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Abstract
Background To what extent retinal atrophy in neurodegenerative diseases reflects the severity and/or the chronicity of brain 
pathology or is a local independent phenomenon remains to be clarified. Moreover, whether retinal atrophy has a clinical 
(diagnostic and prognostic) value in these diseases remains unclear.
Objective To add light on the pathological significance and clinical value of retinal atrophy in patients with amyotrophic 
lateral sclerosis (ALS) and Kennedy’s disease (KD).
Methods Thirty-five ALS, thirty-seven KD, and forty-nine age-matched healthy controls (HC) were included in a one-year 
longitudinal study. Spectrum-domain optical coherence tomography (OCT) was performed at study entry (T0) and after 
12 months (T1). Disease duration and functional rating scale (FRS) for ALS and KD patients were correlated to retinal 
thicknesses.
Results Compared to HC, peripapillary retinal nerve fiber layer (pRNFL) thickness was significantly thinner in both ALS 
(p = 0.034) and KD (p = 0.003). pRNFL was thinner in KD compared to ALS, but the difference was not significant. In KD, 
pRNFL atrophy significantly correlated with both disease severity (r = 0.296, p = 0.035) and disease duration (r = – 0.308, 
p = 0.013) while no significant correlation was found in ALS (disease severity: r = 0.147, p = 0.238; disease duration: 
r = – 0.093, p = 0.459). During the follow-up, pRNFL thickness remained stable in KD while significantly decreased in ALS 
(p = 0.043).
Conclusions Our study provides evidence of retinal atrophy in both ALS and KD and suggests that retinal thinning is 
a primary local phenomenon in motoneuron diseases. The clinical value of pRNFL atrophy in KD is worthy of further 
investigation.

Keywords Optical coherence tomography · Amyotrophic lateral sclerosis · Kennedy’s disease · Motoneuron disease · 
Neurodegeneration · Biomarker

Introduction

Amyotrophic lateral sclerosis (ALS), the most common form 
of motor neuron disease (MND), and Kennedy’s disease 
(KD), an inherited MND that affects males, are two para-
digmatic neurodegenerative diseases that strongly differ in 
clinical course. ALS is characterized by rapid neurodegen-
eration of upper and lower motor neurons, leading to death 
within 2–5 years following the diagnosis [1]. KD, caused by 
a genetic mutation of the androgen receptor gene on the X 
chromosome, is characterized by a slowly progressive loss of 
lower motor neurons (determining atrophy of limb and facial 
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muscles), associated with other symptoms, such as sensory 
deficits, gynecomastia, and infertility [2].

Asymptomatic retinal nerve fiber layer (RNFL) thinning 
was reported to occur in ALS and was associated with dis-
ease progression, suggesting that other brain functional sys-
tems might be affected by the disease [3–5]. This observa-
tion, which constitutes a clinical/laboratory mismatch merits 
to be investigated given its pathogenic relevance. Moreover, 
no data are currently available on retina changes in other 
MND, particularly in KD.

Optical coherence tomography (OCT), a non-invasive 
imaging methodology that allows high-resolution analysis 
of retinal architecture and the measurement of its layers, is 
widely used to disclose early signs of neurodegeneration 
in brain inflammatory and neurodegenerative disorders. 
Indeed, thinning of the RNFL, the ganglion cell-inner plexi-
form layer (GCIPL), and the inner nuclear layer (INL) had 
been described in multiple sclerosis and dementia [6–14]. 
However, to what extent atrophy of retinal layers in brain 
disorders is secondary to the neurodegenerative processes 
occurring in the brain (i.e., trans-synaptic degeneration) or 
is primarily a local independent phenomenon remains to 
be clarified. Moreover, the clinical value of retinal atrophy 
remains obscure.

To add light on retinal pathology and its possible use 
for clinical purposes in MND, we designed a longitudinal 
OCT study aimed at analyzing and comparing retinal layer 
changes in two paradigmatic motoneuron diseases, ALS and 

KD, characterized by different pathogenetic mechanisms, 
severity and duration.

