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Abstract

We consider the problem of removing a limited subset of nodes and/or edges from a
graph in order to minimize the so-called pairwise connectivity of the residual graph,
which is defined as the total cost of the pairs of nodes still connected by a path. This is a
well-studied version of a family of problems known as critical node or edge detection
problems. However, while most of the literature focuses on deleting nodes or edges
separately, we allow the simultaneous removal of nodes and edges. We consider both
the case in which the nodes and edges removed must satisfy a joint weight limit,
and the case in which two separate weight limits are given for nodes and edges. We
study the complexity of several problems of this type when the given graph is a tree,
providing NP-hardness results or polynomial-time algorithms for the different cases
that we analyze.

Keywords Critical node detection - Critical edge detection - Network interdiction -
Pairwise connectivity

Mathematics Subject Classification 90C27 - 90C35 - 90C39

1 Introduction

Critical node or edge detection problems are a family of optimization problems defined
on graphs, where one is required to remove a limited number of nodes and/or edges
in order to minimize some measure of the connectivity of the residual graph, or, in a
complementary form, one is asked to reduce the connectivity of the graph to at most a
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prescribed value by removing the smallest number of nodes and/or edges. This class of
problems has attracted the interest of many researchers in the last two decades, because
of its relevance in a number of practical applications, including computational biology
Boginski and Commander (2009); Tomaino et al. (2012), transportation problems
Jenelius et al. (2006), network immunization problems He et al. (2011); Kuhlman
et al. (2013); Cohen et al. (2003); Kuhlman et al. (2010), the analysis of complex
networks Fan and Pardalos (2010); Borgatti (2006), and security/vulnerability issues
in networks Veremyev et al. (2015); Dinh et al. (2010); Nguyen et al. (2013); Shen
etal. (2012, 2013). We refer the interested reader to the survey Lalou et al. (2018) for
a detailed overview of the applications as well as of the other aspects discussed below.

The choice of the connectivity measure is of course a central element in a critical
node or edge detection problem. Indeed, several different connectivity measures have
been proposed in the literature. In this paper we consider the pairwise connectivity
between nodes, formalized in Arulselvan et al. (2009) and studied, e.g., also in Addis
et al. (2013, 2016); Aringhieri et al. (2016a,b, 2019); Boginski and Commander
(2009); Di Summa et al. (2011); Di Summa et al. (2012); Dinh et al. (2010); Fan and
Pardalos (2010); Pullan (2015); Purevsuren et al. (2017, 2016); Shen et al. (2013);
Tomaino et al. (2012); Ventresca (2012); Veremyev et al. (2014), which is defined
as the number of pairs of nodes belonging to the same connected component. This
can be naturally generalized to the total cost of the pairs of nodes that belong to the
same component, if connection costs are assigned for each pair of nodes, as well as to
distance-based measures Aringhieri et al. (2019); Veremyev et al. (2015). Among the
other connectivity measures introduced in the literature, we mention the number of
connected components (which should be maximized in order to fragment the graph)
Addis et al. (2013); Aringhieri et al. (2016a); Berger et al. (2014); Shen and Smith
(2012); Shen et al. (2012); Veremyev et al. (2014); Furini et al. (2020), the size of the
largest connected components (to be minimized) Addis et al. (2013); Aringhieri et al.
(20164a); Lalou et al. (2016); Nguyen et al. (2013); Pullan (2015); Shen and Smith
(2012); Shen et al. (2012); Veremyev et al. (2014), the minimum cost to reconnect the
graph Shen et al. (2012), and the graph information entropy Veremyev et al. (2014).
Recent variants include a combination of the measures based on the number and size
of the connected component, in which the minimum number of components with
bounded size should be obtained Furini et al. (2021), and extensions to hypergraphs
Bastubbe and Liibbecke (2019).

Since problems of this type usually turn out to be NP-hard for general graphs,
and often also for quite special classes of graphs Shen et al. (2013); Addis et al.
(2013); Di Summa et al. (2011); Shen et al. (2012); Shen and Smith (2012), several
heuristic approaches as well as methods based on integer programming formulations
have been proposed in the literature; see, e.g., Nguyen et al. (2013); Arulselvan et al.
(2009); Addis et al. (2016); Aringhieri et al. (2016b); Pullan (2015); Ventresca (2012);
Aringhierietal. (2016a); Purevsurenetal. (2016, 2017); Di Summaetal. (2012); Furini
et al. (2020, 2021); Bastubbe and Liibbecke (2019). Polynomial-time algorithms are
instead available only for some particular cases, which are usually limited to graphs
with bounded treewidth, in particular trees and series-parallel graphs Addis et al.
(2013); Berger et al. (2014); Di Summa et al. (2011); Lalou et al. (2016); Shen and
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Smith (2012); Aringhieri et al. (2019). In this paper we are interested in providing
polynomial-time algorithms for some more node/edge detection problems.

