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Abstract—The integration of Low Earth Orbit (LEO) satellite
constellations into 5G and Beyond is essential to achieve efficient
global connectivity. As LEO satellites are a global infrastructure
with predictable dynamics, a pre-planned fair and load-balanced
allocation of the radio resources to provide efficient downlink
connectivity over large areas is an achievable goal. In this paper,
we propose a distributed and a global optimal algorithm for
satellite-to-cell resource allocation with multiple beams. These
algorithms aim to achieve a fair allocation of time-frequency
resources and beams to the cells based on the number of
users in connected mode (i.e., registered). Our analyses focus on
evaluating the trade-offs between average per-user throughput,
fairness, number of cell handovers, and computational complexity
in a downlink scenario with fixed cells, where the number of
users is extracted from a population map. Our results show that
both algorithms achieve a similar average per-user throughput.
However, the global optimal algorithm achieves a fairness index
over 0.9 in all cases, which is more than twice that of the
distributed algorithm. Furthermore, by correctly setting the
handover cost parameter, the number of handovers can be
effectively reduced by more than 70% with respect to the case
where the handover cost is not considered.

I. INTRODUCTION

Reducing inequality among regions is one of the 17 Social
Development Goals (SDGs) defined by the United Nations
(UN). An essential milestone towards this ambitious goal is,
as evidenced by the European Commission digital strategy, to
achieve ubiquitous broadband connectivity across entire conti-
nents [1]. Deploying a resilient and widespread infrastructure
for the 5th generation of mobile networks (5G) in densely
populated areas, such as large and highly-developed cities
is attainable both economically and geographically, but these
areas are already well-served by a combination of 5G, 4G,
WiFi, and cabled infrastructure. In contrast, one of the major
challenges for 5G is to provide resilient broadband and Internet
of Things (IoT) connectivity in remote and rural areas [2]–[4].

However, terrestrial infrastructure alone cannot bring 5G
connectivity to rural and remote communities. Therefore, the
development of architectures and mechanisms for the integra-
tion of Non-Terrestrial Network (NTN) into 5G has been a hot
research topic for several years now [5]. Satellites deployed
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at LEO, between 500 and 2000 km above the Earth’s surface,
are of particular interest, as their relatively low altitude of
deployment results in a typical propagation delay from ground
to satellite as low as 2ms, which is sufficient to serve a wide
range of low-latency applications [6].

With Release 17, the long-awaited integration of NTN into
5G New Radio (NR) is now a reality [7], covering the essential
radio access network (RAN) mechanisms and procedures to
communicate ground users directly with LEO satellites, which
include signaling, mobility management, and handovers [8].
The architecture considered in this first integration is bent-
pipe, where the LEO satellites serve as relays towards an NTN
gateway. Moreover, two options for user-to-cell mapping with
LEO are considered, namely, Earth-moving cells and quasi-
Earth-fixed cells [7]. Earth-moving cells follow the nadir point
of LEO satellites as they orbit the Earth and, hence, require
continuous mobility management, in the form of handovers,
for the users that enter and leave the cells. In contrast, quasi-
Earth-fixed cells cover a fixed geographical area, which must
be followed by the satellites throughout the pass via beam
steering. While beam steering can be achieved with traditional
spot beams, advances in massive Multiple-Input Multiple-
Output (MIMO) for LEO satellites might enable to achieve
full frequency reuse in the future [9]

By maintaining the user-to-cell mapping, the use of quasi-
Earth-fixed cells eliminates the need for continuous handovers.
Instead, all the users in a cell must perform handover at
a specific point in time. While naively performing a large
number of handovers simultaneously might create a signaling
peak that can overload the control channels of 5G NR, an
ephemeris can be used to accurately predict the movement
of the satellites and to avoid congestion by preparing the
handovers in advance [7], [10].

Downlink resource allocation over wide areas with LEO
satellite constellations is a complex problem that involves
numerous satellites and a large number of users. Furthermore,
allocating resources with the sole objective of maximizing
efficiency might exacerbate the already-existing inequalities
among geographical regions. Therefore, achieving an adequate
balance between (proportional) fairness and overall efficiency
in resource allocation is highly desirable. Fairness and ef-
ficiency trade-offs have been widely studied in multi-agent
systems with reinforcement learning to define reward functions



that promote fair and efficient solutions [11]. Multi-armed
bandit (MAB) approaches have been proposed to achieve a
fair allocation of resources relatively small areas with a small
number of satellites, unmanned aerial vehicles (UAVs), and
users [12]. However, the approach in [12] relied on having
an accurate mobility model to optimize the trajectories of the
UAVs, which limits its applicability. Furthermore, the fairness
index calculated in [12] was observed to decrease with the
number of users, even when the evaluation scenario considered
at most 300 users.