Methods

Study design and participants

Between April 2020 and September 2022, 35 ALS, 37 KD 
patients, and 49 healthy controls (HC) were consecutively 
enrolled in this study. ALS diagnosis was achieved accord-
ing to the 2020 revised El Escorial criteria [15], and KD 
diagnosis was genetically acquired [16]. All patients and 
HC gave written informed consent. Exclusion criteria were 
(1) ophthalmologic pathologies (including iatrogenic optic 
neuropathy, diabetes, uncontrolled hypertension, glaucoma), 
(2) refractive errors (± 6 D), (3) inability to perform OCT 
examination (e.g. dropped head), (4) diagnosis of genetic 
ALS variant. All clinical and demographic data of patients 
and HC are summarized in Table 1.

Cognitive and behavioral profile of all ALS patients 
included in the study was normal according to the Edin-
burgh Cognitive and Behavioral Amyotrophic Lateral Scle-
rosis screen (ECAS) which is routinely performed at our 
Center. In the large majority (> 80%) of patients the disease 
started in the spinal district which thus prevented us from 
conducting further statistical analysis clustering the patients 
by onset. On the other hand, statistical investigations by site 

Table 1  Baseline Demographics and Clinical Characteristics

FRS functional rating scale (ALSFRS-R for ALS: max score 48, SBMA-FRS for Kennedy: max score 56), HC healthy controls, ALS amyo-
trophic lateral sclerosis, SD standard deviation, IQR inter-quartile range
Bold indicates a statistically significant difference with a p value < 0.05
Significance testing
a one-way ANOVA
b 2-tailed t test on means
c Chi-squared test
d Mann-Whitney test
A HC, and ALS vs Kennedy < 0.001

HC ALS Kennedy HC vs ALS vs Ken-
nedy
p value

Bulbar onset ALS Spinal onset ALS Bulbar vs Spinal
p value

Subjects (eyes) (%) 49 (98) 35 (66) 37 (71) – 6 (10) (17%) 29 (56) (86%) –
Age, years, mean 

(SD)
59.6 (10.9) 60.8 (8.1) 58.2 (11.0) 0.341a 60.5 (10.5) 60.8 (7.9) 0.930b

Male, n (%) 24 (49%) 21 (60%) 37 (100%) HC vs ALS 0.158cA 1 (16.7%) 20 (69.0%) 0.017c

FRS, median (IQR) – 40/48 (7.5) 41/56 (11.0) – 5.5 (4.5–6.5) 6.0 (3.5–6.5) 0.766d

Disease duration, 
years, mean (SD)

– 2.10 (2.3) 13.7 (9.9)  < 0.001b 1.0 (1.3) 2.4 (2.4) 0.068b

On-going Riluzole 
therapy at baseline, 
n ALS patients (%)

– 29 (86%) – – 4 (66.7%) 25 (86.2%) 0.248d
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of onset in KD patients are redundant since we assumed as 
disease onset the appearance of weakness in the limbs. Fur-
thermore, according to the literature, cognitive impairment 
is minimal or absent in KD patients [17].

In ALS and KD patients OCT was performed at T0 
(enrolment in the study) and after 12 months (T1), whereas 
in HC was done only at study entry. The Revised Amyo-
trophic Lateral Sclerosis Functional Rating Scale (ALSFRS-
R) [18] and Spinal Bulbar Muscular Atrophy Functional 
Rating Scale (SBMA-FRS) score [19] were used as meas-
ures of disease severity, respectively in ALS and KD. For 
KD patients, disease duration was calculated since the onset 
of limb muscle weakness.

The study was approved by the Ethics Committee of Uni-
versity Hospital (Comitato Etico per la Sperimentazione, 
Azienda Ospedaliera Universitaria di Padova – Prot. N. 
AOP1619) and carried out in accordance with the Declara-
tion of Helsinki.

Optical coherence tomography

Spectral Domain (SD)-OCT (Spectralis; Heidelberg Engi-
neering version 1.7.0.0) was performed by a single certi-
fied neurologist (AM) in accordance with the APOSTEL 
recommendations [20]. Data on global peripapillary RNFL 
(pRNFL) thickness (μm) were obtained using a 12-degree 
ring scan (corresponding to a 3.5 mm diameter) manually 
placed around the optic disc.

