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Abstract

The binary information collects all those events that may or may not occur.
With this kind of variables, a large amount of information can be captured, in par-
ticular, about financial assets and their future trends. In our paper, we assume the
existence of some anticipative information of this type in a market whose risky as-
set dynamics evolve according to a Brownian motion and a Poisson process. Using
Malliavin calculus and filtration enlargement techniques, we compute the semi-
martingale decomposition of the mentioned processes and, in the pure jump case,
we give the exact value of the information. Many examples are shown, where the
anticipative information is related to some conditions that the constituent processes
or their running maximum may or may not verify.

Keywords— Optimal portfolio; Malliavin calculus; Clark-Ocone formula; Insider infor-
mation; Value of the information.

1 Introduction

In this paper we focus on the study of the presence of some anticipative information in a
market composed of a bank bond and a risky asset, the latter one driven by a Brownian motion
W = (Wt, 0 ≤ t ≤ T ) and a compensated Poisson process Ñ = (Nt −

∫︁ t
0 λsds, 0 ≤ t ≤ T ) with

positive intensity process λ = (λt, 0 ≤ t ≤ T ) adapted to the natural filtration generated by a
Poisson process N = (Nt, 0 ≤ t ≤ T ). In the optimal portfolio problem, a non-informed agent is
looking for maximizing her expected logarithmic gains at the end of a trading period T > 0, while
playing with the natural information flow F := {Ft}0≤t≤T with Ft := σ(Ws, Ns : 0 ≤ s ≤ t).
She will be referred to as the F-agent. In addition, we assume that there exists an agent who
is informed about a binary random variable G containing some anticipative information about
the path of W and/or N , i.e., she knows if a certain future condition will happen or not. The
anticipative filtration will be the initial enlargement G := F ∨ σ(G) and the agent playing with
it will be referred to as the G-agent.

Filtration enlargement is a stochastic calculus technique that allows modeling the incorpo-
ration of additional non-adapted information. It has been initially developed by [1, 2] with
multiple applications, including insider trading or, more general, asymmetric information. In
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2 MODEL AND NOTATION 2

the seminal paper [3], it is shown that if the dynamics of the risky asset do not include the
discontinuous part N , then the additional gain is given by the entropy of the random variable G.
After that, much progress has been made in the analysis of the additional information in the
Brownian case, see [4, 5, 6] for the main references. The research on the Poisson process in
the initial enlargement framework started with [7, 8] in which the existence of a compensator
is analyzed. Although they consider the entropy, the additional gain of an informed G-agent
in the optimal portfolio problem has not been studied. In [9], a similar framework is studied
however they mainly focused on enlargements by the final value of the pair (WT0 , NT0) with
T0 ≥ T .

Our main motivation is to get an expression for the investor’s additional gains in a mar-
ket whose risky asset dynamics depend only on a Poisson process, in the same spirit of the
analysis done in [3]. This is achieved in Theorem 3.11. We include various examples about
additional information for this case. Another novelty of our paper is in the kind of examples
that we chose to model the additional information. As it was done with respect to the Brow-
nian motion case, we consider both G = 1{NT≤b} and G = 1{b1≤NT≤b2}, for some constants
b, b1, b2 ∈ N. We work also with G = 1{a1≤WT≤a2}×{b1≤NT≤b2}, where the G-agent knows if the
pair (WT , NT ) falls within a certain rectangle or not. However, as the main example we con-
sider G = 1{a1≤MT≤a2}×{b1≤JT≤b2} being MT := sup0≤s≤T Ws and JT := sup0≤s≤T Ñ s in which
the G-agent knows whether the running maximum processes will be in a certain region or not.
For the majority of our computations, we use Malliavin calculus techniques, we suggest [10]
for a general overview on this variational calculus. In [11] it was the first time in applying the
Malliavin approach to the Poison process in order to prove the existence of conditional densities
in some cases. In [12], the enlargement of filtration was done without the Jacod hypothesis but
assuming some Malliavin regularity assumptions on the conditional densities. Nowadays, the
optimal portfolio problem with non-continuous assets is still a topic of research, for example
in [13], a weaker arbitrage condition is studied where the authors analyse the additional gains
generated by an initial enlargement via super-hedging.

The paper is organised as follows. In Section 2 we describe the framework and we introduce
the notation. In Section 3 we consider the purely jump market and we get the explicit expression
of the compensator of the Poisson process for binary random variables. The main example of
this section is about the terminal value of the Poisson process, that is, G = 1{NT∈B} being B
an interval. In Subsection 3.1, we state Theorem 3.11 in which we get a nice expression for the
additional gain of an agent who plays with an initial enlarged filtration. In Section 4 we work
in a Brownian-Poisson market, deducing similar equations for the compensators. The main
examples considered in this subsection are G = 1{WT∈A}×{NT∈B} and G = 1{MT∈A}×{JT∈B} for
A,B some given intervals.

2 Model and Notation

Let (Ω,FT ,P ,F) be a filtered probability space, where the filtration F = {Ft}0≤t≤T is assumed
to be complete and right-continuous. We assume that the agent is going to invest in a market
composed by two assets in a finite horizon time T > 0. The first one is a risk-less bond
D = (Dt, 0 ≤ t ≤ T ) and the second one is a risky stock S = (St, 0 ≤ t ≤ T ). The dynamics of
both are given by the following SDEs,

dDt

Dt
= ρtdt , D0 = 1 (2.1a)

dSt
St−

= µtdt+ σtdWt + θt (dNt − λtdt) , S0 = s0 > 0 , (2.1b)



2 MODEL AND NOTATION 3

where W = (Wt, 0 ≤ t ≤ T ) is a Brownian motion with FW its natural filtration and
N = (Nt, 0 ≤ t ≤ T ) is a Poisson process with positive stochastic intensity λ = (λt, 0 ≤ t ≤ T )
adapted to its natural filtration FN . Moreover, we assume that∫︂ T

0
λsds < +∞ , P -almost surely .

The filtration F := {Ft}0≤t≤T is generated by the Brownian motion and the Poisson process,
and it is augmented by the zero P -measure sets, N :

Ft := σ(Ws, Ns : 0 ≤ s ≤ t) ∨N .

