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Abstract. The increasing penetration of intermittent renewable sources in 

power generation at local and building-level poses growing issues in 

balancing generation and demand. To avoid imbalances, it is therefore 

necessary to ensure adequate levels of flexibility in the building energy 

system. This can be done both on the generation side, through the coupling 

of different energy carriers (cogeneration, power-to-heat solutions) and/or 

the integration of storage systems, and on the demand side, through smart 

“demand response” programs. This paper considers a tourist facility located 

in central Germany as a case study to evaluate the energy, economic and 

environmental benefits that can be obtained from the application of 

appropriate demand response strategies. The electrical demand data of the 

facility are monitored at both aggregate and individual load levels and made 

available by means of a cloud platform. The facility includes two stationary 

combined heat and power internal combustion engines powered by natural 

gas and a photovoltaic system. The results show how, thanks to appropriate 

load management, it is possible, on the one hand, to increase the self-

consumption of PV-generated energy and, on the other hand, to keep more 

constant the load of the engines, which can therefore operate with better 

efficiencies. This results in both a reduction in energy expenses and a 

decrease in carbon dioxide emissions attributable to the building.  

1 Introduction 

The transition to a sustainable energy system necessitates increased generation of energy 

from renewable sources, more efficient but declining use of fossil fuels, and increasing 

electrification of end uses [1]. At the European level, the buildings sector is responsible for 

about 40% of final energy consumption [2] and will therefore be crucial in meeting the goal 

of achieving climate neutrality by 2050 [3]. 

However, the increasing penetration of non-programmable renewable sources (mainly 

photovoltaic and wind) in local and building-level power generation poses increasing 

problems of balancing generation and demand, which may negatively impact the stability of 
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the power grid [4]. To avoid imbalances, it is therefore necessary to ensure adequate levels 

of flexibility in the building energy system. This can be done either on the generation side, 

through the coupling of different energy carriers (cogeneration, power-to-heat solutions) 

and/or the integration of storage systems, or on the demand side, through smart “demand 

response” (DR) programs [5]. 

DR is defined by the U.S. Department of Energy as “changes in electric usage by end-

use customers from their normal consumption patterns in response to changes in the price of 

electricity over time, or to incentive payments designed to induce lower electricity use at 

times of high wholesale market prices or when system reliability is jeopardized” [6]. Direct 

or indirect control of electrical loads in addition to increasing the stability of the electrical 

system can significantly reduce its costs [7]. In fact, a better balance between demand and 

generation at the local level makes it possible to postpone or reduce investment in capital-

intensive electricity infrastructure [8]. 

However, the positive impacts of DR are struggling to emerge due to social, 

technological, economic, and legislative barriers that limit its diffusion [9]. A turning point 

in favour of using efficient DR strategies has been the transition to a deregulated and 

liberalized electricity market [10]. DR based on time-varying electricity prices (time-of-use 

tariffs, day-ahead and real-time markets) has proven to be the most efficient and easily 

implemented method at the local and building level for demand management and balancing 

with available generation [11]. Given the flexibility of demand versus price, end customers 

are driven to reduce consumption during peak periods and increase consumption during off-

peak periods or periods with high energy availability [12]. This also promotes the penetration 

of distributed generation from intermittent renewable sources by reducing excess generation 

[13]. 

In summary, an effective and applicable DR strategy must be beneficial to both the system 

and the user by setting three objectives of energy, environmental, and economic nature, 

respectively [14]: 

• Minimizing the unbalance between demand and generation, 

• Maximizing the use of renewable sources at the local level, 

• Maximizing the savings achievable by participants. 