The peripapillary 3.5-mm ring scan was used to measure 
mean global peripapillary RNFL (pRNFL G) and mean sec-
torial peripapillary RNFL thickness, i.e. temporal (pRNFL 
T), temporal-superior (pRNFL TS), temporal-inferior 
(pRNFL TI), nasal (pRNFL N), nasal-superior (pRNFL NS), 
nasal-inferior (pRNFL NI). Moreover, mean thickness of 
the papillomacular bundle (pRNFL PMB) and ratio between 
the thickness of the nasal and that of the temporal sector 
(pRNFL N/T) were measured.

Data on the GCIPL, INL, outer plexiform-outer nuclear 
layer (OPNL), retinal pigment epithelium (RPE), inner reti-
nal layer (IRL, including layers from RNFL to INL) volume 
 (mm3) in the macular area were acquired using a macular 
volume scan centered on the fovea, and including a 6 mm 
ring area. Automated segmentation of OCT scans and qual-
ity control were performed. Scans violating international-
consensus quality-control criteria (OSCAR-IB) [21] were 
excluded (n = 4 ALS and 3 KD patients excluded due to 
poor OCT quality; n = 35 ALS and 37 KD patients, of which 
respectively 66 and 71 eyes, entered the final analysis).

Statistical analysis

Statistical analyses were performed using SPSS 22.0 
(StataCorp LP, College Station, TX, USA). Normality in 

measurements was tested graphically and using Kolmogo-
rov–Smirnov test. Nonparametric tests were used for non-
normal or skewed data and parametric tests for normally 
distributed data. Respectively, median (interquartile range) 
and mean (± standard deviation) are shown. Differences 
between groups were analyzed using the chi-squared test 
for categorical variables, the independent 1-way ANOVA 
for parametric continuous variables, and the Mann–Whit-
ney test for nonparametric continuous variables. Post-hoc 
comparisons were performed with a 2-tailed t tests corrected 
with Bonferroni procedure. Differences for segmented reti-
nal layer thickness or volume data between groups were 
analyzed using generalized estimating equations (GEE) as 
recommended [20]; these were adjusted for intrasubject inte-
reye correlations and repeated measurements, and employed 
an exchangeable correlation structure. To account even for 
potential effects of demographic and clinical variables we 
also corrected for age, gender, and z-score-transformed FRS. 
Relationship between RNFL thickness and the patients’ dis-
ease severity based on the correspondent Functional Rating 
Scale was assessed using the Spearman correlation, while 
Pearson correlation was used for the relationship between 
RNFL thickness and disease duration, expressed respectively 
in months (m) for ALS, and in years (y) for KD. A p value 
of 0.05 was accepted as statistically significant.

Results

Study populations

ALS, KD and HC did not differ in age (p = 0.341). HC 
and ALS did not differ in gender (p = 0.158), whereas an 
expected significant difference in gender (p < 0.001) and 
disease duration (p < 0.001) was found between ALS and 
KD, given respectively the X-linked inheritance and slower 
disease course of KD. Bulbar and spinal onset ALS were 
similar in age, ALSFRS-R score, disease duration, and on-
going treatment. The majority (86%) of ALS patients were 
under Riluzole therapy at study enrollment (Table 1).

Baseline comparisons of retinal layer thicknesses

At T0, pRNFL G thickness was significantly lower in both 
ALS (p = 0.034) and KD (p = 0.003) compared to HC. 
The same finding was observed when pRNFL G thickness 
was compared between KD and the male HC population 
(p = 0.012). pRNFL G was thinner in KD compared to ALS, 
but the difference did not reach significance. Interestingly, 
while ALS revealed the involvement of the whole temporal 
sectors (pRNFL N/T, T, TS, and TI) including the PMB, in 
KD retinal atrophy was significant only in the TI sector. All 
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the other retina layers did not differ in volume between HC 
and the two MND groups (Table 2 and Fig. 1).