By E and V we refer the expectation and the variance operators of a given random variable
under the measure P . Given a σ-algebra F , by E[·|F ] and V [·|F ] we denote the conditional
expectation and the conditional variance. We define the space L2(Ω,FT ,P ), or simply L2(P )
when (Ω,FT ) is clear, as the set of random variables with finite second moment,

L2(P ) = {F : E[F 2] < +∞} .

We define L2(Ω,FT , dt× P ,F), or simply L2(dt× P ), as the space of all F-adapted processes,

L2(dt× P ) =
{︂
X = (Xt, 0 ≤ t ≤ T ) :

∫︂ T

0
E
[︁
X2

s

]︁
ds < +∞

}︂
.

About the market coefficients, in (2.1a) and (2.1b) we assume that they are càglàd F-adapted
processes that satisfy the following integrability condition

E

[︃∫︂ T

0

(︁
|ρs|+ |µs|+ σ2s + θ2s

)︁
ds

]︃
< +∞ . (2.2)

Using the previous set-up, it is assumed that an agent can control her portfolio by a self-financing
process π = (πt, 0 ≤ t ≤ T ), with the aim to maximize her expected logarithmic gains at the
finite horizon time. We denote by Xπ = (Xπ

t , 0 ≤ t ≤ T ) a positive process to model the wealth
of the portfolio of the investor under the strategy π. The dynamics of the wealth process are
given by the following SDE, for 0 ≤ t ≤ T ,

dXπ
t

Xπ
t−

= (1− πt)
dDt

Dt
+ πt

dSt
St−

, Xπ
0 = x0 > 0 , (2.3)

and by using the evolution of both assets given in (2.1) we get

dXπ
t

Xπ
t−

=(1− πt)ρtdt+ πt (µtdt+ σtdWt + θt (dNt − λtdt)) , Xπ
0 = x0 ,

where the SDE is well-defined on the probability space (Ω,FT ,P ,F). Before giving a proper
definition of the set of processes π that we consider, we look for the natural conditions they
should satisfy. Applying the Itô formula to the dynamics of the risky asset given by (2.1b), we
get an explicit solution as follows,

ln
St
s0

=

∫︂ t

0

(︃
µs −

1

2
σ2s + λs(ln(1 + θs)− θs)

)︃
ds

+

∫︂ t

0
σsdWs +

∫︂ t

0
ln(1 + θs)(dNs − λsds) ,
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and to ensure that the process S is well-defined, we shall assume that,

− 1 < θt , dt× dP − almost surely. (2.4)

If we apply the Itô formula to the wealth process we get,

ln
Xπ

t

x0
=

∫︂ t

0

(︃
ρs + πs(µs − ρs)−

1

2
π2sσ

2
s + λs(ln(1 + πsθs)− πsθs)

)︃
ds

+

∫︂ t

0
πsσsdWs +

∫︂ t

0
ln(1 + πsθs)(dNs − λsds) , (2.5)

provided that these integrals are well-defined. To ensure this, we assume the following integra-
bility condition,

E

[︃∫︂ T

0

(︁
|ρs|+ |πs||µs − ρs|+ π2sσ

2
s + π2sθ

2
s

)︁
ds

]︃
< +∞ . (2.6)

Then, in order to guarantee that Xπ is well-defined, we impose that for all π there exists ϵπ > 0
such that,

1 + πtθt > ϵπ , 0 ≤ t ≤ T . (2.7)

We assume that the market coefficients satisfy the following relation in order to assure non-
infinite expected gains,

µt − ρt
θt

< 0 , dt× dP − almost surely. (2.8)

Now, we can properly define the optimization problem as the supremum of the expected loga-
rithmic gains of the agent’s wealth at the finite horizon time T .

J(x0, π) := E [lnXπ
T |Xπ

0 = x0] , VH
T := sup

π∈A(H)
J(x0, π) , F ⊆ H . (2.9)

Finally we give the definition of the set A(H) made of all admissible strategies for the H-agent,
that is the one playing with information flow H ⊇ F.

Definition 2.1. In the financial market (2.1a)-(2.1b), we define the set of admissible strategies
A(H) as the set of portfolio processes π = (πt, 0 ≤ t ≤ T ) càglàd and adapted with respect to
the filtration H which satisfy the conditions (2.4), (2.6), (2.7) and (2.8).

In the following statement we summarize the results about the optimal portfolios in mar-
kets with Brownian noise, Poisson noise or both. They can be found in Example 16.22 and
Theorem 16.59 of the monography [9] where it is assumed that the intensity process satisfies
λt = λ > 0, ∀t ∈ [0, T ].

Proposition 2.2. If σt ̸= 0, θt = 1 dt × P -almost surely, then the optimal strategy for the
problem (2.9) with the information flow F satisfies

π∗t =
µt − ρt − σ2t − λ+

√︁
(µt − ρt − σ2t − λ)2 + 4σ2t (µt − ρt)

2σ2t
. (2.10)

Moreover, if we have that σt ̸= 0 and θt = 0 dt × P -almost surely, then we recover the classic
Merton problem with the optimal strategy satisfying the relation

π∗t =
µt − ρt
σ2t

. (2.11)

Finally, if we have that σt = 0, θt ̸= 0 and λθt ̸= µt − ρt dt×P -almost surely, then the optimal
strategy is given by

π∗t =
µt − ρt

λθ2t − θt(µt − ρt)
. (2.12)
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Let G ∈ FT be a real valued random variable modeling some additional information. We
introduce the filtration G = {Gt}0≤t≤T under which the privileged information is accessible
since the beginning time t = 0, that is

Gt =
⋂︂
s>t

(Fs ∨ σ(G)) , (2.13)

We denote with PG the distribution of G, i.e., PG(·) = P (G ∈ ·) on σ(G) and by PG(·|F) =
P (G ∈ ·|F) the corresponding conditional probability with respect to a given σ-algebra F .
In order to assure that any F-semimartingale is also a G-semimartingale, that is known in
the literature as the hypothesis (H’), see [14], for the rest of this paper we state the following
standing assumption, known as the Jacod hypothesis.

Assumption 2.3. The conditional distributions PG(·|Ft) for t ∈ [0, T ) almost surely verify the
following absolutely continuity condition with respect to PG,

PG(·|Ft) ≪ PG .