In this paper, we study a 5G and beyond downlink scenario
with direct user-to-LEO satellite access over wide areas with
quasi-Earth fixed cells based on real population data [13].
We propose two algorithms for proportional fair resource
allocation that consider the cost of handovers and that aim
to provide uniform connectivity based on the number of users
in connected mode within the area. The handover cost aims to
reduce the number of handovers by reflecting the loss in the
overall network efficiency due to the execution of the handover
procedure, but also to higher layer mechanisms, such as flow
and congestion control, that are affected by the link, latency,
and capacity changes in the routes [4]. To the best of our
knowledge, this is the first study that focuses on fair and
efficient resource allocation over wide areas that considers the
handover cost and real-life geographical user distribution.

The effects of our proposed solutions are illustrated in
Fig. 1: as the population is unevenly distributed among cells, a
naive allocation based on matching the closest satellite to each
cell leads to significant unfairness, even when redistributing
each satellite’s resources. On the other hand, a joint resource
allocation and cell-to-satellite mapping achieves a much higher
fairness, and, as we will discuss in the paper, this can lead to
a similar overall throughput with fewer handovers.

The rest of the paper is organized as follows: first, the gen-
eral system model is presented in Sec. II. Sec. III describes the
resource allocation problem and the two proposed algorithms,
which are evaluated by simulation in Sec. IV. Finally, Sec. V
concludes the paper and presents some future work.

II. SYSTEM MODEL

Let us consider a downlink NTN scenario in which a LEO
satellite constellation with S satellites serves users on the
ground through a direct user access link [5], [7]. We limit
our analysis to a fixed geographical region of the Earth. Fol-
lowing the fixed cell scenario described by the 3rd Generation
Partnership Project (3GPP) [7], [8], the users in the region are
aggregated into C fixed and uniformly distributed geographical
cells as shown in Fig. 1a. The set of cells is denoted as C, the
area of a cell c ∈ C is denoted as Ac, and the total number
of users in the cell is U tot

c . A fraction αc ∈ [0, 1] of the users
in cell c are actively receiving data from the satellite network
and 1 − αc of the users are either inactive or communicate
through the terrestrial infrastructure. Hence, only Uc = αcU

tot
c

users in cell c ∈ C are actively receiving data in the downlink
from the satellite network.

(a) Cell-level population map of the considered region.

(b) Throughput map with distributed fair resource allocation.

(c) Throughput map with global optimal fair resource alloca-
tion.

Fig. 1. Map of central Europe illustrating the proportional-fair resource
allocation problem. The number of active users per cell is 0.1% of the total
population [13]. The same throughput ranges were set for (b) and (c).

We consider a multi-beam Orthogonal Frequency-Division
Multiple Access (OFDMA) system similar to one described by
the 3GPP for NTN 5G NR, with NB beams per satellite and
a total bandwidth per beam of B Hz. Each OFDMA frame
occupies TF seconds in the time domain. The satellites are
equipped with high gain antennas that allow them to provide
high data rates to the users at ground despite the high path loss
from LEO. Furthermore, the satellites possess precise beam
steering capabilities, which allos them to point the beams
toward the intended cells throughout the satellite pass. In
addition, we consider that the satellites can steer each of the
NB beams once per OFDMA frame, either to align them to
the same cell or to cover a different cell.

We analyze a time frame divided into K time slots of
duration T , such that kT, k ∈ {0, 1, . . . ,K − 1} is the
start time of the k-th time slot. The set of satellites in the
constellation is denoted as S and the set of those within range



of any cell c ∈ C at time slot k is Sk. The allocation of
resources from the satellites s ∈ Sk to the cells can only be
changed at the beginning of each time slot. In the time domain,
each time slot contains NT = T/TF OFDMA frames and
the minimum unit for resource allocation is one frame. In the
frequency domain, the whole bandwidth per beam B is used.

We consider the worst-case performance for a user in a cell
c. Therefore, the attenuation of the signal between a cell c and
a satellite s at time kt is given by the free space path loss, the
atmospheric attenuation θ, and the pointing loss ` as

Lk(s, c) = (4πdk(s, c)f)
2
v−2c θ`. (1)

where dk(s, c) is the maximum distance between satellite s
and any point in cell c at time kt, vc is the speed of light, and
f is the carrier frequency used for communication.