In the literature, DR has frequently been treated in the form of an optimization problem, 

in which the demand curve must be modified respecting certain constraints in order to 

minimize or maximize one or more objective functions (see, for example, the objectives 

above). The most widely used optimization techniques are linear programming (LP) and 

mixed integer linear programming (MILP), given their availability as commercial software, 

their ability to handle a large number of decision variables, their capability to find the global 

optimum of the problem and their computational efficiency [15]. The applications are wide-

ranging, but often refer to very specific case studies and areas of research such as, for 

example, the problem of expanding the power grid and generating capacity [16], the 

frequency control of the power grid [17], the stability of an isolated microgrid [18]. 

Some Authors of the work proposed here have already dealt with the DR problem within 

studies on renewable energy communities [19, 20], although the focus has been primarily on 

optimizing the design and/or operation of generation and storage units rather than on the 

actual characterization of the demand curve, which is modelled at the aggregate level. 

Finally, some studies have dealt with the application of DR at the building level for 

automatic load management using MILP algorithms [21] or neural networks [22]. In these 

studies, however, load curves are obtained from simulation of the modelled equipment, while 

measured consumption data are missing. 

In contrast, the work proposed here is based on consumption data collected from 

measurements taken at a tourist facility located in Hausen, Germany (north-western Bavaria) 

during 2023. Each electrical load/group of loads in the building (lighting, appliances, 
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swimming pool equipment, cooling and ventilation units...) is equipped with a multifunction 

electronic measurement digital unit, which makes available measured values of key electrical 

quantities, including active power consumed/produced, to a real-time monitoring and 

management cloud platform [23]. The building is also equipped with a photovoltaic (PV) 

plant and two stationary internal combustion engines (ICEs) operating in combined heat and 

power mode. 

In the literature, electrical loads are often categorized as fixed loads (nonadjustable), 

shiftable loads (the use of which can be postponed or brought forward within the day while 

keeping the integral of consumption fixed), curtailable loads (the consumption of which can 

be reduced in precise time intervals), and loads that can be directly controlled by changing 

operating conditions (e.g., the operation of a chiller can be changed by changing the 

temperature set point) [24]. In this paper, all monitored loads are categorized into two groups, 

fixed loads and shiftable loads. On the former there is no room for intervention through DR, 

while the latter can be “moved” to different time slots within the day according to predefined 

levels of flexibility. 

The objective of the study is to find the optimal strategy for managing shiftable loads and 

generation plants that minimizes daily operating costs to meet the building’s overall electrical 

demand. It will also be seen how cost minimization leads to benefits in terms of increased 

use of local renewable sources (solar) and reduction of peak demand and generation 

witnessed by the power grid. To this end, a detailed optimization model is built considering 

both continuous and binary decision variables (MILP model). 

The analyses have been conducted on representative seasonal days (typical days) 

considering two different tariff plans for purchasing electricity from the grid. In the first case, 

purchase is at a fixed constant price, while in the second case a time-of-use (TOU) tariff is 

considered. Different levels of “flexibility” of shiftable loads have also been considered, 

assuming different levels of user involvement in applying the indications provided by the DR 

algorithm. In the worst case (zero flexibility), the user does not accept any of the proposed 

load changes, leaving the overall demand curve unchanged. In the best case (maximum 

flexibility), the user makes itself available to handle all shiftable loads as proposed by the 

DR model. In the intermediate cases, instead, it makes itself available to act only on a 

specified portion of the overall shiftable load.  

2 Case study  

Fig. 1 depicts the system considered in this paper. The system includes the building of a 

tourist facility located in Hausen, Germany (northwestern Bavaria), a 500 kWp photovoltaic 

plant (annual producibility of 705 MWh), and two natural gas-fuelled internal combustion 

engines of 200 kW (ICE1) and 100 kW (ICE2) of rated electrical power. There are a total of 

40 electrical loads, 11 of which have been identified as shiftable loads. The latter include 

household appliances (industrial washing machines and dishwashers), air conditioning 

systems, circulation pumps, and swimming pool auxiliaries. Measurements are performed by 

multifunction electronic measurement digital units installed in the electrical panels of the 

above-mentioned electrical loads. These devices comply with EN/IEC 6155712 and the 

maximum error on active power is 1% (measuring instruments belong to class 0.5 or class 

1). All measured data are collected via Modbus/TCP protocol by a central router that sends 

them to a monitoring and management cloud platform [23]. Finally, the platform historizes 

data at an average rate of 10s, and processes them to respond with control signals toward 

ICEs and displaceable loads. 
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Fig. 1. Representative diagram of the case study considered. 