This assumption assures the existence of a jointly measurable process pg = (pgt , 0 ≤ t < T ),
with g ∈ Supp(G) such that P (A|Ft) =

∫︁
A p

g
tP

G(dg) for any A ∈ σ(G). In particular,

pgt =
PG(dg|Ft)

PG(dg)
, 0 ≤ t < T .

In Theorem 2.5 of [1] it is proven that the Jacod hypothesis implies the hypothesis (H’). The
main results of next section are stated for binary random variables that satisfy the former
hypothesis. As the process pg is an F-martingale for any g ∈ Supp(G), see Lemma 2.1 in [3],
then ⟨X, pg⟩F = (⟨X, pg⟩Ft , 0 ≤ t < T ) is well-defined for any F-local martingale X. We define,

⟨X, pG⟩Fs := ⟨X, p·⟩Fs ◦G .

Proposition 2.4. Let X = (Xt, 0 ≤ t ≤ T ) be an F-local martingale and let G be an
FT -measurable random variable satisfying the Jacod hypothesis. Then,

ˆ︁Xt = Xt −
∫︂ t

0

d⟨X, pG⟩Fs
pGs−

, 0 ≤ t ≤ T , (2.14)

is a G-local martingale.

When the compensator of the process X appearing in (2.14) is absolutely continuous with
respect to the Lebesgue measure, its density is usually called the information drift and it plays
a crucial role in our computations.

Definition 2.5. The logarithmic price of the information of a filtration H ⊃ F is given by

∆VH
T = VH

T − VF
T ,

where the quantities on the right-hand side are defined in (2.9).

To conclude this section, we state the Clark-Ocone formula. The operators Dt and Dt,1 refer
to the Malliavin derivative in the Brownian and Poisson cases respectively and we consider their
generalizations to L2(P ). We refer to [10] for the details and a general background.

Proposition 2.6. Let G ∈ L2(P ) be an FT -measurable random variable, then the following
representation holds,

G = E[G] +

∫︂ T

0
E[DtG|Ft]dWt +

∫︂ T

0
E[Dt,1G|Ft]dÑ t . (2.15)
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3 Initial Enlargements

Using the predictable representation property (PRP) enjoyed by the compensated Poisson pro-
cess, we know that for every FN

T -measurable real valued random variable G ∈ L2(P ), there
exists an FN -adapted process φ ∈ L2(dt× P ) such that

G = E[G] +

∫︂ T

0
φsdÑ s , (3.1)

usually called the non-anticipative derivative of G. Let B ∈ B(R) be a subset and consider the
following PRP,

1{G∈B} = PG(B) +

∫︂ T

0
φs(B)dÑ s , (3.2)

where by the predictable process φ(B) = (φt(B) : 0 ≤ t ≤ T ) we denote the unique one within
the Hilbert space L2(dt × P ) that satisfies (3.2) for a fixed B. We will make the following
assumption in order to apply a dominate convergence theorem on φ(·). It can be verify that
this assumption holds in all presented examples.

Assumption 3.1. The process φ : [0, T ]×B(R) −→ L2(dt×P ,F) is bounded P -almost surely.

In the next lemma we prove that φ(·) is a vector measure, we refer to [15] for the details
and a general background on the vector measure theory.

Lemma 3.2. The set function B −→ φ(B), with B ∈ B(R), is a countably additive L2(dt×P )-
valued vector measure.

Proof. Let {Bi}∞i=1 ⊂ B(R) be a disjoint sequence of subsets satisfying B = ∪∞
i=1Bi. Then

1{G∈B} =
∑︁∞

i=1 1{G∈Bi} P -almost surely in L2(dt×P ,F) (see Example 3 in [15]). Then, using
the PRP we get

1{G∈B} =
∞∑︂
i=1

1{G∈Bi} = P (G ∈ B) +
∞∑︂
i=1

∫︂ T

0
φt(Bi)dÑ t =

∫︂ T

0

∞∑︂
i=1

φt(Bi)dÑ t ,

where we have used the dominate convergence theorem. Finally, by the uniqueness of the PRP
we deduce φ(B) =

∑︁∞
i=1 φ(Bi) and the result follows.

In the following lemma we state the Radon-Nikodym derivative for the Hilbert valued ran-
dom measure φ. We shall assume that the vector measure φ is of bounded variation, i.e.,
|φ(R)| < +∞ according to Definition 4 of [15].

Lemma 3.3. With the previous set-up, there exists a set of processes ψg = (ψg
t , 0 ≤ t ≤ T ) with

g ∈ Supp(G) and within L1(dt× PG) such that

φt(B) =

∫︂
B
ψg
tP

G(dg) , B ⊂ R . (3.3)

Proof. If B ⊂ R satisfies PG(B) = 0, then the random variable 1{G∈B} is P -almost surely equal

to zero and by the uniqueness of the PRP we know that φ(B) = 0 and we conclude φ ≪ PG

on σ(G). We get the result by applying Proposition 2.1 of [16].

We fix g in the support of G, not yet necessary binary. By Lemmas 3.2 and 3.3 we know
that there exists a set of processes ψg = (ψg

t , 0 ≤ t ≤ T ) with g ∈ Supp(G) such that,

1{G∈dg} = PG(dg) +

∫︂ T

0
ψg
sP

G(dg)dÑ s . (3.4)
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When G is purely atomic, the PRP (3.4) reduces to

1{G=g} = P (G = g) +

∫︂ T

0
ψg
sP (G = g)dÑ s . (3.5)

Lemma 3.4. Let G ∈ L2(P ) be an FN
T -measurable random variable satisfying the Jacod hy-

pothesis, then the process γG = (γGt , 0 ≤ t < T ) defined as

γGt :=
ψG
t

pGt
, (3.6)

satisfies that N· −
∫︁ ·
0 λs

(︁
1 + γGs

)︁
ds is a G-local martingale.

Proof. As before, we compute the process pgt ,

pgt =
PG(dg|FN

t )

PG(dg)
=

E[1{G∈dg}|FN
t ]

PG(dg)

=
PG(dg) +

∫︁ t
0 ψ

g
sP

G(dg)dÑ s

PG(dg)
= 1 +

∫︁ t
0 ψ

g
sP

G(dg)dÑ s

PG(dg)
. (3.7)

Differentiating in a Itô sense, we get dpgt = ψg
t dÑ t. According to Theorem 9.2.2.1 of [17], we

have

⟨pg, Ñ⟩Ft =

∫︂ t

0
ψg
sd⟨Ñ , Ñ⟩Fs =

∫︂ t

0
ψg
sλsds .