Let P (s) be the transmission power from the satellite, G(c,s)

and G(s,c) be the antenna gain of the users in cell c towards
satellite s, and vice versa, respectively, and σ2 is the noise
power at the users. The nominal data rate for a satellite-cell
pair (s, c) at the beginning of slot k is upper-bounded by:

ρk(s, c) = B log2

(
1 +

P (s)G(c,s)G(s,c)

Lk(s, c)σ2

)
. (2)

However, considering only the instantaneous achievable rate
may lead to outages within the slot due to the satellite moving
out of the coverage area of a cell c or to improper rate
selection. Therefore, the minimum nominal rate at the edges
of the matching interval is considered, which is defined as

ρmin
k (s, c) = min (ρk(s, c), ρk+1(s, c)) . (3)

We assume that the OFDMA frames, along with the multiple
resource blocks within each OFDMA frame, belonging to a
same cell and satellite beam pair are allocated uniformly to
the users within the cell.

III. RESOURCE OPTIMIZATION

We now formulate an optimization problem to allocate satel-
lite beams and their OFDMA resources to cells. Let Xk(s, c) ∈
{0, . . . , NTNB} be the number of OFDMA frames allocated
to cell c by satellite s in slot k, and Xk ∈ {0, . . . , NTNF }S×C
be the resource allocation matrix at time slot k, where its
(s, c)-th element is Xk(s, c). Furthermore, let x

(s)
k be the

allocation vector for satellite s at time slot k, where its c-th
element is Xk(s, c). Building on this, we define the minimum
throughput for any user in cell c ∈ C served by satellite s
within slot k for a given Xk(s, c) and xk−1(s, c) as

Rk (s, c) =
TF
TUc

Xk(s, c)ρ
min
k (s, c). (4)

Finally, let hcost ∈ [0, 1) be the handover cost, representing
the impact of switching a cell from one satellite to another on
higher layer mechanisms [4]. Next, let H(x) be the Heaviside
step function, equal to 1 if x > 0 and 0 otherwise. Building
on these, we define the handover penalty for time slot k based
on the allocation at the previous time slot k − 1 as

hk(s, c) = hcost (1−H(xk−1(s, c))) , (5)

so that a higher value of hcost increases the handover penalty.
Our goal is to determine the values of Xk, the allocation of

satellites and their resources to the cells, so that the resources
are efficiently and fairly distributed across the cells in the area
to achieve a uniform coverage while minimizing handovers.
This is modeled as a load balancing problem, where the
nominal data rate of individual cells is maximized when being
served by the closest satellite. However, due to the uneven
geographical distribution of users within the cells, it might be
convenient to connect to a satellite that is farther away, but has
more available resources or eliminates the need for a handover.

The following three constraints are defined for the allocation
within one time slot. First, one satellite can allocate up to NT

OFDMA frames to each cell c ∈ C. Second, each satellite
cannot allocate more than NTNB resources to the cells. Third,
a cell c ∈ C can never be served by multiple satellites. Hence,
up to one satellite can allocate between 1 and NT OFDMA
frames to a given cell c and the rest of the satellites must
allocate 0 frames to the cell. With these constraints in place,
we formulate the optimization problem as follows.

X∗k =argmax
Xk

∑
c∈C

Uc log
(∑

s∈S
Rk(s, c)

(
1− hk(s, c)

))
, (6)

subject to Xk(s, c) ∈ {0, 1, . . . , NT },∀(s, c) ∈ S × C,∑
c∈C

Xk(s, c) ∈ {0, 1, . . . , NTNB}, ∀s ∈ S,∑
s∈S

H(Xk(s, c)) ∈ {0, 1}, ∀c ∈ C,

It is trivial to see that the problem requires solving the
multiple knapsack problem, which is NP-hard. No efficient
optimization algorithm exists for this class of problems, but
the optimal solution can be closely approximated by (i),
relaxing the first and second constraints to accommodate a
real-valued optimization variable X̂k ∈ [0, NT ]

S×C , and (ii),
reformulating the optimization objective to include a set of
weighting terms w(s, c) that promote the sparsity of the real-
valued optimization variable X̂k and, hence, allow us to
remove the third constraint as follows.

