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a b s t r a c t

In this study we bridge traditional standalone data-driven and knowledge-driven process monitoring
approaches by proposing a novel hybrid framework that exploits the advantages of both simultane-
ously. Namely, we design a process monitoring system based on a data-driven model that includes two
different data types: i) ‘‘actual’’ data coming from sensor measurements, and ii) ‘‘virtual’’ data coming
from a state estimator, based on a first-principles model of the system under investigation. We test
the proposed approach on two simulated case studies: a continuous polycondensation process for the
synthesis of poly-ethylene terephthalate, and a fed-batch fermentation process for the manufacturing
of penicillin. The hybrid monitoring model shows superior fault detection and diagnosis performances
with respect to conventional monitoring techniques, even when the first-principles model is relatively
simple and process/model mismatch exists.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Process monitoring is a key task in the process industry, as
detecting a fault and assessing its cause before the production
is compromised can save valuable assets. Several data-driven
(DD) methodologies for fault detection and diagnosis have been
proposed in the last decades [1,2]. Among them, latent-variables
models [3] (LVMs) are a powerful class of DD multivariate ap-
proaches that proved very effective for fault detection and di-
agnosis [4], and gained increased relevance with the Industry
4.0 ‘‘big data’’ era. LVMs detect a fault when new measurements
coming from the plant sensors are unknown to the correlation
structure of the training data, which define the normal operating
conditions (NOC) for the process. Faults are typically detected us-
ing multivariate control charts [5]. Contribution plots [6] can then
be exploited to pinpoint the measurements most related to the
faulty conditions. However, when the number of available mea-
surements is relatively small, detection of a fault through an LVM
may be delayed, because the fault must propagate into the system
until the few measured variables are affected. On the other side,
diagnosing the root-cause of a fault may be challenging due to the
smearing-out effect [1]. In fact, since LVMs are not cause–effect
models, it may be difficult to identify causality patterns between
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measurements under abnormal process conditions. This issue is
particularly relevant if the variables embodying the root-cause of
the fault are not measured, and therefore cannot be included in
the LVM.

To overcome this limitation, monitoring methodologies ex-
ploiting first-principles knowledge about the process under in-
vestigation may be considered. Process monitoring methodolo-
gies based on knowledge-driven (KD) models have been thor-
oughly reviewed elsewhere [7,8]. The most popular KD
approaches are based on parity relations [9] or on state estima-
tors [10–14], possibly implemented for simultaneous state and
parameter estimation [15]. Generally speaking, KD models have
the advantage of embedding the available understanding on the
mechanisms driving the process under investigation. This piece of
information can help fault detection and diagnosis, and is missing
in DD monitoring approaches. However, KD models are generally
more complex to develop than their DD counterparts and, when
used for monitoring, the performances can be severely affected
by process-model mismatch. In addition, the fault models have
typically to be known a priori [13,14].

Hybrid models [16,17] combine DD methods with the in-
formation available from first-principles knowledge about the
process, and are promising techniques for overcoming the lim-
itations of DD and KD monitoring [18,19]. Hybrid models for
process monitoring usually consist of a KD soft-sensing frame-
work in which a DD component is added to make up for missing
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deterministic information [20,21]. Other hybrid approaches [22]
use DD techniques to monitor the residuals of a KD model, or
they develop complex schemes with subsequent DD and KD steps,
tailored to specific applications [23]. Recent contributions [24,
25] showed the benefits of building advanced control charts
to monitor the states estimated by a state estimator. However,
these approaches are typically univariate, and therefore suffer
from the well-known limitations of univariate monitoring with
respect to its multivariate counterpart [3,4,26]. Even though all
these methodologies are gaining interest, state-of-the-art hybrid
monitoring methods still lack a general framework to combine
results coming from DD and KD modeling approaches [22].

In this study, we couple the easy-to-design features of DD
process monitoring approaches to the descriptive capability of
KD models, in order to develop a novel multivariate monitor-
ing methodology with improved fault detection and diagnostic
capabilities. Namely, we propose a latent-variable-based mon-
itoring model that uses an augmented data matrix including
two different data types: (i) ‘‘actual’’ data coming from sensor
measurements, and (ii) ‘‘virtual’’ data coming from a dynamic KD
model able to capture the main features of the system under
investigation. Process-model mismatch for the KD model is (at
least partially) compensated for by using a state estimator, which
returns a set of virtual data consisting of estimated system states,
adapted parameters, and reconstructed measurements to be in-
cluded in the DD model. We test the proposed methodology on
two simulated processes: a continuous poly-ethylene terephtha-
late (PET) polymerization process, and a fed-batch fermentation
process for the production of penicillin.