Then, following the lines of Proposition 2.4, we get∫︂ t

0

d⟨pG, Ñ⟩Fs
pGs−

=

∫︂ t

0

ψG
s

pGs−
λsds , 0 ≤ t < T ,

and the result holds true.

Note that the Lemma 3.4 simplifies the computations leading to Theorem 2.4 of [7]. From
here until the end of the section, we will assume that the random variable G is binary, i.e.,
Supp(G) = {0, 1}.

Theorem 3.5. If G is a binary random variable, then

γGt = φt
G−E[G|FN

t ]

V [G|FN
t ]

. (3.8)

Proof. As G = 1{G=1}, by the uniqueness of the representation we conclude φ = φ1 and
φ1 = −φ0. Using that

E[G|FN
t ] = P (G = 1|FN

t ) , V [G|FN
t ] = P (G = 1|FN

t )(1− P (G = 1|FN
t )) ,

the result follows by applying (3.1) and (3.5).

Remark 3.6. Note that we can express

γgt =
φt

P (G = 0|FN
t )− g

, g ∈ {0, 1} ,

where φ is the non-anticipative derivative of the binary random variable G.
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By using the Clark-Ocone formula we can deduce that φt = E[Dt,1G|FN
t ], ∀t ∈ [0, T ] and P -

almost surely, which allows to compute some interesting examples. Following [18], we introduce
the following operator

Ψt,1G := G(ω(t,1))−G(ω) , (3.9)

being ω(t,1) the modification of the trajectory ω by adding a new jump of size 1 at time t. In [19]
it is proved that if |Ψt,1G|2 ∈ L1(dt×P ), then this operator coincides with the usual Malliavin
derivative, in the case of the Poisson process we have that Ψt,1G = Dt,1G.

Example 3.7. Let G = 1{NT≤b} with b ∈ N and consider the initial enlargement G ⊃ F. We
compute the process φ as follows,

Ψt,11{NT≤b} = 1{NT+1≤b} − 1{NT≤b} = −1{NT=b}

which obviously satisfies the integrability condition and therefore

Dt,11{NT≤b} = −1{NT=b} .

In order to compute the Clark-Ocone formula we compute its conditional expectation as follows,

E
[︁
Dt,11{NT≤b}|FN

t

]︁
= −P

(︁
NT = b|FN

t

)︁
.

The PRP holds true,

1{NT≤b} = P (NT ≤ b)−
∫︂ T

0
P
(︁
NT = b|FN

t

)︁
dÑ t . (3.10)

Then, we compute the compensator as

γgt =
P
(︁
NT = b|FN

t

)︁
P (NT > b|FN

t )− g
, g ∈ {0, 1} . (3.11)

Note that γGt ≥ −1 because γ0t ≥ 0 and

γ1t = −P (NT = b|FN
t )

P (NT ≤ b|FN
t )

≥ −1 .

We will need this in order to compute ln(1 + γGt ). In addition, we can achieve more explicit
results if we assume that λt is FN

0 -measurable ∀t ∈ [0, T ], where the σ-algebra FN
0 can be non-

constant but we need to assure that N is still an FN -adapted counting process with compensator
λ. Then we can compute the probabilities as follows

P (Nt −Ns = n|FN
s ) = e−Λ(s,t) (Λ(s, t))

n

n!
, Λ(s, t) :=

∫︂ t

s
λudu .

In particular, we are interested in

P
(︁
NT = b|FN

t

)︁
= e−Λ(t,T ) (Λ(t, T ))

b−Nt

(b−Nt)!
1{Nt≤b} .

The PRP is simplified as follows

1{NT≤b} = P (NT ≤ b)−
∫︂ T

0
e−Λ(t,T ) (Λ(t, T ))

b−Nt

(b−Nt)!
1{Nt≤b}dÑ t (3.12)

and the compensator is

γGt =
e−Λ(t,T )

(b−Nt)!

(Λ(t, T ))b−Nt1{Nt≤b}

P (NT > b|FN
t )−G

. (3.13)

Note that, in the simplest case of time-homogeneous Poisson process with constant intensity
λ > 0, we have Λ(t, T ) = λ(T − t).
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Example 3.8. Let G = 1{NT∈B} with B = [b1, b2], and b1, b2 ∈ N. We consider the initial
enlargement G ⊃ F. We compute the process φ as before,

Dt,11{NT∈B} = 1{NT+1∈B} − 1{NT∈B} .

In order to compute the Clark-Ocone formula we compute its conditional expectation as follows,

E
[︁
Dt,11{NT∈B}|FN

t

]︁
= P

(︁
NT = b1 − 1|FN

t

)︁
− P

(︁
NT = b2|FN

t

)︁
and the PRP holds,

1{NT∈B} = P (NT ∈ B)−
∫︂ T

0

(︁
P
(︁
NT = b2|FN

t

)︁
− P

(︁
NT = b1 − 1|FN

t

)︁)︁
dÑ t , (3.14)

giving the following formula for compensator

γGt =
P
(︁
NT = b2|FN

t

)︁
− P

(︁
NT = b1 − 1|FN

t

)︁
P (NT ∈ Bc|FN

t )−G
. (3.15)

A direct computation shows that γGt ≥ −1. If we assume that the process λ is FN
0 -measurable,

then the PRP simplifies as follows

1{NT∈B} =P (NT ∈ B)

−
∫︂ T

0
e−Λ(t,T )

(︃
(Λ(t, T ))b2−Nt

(b2 −Nt)!
1{Nt≤b2} −

(Λ(t, T ))b1−Nt−1

(b1 −Nt − 1)!
1{Nt<b1}

)︃
dÑ t

and the compensator is

γGt =

(︃
(Λ(t, T ))b2−Nt

(b2 −Nt)!
1{Nt≤b2} −

(Λ(t, T ))b1−Nt−1

(b1 −Nt − 1)!
1{Nt<b1}

)︃
e−Λ(t,T )

P (NT ∈ Bc|FN
t )−G

.