X̂∗k =argmax
X̂k

∑
c∈C

(
Uc log

(∑
s∈S

R̂k(s, c)
(
1− hk(s, c)

))
−
∑
s∈S

w(s, c)x̂k(s, c)

)
, (7)

subject to 0 ≤ x̂k(s, c) ≤ NT , ∀s ∈ S, c ∈ C,∑
c∈C

x̂k(s, c) ≤ NTNB , ∀s ∈ S,

where R̂k(s, c) is obtained by substituting Xk(s, c) with
x̂k(s, c) in (4).

The problem in (7) and its constraints are convex and
can be solved efficiently using a weighted `1 heuristic. The
latter is an iterative method, where the weights w(s, c) are
first initialized to 0. Then, at each iteration, the convex
problem is solved, for example, using interior point methods



Algorithm 1 Resource allocation adjustment.
Require: Xk

1: for c ∈ C do
2: if

∑
s∈S H(xk(s, c)) > 1 then

3: s∗ ← argmaxsXk(s, c)ρmin
k (s, c)hk(s, c)

4: Xk(s, c)← 0 for all s 6= s∗

5: end if
6: end for
7: for s ∈ S do
8: while

∑
c∈CXk(s, c) > NTNB do

9: c′ ← argmaxcXk(s, c)− x̂k(s, c)
10: Xk(s, c′)← Xk(s, c′)− 1
11: end while
12: end for
13: return Xk

Algorithm 2 Weighted `1 algorithm for global optimization.
Require: Xk−1, β, τ , and ρmin

k (s, c) for all s, c
1: Initialize x̂k(s, c)← 0 and w(s, c)← 0 for all s, c
2: for n ∈ {1, 2, . . . , niter} do
3: Find X̂∗k by solving (7)
4: Update w(s, c)← β/ (τ + x̂(s, c))
5: end for
6: X∗k ← round

(
X̂∗k

)
7: Run Algorithm 1 on X∗k
8: return X∗k

or Lagrangian dual methods. Then, the weights are updated
as w(s, c) = β/ (τ + x̂(s, c)), which serve as a penalty for
allocating resources from satellite s to cell c. After several
iterations, the values of X̂k(s, c) converge to an optimal so-
lution X̂∗k. Afterwards, the real-valued optimal allocation X̂∗k
can be mapped to discrete values to obtain the final solution
X∗k that fulfills the constraints set in (7). A common solution
for this latter step is to simply apply the rounding function to
X̂k(s, c). Afterwards, Algorithm 1 is executed to ensure that
the allocation is discrete and respects the constraints.

Furthermore, since the weights w(s, c) are initialized to
0, it is likely that some cells are allocated resources from
more than one satellite in the first few iterations. These
are hereafter called conflicting cells. That is, it cannot be
guaranteed that there will be no conflicting cells if the number
of iterations niter is low. In such cases, the solution obtained
with Algorithm 2 is infeasible according to the last constraint
in (7). On the other hand, the number of iterations needed to
ensure that the solution is feasible might be exceedingly large
and, thus, the execution time of the global optimal algorithm
might become prohibitively large. To avoid these problems, the
simple procedure shown in Algorithm 1 is used after rounding
to modify the allocation X̂k(s, c) so that it finds the closest
point to X̂k(s, c) in the feasible region of the fully constrained
optimization problem (7).

A. Distributed Optimization

Besides the global optimization presented in the previous
section, we formulate a distributed optimization algorithm
where the satellite-to-cell matching and resource allocation
are solved separately. This algorithm, listed as pseudocode
in Algorithm 3, is used as a benchmark for the global
optimization presented above.

Algorithm 3 Algorithm for distributed optimization.
Require: Xk−1 and ρmin

k (s, c) for all s, c
1: Initialize x̂k(s, c)← 0 for all s, c
2: for s ∈ S do
3: Find Cs as defined in (8)
4: Find x̂

(s)
k by solving (9)

5: end for
6: X∗k ← round

([
x̂
(1)
k , x̂

(2)
k , . . . , x̂

(S)
k

])
7: Run Algorithm 1 on X∗k
8: return X∗k

As a first step, a maximum weighted cell-to-satellite match-
ing problem is solved. That is, the cells are matched to the
satellite that maximizes a given weight wk(s, c). As a result,
a given satellite s is matched to a set of cells

Cs =
{
c ∈ C : argmax

s′
wk(s

′, c)

}
, s.t. Cs

⋂
s′∈S\s

Cs′ = ∅.