2.1 Model input data  

Data of electric power consumed by various loads are recorded at varying cadences 

depending on the frequency and magnitude of load variation. The interval between two 

consecutive measurements is between 10 seconds and 1 minute. The resulting amount of data 

is far greater than that required for the purposes of this study, which does not require such 

precise temporal resolution. Consumption data are therefore aggregated into four seasonal 

typical days with hourly discretization (winter is considered from December to February, 

spring from March to May, summer from June to July, and autumn from September to 

November). Aggregation into typical days is achieved by the time-weighted average of all 

power readings at a given time of day in a given season weighted with the elapsed time 

interval until the next reading (if the meter does not detect change in power, it does not record 

new readings). The total electricity consumption is 3415 kWh for the typical winter day, 3890 

kWh for the spring day, 5007 kWh for the summer day, and 5323 kWh for the autumn day. 

Of these, shiftable loads count for 1181 kWh (35%) in the winter typical day, 1363 kWh 

(35%) in the spring typical day, 2683 kWh (54%) in the summer typical day, and 2801 kWh 

(53%) in the autumn typical day.  

The PV modules are oriented to the south and tilted 40° from the horizontal plane. The 

global solar radiation data on the tilted plane needed for calculating the generated power are 

available on an hourly basis for several years [25] and are aggregated into typical seasonal 

days in the same way as power measurements. Electricity production from PV is 1130 kWh 

for the typical winter day, 2517 kWh for the spring day, 2705 kWh for the summer day, and 

1373 kWh for the autumn day. 

The cost of natural gas burned by the stationary engines is assumed constant and equal to 

60 €/MWh considering the lower heating value [26], while the direct carbon dioxide (CO2) 

emissions associated with combustion are 197 kg/MWh. Regarding electricity taken from the 

grid, two possible alternative tariff plans are considered (Fig. 2): 

• Fixed tariff of 290 €/MWh, 

• Time-of-use (TOU) tariff variable over three bands [27]. 
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The CO2 emission factor associated with energy taken from the grid is set at 371 kg/MWh 

[28]. Electricity sold to the grid is remunerated at a fixed rate of 50 €/kWh corresponding to 

the average annual value of the price on the wholesale market [29]. 

Table 1 reports data on the operation of stationary engines [30, 31]. 

 

Fig. 2. Tariffs related to electricity withdrawal from the grid: fixed (FIX) and variable (TOU). 

Table 1. Operating data of the two stationary internal combustion engines. 

Quantity Unit ICE1 ICE2 

Electrical efficiency at full load % 37 34 

Electrical efficiency at minimum load % 30 27 

Minimum load-full load ratio % 70 70 

Maximum number of daily on/offs - 2 2 

Operation and maintenance cost €/MWhel 5.4 5.4 

3 Optimization model 

The optimization problem consists in minimizing the daily operating costs of meeting the 

electrical demand of the system shown in Figure 1 by considering the possibility of changing 

the consumption pattern of “shiftable” loads. This problem is solved by a rigorous procedure 

based on a physical model of the system [32]. 

In order to limit computational time, both the objective function and the model constraints 

are expressed as linear relations only. In addition, the decision variables are partly continuous 

and partly binary. Thus, the problem is configured as MILP. 

3.1 Decision variables 

Table 2 reports the decision variables of the model, defined for each hour ℎ of the typical day 

under consideration. They include the electrical power generated by the engines, their on/off 

status (binary variables), the power imported and exported with respect to the grid, and the 

aggregate electrical demand of the shiftable loads downstream of the DR application. 