1.1 The problems that we study

According to the pairwise connectivity measure mentioned above, the Critical Node
Detection Problem (CNDP) is formally stated as follows:

Problem 1 (CNDP) Given an undirected graph G = (V, E), a weight w, > 0 for
every v € V, a connection cost ¢;,, > 0 for all u, v € V, and a weight limit W > 0,
find S € V such that the total weight of the nodes in S is at most W and the total cost
of the pairs of nodes that are connected in G — S is minimized.

Here G — § denotes the graph obtained after removing from G the nodes in S, i.e.,
the subgraph of G induced by V \ S. Furthermore, in the above problem as well in
all variants considered below, the connection costs will be always implicitly assumed
to be symmetric (i.e., ¢,y = cyy for every u, v € V) and to satisfy ¢, = 0 for every
veV.

For this and the other problems that we study, we will be particularly interested
in the case in which G is a tree. Already under this assumption, CNDP is NP-hard,
even if w, = 1 forevery v € V and ¢, € {0, 1} for every u, v € V Di Summa et al.
(2011). However, still assuming that G is a tree, the problem admits a polynomial-time
algorithm if the ¢,,’s are all equal to 1 (with no restriction on the w,’s) Di Summa
etal. (2011).

In this paper we further investigate the complexity of CNDP on a tree, and consider
some natural variants in which edges or both nodes and edges can be removed from
the graph. Indeed, most of the literature seems to focus on problems where only nodes
or edges can be deleted. (See, e.g., Veremyev et al. (2014) for a discussion about this
aspect.) Problems where both nodes and edges can be removed subject to a joint weight
limit have been also considered in Veremyev et al. (2014), where a general integer
programming framework is presented for several types of connectivity measures. A
different version of this problem has been studied in He et al. (2011).

In order to simplify the description of the problems that we analyze, it is worthwhile
to introduce some simple notation. Given an undirected graph G = (V, E) and a
subset S € V U E of nodes and/or edges of G, G — S will denote the graph obtained
after removing from G the elements in S. More formally, G — § = (V’, E") with
V' =V\Sand E' = {uv € E\ S : u,v € V’'}. If connection costs ¢, are given
for all u, v € V, we use the shorthand c(G — §) to denote the total cost of the pairs
of nodes that are connected in G — S. When weights w, and/or w, are given for all
nodes v € V and/or all edges e € E, w(S) will denote the total weight of the elements
in S. (Note that there is no confusion in denoting both node and edge weights with a
similar symbol, i.e., w, and w,, as the different nature of the subscript —a node or an
edge— removes any ambiguity. In other words, w can be viewed as a function of the
foomw: VUE — R;.)

The above notation allows us to restate CNDP slightly more compactly:
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Problem 2 (CNDP, restated) Given an undirected graph G = (V, E), aweightw, > 0
forevery v € V, aconnection cost ¢, > O forallu, v € V, and a weight limit W > 0,
find § € V such that w(S) < W and ¢(G — S) is minimized.

As already mentioned, we are interested in some variants of CNDP (mainly on
trees) in which edges or both nodes and edges can be removed. The variants that we
analyze are the following:

— the Critical Edge Detection Problem (CEDP), which is formulated as CNDP,
except that edges have to be removed instead of nodes;

— the Critical Node/Edge Detection Problem with a single weight limit (CNEDP- 1),
where a cumulative weight limit for the removal of nodes and edges is given;

— the Critical Node/Edge Detection Problem with two weight limits (CNEDP- 2),
where two separate weight limits are assigned for nodes and edges.

These problems are formalized below:

Problem 3 (CEDP) Given an undirected graph G = (V, E), a weight w, > 0 for
every e € E, a connection cost ¢,,, > 0 for all u, v € V, and a weight limit W > 0,
find S C E such that w(S) < W and ¢(G — S) is minimized.

Problem 4 (CNEDP- 1) Given an undirected graph G = (V, E), a weight w, > 0
for every v € V, a weight w, > 0 for every e € E, a connection cost ¢, > 0 for
all u,v € V, and a weight limit W > 0, find S € V U E such that w(S) < W and
c(G — S) is minimized.

Problem 5 (CNEDP- 2) Given an undirected graph G = (V, E), a weight w, > 0
for every v € V, a weight w, > 0 for every e € E, a connection cost ¢,, > 0 for all
u, v € V,and weight limits Wy, Wg > 0, find S € VUE suchthat w(SNV) < Wy,
w(SNE) < Wg,and ¢(G — §) is minimized.

It is immediate to see that CNDP and CEDP are special cases of each of CNEDP- 1
and CNEDP- 2. Indeed, an instance of CNDP (respectively, CEDP) can be reduced to
an instance of CNEDP- 1 by giving weight W + 1 to all edges (respectively, nodes)
in order to forbid their removal. Furthermore, an instance of CNDP (respectively,
CEDP) can be reduced to an instance of CNEDP- 2 by setting Wy = W and Wg =0
(respectively, Wg = W and Wy = 0).