(8)
Afterwards, the resource allocation problem at satellite s is
formulated as the local optimization problem

x̂
(s)∗
k =argmax

x̂
(s)
k

∑
c∈Cs

Uc log
(
R̂k(s, c)

(
1− hk(s, c)

))
(9)

subject to 0 ≤ x̂k(s, c) ≤ NT , ∀s ∈ S, c ∈ Cs,∑
c∈Cs

x̂k(s, c) ≤ NTNB , ∀s ∈ S.

Note that the objective function in (9) is concave and its
constraints are linear. Hence, it can be solved using standard
convex programming methods and solvers.

B. Performance Analysis

We evaluate the performance of the network in terms of
the throughput of the users and the amount of handovers.
Specifically, we consider both the actual throughput of the
users and Jain’s fairness index, given as follows.

J (Xk) =

(∑
c∈C

UcRk (Xk, c)

)2

(∑
c∈C

Uc

)∑
c∈C

Uc (Rk (Xk, c))
2

. (10)

Furthermore, the global optimization requires a number of iter-
ations to reach a feasible solution, as it solves a dual problem
in which cells can be connected to multiple satellites. The
Lagrange multipliers w(s, c) need to grow significantly before
the problem is solved, and iterations can be computationally
expensive, so we considered an early stopping solution: Al-
gorithm 1 can be used to find the point in the feasible region
closest to the output of each iteration of the dual optimization,
so that an approximate solution to the problem is reached.
Naturally, the more iterations of the dual problem we can run
before early stopping, the closer the approximation will be
to the actual optimum, at the cost of a longer computation
time. On the other hand, the distributed optimization does not
need multiple iterations, and consequently has a much more
predictable, and much lower, computational cost.



TABLE I
SIMULATION PARAMETERS

Parameter Symbol Value

Communication system

Carrier frequency (GHz) f 2
Transmission power (W) Ptx 75.35

Satellite antenna gain (dBi) G(s,c) 30

User antenna gain (dBi) G(c,s) 0
Atmospheric loss (dB) θdB 0.5
Pointing loss (dB) `dB 3
System bandwidth (MHz) B 30
Noise power (dBW) PN −122.20
Duration of time slot (s) T 10
Duration of OFDMA frame (ms) TF 10
Max. number of beams per satellite NB 10
Ratio of active users to total population α 1× 10−3

Satellite constellation

Total number of satellites S 1584
Number of orbital planes P 72
Altitude of deployment (km) h 550
Inclination (deg) δ 53
Change in true anomaly between ∆θ 0
satellites in adjacent orbital planes (deg)

IV. SIMULATION SETTINGS AND RESULTS

We consider a rectangular area covering central Europe (the
same shown in Fig. 1), between latitudes 40◦ and 55◦ North
and longitudes 5◦ and 30◦ East. The cells are evenly spaced,
each covering 0◦15′ in both latitude and longitude and the
population of each cell is obtained from [13]. Therefore,
there are a total of 6161 cells in the area, out of which 766
have zero users because they are over the sea or entirely
unpopulated areas. Furthermore, we consider the S = 1584
Starlink satellites deployed in the orbital shell with altitude
550 km. In our experiments, the number of satellites within
range of the cells is |Sk| ∈ {19, 20, . . . , 25} for all k. The
communication parameters were taken from the specifications
in the recent 3GPP technical reports on NTNs [8], and the full
set of simulation parameters is given in Table I.

The nominal data rates at each slot ρmin
k (s, c) were obtained

through a simulator coded in Python that replicates the orbital
dynamics of the constellation. A total of 100 consecutive time
slots were simulated. The optimization problems were solved
using the CVXPY package [14] using MOSEK ApS as solver.
These were run on a PC with Windows 11 with an AMD
Ryzen 7 5700U CPU at 1.8 GHz and with 64 GB of RAM.

We can analyze the average throughput per user within the
area for different values of the handover cost hcost. Intuitively,
setting a higher value of the handover cost hcost aims to
reduce the number of handovers and, thus, to achieve a more
stable mapping between cells and satellites. However, a higher
value of hcost may affect the efficiency of the system: if
a cell remains matched to a satellite moving further away
from it to avoid an expensive handover, it will experience
a higher path loss due to the longer distance, and thus a
lower throughput. This is confirmed by Fig. 2, which shows
the average throughput per user for different values of hcost,
where the throughput for both the distributed and centralized
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Fig. 2. Throughput per user with distributed allocation and global optimiza-
tion for different values of the handover cost hcost.

algorithms decreases as hcost grows. This is because, with a
higher value of hcost, the algorithms focus more on stability
and less on capacity maximization.