Additional auxiliary decision variables are omitted here. 
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Table 2. Decision variables. 

Name of the variable Symbol Unit Type 

Generated power, ICE1 𝑃𝐼𝐶𝐸1 kW Continuous 

On/off status, ICE1 𝛿𝐼𝐶𝐸1 - Binary 

Generated power, ICE2 𝑃𝐼𝐶𝐸2 kW Continuous 

On/off status, ICE2 𝛿𝐼𝐶𝐸2 - Binary 

Power imported from the grid 𝑃𝑖𝑚𝑝 kW Continuous 

Power injected into the grid 𝑃𝑒𝑥𝑝 kW Continuous 

Power consumed, shiftable loads 𝐷𝐷𝑅  kW Continuous 

3.2 Constraints 

Equation (1) reports the electric power balance holding in each hour of the day, where 𝐷𝑓𝑖𝑥  

is the aggregated demand of fixed loads in kW and 𝑃𝑃𝑉  is the power generation of the PV 

plant in kW as calculated in Equation(2), where, in turn, 𝐶𝑎𝑝𝑃𝑉=500kWp is the rated power 

of the plant, 𝐼𝑟𝑒𝑓=1000 W/m2 is the solar irradiance in standard peak conditions and 𝐼ℎ is the 

actual irradiance during the hour h in W/m2. 

 

 𝐷𝑓𝑖𝑥,ℎ + 𝐷𝐷𝑅,ℎ + 𝑃𝑒𝑥𝑝,ℎ  =  𝑃𝑃𝑉,ℎ + 𝑃𝑀𝐶𝐼1,ℎ + 𝑃𝑀𝐶𝐼2,ℎ + 𝑃𝑖𝑚𝑝,ℎ (1) 

 𝑃𝑃𝑉,ℎ  =  𝐶𝑎𝑝𝑃𝑉

𝐼ℎ

𝐼𝑟𝑒𝑓

 (2) 

 

Note that, since historical ambient temperature measurements are not available, the 

influence of outdoor temperature on PV module efficiency is not considered. The temperature 

considered is the standard reference temperature, which is 25°C. Considering that the average 

annual temperature at the analysed location is about 9°C, the estimates made can be 

considered conservative. Assuming that ambient temperature measurements were available, 

it would be possible to account for the effect of temperature on efficiency by means of a 

correction factor that, depending only on input data, would not affect the linearity of the 

model. 

The characteristic equation for the operation of ICEs describes the relationship between 

specific fuel consumption and electrical power generation. This relationship has been 

linearized between the point of operation at rated load (100%) and the point of operation at 

minimum part load (70%) and is therefore described by a pair of values – angle coefficient 

(𝑚) and intercept (𝑞) – for each engine. These values can be calculated from the efficiencies 

given in Table 1. Equation (3) calculates the fuel consumption (𝐶𝐼𝐶𝐸) as a function of the 

power generated by generic engine 𝑖. 
 

 𝐶𝐼𝐶𝐸𝑖,ℎ  =  𝑃𝐼𝐶𝐸𝑖,ℎ𝑚𝑖 + 𝑞𝑖  (3) 
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The power generated by the engine is between the rated power (𝐶𝑎𝑝𝐼𝐶𝐸) and the power at 

minimum load when the engine is on, while it is zero when the engine is off, as shown in 

Equation (4), where 𝛾 is the ratio of minimum load to rated load. 

 

 𝐶𝐼𝐶𝐸𝑖,ℎ  =  𝑃𝐼𝐶𝐸𝑖,ℎ𝑚𝑖 + 𝑞𝑖  (4) 

 

In addition, to prevent wear and tear failures, the motor is constrained not to change state 

(on or off) more than twice a day, as given in Equation (5) (note that the absolute value can 

be appropriately treated in order to be included in the problem as linear inequalities). 