We also observe that CNEDP- 1 reduces to CNDP when the weights are all equal
to 1, or more generally, whenever the weight of every edge is at least as large as that
of its endpoints; Indeed, in this case removing an edge cannot be more convenient
than removing a node. However, it is easy to see that with arbitrary weights it may be
cheaper to remove some edges.

1.2 Our results

In the following, we let G be a tree. It is simple to see that, similar to CNDP, Prob-
lems 35 are all NP-hard already under the assumptions that the node/edge weights are
unitary and the connection costs are 0/1 (Observation 1). For this reason, we will ini-
tially consider the case of unit connection costs, i.e., ¢, = | for every u, v € V with
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u # v. We have already recalled that CNDP can be solved in polynomial time in this
situation, without any restriction on the weights. We will see that the same holds for
CEDP and CNEDP- 1 (Corollary 1), while for CNEDP- 2 we have a polynomial-time
algorithm only if we further assume that the node and edge weights are all equal to 1
(Proposition 3). On the contrary, if the connection costs are unitary but the node and
edge weights are general nonnegative numbers, CNEDP- 2 is NP-hard to approximate
within any factor, even when G is a path (Proposition 2).

We will also see in Proposition 1 that the above polynomial-time algorithms actually
apply to a more general case, in which the connection costs are 0/1 and have the
following special structure: there exists / € V such that

1 ifu,velandu # v,
Cypy = . ey
0 otherwise.

When the connection costs are of this form, we call them square 0/1 connection costs,
because if these ¢, ’s are represented via a 0/1 matrix, the support of the matrix is, up
to permutation of rows and columns, a square (without one of its diagonals).

Although in this paper we are mainly interested in theoretical results, we mention
that the case of square 0/1 connection costs has also some practical interest. Indeed,
the role of the subset 7 is easy to understand: The elements in / are the nodes that we
would really like to disconnect from each other, while the other nodes are part of the
graph and it may be important to remove some of them to reduce the connectivity as
much as possible, but they do not count in the evaluation of the objective function.

We then study our problems when the number of leaves of the tree is bounded by a
constant, which is not treated as part of the input. In this case, the assumption of unit
or square 0/1 connection costs can be relaxed. Indeed, we show that CNDP, CEDP,
and CNEDP- 1 on a tree with arbitrary 0/1 connection costs and general nonnegative
node/edge weights can be solved in polynomial time under this assumption (Propo-
sition 4). This is in contrast to the case of general trees, for which these variants are
NP-hard, as mentioned above. The same positive result holds for CNEDP- 2, but only
if the node and edge weights are assumed to be unitary (Proposition 5). Indeed, we
recall that without this further restriction CNEDP- 2 is NP-hard already on a path (even
with unit connection costs), i.e., on a tree with exactly two leaves (Proposition 2).

The polynomial-time algorithms that we obtain in this paper take inspiration from
the dynamic programming strategies proposed in Di Summa et al. (2011) for CNDP on
atree with unit connection costs and in Aringhieri et al. (2019) for some distance-based
versions of CNDP on a tree.

2 Complexity of CEDP, CNEDP- 1, and CNEDP- 2
2.1 Hardness results for 0/1 connection costs

Di Summa, Grosso, and Locatelli Di Summa et al. (2011) proved that CNDP on a tree
is NP-hard even if the node weights are all equal to 1 and the connection costs are 0/1.
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Their proof is via a reduction from the decision version of (unweighted) MULTICUT
IN TREES, which is known to be NP-complete Garg et al. (1997) and is recalled here.

Problem 6 (MULTICUT IN TREES, decision version) Given a tree G = (V, E), a list
of pairs of nodes (u1, vy), ..., (4, vr), and a bound M, decide whether there exists
S C E with |S| < M such that u; and v; are disconnected in G — § for every
iefl,... .k}

Itis easy to see that MULTICUT IN TREES also reduces to each of CEDP, CNEDP- 1,
and CNEDP- 2 on trees, as we observe below.

Observation 1 CEDP, CNEDP- 1, and CNEDP- 2 are NP-hard even on a tree with
unit node/edge weights and 0/1 connection costs.

