null integrals that appear in Eq. (26) for a 3D
eridynamic model are:

∫𝐱

𝜔(‖𝝃‖)
‖𝝃‖2

𝜉 2
𝑝 𝜉

2
𝑞 d𝑉𝐱′ =

𝑚
15

with 𝑝, 𝑞 = 𝑥, 𝑦, 𝑧 and 𝑝 ≠ 𝑞 , (C.1a)

∫𝐱

𝜔(‖𝝃‖)
‖𝝃‖6

𝜉 8
𝑝 d𝑉𝐱′ =

𝑚
9

with 𝑝 = 𝑥, 𝑦, 𝑧 , (C.1b)

∫𝐱

𝜔(‖𝝃‖)
‖𝝃‖6

𝜉 6
𝑝 𝜉

2
𝑞 d𝑉𝐱′ =

𝑚
63

with 𝑝, 𝑞 = 𝑥, 𝑦, 𝑧 and 𝑝 ≠ 𝑞 , (C.1c)

∫𝐱

𝜔(‖𝝃‖)
‖𝝃‖6

𝜉 4
𝑝 𝜉

4
𝑞 d𝑉𝐱′ =

𝑚
105

with 𝑝, 𝑞 = 𝑥, 𝑦, 𝑧 and 𝑝 ≠ 𝑞 , (C.1d)

∫𝐱

𝜔(‖𝝃‖)
‖𝝃‖6

𝜉 4
𝑝 𝜉

2
𝑞 𝜉

2
𝑟 d𝑉𝐱′ =

𝑚
315

with 𝑝, 𝑞, 𝑟 = 𝑥, 𝑦, 𝑧 and 𝑝 ≠ 𝑞 ≠ 𝑟 , (C.1e)

where 𝑚 is the weighted volume (Eq. (13)). These integrals are solved by employing spherical coordinates.
By substituting the micromoduli in Eqs. (28) and (29) into the formula for the computation of the components of the PD elasticity

tensor in Eq. (26) and using the solutions to the integrals in Eq. (C.1), we obtain the following system of equations:

𝐶𝑥𝑥𝑥𝑥 =
𝑘𝑥𝑥𝑥𝑥
9

+
𝑘𝑦𝑦𝑦𝑦
105

+
𝑘𝑧𝑧𝑧𝑧
105

+
𝑘𝑥𝑥𝑦𝑦
63

+
𝑘𝑥𝑥𝑧𝑧
63

+
𝑘𝑦𝑦𝑧𝑧
315

, (C.2a)

𝐶𝑦𝑦𝑦𝑦 =
𝑘𝑥𝑥𝑥𝑥
105

+
𝑘𝑦𝑦𝑦𝑦
9

+
𝑘𝑧𝑧𝑧𝑧
105

+
𝑘𝑥𝑥𝑦𝑦
63

+
𝑘𝑥𝑥𝑧𝑧
315

+
𝑘𝑦𝑦𝑧𝑧
63

, (C.2b)

𝐶𝑧𝑧𝑧𝑧 =
𝑘𝑥𝑥𝑥𝑥
105

+
𝑘𝑦𝑦𝑦𝑦
105

+
𝑘𝑧𝑧𝑧𝑧
9

+
𝑘𝑥𝑥𝑦𝑦
315

+
𝑘𝑥𝑥𝑧𝑧
63

+
𝑘𝑦𝑦𝑧𝑧
63

, (C.2c)

𝐶𝑥𝑥𝑦𝑦 =
𝑘𝑥𝑥𝑥𝑥
63

+
𝑘𝑦𝑦𝑦𝑦
63

+
𝑘𝑧𝑧𝑧𝑧
315

+
𝑘𝑥𝑥𝑦𝑦
105

+
𝑘𝑥𝑥𝑧𝑧
315

+
𝑘𝑦𝑦𝑧𝑧
315

, (C.2d)

𝐶𝑥𝑥𝑧𝑧 =
𝑘𝑥𝑥𝑥𝑥
63

+
𝑘𝑦𝑦𝑦𝑦
315

+
𝑘𝑧𝑧𝑧𝑧
63

+
𝑘𝑥𝑥𝑦𝑦
315

+
𝑘𝑥𝑥𝑦𝑦
105

+
𝑘𝑦𝑦𝑧𝑧
315

, (C.2e)