 

 ∑|𝛿𝐼𝐶𝐸𝑖,ℎ+1 − 𝛿𝐼𝐶𝐸𝑖,ℎ|

23

ℎ=1

 ≤  2 (5) 

 

Regarding the DR model, the first requirement to be met is that the integral of the demand 

associated with the shiftable loads downstream of the DR (subscript 𝐷𝑅) is the same as the 

original demand (subscript 𝑠ℎ𝑖𝑓𝑡, referring to “shiftable”), as given in Equation (6) (the 

summations correspond to the integral in the discretization considered). 

 

 ∑ 𝐷𝐷𝑅,ℎ

24

ℎ=1

=  ∑ 𝐷𝑠ℎ𝑖𝑓𝑡,ℎ

24

ℎ=1

 (6) 

 

In addition, the hourly demand cannot be changed more than a certain amount 휀 (positive 

or negative) from the original value, as shown by Equation (7). 

 

 𝐷𝑠ℎ𝑖𝑓𝑡,ℎ(1 − 휀) ≤ 𝐷𝐷𝑅,ℎ  ≤  𝐷𝑠ℎ𝑖𝑓𝑡,ℎ(1 + 휀) (7) 

 

The value of 휀 s varied linearly between 0 and 1 to simulate the degree of user 

involvement in the DR program (0: zero involvement, 1: maximum involvement). 

3.3 Objective function 

Equation (8) shows the objective function (𝑓), which represents daily operating costs, where 

𝑝𝑔𝑎𝑠 is the specific cost of natural gas, 𝑝𝑒𝑙,𝑖𝑚𝑝 the electricity purchasing price from the grid, 

𝑝𝑒𝑙,𝑒𝑥𝑝 is the selling price and 𝑐𝑂&𝑀 is the specific operation and maintenance cost of 

stationary engines. 

 

 
𝑓 =  ∑[(𝐶𝐼𝐶𝐸1,ℎ + 𝐶𝐼𝐶𝐸2,ℎ)𝑝𝑔𝑎𝑠 + (𝑃𝐼𝐶𝐸1,ℎ + 𝑃𝐼𝐶𝐸2,ℎ)𝑐𝑂&𝑀

24

ℎ=1

+ 𝑃𝑖𝑚𝑝,ℎ𝑝𝑒𝑙,𝑖𝑚𝑝,ℎ − 𝑃𝑒𝑥𝑝,ℎ𝑝𝑒𝑙,𝑒𝑥𝑝] 

(8) 

 

Equation 9 calculates the daily CO2 emissions (𝜑) attributable to the building, where 𝑒𝑔𝑎𝑠 

is the natural gas emission factor and 𝑒𝑒𝑙  is the emission factor of the grid electricity. 

 

 𝜑 =  ∑[(𝐶𝐼𝐶𝐸1,ℎ + 𝐶𝐼𝐶𝐸2,ℎ)𝑒𝑔𝑎𝑠 + 𝑃𝑖𝑚𝑝,ℎ𝑒𝑒𝑙]

24

ℎ=1

 (9) 
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4 Results 

The Gurobi solver in the Python environment has been used to solve the optimization 

problem. Simulations has been performed in a PC with an Intel(R) Core(TM) i5-7200U 

processor and 8 GB RAM. The time to compute the solution is less than one-tenth of a second 

for each simulated combination of input parameters. 

4.1 Purchase of electricity at a fixed tariff 

Fig. 3 shows the resulting electric power balance for the typical autumn day, obtained by 

considering the fixed tariff for the purchase of electricity from the grid and zero user 

involvement in the DR program (휀=0, the modified demand curve downstream of the DR is 

clearly superimposed on the original demand curve, which is composed of a fixed part, 

associated with fixed loads, and a variable part, associated with shiftable loads). Production 

from PV is in slight excess of demand around 12 noon and results in 39 kWh of energy fed 

into the grid, peaking at 21 kW. The two engines cover most of the remaining demand but 

operate slightly at rated load. The daily load factor (daily generated energy compared to the 

energy that would be generated in operation at constant rated power for 24 hours) is 60% for 

ICE1, which produces 2867 kWh, and 41% for ICE2, which produces 976 kWh. Electricity 

imported from the grid is equal to 147 kWh, with a peak of 63 kW. Overall, 97% of demand 

is covered by self-generated and self-consumed energy. The daily cost is 760 €, while the 

CO2 emissions are 2343 kg. 