Proof Given an instance of MULTICUT IN TREES with input as in Problem 6, we can
reduce it to an instance of CEDP on the same tree, where (using the notation of Problem
3w, =1forallee E, W =M, ¢y;,, = 1foreveryi € {1,...,k}, and all other
connection costs are equal to zero. Clearly a subset S C E is feasible for the given
instance of MULTICUT IN TREES if and only if the optimal value of the corresponding
instance of CEDP is zero. This shows that CEDP is NP-hard even on a tree with unit
node/edge weights and (/1 connection costs. Since, as observed in the introduction,
each of CNEDP- 1 and CNEDP- 2 subsumes CNDP and CEDP, we deduce the same
result for CNEDP- 1 and CNEDP- 2. O

2.2 Solving CEDP and CNEDP- 1 on a tree with unit connection costs

In order to prove that CEDP and CNEDP- 1 can be solved in polynomial time when
the underlying graph is a tree and the connection costs are all unitary, we first show
a simple reduction that applies to instances on general graphs. Furthermore, it will
be convenient to work with square 0/1 connection costs instead of all-one connection
costs (which are of course a special case of square 0/1 connection costs).

Lemma 1 CNEDP- 1 on a general graph G with square 0/1 connection costs can be
polynomially reduced to CNDP with square 0/1 connection costs. Furthermore, when
G is a tree the reduced instance is also defined on a tree.

Proof Let an instance of CNEDP- 1 be given, with input as in Problem 4, where the
connection costs are as in (1) for some I € V. Let G’ be the graph obtained by
subdividing every edge of G, i.e., every edge uv of G is replaced with two edges uz
and zv, where z is a new node adjacent only to # and v. Formally, G’ = (V’, E’) with
V =VUEand E' ={ve:v eV, ec E, eisincident with v}.

We construct an instance of CNDP on G’ with the following data. For u, v € V',
the connection cost is ¢, = 1 if u,v € I and u # v, and ¢],, = 0 otherwise. Note
that these are square 0/1 connection costs. The weights of the elements of V/ = VUE
are defined by setting w], = w, forv € V and w, = w, for e € E. The weight limit
is the same as in the given instance of CNEDP- 1, i.e., W' = W.

Givenany S C VU E = V’, it is immediate to verify that c(G — S) = ¢/(G’ — S).
Thus the optimal solutions of the instance of CNDP with square 0/1 connection costs
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O O

Fig. 1 Node a has four children ay, ..., ay. The outer rectangle represents G,. The two inner rectangles
represent G4, (on the left) and G, 2 (on the right)

)

constructed above are precisely the optimal solutions of the given instance of CNEDP-
1. It is also clear that G’ is a tree whenever G is a tree. O

We now show how to solve CNDP on a tree with square 0/1 connection costs in
polynomial time, by means of a modification of the dynamic programming algorithm
described in Di Summa et al. (2011). Because of the above lemma, this will also give
a polynomial algorithm for CNEDP- 1 on a tree with square 0/1 connection costs.

Let G = (V, E) be a tree with |V| = n, and let the input data be denoted as in
Problem 4, where the connection costs are as in (1) for some I C V. Recall that in
this problem we are interested in the number of connected pairs consisting of nodes
in 1.

Given any subgraph H of G, we denote by V (H) the set of vertices of H. We
root the tree G at any of its nodes, say r € V. Given a € V, we denote by G, the
subtree of G rooted at a. If a is not a leaf of G, we assume that an arbitrary order of
its children is specified. If a has s children ay, ..., a; (listed according to the order
mentioned above), forevery i € {1, ..., s} we define G,; as the subtree of G induced
by {a} UV (Gy) U---UV(Gy,); see Fig. 1. (Note that s depend on a, but to simplify
notation we will always keep this dependence implicit.)

We will calculate recursively the following values:

— fa(k,m) for all a € V and all integers k, m such that 0 < k < n(n — 1)/2 and
0 <m < n: f,(k, m)is the minimum total weight of a subset of nodes § € V(G,)
such that ¢(G, — S) = k and a is connected to exactly m nodes in V(G, — S)N 1
(including a itself);

— 8a.i(k,m,t) for all non-leaf nodes a € V, alli € {1,...,s}, all integers k, m
suchthat 0 <k <n(n—1)/2and0 <m <n,and t € {0, 1}: g4.;(k, m, t) is the
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minimum total weight of asubsetof nodes S € V (G, ;) suchthatc(G, ;i —S) =k,
a is connected to exactly m nodes in V(G,,; — S) N I (including a itself), and
a € Sifandonlyif?r = 1.

When a € S, the number of nodes in V (G, — §) N I connected to a is intended to be
zero. Furthermore, whenever the conditions in one of the above definitions cannot be
satisfied, we set the value of the function to infinity. To simplify the recursive formulas
below, it will be convenient to accept k < Oin f,(k, m) and g, ; (k, m, t); in this case,
we assume again that the function values are infinite.

The values of f, and g, ; are calculated in this order:

— we determine f, for every leaf a;
— for a non-leaf node a, assuming that the f,/ and g, ; have been already found for

alla’ € V(G,) and all i, we calculate g, 5, 8451, - - - » 8a.1, and then f,.