3.1 Price of the information

Working in the filtration F, if we take expectation in (2.5), then

E

[︃
ln
Xπ

T

X0

]︃
= E

[︃∫︂ T

0
ρs + πs(µs − ρs) + λs(ln(1 + πsθs)− πsθs) ds

]︃
,

with π ∈ A(F). Using that the maximum is attained in the strategy given by (2.12), the solution
of the optimal control problem is

VF
T =

∫︂ T

0
E

[︃
ρs −

µs − ρs
θs

+ λs ln

(︃
λs

λs − (µs − ρs)/θs

)︃]︃
ds , (3.16)

which is trivially positive as for the non-arbitrage condition (2.8) all the terms are well-defined
and positive. If π ∈ A(G), the Itô integral with respect to Ñ is not necessary well defined, but
using the Jacod hypothesis and, therefore, the G-semimartingale decomposition we can still use
it. We define the process

ˆ︁Nt := Nt −
∫︂ t

0
λs
(︁
1 + γGs

)︁
ds , 0 ≤ t ≤ T ,

which is a G-local martingale by Theorem 3.5. Then the dynamics of the wealth process satisfy
the following SDE,

dXπ
t

Xπ
t−

=
(︁
(1− πt)ρt + πtµt + πtθtλtγ

G
t

)︁
dt+ πtθtd ˆ︁Nt , X0 = x0 , (3.17)
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and we have the following explicit solution

ln
Xπ

t

x0
=

∫︂ t

0

(︁
ρs + πs(µs − ρs) + λs(1 + γGs ) ln(1 + πsθs)− λsπsθs

)︁
ds

+

∫︂ t

0
ln(1 + πsθs)d ˆ︁Ns .

As it is argued in [3], by using the integrability condition of ln(1+ πtθt), the stochastic integral
satisfies

E

[︃∫︂ T

0
ln(1 + πsθs)d ˆ︁Ns

]︃
= 0 .

Then,

E

[︃
ln
Xπ

T

x0

]︃
=

∫︂ T

0
E
[︁
ρs + πs(µs − ρs) + λs(1 + γGs ) ln(1 + πsθs)− λsπsθs

]︁
ds . (3.18)

In the next proposition we compute the optimal strategy for a G-agent.

Proposition 3.9. If G is binary and θt ̸= 0 dt×P -almost surely, then the strategy solving the
optimization problem (2.9) with information flow G is given by

πGt =
µt − ρt

λtθ2t − θt(µt − ρt)
+

λtγ
G
t

λtθt − (µt − ρt)
. (3.19)

Proof. We apply a standard perturbation argument. Let β ∈ A(G) be a bounded strategy and
let ϵ > 0. Then we define

I(ϵ) =

∫︂ T

0
E
[︁
(πs + ϵβs)(µs − ρs) + λs(1 + γGs ) ln(1 + (πs + ϵβs)θs)− λs(πs + ϵβs)θs

]︁
ds.

We impose I ′(0) = 0 in order to get the optimality condition.

0 = I ′(0) = lim
ϵ→0

I(ϵ)− I(0)

ϵ

= lim
ϵ→0

∫︁ T
0 E

[︂
ϵβs(µs − ρs) + λs(1 + γGs ) ln

(︂
1 + ϵ βsθs

1+πsθs

)︂
− ϵλsβsθs

]︂
ds

ϵ

=

∫︂ T

0
E

[︃
βs(µs − ρs) + λs(1 + γGs )

βsθs
1 + πsθs

− λsβsθs

]︃
ds .

We take βs = ξ1{t≤s<t+h} being ξ a bounded and Gt-measurable random variable and I ′(0) can
be rewritten as follows,

0 = I ′(0) =

∫︂ t+h

t
E

[︃
ξ

(︃
µs − ρs +

λs(1 + γGs )θs
1 + πsθs

− λsθs

)︃]︃
ds .

Then, we conclude that

0 =

∫︂ t+h

t
E

[︃
µs − ρs +

λs(1 + γGs )θs
1 + πsθs

− λsθs|Gt

]︃
ds

where the last step is due that ξ is any Gt-measurable random variable. Taking h → 0 we get
the condition

0 = µs − ρs +
λs(1 + γGs )θs

1 + πsθs
− λsθs

and the result holds true.
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Note that the strategy (3.19) is well-defined thanks to the no-arbitrage assumption given
in (2.8).

Lemma 3.10. The information drift is orthogonal to the information flow F, i.e.,

E
[︁
γGt |Ft

]︁
= 0

Proof. It comes directly from Theorem 3.5.

Theorem 3.11. Let G ⊃ F be the initial enlargement with G a binary random variable, then,

VG
T − VF

T =

∫︂ T

0
E
[︁
λs(1 + γGs ) ln

(︁
λs(1 + γGs )

)︁
− λs lnλs

]︁
ds ≥ 0 . (3.20)

Proof. By (3.18) we have

VG
T =

∫︂ T

0
E
[︁
ρs + πGs (µs − ρs) + λs(1 + γGs ) ln(1 + πGs θs)− λsπ

G
s θs
]︁
ds , (3.21)

being πG the process defined in the Proposition 3.9. We compute the following terms

πGs (µs − ρs − λsθs) = −λsγGs − µs − ρs
θs

ln
(︁
1 + πGs θs

)︁
= ln

(︃
λs(1 + γGs )

λs − (µs − ρs)/θs

)︃
.

By substituting them in (3.21) we have the following expression,

VG
T =

∫︂ T

0
E

[︃
ρs − λsγ

G
s − µs − ρs

θs
+ λs(1 + γGs ) ln

(︃
λs(1 + γGs )

λs − (µs − ρs)/θs

)︃]︃
ds

Finally, we compute the difference as follows

VG
T − VF

T =

∫︂ T

0
E

[︃
−λsγGs + λs(1 + γGs ) ln

(︃
λs(1 + γGs )

λs − (µs − ρs)/θs

)︃
−λs ln

(︃
λs

λs − (µs − ρs)/θs

)︃]︃
ds

=

∫︂ T

0
E
[︁
λsγ

G
s + λs(1 + γGs ) ln

(︁
1 + γGs

)︁]︁
ds ≥ 0

where we have applied the tower property of the conditional expectation in order to simplify
the expression as follows

E

[︃
γGs ln

(︃
λs

λs − (µs − ρs)/θs

)︃]︃
= E

[︃
E

[︃
γGs ln

(︃
λs

λs − (µs − ρs)/θs

)︃
|Fs

]︃]︃
= E

[︃
ln

(︃
λs

λs − (µs − ρs)/θs

)︃
E
[︁
γGs |Fs

]︁]︃
= 0 .