The remainder of this article is organized as follows. In Sec-
tion 2 the mathematical methodologies later applied are briefly
summarized. The proposed hybrid monitoring framework is out-
lined in Section 3. The case studies are presented in Section 4, and
the results are discussed in Sections 5 and 6. Some conclusions to
the study are finally reported in Section 7.

2. Mathematical background

2.1. Process monitoring by extended Kalman filtering

Let the first-principles model (FPM) of a dynamic system be
expressed as a set of ordinary differential equations:

ẋ (t) = f (x (t) ,u (t) , t) + w(t) (1)

where f is a nonlinear function, x (t) denotes the system state
vector at time t, u (t) is the input vector, and w(t) is the process
noise vector, which is assumed to be a white Gaussian process
with mean 0 and covariance Q(t). Assuming that measurements
are available at discrete time steps tk from the plant, they can be
related to the system states through an appropriate measurement
model:

y (t) = h (x (t) ,u (t) , t) + v(t) (2)

where y (t) is the measurement vector, and v(t) is the measure-
ment noise vector, which is assumed to be a white Gaussian
process with mean 0 and covariance R(t).

The discrete time data extended Kalman filter (EKF) [27] pro-
vides the estimated state vector x̂ (t) and the state covariance
P(t), given the initial estimation of the states x̂0 and the initial
state covariance P0. The algorithm includes two steps, prediction
and update, which are alternatively performed at each time point
k = 1, 2, . . . , K. The predictions of the states and of the state
covariance at time tk before the measurements are available (t−k )
are respectively referred to as x̂(t−k ) and P

(
t−k

)
, whereas the

corrected estimations after the sampling time (t+k ) are denoted
as x̂(t+k ) and P

(
t+k

)
.

During the prediction step, x̂(t+k−1) and P(t+k−1) are propagated,
with the integration of Eqs. (3)–(4), to obtain (respectively) x̂(t−k )
and P(t−k ):

˙̂x(t) = f
(
x̂ (t) ,u (t) , t

)
(3)

Ṗ (t) = FP + PFT + Q(t) (4)

where F is the Jacobian matrix:

F =

(
∂f
∂x

)
x̂(t),u(t),t

(5)

At each sampling point k, the predicted estimations are corrected
with the update equations:

x̂
(
t+k

)
= x̂

(
t−k

)
+ K (tk) γ (tk) (6)

P
(
t+k

)
= P

(
t−k

)
− K (tk)HkP

(
t−k

)
(7)

where the Kalman gain K (tk), the innovation γ (tk), and the
Jacobian matrix Hk are respectively calculated with:

K (tk) = P
(
t−k

)
HT

kV(tk)
−1 (8)

γ (tk) = y (tk) − h
(
x̂
(
t−k

)
,u (tk) , tk

)
(9)

Hk =

(
∂h
∂x

)
x̂
(
t−k

)
,u(tk),tk

(10)

The matrix V(tk) in Eq. (8) is calculated with:

V (tk) = HkP
(
t−k

)
HT

k + R(tk) (11)

Rigorous methods to design P0, Q and R exist [28]. In this study,
we take a simpler approach that proved effective also in several
other studies [29–31]. Namely, we design P0 as a diagonal matrix,
based on the expected uncertainty on the initial estimation for
each state. Additionally, we set Q as a time-invariant diagonal
matrix, and we tune it by trial and error in such a way as to obtain
robust convergence. Finally, we design R as:

R = diag(σi), (12)

where σi is the variance of the noise of the i-th measurement
sensor.

The EKF provides reconstructed values for y(tk). Specific im-
plementations of the EKF can be set up for tackling colored noise
or measurement bias [32], if that emerges useful for monitoring.

The EKF can also perform online parameter adaptation, upon
augmentation of the state vector x̂ with the subset p̂ of the FPM
parameters that one seeks to adapt in real time. The nominal
values p0 of the parameters are taken as initial conditions for
p̂, and negligible dynamics with additive process noise of small
variance can be assumed. State augmentation can be resorted to
for improving the estimation of unmeasured states through bias
estimation [33], too. Bias estimation consists in the insertion of an
additive term (bias) at the right-hand side of Eq. (3) for selected
states. Biases are assigned null initial values and a random walk
model of small variance. To meet the observability conditions,
the augmented states cannot exceed in number the available
measurements.