Interestingly, the average throughput of the distributed allo-
cation often matches that of the global optimization, and even
outperforms it if the handover cost is low. the reason for this
is that the global optimization aims for a load-balanced and
fair solution, and can have a slightly smaller total throughput
in order to achieve a fairer allocation of resources. Neverthe-
less, the average throughput decreases more rapidly with the
distributed allocation than with the global optimization and,
hence, the latter achieves a better balance between stability
and performance than the distributed allocation.

Next, Fig. 3 shows the distribution of Jain’s fairness in-
dex for the two algorithms. Clearly, the global optimization
achieves an exceedingly high fairness, maintaining the index
above 0.9 for all the considered values of the handover
cost. In contrast, distributed allocation performs much worse,
achieving a fairness index that never exceeds 0.5. That is,
the fairness index obtained with global optimization is, in
most cases, more than two times higher than that of the dis-
tributed allocation. Furthermore, the fairness of the distributed
algorithm decreases as the handover cost increases, as did its
average throughput: for values of hcost > 0.3, the distributed
strategy performs worse in terms of both average throughput
and fairness than the global optimization.

Fig. 4 shows the distribution of the number of handovers
per time slot as a function of the handover cost hcost. As
expected, the number of handovers decreases as hcost increases.
Furthermore, the number of handovers with the global optimal
algorithm is greater than that with the distributed allocation
for hcost < 0.4, but the opposite is true for hcost ≥ 0.4, where
the number of handovers is reduced by more than 70% when
compared to hcost = 0. Thus, the global optimal algorithm is
more efficient at reducing the number of handovers than the
distributed allocation.

Finally, Fig. 5 shows the empirical results on execution time
for the two algorithms, considering the number of iterations
for the global optimization niter. Furthermore, Fig. 5 shows
the average number of conflicting cells, that is, the cells that
are matched to more than one satellite and, hence, violate the
last constraint in (7) before the execution of Algorithm 1 as
a function of niter. This latter metric is relevant because the
cells that violate this constraint after the niter iterations only
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Fig. 3. Jain’s fairness index among users at each realization of the allocation
with distributed allocation and the global optimal for different values of the
handover cost hcost.

0 0.1 0.2 0.3 0.4 0.5
0

1000

2000

3000

4000

Handover cost hcost

N
um

be
r

of
ce

ll
ha

nd
ov

er
s

pe
r

tim
e

sl
ot

Distributed
Global optimal

Fig. 4. Box plot of the number of handovers per time slot with distributed
allocation and the global optimal for different handover costs hcost.

receive a sub-optimal allocation of resources.
Clearly, the distributed strategy has a significant advantage

over the centralized optimization in terms execution time and,
besides, it guarantees that the cells are matched to exactly
one satellite. Nevertheless, the execution time of the global
optimization with niter = {1, 2} is below the selected time slot
duration of 10, which ensures that the global optimization can
be executed in real-time in the selected computer architecture.
Furthermore, the average number of conflicting cells is below
0.5% of the total cells with users for niter = 1 and it drops to
just 0.2% with niter = 2. Even though the resource allocation
for the conflicting cells is sub-optimal, the average number
of conflicting cells is sufficiently low so that the differences
in both the achieved average throughput and fairness index
between niter = 1 and niter = 5 are negligible: less than
0.25%. Therefore, selecting a low niter has a minor impact
in the overall performance and its value can be selected to
fulfil a specific real-time requirements for the given platform.

V. CONCLUSIONS AND FUTURE WORK

In this work, we designed two algorithms to optimize the
allocation of downlink resources from LEO satellite networks
to fixed cells on the ground. The algorithms were designed
to optimize for fairness and efficiency in terms of per-user
throughput, while minimizing the number of handovers. We
evaluated the efficiency of dual-based optimization methods
with respect to these three performance measures, showing
that our approach can be tuned to achieve different balances
in the trade-off between handover frequency and throughput
while maintaining a high fairness. We also analyzed the
computational complexity of the algorithms, proposing early
stopping, which enables efficient real-time execution with a
negligible performance loss.
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Fig. 5. (a) Execution time and (b) number of cells that violate the last
constraint in (7) as a function of the number of iterations niter of Algorithm 2.

Future directions on the optimization of resource allocation
in LEO networks include joint uplink and downlink alloca-
tion and the optimization of resource allocation considering
practical routing and higher layer mechanisms.
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