It can be checked that the function h(x, y) = −xy + x(1 + y) ln(1 + y) is positive when x > 0
and y > −1 and we get the non-negativity of the additional gains. Finally by applying again
the tower property to the term −λsγGs and by adding and subtracting the term λs(1+γ

G
s ) lnλs

we get the result.

Remark 3.12. Note that Theorem 3.11 holds true not only for binary random variables but for
any random variable G that satisfies E[γGt |Ft] = 0.
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4 Mixed Brownian-Poisson market

Using the Clark-Ocone formula stated in Equation (2.15), we can apply the same representation
formula for every FT -measurable random variable G ∈ L2(P ),

G = E[G] +

∫︂ T

0
ϕsdWs +

∫︂ T

0
φsdÑ s ,

where the processes ϕ and φ are related to the Malliavin derivative. Let B ∈ B(R) be a subset
and we consider the following PRP

1{G∈B} = PG(B) +

∫︂ T

0
ϕs(B)dWs +

∫︂ T

0
φs(B)dÑ s . (4.1)

Assumption 4.1. The processes ϕ, φ : [0, T ]× B(R) −→ L2(dt× P ,F) are bounded P -almost
surely.

We fix g in the support of G, not necessary binary yet, by reasoning as in the beginning of
Section 3, and we know that there exist two F-adapted processes ζg, ψg with g ∈ Supp(G) such
that,

1{G∈dg} = PG(dg) +

∫︂ T

0
ζgsP

G(dg)dWs +

∫︂ T

0
ψg
sP

G(dg)dÑ s . (4.2)

where ϕgt = ζgt P (G = g) and φg
t = ψg

tP (G = g) in the PRP (4.2) when G is purely atomic.

Lemma 4.2. Let G ∈ L2(P ) be an FT -measurable random variable satisfying the Jacod hy-
pothesis, then the processes αG and γG defined as

αG
t :=

ζGt
pGt

, γGt :=
ψG
t

pGt
, 0 ≤ t < T , (4.3)

satisfy that W· −
∫︁ ·
0 α

G
s ds and N· −

∫︁ ·
0 λs(1 + γGs )ds are G-local martingales.

Proof. As before, we compute the process pgt ,

pgt =
PG(dg|Ft)

PG(dg)
=

E[1{G∈dg}|Ft]

PG(dg)
= 1 +

∫︁ t
0 ζ

g
sP

G(dg)dWs +
∫︁ t
0 ψ

g
sP

G(dg)dÑ s

PG(dg)
.

By the orthogonality ofW and Ñ we deduce that ⟨W, Ñ⟩Ft = 0 and the result follows by applying
the same reasoning as in Lemma 3.4.

Theorem 4.3. If G is a binary random variable, then

αG
t = E [DtG|Ft]

G−E[G|Ft]

V [G|Ft]
, γGt = E [Dt,1G|Ft]

G−E[G|Ft]

V [G|Ft]
.

When we consider a G-agent playing with π ∈ A(G), the Itô integral fails for both the
Brownian motion and the Poisson process. Using the Jacod Hypothesis and the Theorem 4.3
we can define the following G-local martingales

ˆ︂Wt :=Wt −
∫︂ t

0
αG
s ds ,

ˆ︁Nt := Nt −
∫︂ t

0
λs(1 + γGs )ds , 0 ≤ t ≤ T . (4.4)

The dynamics of the wealth process satisfy the following SDE,

dXπ
t

Xπ
t

=
(︁
(1− πt)ρt + πtµt + πtσtα

G
t + πtθtλtγ

G
t

)︁
dt+ πtσtdˆ︂Wt + πtθtd ˆ︁Nt , X0 = x0 , (4.5)
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and we get the following explicit solution

ln
Xπ

T

x0
=

∫︂ T

0
ρs + πs(µs − ρs + σsα

G
s )−

1

2
π2sσ

2
s + λs(1 + γGs ) ln(1 + πsθs)− λsπsθsds

+

∫︂ T

0
πsσsdˆ︂Ws +

∫︂ T

0
ln(1 + πsθs)d ˆ︁Ns . (4.6)

Finally, using the integrability conditions, we can compute the expectation of the stochastic
integrals and we get,

E

[︃
ln
Xπ

T

x0

]︃
=

∫︂ T

0
E

[︃
ρs + πs(µs − ρs + αG

s σs)−
1

2
π2sσ

2
s

+ λs(1 + γGs ) ln(1 + πsθs)− λsπsθs
]︁
ds .

Proposition 4.4. The optimal strategy of the problem given by (2.9) with G binary, information
flow G and both Brownian and Poisson noises is given by,

πs =
1

2

(︃
µs − ρs + αG

s σs − λsθs
σ2s

− 1

θs

)︃

+ sgn(θs)
1

2

√︄(︃
µs − ρs + αG

s σs − λsθs
σ2s

+
1

θs

)︃2

+ 4λs
1 + γGs
σ2s

(4.7)

Proof. We proceed with a perturbation argument. Let β ∈ A(G) a bounded strategy and let
ϵ > 0. We define

I(ϵ) :=E

[︃∫︂ T

0
ρs + (πs + ϵβs)(µs − ρs + αG

s σs)−
1

2
(πs + ϵβs)

2
sσ

2
s ds

]︃
+E

[︃∫︂ T

0
λs(1 + γGs ) ln(1 + (πs + ϵβs)θs)− λs(πs + ϵβs)θs ds

]︃
and we consider the first order condition 0 = I ′(0) as follows,

0 = E

[︃∫︂ T

0
βs

(︃
µs − ρs + αG

s σs − πsσ
2
s + λs(1 + γGs )

θs
1 + πsθs

− λsθs

)︃
ds

]︃
. (4.8)

Then we take βs = ξ1{t≤s<t+h} with ξ a Gt-measurable and bounded random variable. We can
rewrite the Equation (4.8) in terms of conditional expectation as follows,

0 = E

[︃∫︂ t+h

t

(︃
µs − ρs + αG

s σs − πsσ
2
s + λs(1 + γGs )

θs
1 + πsθs

− λsθs

)︃
ds|Gt

]︃
,

for 0 < h < T − t arbitrarily near to zero, finally we get

0 = µs − ρs + αG
s σs − πsσ

2
s + λs(1 + γGs )

θs
1 + πsθs

− λsθs .