At the end of the recursion, we can return the optimal value of the problem, which is

min{k : f,(k,m) < W, 0 <k <n(n—1)/2, 0 <m <n},

as G, = G. As usual in dynamic programming, an optimal solution can be recon-
structed by backtracking.

We now provide the explicit formulas and then a justification for each of them. For
every leaf a, we have

w, fk=0m=0,ael,
Jatk,m) =10 ifk=0m=0,a¢)or(k=0,m=1,a¢€l), 2)

oo otherwise,

while for a non-leaf node a the formula is

Ja(k, m) = min{g, 1(k,m,0), ga,1(k, m, 1)}. (€)

To calculate g, ; (k, m, t), where a is a non-leaf node, if i = s we use the formula

Ja, (k, 0) ift =0,m =0,

Jay (k, m) ift=0,m>0,a¢l,
8a,s(k,m 1) =3 fa (k—m+1,m—1) ift=0,m>0,ael,

wq +min{ fy, (k,q) : 0 <q <|V(Gg)NI|} ift =1,m=0,

00 ift=1,m > 0,

“)
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while for i < s the value of g, ;(k, m, t) is calculated as follows:

min{f,, (p.0) + ga.is1(k — p,0,0): 0 < p <k} ift =0,m=0,
min{ fy, (P, q) + 8a,i+1(k — p —q(m —q),m —q,0) :
0<p<k,0<g<m ift=0,m>0,
gaitkomny={ =P= a=m )
min{ fo; (P, @) + 8a.i+1(k — p,0, 1) :
0<p=<k 0=<q=|V(Gy)NI} ift=1,m=0,
00 ift =1,m > 0.

We now give a justification for the above formulas. We denote by S a subset of
nodes attaining the minimum value of f,(k, m) or g,.;(k, m, t) (depending on which
formula we are illustrating).

Formula (2) reflects the fact that when the subtree consists of just a leaf, the decision
to make is whether to remove the leaf or not, and in both cases k must be zero. The
value of m can be one only if the leaf belongs to / and is not removed.

Equation (3) is an immediate consequence of the observation that G, = G, for
every non-leaf node a.

When a is a non-leaf node, in the formula for g, s (k, m, t) (Eq. (4)) there is a first
distinction based on whether node a is removed (t = 1) or not (¢ = 0). In the former
case, m is necessarily equal to zero, and we are on the fourth line of the formula,
where the weight of node a is added to the minimum weight of a subset of nodes S’
that should be removed from G, to have k connected pairs consisting of nodes in
I; note that ¢ (the number of nodes in V(G,, — S’) N I that are connected to ay) is
arbitrary, as this value does not affect the number of nodes connected to a, as a is
removed in this case. For the other case, i.e., when a is not removed (¢t = 0), one needs
to know whether m = 0 or not. When m = 0, all of the k connected pairs are contained
in G, and no node in V (G4, — S) N I can be connected to ag, as otherwise it would
be connected to a, as well (first line of the formula). When, m > 0 and a ¢ I, the
value of g, s (k, m, t) is obtained by requiring m nodes in V(G,, — S) N I connected
to ay (as these nodes will be in turn connected to a) and a total connection cost of
kin G4, — S. Finally, if m > Oand a € I, only m — 1 nodes in V(G,, — S) N1
will be connected to ay, as a is also counted as connected to itself. Since these m — 1
connections contribute to the total connection cost k in G, — S, the total connection
costin G4, — S mustbe k —m + 1.

Formula (5) is based on a similar case distinction, except that one does not need to
know whether @ € I or not. We only illustrate in detail the second case of the formula:
t = 0 (i.e.,node a is not removed) and m > 0. The formula is based on the observation
that k must be the total cost of the connections surviving in each of the subtrees Gy,
and Gy ;+1, plus the cost of the connections between the two subtrees. This last term
is given by g (m — q), where ¢ is the number of nodes in V (G4, — §) N I connected to
a; and, consequently, m — ¢ is the number of nodes in V (G, ;+1 — S) N I connected
to a. Thus, if p connected pairs survive in Gg;, k — p — q(m — g) survive in G4 ;1.
(For a correct interpretation of the formula, it is important to keep in mind that G, is
rooted at a;, while G, ;41 is rooted at a.)

We obtain the following result.
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Proposition 1 CNDP, CEDP, and CNEDP- 1 can be solved in polynomial time when
the underlying graph is a tree and 0/1 square connection costs are given.

Proof By the above discussion, the proposed dynamic programming algorithm cor-
rectly solves CNDP when the underlying graph is a tree and 0/1 square connection
costs are given. The polynomiality is immediate to check, as a, i, k, m and ¢ can take
only a polynomial number of values, and the computation of each formula can be
carried out in polynomial time.

Lemma 1 implies that CNEDP- 1 can also be solved in polynomial time, under the
same assumptions. Finally, the observation that CEDP is a special case of CNEDP- 1
(see the introduction) proves the same result for CEDP.