 

Fig. 3. Electricity balance of the typical autumn day, considering the fixed electricity tariff and ε=0. 

Fig. 4 shows the electric power balance obtained considering 50% user involvement in 

the DR program (휀=0.5). The change in the demand curve, due to the adjustment of shiftable 

loads, causes the excess generation from PV to be cancelled and all the energy produced to 

be consumed on-site. The energy fed into the grid is therefore zero. The new demand curve 

allows ICE1 to operate for longer at nominal load. It produces 3924 kWh (37% more than the 

case with zero user involvement), with a load factor of 82%, and remains off only during 

peak PV production. ICE2 remains off all the time. The energy imported from the grid is 26 

kWh, with a peak power of 12 kW (about one-fifth of the previous case). The daily cost (672 

€) drops by 12% compared to the previous case, while CO2 emissions (2119 kg) drop by 
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10%, mainly due to the complete on-site utilization of PV-generated energy. Overall, more 

than 99% of demand is covered by self-generated and self-consumed energy. 

 

Fig. 4. Electricity balance of the typical autumn day, fixed electricity tariff and ε=0.5. 

Fig. 5 shows the trend in costs and emissions as the degree of user involvement (휀) 

changes for all typical days considered. It can be seen that both costs and emissions drop as 

involvement increases. However, after an initial rapid decline (between 휀=0 and 휀=0.5), the 

rate of cost and emission decline with 휀 is sharply reduced. Taking summer as an example, 

costs and emissions drop by 18% from 휀=0 to 휀=0.5, while they drop by 2% from 휀=0.5 to 

휀=1. 

 

Fig. 5. Daily cost (a) and CO2 emissions (b) as ε changes, fixed electricity tariff. 

4.2 Purchase of electricity at variable time-of-use tariff 

Fig. 6 shows the electric power balance of the typical autumn day obtained by considering 

휀=0.5 and the variable tariff for the purchase of electricity from the grid (see Fig. 2). 

Compared with the case with 휀=0.5 and fixed electricity tariff (Fig. 4), two aspects are 

evident: (i) the energy imported from the grid is much larger and (ii) the energy produced by 

the engines is less. Starting with the first aspect, it is clear that the lower purchase price of 

energy from the grid during the nighttime hours makes it convenient to shift consumption 

during that period. Indeed, the purchase price from the grid turns out to be lower than the 

generation cost of the engines, which remain off during the night hours. As a result, the 

energy imported from the grid is equal to 2166 kWh, 83 times more than in the case with 
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fixed tariff. In addition, the peak withdrawal from the grid turns out to be 265 kW, compared 

to 12 kW previously. Again, the change in demand means that all the energy produced by PV 

is consumed locally, cancelling the export of electricity to the grid. Regarding the overall 

engine generation, there is a 55% decrease, from 3924 kWh to 1785 kWh. ICE1 has a load 

factor of 29%, ICE2 of 17%. Overall, 59% of demand is covered by self-generated and self-

consumed energy (40% less than the case with fixed tariff). The effect of variable tariff on 

daily operating cost is slightly positive. Considering 휀=0.5, the daily cost is 660 €, 2% less 

than the case with fixed tariff. On the other hand, the daily CO2 emissions are considerably 

reduced (16%) compared to the fixed-tariff case, dropping to 1776 kg. 

 

Fig. 6. Electricity balance of the typical autumn day, time-of-use tariff and ε=0.5. 