In KD, pRNFL G atrophy significantly correlated with 
both disease severity (r = 0.296, p = 0.035), and disease dura-
tion (r = -0.308, p = 0.013), while in ALS, no significant cor-
relation was found between pRNFL G thickness and both 
disease severity (r = 0.147, p = 0.238) or disease duration 
(r = -– 0.093, p = 0.459) (Fig. 2).

Longitudinal analysis of retinal thickness changes

29/35 ALS and 35/37 KD patients completed the 1-year (T1) 
follow-up OCT examination. Causes of drop-out consisted 
in refusal of the second examination, neurological worsen-
ing, and death.

From T0 to T1, pRNFL G thickness remained 
substantially stable in KD (from 97.85 ± 6.53 to 
98.11 ± 7.66 μm; + 0.26%) but decreased in ALS (from 
100.33 ± 7.95 to 99.60 ± 7.83 μm; -0.73%), and the thickness 
change was significantly different between the two groups 
(p = 0.043). No significant change in the volume of GCIPL, 

ONPL, RPE, IRL was observed between ALS and KD dur-
ing the follow-up (Table 3 and Fig. 3).

Discussion

Preliminary observations in ALS suggest that neurodegen-
eration is not confined to motor neurons but probably is a 
widespread pathological process that involves other func-
tional systems of the central nervous system (CNS), such 
as the visual pathway [22]. Post-mortem studies disclosed 
neurodegeneration signs in the inner retinal layers of ALS 
patients, such as inclusion bodies and atrophy [23]. In vivo 
studies by OCT, although suggesting the involvement of 
retina, gave discordant results. While the majority of the 
studies agree on the significant thinning of RNFL compared 
to HC [3, 4, 22, 24], more contradictory data are available 
on INL atrophy [3, 22, 24–26]. Moreover, while some stud-
ies found an association between RNFL thinning and both 
motor function decline [4, 27] and disease duration [28], oth-
ers failed [5, 26, 29]. Our study adds light on the structural 

Table 2  Baseline retinal layers thickness and comparisons between groups

HC healthy controls, ALS amyotrophic lateral sclerosis, SD standard deviation, pRNFL peri-papillary retinal nerve fiber layer, G global (average 
of all sectors), PMB papillo-macular bundle, N/T nasal/temporal ratio, T temporal sector, TS temporal superior sector, TI temporal inferior sec-
tor, N nasal sector, NS nasal superior sector, NI nasal inferior sector, GCIPL ganglion cell + inner plexiform layer, INL inner nuclear layer, OPNL 
outer plexiform + outer nuclear layer, RPE retinal pigment epithelium, IRL inner retinal layer (including layers from RNFL to INL)
ALS n (eyes) = 35 (66)
KD n (eyes) = 37 (71)
Significance testing
* p < 0.05
a Generalized estimation equation (GEE) model adjusted for inter-eye dependency
b GEE between KD and the only male HC: p = 0.012

HC ALS Kennedy HC vs ALS HC vs Kennedy ALS vs Kennedy
p  valuea p  valuea p  valuea

Thickness, μm, mean (SD)
 pRNFL G 103.13 (6.91) 99.76 (7.43) 97.79 (6.56) 0.034* 0.003*,b 0.353
 pRNFL PMB 54.29 (6.66) 49.55 (5.69) 51.74 (8.02) 0.001* 0.161 0.275
 pRNFL N/T 1.15 (0.27) 1.29 (0.31) 1.17 (0.37) 0.027* 0.807 0.223
 pRNFL T 69.87 (9.32) 64.93 (8.06) 67.47 (10.00) 0.015* 0.333 0.337
 pRNFL TS 142.18 (13.80) 131.24 (14.30) 138.32 (11.58) 0.001* 0.269 0.078
 pRNFL TI 147.10 (15.84) 132.59 (22.30) 137.79 (13.59)  < 0.001* 0.022* 0.367
 pRNFL N 78.37 (13.33) 81.76 (12.92) 75.53 (14.74) 0.250 0.424 0.129
 pRNFL NS 116.46 (19.98) 118.52 (18.88) 110.32 (16.24) 0.637 0.222 0.127
 pRNFL NI 122.57 (18.16) 122.07 (20.16) 113.79 (27.49) 0.904 0.202 0.235