An immediate corollary is the following. (For the sake of completenes, we include
CNDP in the statement below, although the correspnding result was shown in Di
Summa et al. (2011).)

Corollary 1T CNDP, CEDP and CNEDP- 1 can be solved in polynomial time when the
underlying graph is a tree and the connection costs are all unitary.

2.3 Complexity of CNEDP- 2

Unlike CNEDP- 1, CNEDP- 2 with unit connection costs is NP-hard even on a path. We
actually show a stronger result: it is NP-hard to approximate this problem within any
factor. (We recall that given o > 1, an a-approximation algorithm for a minimization
problem is required to return a solution whose objective value is at most « times the
optimal value; see, e.g., Vazirani (2013).)

Proposition2 Unless P = NP, CNEDP- 2 on a path with unit connection costs
cannot be approximated within any factor.

Proof We prove the result via a reduction from PARTITION, which is known to be
NP-complete (see Garey and Johnson (1979)):

PARTITION: Given n € N and ay, ..., a, € N, determine whether there exists
JC{l,....,n}suchthat } ;. ;ai = > ;) ai.

Given an instance of PARTITION as above, we define A = Y "_, a;. We construct
an instance of CNEDP- 2 on a path as follows:

— G = (V, E) is a path with 2n + 1 vertices, denoted by u1, vy, us, va, ..., Uy, vy,
u,+1 (in the order they appear on the path);
— the node weights are w,, = a; forevery i € {1,...,n}, and w,, = A/2 + 1 for

everyi € {l,...,n+1};
— the edge weights are w,,;,, = a; and wy,
the weight limits are Wy = Wg = A/2.

iy = 0foreveryi € {l,...,nk

We show that the given instance of PARTITION has a solution if and only if the optimal
value of the above instance of CNEDP- 2 is zero. Since, by definition, an approximation
algorithm always recognizes the instances with optimal value equal to zero, this will
prove the result.
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Assume that the instance of PARTITION has a solution, i.e., there exists J <
{I,....n}suchthat } ;. ;a; = 3,4, ai = A/2. Define S € V U E as follows:

S={vi:ieJ}U{ujvi:i ¢ J}U{viuj4:i e{l,...,n}}

This choice yields a feasible solution to the instance of CNEDP- 2, as w(S N V) =
w(SNE) = A/2 =Wy = Wg. Furthermore, as G — S contains only isolated nodes,
c(G — S) = 0. Thus the optimal value of the instance of CNEDP- 2 is zero.

For the converse, assume that the instance of CNEDP- 2 has a solution with objective
value zero, i.e., there exists S € VU E suchthat w(SNV) < A/2, w(SNE) < A/2,
and ¢(G — S) = 0 (which means that there are only isolated nodes in G — S). Without
loss of generality, we can assume that v;u;+1 € S forevery i € {1, ..., n}, as these
edges have zero weight. In other words, we can imagine that the original graph only
contains the edges ujvy, ..., i, v,. Furthermore, u; ¢ S for every i, as otherwise the
node weight limit would be exceeded. Then the fact that G — S has only isolated nodes
implies that, for every i € {1,...,n}, S contains v; or u;v;. As Wy, = Wy, = a;
for every i, we obtain w(S) > A. Since the weight limits are Wy = Wg = A/2, we
necessarily have w(S N'V) = w(S N E) = A/2. Thus the instance of PARTITION has
the solution J = SN V. O

Despite the above negative result, we now show that if the node and edge weights
are fixed to 1 (as well as the connection costs), CNEDP- 2 admits a polynomial-time
algorithm. We use the same tree and subtree notation as in the previous section, and
calculate recursively the following values:

— falky, kg, m) for all a € V and all integers ky, kg, m such that 0 < ky < Wy,
0 <kg < Wg,and 0 < m < n: f,(ky, kg, m) is the minimum cardinality of
asubset S € V(G,) U E(G,) suchthat |[SN V| < ky, |SNE| < kg, and a is
connected to exactly m nodes in V(G, — S) (including a itself);

— 8a.ilky, kg, m) for all non-leaf nodes a € V, alli € {1,...,s}, and all inte-
gers ky,kg,m such that 0 < ky < Wy, 0 < kg < Wg,and 0 < m < n:
8a.i(ky, kg, m) is the minimum cardinality of a subset S € V(G,.;) U E(Gg.i)
such that |SN V| < ky, |SN E| < kg, and a is connected to exactly m nodes in
V (G4, — S) (including a itself).