Conventional KD fault detection approaches [11,12] are based
on the assumption that the innovation sequence γ (t) of the
EKF without augmented states follows a white 0 mean Gaussian
distribution with covariance V(t). Deviations from this behavior
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indicate a fault and can be detected by monitoring for each time
instant the test statistic in Eq. (13), which follows the central χ2

distribution with R degrees of freedom (where R is the number
of measurements in y):

ϵ (tk) = γ (tk)T V (tk)−1 γ(tk). (13)

Upon rejection of the null hypothesis for ϵ (tk) at time tk, the
innovation sequence over a time window of size S (tuning param-
eter) is used for confirming the fault condition, with the following
test statistic:

ϵ (tk, S) =

k+S∑
i=k

γ (ti)T V (ti)−1 γ(ti). (14)

If ϵ (tk, S) violates the confidence limit for the central χ2 dis-
tribution with R· S degrees of freedom, the fault is confirmed.
Fault isolation is then typically carried out by online adapta-
tion of all the parameters related to possible fault conditions,
and by identifying which parameter is drifting from its nominal
value [34,35].

2.2. Multivariate process monitoring by principal component analy-
sis

Principal component analysis (PCA) is a dimensionality reduc-
tion technique aimed at extracting the few underlying factors
(called principal components, PCs) that explain most of the vari-
ability from a NOC dataset Z [N×M] including N observations on
M variables [3]. The data matrix Z is auto-scaled to zero mean
and unit variance, and the PCs are extracted by decomposing Z
as [36]:

Z =

A∑
a=1

tapT
a + E, (15)

where ta are [N×1] score vector of the a-th PC, pa [M×1] is the
loading vector for the same PC, and E is the matrix of residuals,
which are random noise if an appropriate number A of PCs is
selected. For each observation n, two monitoring statistics can be
calculated from the PCA model, namely the Hotelling T 2 and the
squared prediction error (SPE), according to:

T 2
n =

A∑
a=1

ta,n λ−1
a ta,n (16)

SPEn = eneTn (17)

where ta,n is the element in ta corresponding to observation n, λa
is the eigenvalue associated to the a-th PC, and en is the residual
vector. Confidence limits can be obtained for both statistics from
the available set of NOC. In this study, we obtained the confidence
limits SPElim (on SPE) and T 2

lim (on T 2) by means (respectively) of
the Jackson-Mudholkar equation [36], and of the F-distribution
confidence limit equation [36]. We calculated both limits at 99%
confidence.

When a new observation znew [1×M] becomes available from
the process at time tnew, it is first normalized on the mean and
variance of the NOC dataset, then it is projected onto the model
space, and finally SPEnew and T 2

new are calculated. If at least one of
the two statistics exceeds its relevant confidence limit for some
(e.g., three) consecutive observations, a fault is alarmed. The fault
can be diagnosed using contribution plots [6], which point to the
variables included in Z that most contribute to the confidence
limit violation. The [1×M] contribution vectors for znew can be
built by calculating the contributions for each variable m as:

cSPEnew,m = enew,m, (18)

cT
2

new,m =

A∑
a=1

ta,newλ−0.5
a pa,m, (19)

where enew,m and pa,m are the elements corresponding to vari-
able m respectively in enew and pa. We use the residuals as
contributions to SPE in order to preserve the sign of the error,
which proves useful for fault diagnosis. The vector of residuals
cSPEnew is known to follow a normal distribution if A is selected
appropriately [36]. For the case studies under investigation, we
found that also the cT2NEW contributions are normally distributed,
an occurrence that has been noted also by other investigators [37,
38]. Therefore, we calculated Gaussian control limits (at 99% con-
fidence) for both contributions. Although these limits should not
be considered to have statistical significance, they are neverthe-
less helpful for comparing contributions presenting significantly
different magnitudes also with respect to the NOC.

When the observations in Z are auto-correlated, the standard
PCA approach should be modified to account for the effect of time.
For example, dynamic PCA (DPCA, [39]) can be used, where L
lagged measurements are included in Z to obtain the NOC matrix
Zdyn:

Zdyn =

⎡⎢⎢⎢⎣
zT(t1) zT(t0) . . . zT(t1 − L)
zT(t2) zT(t1) . . . zT(t2 − L)

...
...