Volume,  mm3, mean (SD)
 GCIPL 2.013 (0.139) 2.023 (0.125) 2.014 (0.119) 0.742 0.982 0.800
 INL 0.941 (0.046) 0.943 (0.050) 0.941 (0.066) 0.913 0.921 0.074
 OPNL 2.547 (0.150) 2.505 (0.153) 2.531 (0.252) 0.214 0.800 0.680
 RPE 0.422 (0.022) 0.409 (0.037) 0.410 (0.039) 0.072 0.063 0.873
 IRL 6.428 (0.28) 6.419 (0.258) 6.394 (0.353) 0.573 0.906 0.776
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retinal changes and their clinical correlates in ALS, also by 
comparison with the retinal changes observed in KD, up 
to date unexplored. Indeed, we observed that RNFL was 

atrophic in both ALS and KD, but with differences in thin-
ning rate and involved sectors. Namely, ALS was associ-
ated with a more diffuse and faster pRNFL temporal atrophy 

Fig. 1  Bloxplots showing baseline comparisons between HC, ALS, 
and KD in peripapillary RNFL G, PMB, T/N ratio, and pRNFL sec-
tors (thickness in μm), as well as macular GCIPL, INL, OPNL, RPE, 
IRL (volume in  mm3). *indicates p < 0.05. pRNFL G thickness was 

significantly lower in both ALS (p = 0.034) and KD (p = 0.003) com-
pared to HC. Sectorial analysis revealed that this significant thinning 
was localized in the whole temporal sectors (pRNFL N/T, T, TS, and 
TI) and PMB for ALS, and restricted to the TI sector in KD
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compared to KD which was instead characterized by a lim-
ited pRNFL involvement, namely in the TI and NI sectors 
(even if the latter was characterized by a high variance which 
did not allow to reach the significance), whose thickness 
did not change during the follow-up. Although the evolution 
of retinal thinning in ALS seems to evolve in parallel with 
motoneuron degeneration, according to other studies [5, 26, 
29], RNFL atrophy did not show a correlation with disease 

duration and severity. This observation, in line with patho-
logical observations [23] seems to support the hypothesis of 
a primarily local neurodegenerative process occurring in the 
retina, that encourages further investigations.

To our knowledge, this is the first report describing retinal 
atrophy in KD patients. Besides lower motoneuron degener-
ation, KD is characterized by a complex clinical picture that 
may include sensory neuropathy, gynecomastia, autonomic 

Fig. 2  a Spearman correla-
tion analysis between disease 
severity (based on ALSFRS-R 
and SBMA-FRS) and pRNFL 
G, respectively in ALS and KD 
patients. b Pearson correlation 
between pRNFL G and disease 
duration, expressed respectively 
in months (m) for ALS, and in 
years (y) for KD. r indicates 
either Spearman’s rho or Pear-
son r; p indicates significance. 
In KD, pRNFL G atrophy 
significantly correlated with 
both disease severity (r = 0.296, 
p = 0.035), and disease duration 
(r = – 0.308, p = 0.013)

Table 3  Comparison of change in retinal layers thickness between ALS vs Kennedy’s disease

ALS amyotrophic lateral sclerosis, T0 baseline, T1 twelve-month follow-up, SD standard deviation, pRNFL G peri-papillary retinal nerve fiber 
layer Global (average of all sectors), GCIPL ganglion cell + inner plexiform layer, INL inner nuclear layer, OPNL outer plexiform + outer nuclear 
layer, RPE retinal pigment epithelium, IRL inner retinal layer (including layers from RNFL to INL)
ALS n (eyes) = 29 (54)
KD n (eyes) = 35 (67)
* p < 0.05
a Generalised estimation equation (GEE) model adjusted for inter-eye dependency and repeated measurements
b Interaction time*group

Motoneuron Disease T0 T1 T0-T1 Percent 
Change, mean

Intra-group 
comparison

ALS vs  Kennedyb

T0–T1
p  valuea

Thickness, μm, mean (SD)
 pRNFL G ALS 100.33 (7.95) 99.60 (7.83)  – 0.73% 0.063 0.043*