We let the function values be infinity whenever the conditions cannot be satisfied.
For every leaf a we have

falky, kg, m) = it (kv O m = 1) or (ky g=m=0) (6)
oo otherwise,

while the formula for a non-leaf node a is

Jatky, kg, m) = gq 1(ky, kg, m). @)
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If a is a non-leaf node, we also have

8a,s(ky, kg, m)

min{f, (kv — 1,kg,q) : 0 < q < |V(Ga)l} ifm=0,
= ymin { fu, (kv, kg, 0), min{f,, (ky, kg — 1,9) : 0 < g < [V(Ga)I}} ifm=1, (8)
Sa,Cky kg, m — 1) +m — 1 ifm>1,

while, fori < s,

8a,ilkv, kg, m)
min{f,, (pv, PE: @) + 8a.i+1(kv — pv,. kg — pE,0) :
0<py <ky—1,0=<pp <kg,0=<qg <|V(G)l} ifm =0,
min { min{ o, (pv., pe, @) + gai+1ky — pv, kg — pg —1,m) :
0<py <ky,0<pp<kp—1,0=<q=<|V(Gy)l}
min{fq, (pv, PE. q) + Sa,i+1kv — pv. kg — pp,m —q) + q(m — q) :
0<py <ky,0<pr<ke, 0<qg<m}} if m > 0.

(C))

The optimal value is calculated as follows:
min{ f, (ky, kg, m) : 0 <ky < Wy, 0 <kg < Wg, 0 <m <n}. (10)

Formulas (6) and (7) are immediate.

In (8) we assume that if @ € S then aas ¢ S: This is without loss of generality, as
if aas € S, we obtain the same objective value by removing the elements in S \ {aay}.
The case m = 0 corresponds to a € S, which leads to the formula on the first line. The
case m = 1 occurs when a; € S (first argument of the outer minimum on the second
line) or aa; € S (second argument of the outer minimum). Finally, m > 1 is the case
in which a, aas ¢ S.

Similar to (8), in (9) we assume that if a € S then aa; ¢ S. The first case (m = 0)
corresponds to having a € S. In this situation, we take the sum of the optimal values
that we can obtain in each of the two subtrees G, and G, ;4. For the second case
(m > 0), in which a ¢ S, we take the better of two possibilities, which correspond
to the two arguments of the outer minimum. For the first possibility, which is when
aa; € S, we take again the sum of the optimal values in each of the two subtrees
G, and G, ;1. For the second possibility (aa; ¢ S), we have to add the connections
between the two subtrees.

The formula for the optimal value (10) is immediate, as G = G,

We obtain the following result.

Proposition 3 CNEDP- 2 on a tree with unit connection costs and unit node/edge
weights can be solved in polynomial time.

Proof The above algorithm is polynomial because one can take Wy < |V|and Wg <
| E| without loss of generality, as the weights are all equal to one. O

One can verify that the above result extends to square 0/1 connection costs.
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3 Bounded number of leaves

In this section we consider trees in which the number of leaves is bounded by a given
constant (which is not treated as part of the input). We show that if the connection
costs take general 0/1 values, each of CNDP, CEDP, and CNEDP- 1 can be solved in
polynomial time. Note that, unless P = N P, this result cannot hold for CNEDP- 2,
as shown by Proposition 2. However, we will see that a polynomial-time algorithm
can be found for this problem if, in addition, the node and edge weights are assumed
to be unitary.

The positive results in this section are in contrast with with the case of general trees,
for which the assumption of general 0/1 connection costs makes the problems NP-hard.
Indeed, the interest in trees with bounded number of leaves is motivated by the search
for the weakest assumptions needed to ensure the existence of a polynomial-time
algorithm when the connection costs take arbitrary 0/1 values.

Let us first focus on CNDP on a tree with 0/1 connection costs. Let G = (V, E)
be a tree with n nodes and ¢ leaves. Given u, v € V, we denote by [u, v] the node
set of the unique path joining # and v in G. Givena € V and S € V, we define the
boundary of S with respect to a, and denote it by B, (S), as follows:

B,(S)={veS:[a,v]NS={v}}.

Clearly, |B,(S)| < £.
We will calculate the following values:

— fa(k, B) for all integers k such that 0 < k < n(n — 1)/2 and every B C V(G,)
such that |B| < €: f,(k, B) is the minimum total weight of a subset of nodes
S C V(G,) such that ¢(G, — S) = k and B,(S) = B;

— 8a.i(k, B) for all integers k such that0 < k < n(n—1)/2 andevery B C V(G,,;)
such that |B| < £: g4.;(k, B) is the minimum total weight of a subset of nodes
S € V(Gg,i) such that c(G,; — S) = k and B,(S) = B.