𝐶𝑦𝑦𝑧𝑧 =
𝑘𝑥𝑥𝑥𝑥
315

+
𝑘𝑦𝑦𝑦𝑦
63

+
𝑘𝑧𝑧𝑧𝑧
63

+
𝑘𝑥𝑥𝑦𝑦
315

+
𝑘𝑥𝑥𝑧𝑧
315

+
𝑘𝑦𝑦𝑧𝑧
105

, (C.2f)

𝐶𝑥𝑥𝑥𝑦 =
𝑘𝑥𝑥𝑥𝑦
63

+
𝑘𝑦𝑦𝑥𝑦
105

+
𝑘𝑧𝑧𝑥𝑦
315

, (C.2g)

𝐶 =
𝑘𝑥𝑥𝑥𝑦 +

𝑘𝑦𝑦𝑥𝑦 +
𝑘𝑧𝑧𝑥𝑦 , (C.2h)
23
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𝐶𝑧𝑧𝑥𝑦 =
𝑘𝑥𝑥𝑥𝑦
315

+
𝑘𝑦𝑦𝑥𝑦
315

+
𝑘𝑧𝑧𝑥𝑦
315

, (C.2i)

𝐶𝑥𝑥𝑥𝑧 =
𝑘𝑥𝑥𝑥𝑧
63

+
𝑘𝑦𝑦𝑥𝑧
315

+
𝑘𝑧𝑧𝑥𝑧
105

, (C.2j)

𝐶𝑦𝑦𝑥𝑧 =
𝑘𝑥𝑥𝑥𝑧
315

+
𝑘𝑦𝑦𝑥𝑧
315

+
𝑘𝑧𝑧𝑥𝑧
315

, (C.2k)

𝐶𝑧𝑧𝑥𝑧 =
𝑘𝑥𝑥𝑥𝑧
105

+
𝑘𝑦𝑦𝑥𝑧
315

+
𝑘𝑧𝑧𝑥𝑧
63

, (C.2l)

𝐶𝑥𝑥𝑦𝑧 =
𝑘𝑥𝑥𝑦𝑧
315

+
𝑘𝑦𝑦𝑦𝑧
315

+
𝑘𝑧𝑧𝑦𝑧
315

, (C.2m)

𝐶𝑦𝑦𝑦𝑧 =
𝑘𝑥𝑥𝑦𝑧
315

+
𝑘𝑦𝑦𝑦𝑧
63

+
𝑘𝑧𝑧𝑦𝑧
105

, (C.2n)

𝐶𝑧𝑧𝑦𝑧 =
𝑘𝑥𝑥𝑦𝑧
315

+
𝑘𝑦𝑦𝑦𝑧
105

+
𝑘𝑧𝑧𝑦𝑧
63

, (C.2o)

𝐶𝑥𝑦𝑥𝑦 = 𝐶𝑥𝑥𝑦𝑦 +
𝜆𝑥𝑦𝑥𝑦
225

, (C.2p)

𝐶𝑥𝑧𝑥𝑧 = 𝐶𝑥𝑥𝑧𝑧 +
𝜆𝑥𝑧𝑥𝑧
225

, (C.2q)

𝐶𝑦𝑧𝑦𝑧 = 𝐶𝑦𝑦𝑧𝑧 +
𝜆𝑦𝑧𝑦𝑧
225

, (C.2r)

𝐶𝑦𝑧𝑥𝑧 = 𝐶𝑧𝑧𝑥𝑦 +
𝜆𝑦𝑧𝑥𝑧
450

, (C.2s)

𝐶𝑦𝑧𝑥𝑦 = 𝐶𝑦𝑦𝑥𝑧 +
𝜆𝑦𝑧𝑥𝑦
450

, (C.2t)

𝐶𝑥𝑧𝑥𝑦 = 𝐶𝑥𝑥𝑦𝑧 +
𝜆𝑥𝑧𝑥𝑦
450

. (C.2u)

Eqs. (C.2a)–(C.2f), Eqs. (C.2g)–(C.2i), Eqs. (C.2j)–(C.2l), Eqs. (C.2m)–(C.2o), Eq. (C.2p), Eq. (C.2q), Eq. (C.2r), Eq. (C.2s), Eq. (C.2t),
and Eq. (C.2u) are actually ten decoupled systems of equation. The solution of these systems of equations is shown in Eq. (34).
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