Kennedy 97.85 (6.53) 98.11 (7.66)  + 0.26% 0.681
Volume,  mm3, mean (SD)
 GCIPL ALS 2.029 (0.128) 2.017 (0.133)  – 0.59% 0.098 0.161

Kennedy 2.014 (0.119) 2.011 (0.114)  – 0.15% 0.355
 INL ALS 0.941 (0.050) 0.936 (0.049)  – 0.53% 0.264 0.604

Kennedy 0.941 (0.066) 0.938 (0.058)  – 0.32% 0.480
 OPNL ALS 2.512 (0.155) 2.498 (0.140)  – 0.56% 0.312 0.584

Kennedy 2.531 (0.252) 2.523 (0.243)  – 0.32% 0.511
 RPE ALS 0.411 (0.038) 0.411 (0.038) 0.00% 1.000 1.000

Kennedy 0.409 (0.039) 0.409 (0.048) 0.00% 1.000
 IRL ALS 6.412 (0.271) 6.387 (0.280)  – 0.39% 0.578 0.715

Kennedy 6.419 (0.353) 6.400 (0.335)  – 0.30% 0.667
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and sexual dysfunctions. For the first time, we described a 
selective thinning of the TI sector of pRNFL in KD, and 
its association with disease severity and duration. These 
findings are particularly interesting since CNS seems to be 
spared in KD [30]. However, in a few studies on a very small 
number of patients subtle pathological changes in the grey 
matter or white matter atrophy were described by means of 
non-conventional MRI sequences (for a review see [31]). 
Most of the changes, however, were observed in the motor 
system, predominantly affecting the cortical-spinal tract [32] 
or the frontal lobe and cerebellum [33], although changes 
in the limbic lobe were also found. Although, MRI was 
not routinely performed on our patients (the exam was not 
included in the diagnostic workup), no patient in our cohort 
had clinical signs and symptoms of brain pathology. Thus, 
a primary slowly progressive neuronal degeneration (i.e., 
not detectable in a one-year follow-up), seems to occur in 
the retina of KD.

As above mentioned, to what extent RNFL atrophy is 
a primary local neurodegenerative phenomenon or rather 
the effect of trans-synaptic degeneration due to pathological 
changes in the visual pathway is a matter of debate. Indeed, 
the significant decrease in RNFL thickness observed in ALS 
in one-year follow-up, apparently not correlated with the 
clinical picture, seems to indicate that a local neurodegen-
erative process occurs in the retina of ALS patients, thus 
supporting the view that motor neurons are not the only neu-
ronal populations affected in this disease. Moreover, our data 
in KD, a disease apparently not involving the CNS, further 
support the view that retina may be the site of primary neu-
rodegenerative phenomena, that merit to be deeply inves-
tigated. Indeed, the retina is an extension of the CNS, and 

measurements of retina layers, especially RNFL thickness 
by means of OCT may provide important information on 
the neurodegenerative processes taking place in the brain. 
To what extent retinal thinning might reflect the aggressive-
ness and rapidity of the disease progression in ALS need 
to be explored in larger patient cohorts. However, by com-
parison, the absence of detectable retinal thinning in KD in 
our follow-up window indicates that retinal changes in KD 
proceed more slowly.

We are aware that the missing longitudinal trajectory 
of retinal changes in the HC group, accounting for natu-
ral aging-related thinning, may constitute a limitation of 
our study. However, we would like to stress the explorative 
nature of our study which was aimed at pointing out retinal 
differences between the two most important MND and their 
clinical correlates. Moreover, although quite heterogenous, 
the clinical phenotype of our ALS population was consistent 
with the epidemiological prevalence of spinal-onset ALS, 
compared to bulbar-onset, obtaining a representative sample 
of the sporadic ALS. To what extent the site of onset and 
the degree of behavioral impairment may influence the cor-
relation with retinal findings is still unknown and deserves 
further investigation in larger patient cohorts.

In conclusion, our study in subjects with ALS or KD has 
added some new information about retinal neurodegenera-
tion in MND. Taken together, our findings seem to suggest 
that retinal atrophy is a phenomenon at least partly discon-
nected from the degenerative process that characterizes 
MND.
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