As in the previous algorithms, these values are assumed to be infinite whenever the
conditions cannot be satisfied. This happens, in particular, whenever B is not a set
of the type B,(S) forany S € V(G,) (or S € V(G,,i)), for instance (but not only)
when B is larger than the number of leaves of the subtree. (Indeed, we could use the
number of leaves of G, or G, ; as a bound for | B[, but this would slightly complicate
the description of the algorithm.) It is also convenient to set the above values to infinity
when k < 0.
If a is a leaf, we have

w, ifk=0and B = {a},
fatk,By=40 ifk=0and B =0, (11)
oo otherwise,

while if a is a non-leaf node the formula is

Ja(k, B) = ga,1(k, B). 12)
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For a non-leaf node a we also have

wg +min{f, (k, B') : B € V(Gy,), |B'| < £} it B = {a},
8as(k, B) = 3 fa, (k — > {cav : v € V(Gy,), [a,v1N B = @}, B) ifa ¢ B,
o0 otherwise,
(13)

and, fori < s,

8a,i(k, B)
min{fo, (p, B') + gai+1(k = p.{a}) : 0 < p <k, B' S V(Gy), |B'| = ¢} if B={a},
min{ fo, (p, BNV (Gy;)) + ga,iv1k —p—o(a,i, B), BNV(Ga,i+1)) :
0<p<k ifa ¢ B,

00 otherwise,

(14)

where o(a,i, B) = ) {cuy : u € V(Gg), v € V(Gqg,ix1), [u,v]N B = @}. The
optimal value is

min{k : fr(k, B) <W,0<k=n(n—-1)/2, BCV, |B| <t}

The correctness of (11) and (12) is easy to check.

In formula (13), the first and third cases express the fact that if @ € B and B is
a set of the form B,(S) for some S € V(G,), then necessarily B = § = {a}. In
this case, a is removed from G, and we are left with the subproblem on G, . (In this
subproblem the boundary set B’ is arbitrary, as it does not affect the fact that B = {a}.)
On the other hand, if a ¢ B and B = B,(S) for some S C V(G,), then S C V(G,,)
and B = B, (S). We then obtain the second case of the formula, where the term
> {cav 1 v € V(Gy,), [a, v] N B = @} counts the number of nodes connected to a in
Gy — S.

Formula (14) is based on a similar argument. We only remark some points. When
B = § = {a}, two subproblems on G, and G,; are created. Since a is removed
from G, ;, the boundary set of the first subproblem is an arbitrary B’ (as this does
not affect the fact that B = {a}), while in the second subproblem the boundary
set must be {a} (as a is the root of G, ;4+1). When a ¢ B, we use the fact that
if B = B,(S) for some § C V(Gg,i), then B,(S N V(Gy)) = BN V(G,) and
B,(SNV(Ggit1)) = BN V(Ggit1). The term o (a, i, B) count the number of
surviving connections between the two subtrees.

We obtain the following result.

Proposition 4 CNDP, CEDP, and CNEDP- 1 can be solved in polynomial time when
the underlying graph is a tree whose number of leaves is bounded by a constant and
the connection costs are 0/1.
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Proof For CNDP the polynomiality follows from the above algorithm, after observing
that the number of boundary sets B to consideris O (n%), whichis polynomial when £ is
constant. To derive a polynomial-time dynamic programming algorithm for CNEDP-

1, one can use the subdivision approach described in the proof of Lemma 1. (We omit
the details.) The polynomiality of CEDP then follows because, as already observed,
this problem is a special case of CNEDP- 1. O

For CNEDP- 2, we need to restrict to unit weights.

Proposition 5 CNEDP- 2 can be solved in polynomial time when the underlying graph
is a tree whose number of leaves is bounded by a constant, the node and edge weights
are unitary, and the connection costs are 0/1.

Proof A polynomial-time dynamic programming algorithm can be obtained by com-
bining the approach described in this section with that developed in Sect. 2.3.
The basic idea is to define f,(ky, kg, B) as the minimum cardinality of a subset
S C V(Gy) UE(Gy) suchthat |SN V| < ky, |SNE| < kg, and B,(S) = B, and
similarly for g, ; (ky, kg, B). We omit the details. ]

We remark that what makes the algorithm polynomial is the constant bound of ¢
on the cardinality of the boundary sets. Requiring that G has at most £ leaves is a
stronger hypothesis, but it does not seem easy to find weaker reasonable assumptions
on G that ensure this property.

4 Concluding remarks

We conclude the paper with a couple of possible directions for future research.

One natural question is whether one can devise polynomial-time algorithms for
other classes of critical node/edge detection problems. This paper deals with vari-
ants of some of the most studied versions of the problem, but is limited to trees. As
mentioned in the introduction, to the best of our knowledge the literature offers only
few polynomiality results for problems of this type, which are limited to graphs with
simple structure. It seems that some different ideas are needed to go beyond the basic
cases.

In Sect. 3 we provided a polynomial-time algorithm for our problems under the
assumption that the number of leaves is bounded by a given constant £. Since the
number of iterations required by the algorithm contains a term of the form n’, this
algorithm does not imply that the problem is fixed-parameter tractable (FPT). It would
be interesting to understand whether the problem is indeed FPT.
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