. . .
...

zT(tM ) zT(tM − 1) . . . zT(tM − L)

⎤⎥⎥⎥⎦ . (20)

Alternatively, a multi-model moving-window PCA (MW-PCA, [40])
approach can be resorted to, with a PCA model calibrated at each
time point tk on the data for the previous W time points, where
W is the time window width. The NOC matrix ZMW (tk) for the
PCA model at time tk is defined as:

ZMW (tk) =
[

zT(tk) zT(tk − 1) . . . zT(tk − W )
]
. (21)

3. Proposed hybrid monitoring framework

The proposed hybrid monitoring framework is based on the
approach sketched in Figure 1. A process with measured inputs u
and unknown disturbances d produces a set of measured outputs
y. The KD block exploits an FPM and the online measurements
u and y to perform state estimation, online adaptation of the
FPM parameters, and measurement reconstruction. In this study,
an EKF [27] has been used to carry out these tasks, though
other estimators might be used [10]. The DD block is based on
an LVM that extracts operation-relevant information from the
available set of field measurements (u and y) as well as from
the virtual data (estimated states x̂, adapted model parameters
p̂, and reconstructed measurements ŷ) returned by the KD block.
The augmented overall data matrix becomes:

Z = [x̂ p̂ ŷ u y] (22)

The advantage of this architecture is that, through the state
estimator, the DD multivariate monitoring model can receive
information related also to the inner mechanisms driving the
system (in the form of states and FPM parameters), which can be
very useful to monitor the process, but would otherwise not be
accessible in the absence of a KD block. Therefore, the proposed
hybrid approach is multivariate in nature, a feature that is known
to offer significant advantages over single-variable methods [3,4,
26]. The main features of the hybrid monitoring framework are
the following:

• the estimated states (and possibly adapted parameters) pro-
vide meaningful indications about the phenomena involved
in faults, which can facilitate fault detection and diagnosis.
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Fig. 1. Proposed hybrid monitoring framework.

Large contributions from an estimated state or an adapted
parameter indicate that the fault might be related to a phys-
ical phenomenon linked to that state or parameter. For this
reason, the parameters to be selected for online adaptation
(if any) are those mostly related to specific faults to be moni-
tored. Although parameter estimation for fault detection and
diagnosis has already been discussed in the literature [34,
35], the distinctive advantage of the proposed framework
is that the overall co-variation of states, parameters, and
measurements is assessed by the hybrid framework, which
can improve the monitoring performance;

• a subset of the measured inputs and outputs (y and u) may
be not modeled by the FPM. Yet, due to their inclusion in
the Z matrix, the LVM can exploit the deterministic informa-
tion they embed, by assessing how they correlate not only
with the other measurements, but also with the estimated
variables;

• measurements are considered twice by the LVM: once in
terms of y and once in terms of ŷ. Hence, the filter in-
novations γ (t), which are sometimes monitored for fault
detection in KD monitoring approaches [7,11,12], are (indi-
rectly) fed to the monitoring system and are analyzed in a
multivariate fashion.

4. Case studies

In this section, the two simulated case studies used to test the
proposed methodology are presented. For each case study, two
models are employed, namely:

• a detailed model is used to represent the true plant behav-
ior; this model will be referred to as ‘‘the process’’;

• a simplified model is used to design the state estimator; this
model will be referred to as ‘‘the FPM’’ or, more simply, ‘‘the
model’’.

The main features of the two case studies are summarized in
Table 1. Parametric and structural process-model mismatch exist
in both case studies, although in Case study 2 the structural mis-
match is more significant. In Case study 1, only state estimation
and measurement reconstruction are carried out by the EKF in
the KD block, whereas in Case study 2 the EKF is also exploited
for online parameter adaptation. DPCA is used in the DD block for
Case study 1, whereas MW-PCA is used in Case study 2.

4.1. Case study 1: PET manufacturing

PET synthesis occurs through three main steps: transesterifica-
tion/esterification, pre-polymerization, and polycondensation. In
this study, we refer to the polycondensation step. The process is

Fig. 2. Case study 1: scheme of the PET polycondensation process with three
CSTRs in series.
Source: Adapted from [41].

constituted by a series of three CSTRs (Figure 2) described by the
following set of equations [41]:
dcEG,i

dt
=

1
τ

(
cEG,i−1 − cEG,i

)
− hi

(
cEG,i − c∗

EG,i

)
+ 0.5Rpol,i (23)

dcOH,i

dt
=

1
τ

(
cOH,i−1 − cOH,i

)
− Rpol,i (24)

dcCOOH,i

dt
=

1
τ

(
cCOOH,i−1 − cCOOH,i

)
+ Rdegr,i (25)

dcESTER,i

dt
=

1
τ

(
cESTER,i−1 − cESTER,i

)
+ 0.5Rpol,i − Rdegr,i (26)

Rpol,i = kpol,i(c2OH,i − 8cEG,icESTER,i) (27)

Rdegr,i = kdegr,icESTER,i (28)

c∗

EG,i =
Pi

P sat
EG,i(T )v̂EG exp(1 + χ )