4.3 Comparison of fixed and time-of-use tariffs 

As shown in the previous section, the application of the time-of-use tariff results in slightly 

lower costs and considerably lower emissions compared to the case with a fixed tariff. The 

proportions remain essentially the same as the user’s involvement and the season under 

consideration change. Fig. 7, on the other hand, shows the differences between fixed and 

variable tariffs as 휀 changes in terms of the amount of load shifted through DR and the peak 

power imported from the grid, which corresponds to the demand peak seen by the grid. 

 

 

Fig. 7. Comparison of fixed electricity tariff (FIX) and time-of-use tariff (TOU) as ε changes, 

regarding (a) the amount of demand shifted by the DR and (b) the peak demand seen by the grid. 
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Clearly, the shifted demand, which is zero for 휀=0, increases with 휀. However, the 

increase is greater when considering the variable tariff, which leads to shifting some of the 

consumption to nighttime hours. For instance, considering autumn and 휀=0.5, the demand 

shifted considering the variable tariff is equal to 1465 kWh, compared to 1102 kWh obtained 

with fixed tariff (25% less). Thus, the variable tariff requires more user effort in load 

management. 

The peak demand seen from the grid also appears to be higher considering the variable 

tariff. This is indicative of a worse balance at the building level between demand and 

generation, which is in turn due to the lower contribution of stationary engines in meeting 

demand. Considering autumn, the difference between the two tariffs also tends to diverge. 

The peak recorded with variable tariff exceeds that recorded with fixed tariff by 128 kW for 

휀=0 and by 339 kW for 휀=1. 

5 Conclusions 

By setting up and solving an optimization problem, the paper has evaluated the energy, 

economic, and environmental benefits that demand response (DR) can provide at the building 

level. A tourist facility located in central Germany that includes several electrical loads, some 

of which have been identified as suitable for DR, has been considered as a case study. The 

total electrical demand of the facility is partially covered by a photovoltaic plant and two 

stationary gas-fired internal combustion engines. 

First and foremost, the application of DR leads to increasing the share of PV-generated 

energy that is consumed on-site, up to full self-consumption after a threshold level of user 

flexibility depending on the seasonal typical day considered. This corresponds to zeroing the 

electricity fed into the grid (back-flow), which can be a cause of grid instability. 

Increased self-consumption from PV also has a twofold positive effect: on the one hand, 

it reduces the daily costs of meeting electricity demand, as less energy is drawn from the grid; 

on the other hand, it reduces carbon dioxide emissions attributable to the building. 

Considering the application of DR to 50% of the consumption of the suitable loads, it is 

possible to reduce costs by 12% and emissions by 10%. This is partly due also to greater use 

of stationary engines at rated load, thus with lower specific consumption. 

These benefits are even greater when a variable time-of-use electricity purchase tariff is 

applied. Indeed, an additional 2% reduction in costs and 16% reduction in emissions can be 

achieved compared to a fixed-price tariff. However, the currently available time-of-use tariffs 

propose lowered prices during nighttime hours, which are typically off-peak in terms of 

electricity demand. This causes much of the DR-eligible consumption to be shifted to those 

very hours, while also reducing the less cost-effective engine generation. Therefore, this 

increases the energy imported from the grid, which is the cause of new peak demand. 

It is therefore clear that, from a strictly economic and environmental point of view, the 

choice of variable time-of-use tariff is the optimal solution for the customer. However, from 

a system perspective, it makes the building more dependent on the grid.  

Looking ahead, the application of hourly tariffs indexed to electricity prices in the 

wholesale market, which better represent market dynamics, is expected to be analysed. It is 

possible that this will reduce the problems associated with peak demand. 

In addition, it is planned to include building thermal demand in the study, with a twofold 

objective: first, to consider the cogeneration potential of stationary engines, and second, to 

extend the DR to building heating. 

Finally, to make the proposed model more easily implementable, it will be important to 

identify targeted DR strategies depending on the type of load considered. 
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