To short the notation, we define the terms ds := µs − ρs + αG
s σs − λsθs and cs := λs(1 + γGs ).

Then we derive the next equation,

0 =
(︁
σ2sθs

)︁
π2s +

(︁
σ2s − θsds

)︁
πs − (ds + θscs)
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with the following solutions,

π±s =
θsds − σ2s ±

√︂
(θsds − σ2s)

2 + 4σ2sθs (ds + θscs)

2σ2sθs

=
1

2

(︃
ds
σ2s

− 1

θs

)︃
± 1

2

√︄(︃
ds
σ2s

+
1

θs

)︃2

+ 4
cs
σ2s

,

where in the last step we have used arithmetic computations. It can be verified that I ′′(0) < 0
and the pair of strategies π± are maximum if and only if they are admissible. Then we need to
check if the condition 1 + π±s θs > 0 is satisfied. We rewrite the pair as follows,

1 + πsθs =
1

2

(︃
dsθs
σ2s

+ 1

)︃
± 1

2

θs
|θs|

√︄(︃
dsθs
σ2s

+ 1

)︃2

+ 4θ2s
λs(1 + γGs )

σ2s

=
1

2

(︃
dsθs
σ2s

+ 1

)︃
± 1

2
sgn(θs)

√︄(︃
dsθs
σ2s

+ 1

)︃2

+ 4θ2s
λs(1 + γGs )

σ2s

We use the following fact from real analysis

f+(x) = x+
√︁
x2 + a > 0 , f−(x) = x−

√︁
x2 + a < 0 , ∀(x, a) ∈ R× R+ ,

and we deduce that on the set {θs > 0} the unique optimal solution is π+ and on {θs < 0} is
π−, ∀s ∈ [0, T ], then the result holds.

Remark 4.5. Note that in the strategy (4.7) we find the usual Merton strategy for Brownian
noise and the additional information,

πMs =
µs − ρs + αG

s σs
σ2s

.

The optimal strategy in the mixed market include the Poisson distortion with ±1/θs and the
joint effect of the additional information on the Poisson process with the Brownian process, i.e.,

πs =
1

2

(︃
πMs − λs

θs
σ2s

− 1

θs

)︃
+ sgn(θs)

1

2

√︄(︃
πMs − λs

θs
σ2s

+
1

θs

)︃2

+ 4λs
1 + γGs
σ2s

.

Example 4.6. Let A = (−∞, a] and B = (−∞, b] be two half-bounded intervals. We define the
binary random variable as the following product indicator,

G = 1{WT≤a}×{NT≤b} = 1{WT≤a}1{NT≤b} .

In order to achieve explicit results, we assume that the intensity satisfies λt ∈ F0, ∀t ∈ [0, T ],
because in the most general case we can not compute explicitly the probabilities.

According to [20], thanks to the independence of the Brownian motion and the Poisson
process, the Malliavin derivatives in each direction can be easily computed as follows,

DtG = 1{NT≤b}Dt1{WT≤a} , Dt,1G = 1{WT≤a}Dt,11{NT≤b}

so we need to calculate the conditional expectation of these terms.

E [Dt,1G|Ft] = E
[︁
1{WT≤a}Dt,11{NT≤b}|Ft

]︁
= −E

[︁
1{WT≤a}1{NT=b}|Ft

]︁
= −E

[︁
1{WT≤a}×{NT=b}|Ft

]︁
= −P ({WT ≤ a} ∩ {NT = b}|Ft)

= −

⎛⎝∫︂ a

−∞

exp
(︂
− (x−Wt)2

2(T−t)

)︂
√︁
2π(T − t)

dx

⎞⎠(︃e−Λ(t,T ) (Λ(t, T ))
b−Nt

(b−Nt)!
1{Nt≤b}

)︃
E [DtG|Ft] = E

[︁
1{NT≤b}Dt1{WT≤a}|Ft

]︁
= E

[︁
1{NT≤b}δa(WT )|Ft

]︁
,
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where in the first computation we have used our Example 3.7 and for the second one we refer
to [21] for the generalized Malliavin derivative of the indicator function. In order to compute
the conditional expectation, we consider the following conditional distribution function,

F (x, y) := P (WT ≤ x,NT ≤ y|Ft) =

∫︂ x

−∞

y∑︂
k=0

fWT |Wt
(u)pNT |Nt

(k)du ,

where fWT |Wt
(u) denotes the density function of (WT |Wt) and pNT |Nt

(k) the probability function
of (NT |Nt). Both of them are well-known. Then,

E [DtG|Ft] =

∫︂ ∞

−∞

∞∑︂
k=0

fWT |Wt
(u)pNT |Nt

(k)1{k∈B}δa(u)du

=

∫︂ ∞

−∞
fWT |Wt

(u)δa(u)du

∞∑︂
k=0

pNT |Nt
(k)1{k∈B}

= fWT |Wt
(a)

b∑︂
k=0

pNT |Nt
(k)

=
exp

(︂
− (a−Wt)2

2(T−t)

)︂
√︁
2π(T − t)

b−Nt∑︂
k=0

e−Λ(t,T ) (Λ(t, T ))
k

k!
1{Nt≤b}

Finally, we deduce the PRP via Clark-Ocone formula,

1{WT≤a}×{NT≤b} = P (WT ≤ a)P (NT ≤ b)

+

∫︂ T

0

⎛⎝exp
(︂
− (a−Wt)2

2(T−t)

)︂
√︁

2π(T − t)

⎞⎠(︄b−Nt∑︂
k=0

e−Λ(t,T ) (Λ(t, T ))
k

k!

)︄
dWt

−
∫︂ T

0

⎛⎝∫︂ a−Wt

−∞

exp
(︂
− (x−a+Wt)2

2(T−t)

)︂
√︁
2π(T − t)

dx

⎞⎠(︃e−Λ(t,T ) (Λ(t, T ))
b−Nt

(b−Nt)!
1{Nt≤b}

)︃
dÑ t

from which the processes αG = (αG
t , 0 ≤ t ≤ T ) and γG = (γGt , 0 ≤ t ≤ T ) appearing in

Theorem 4.3 are determined.

Example 4.7. Let’s define

Ms,t := sup
s≤u≤t

Wu , Js,t := sup
s≤u≤t

Ñu , (4.9)

and Mt :=M0,t and Jt := J0,t. To short the notation, we define the intervals A := (a1, a2] and
B = (b1, b2]. We consider the following example

G = 1{MT∈A}×{JT∈B} = 1{MT∈A}1{JT∈B} (4.10)

and we proceed as before.

DtG = 1{JT∈B}Dt1{MT∈A} = 1{JT∈B}Dt

(︁
1{MT≤a2} − 1{MT≤a1}

)︁
= 1{JT∈B}1{Mt≤Mt,T } (−δa2(MT ) + δa1(MT )) ,
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we refer to [21] for a detailed explanation of the Malliavin derivative of the running maximum
MT . We consider the conditional expectation of the DtG after splitting thanks to the indepen-
dence. Then,

E
[︁
Dt1{MT∈A}|Ft

]︁
= E

[︂
1{Mt≤Mt,T } (−δa2(Mt,T ) + δa1(Mt,T )) |Ft

]︂
=

∫︂ +∞

0
1{Mt≤m} (−δa2(m) + δa1(m)) ft(m)dm

= 1{Mt≤a1}ft(a1)− 1{Mt≤a2}ft(a2) , (4.11)

being ft the density of the random variable Mt,T given Ft, which is equivalent to consider the
variable MT−t in the domain (Wt,+∞), i.e.,

ft(m) =
2e

− (m−Wt)
2

2(T−t)√︁
2π(T − t)

, m ≥Wt .

On the other hand we compute the conditional expectation of the remained Poisson term,

E
[︁
1{JT∈B}|Ft

]︁
= P (JT ∈ B|Ft) = P (max{Jt, Jt,T } ∈ B|Ft)

= P
(︁
Jt + (Jt,T − Jt)

+ ∈ B|Ft

)︁
= P

(︁
(JT−t − bt)

+ ∈ (b1 − Jt, b2 − Jt]
)︁
,

where bt := Jt − Ñ t and using that Jt,T − Ñ t is independent of Ft. We aim to compute

E
[︁
1{JT∈B}|Ft

]︁
= P

(︁
(JT−t − bt)

+ > b1 − Jt
)︁
− P

(︁
(JT−t − bt)

+ > b2 − Jt
)︁
.

Each one of the probabilities can be computed as

P
(︁
(JT−t − bt)

+ > b1 − Jt
)︁
= 1{b1−Jt≤0} + 1{b1−Jt>0}F

N
T−t(b1 − Ñ t)

= 1 + 1{b1−Jt>0}

(︂
FN

T−t(b1 − Ñ t)− 1
)︂

P
(︁
(JT−t − bt)

+ > b2 − Jt
)︁
= 1{b2−Jt≤0} + 1{b2−Jt>0}F

N
T−t(b2 − Ñ t)

= 1 + 1{b2−Jt>0}

(︂
FN

T−t(b2 − Ñ t)− 1
)︂

where the survival function is defined as FN
T−t(x) = P (JT−t > x) for every x ≥ 0. See [22] for

an explicit computation of the distribution of the running supremum. In terms of the distribution
function FN it can be simplified as follows,

E
[︁
1{JT∈B}|Ft

]︁
=1{b1−Jt>0}

(︂
FN

T−t(b1 − Ñ t)− 1
)︂

(4.12)

− 1{b2−Jt>0}

(︂
FN

T−t(b2 − Ñ t)− 1
)︂

=1{b2−Jt>0}F
N
T−t(b2 − Ñ t)− 1{b1−Jt>0}F

N
T−t(b1 − Ñ t) . (4.13)

Then, taking into account (4.11) and (4.12) the process αG is fully determined. We proceed
in the same way in order to compute E[Dt,1G|Ft]. Using the operator Ψ, we can compute the
following Malliavin derivative

Dt,11{JT∈B} = 1{max {Jt,1+Jt,T }∈B} − 1{JT∈B}

where the second term has been calculated in (4.12). For the first one we have

E[1{max {Jt,1+Jt,T }∈B}|Ft] = P (max {Jt, 1 + Jt,T } ∈ B|Ft)

= 1{b2−Jt>0}F
N
T−t(b2 − Ñ t − 1)− 1{b1−Jt>0}F

N
T−t(b1 − Ñ t − 1)
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where we have omitted some steps as they were similar to ones shown before. Finally

E
[︁
1{MT∈A}|Ft

]︁
= 1{a2−Mt>0}F

W
T−t(a2 −Wt)− 1{a1−Mt>0}F

W
T−t(a1 −Wt) , (4.14)

where in this case FW
t (y) = 2(1− Φ(y/

√
t)) and again the process γG is determined.

Conclusion

In this paper we show how to incorporate anticipative information in a filtration generated
by a Brownian motion and a Poisson process. We compute the compensators in a general
framework of additional information (see Lemma 4.2), and then we focus on the binary case to
consider more explicit examples (see Theorem 4.3). In particular, we study the case in which a
G-agent knows if the final pair of random variables (WT , NT ) are within a certain rectangular
region, as well as the case that considers a similar type of information about the pair of running
maximums (MT , JT ), see Examples 4.6 and 4.7.

When the dynamics of the risky asset dynamics are driven by the Poisson process only,
we give the exact value of the additional information in terms of an entropy similarly to the
corresponding continuous case, see Theorem 3.11 and compare it with [3].
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scientifiques de l’École normale supérieure, 11(3):429–443, 1978.

[15] Joseph Diestel and Jerry Jerry Uhl. Vector measures. American Mathematical Society,
Providence, R.I., 1977. With a foreword by B. J. Pettis, Mathematical Surveys, No. 15.

[16] Y. Kakihara. Radon-nikodým derivatives of hilbert space valued measures. Journal of
Statistical Theory and Practice, 5(3):453–473, 2011.

[17] Monique Jeanblanc, Marc Yor, and Marc Chesney. Mathematical Methods for Financial
Markets. Springer Finance. Springer London, 1 edition, 2009.
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