(29)

where i identifies a given reactor (i = 1, 2, 3).
In the above model equations, EG, OH, COOH and ESTER re-

spectively denote ethylene glycol, hydroxyl end-groups, acid end-
groups, and ester groups; cj,i is the concentration of species j
in reactor i (cj,0 being the inlet concentration of species j to
the first reactor); τ is the residence time in a reactor, and is
the same for all reactors; Rpol,i and Rdegr,i respectively refer to
the rates for the polycondensation and degradation in reactor
i. In the Flory–Huggins equation (29), c∗

EG,i is the equilibrium
concentration of ethylene glycol (the only species existing in the
vapor phase) in reactor i, Pi is the pressure in reactor i, P sat

EG,i is
the EG vapor pressure, v̂EG is the EG molar volume in the liquid
phase, and χ is the polymer-solvent interaction parameter. The
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Table 1
Comparison of the main features of the two case studies investigated.
Feature Case study 1 Case study 2

Process name PET manufacturing Penicillin manufacturing

Process type Continuous Fed-batch

Process-model mismatch parametric and (mild) structural Parametric and structural

Unmodeled measurements Pressures Temperature

Knowledge-driven block State estimation; measurement
reconstruction

State estimation; measurement
reconstruction; parameter
adaptation

Data-driven block Dynamic PCA Moving-window PCA

values of the parameters of the Flory–Huggins equation are set
as in [41]. The process is assumed to be isothermal, so the energy
balance is neglected. The meaning of the rest of the symbols is
reported in Table 2, together with the values of all parameters
and feed conditions. Their nominal values are taken from [41],
but fluctuations are added as smoothed pseudo-random binary
signals in order to more closely mimic a real situation where
process noise increases normal process variability.

The key performance indicator is the degree of polymerization
in the third reactor (DP3), which cannot be measured online and
is calculated as:

DP3 = 1 +
2cESTER,3

cOH,3 + cCOOH,3 + cEg,3
(30)

where cEg,3 is the concentration of a byproduct, which is assumed
to be equal to cCOOH,3 [41].

The 9 measurements available online from the process are:

• ycOH,i [mol L−1], concentration of hydroxyl end-groups in re-
actor i;

• ycCOOH,i [mol L−1], concentration of acid end-groups in reactor
i;

• yPi [Pa], pressure in reactor i.

White noise with standard deviation of typical industrial sensors
is added to the detailed model outputs; namely, the standards
deviations are 7E-3 mol L−1 for ycOH,i , 3E-4 mol L−1 for ycCOOH,i ,
and 1 Pa for yPi (notice that the types of sensors for OH and
COOH concentration measurements are different [41]). The mea-
surement intervals for ycOH,i and ycCOOH,i are set to 1 min and 10
min, respectively [41]. Measurements for pressure are recorded
every 10 min, because they are not needed at greater frequency
for process monitoring.

The NOC dataset includes data from 5300 min of steady-state
operation. We generate faulty datasets by running the process
as under NOC, but applying the fault after 300 min from the
start of the NOC sequence. Simulations are run for 1300 min. We
consider four faulty sequences, all of which eventually result in
an impactful decrease of DP3:

• Fault #1: slowly decreasing ester concentration in the feed
(cESTER,0 decreases by 0.01% per min). As a consequence, the
concentration of ester in the first reactor starts decreasing,
eventually reducing DP3 (Eq. (30)).

• Fault #2: minor fault in the agitation system of the sec-
ond reactor (h2 decreases by 0.05% per min). The smaller
mixer speed hinders the mass transfer of ethylene glycol
from the liquid to the vapor phase. Ethylene glycol starts
accumulating in the second reactor, thus reducing the rate
of polycondensation Eq. (27), and eventually affecting DP3
(Eq. (30)).

• Fault #3: significant fault in the agitation system of the
second reactor (h2 decreases by 0.1% per min). The conse-
quences are as for Fault #2, but with greater magnitude.

• Fault #4: increasing pressure in the second reactor (P2 in-
creases by 3% per min). The pressure increase inhibits ethy-
lene glycol mass transfer (Eqs. (23) and (29)), with effects
on DP3 similar to Faults #2 and #3.

To assess reproducibility of the results for different patterns of
measurement and process noise, we consider 10 different real-
izations of each fault scenario.

The simplified FPM model employs Eqs. (23)–(28), but with
constant parameters and feed conditions. In addition, the effect of
pressure on c∗

EG,i in each reactor i (Eq. (29)) is neglected and c∗

EG,i
is assumed constant. As a result, the FPM presents parametric and
(mild) structural mismatch.

4.2. Case study 2: penicillin manufacturing

The manufacturing of penicillin by biomass fermentation is
modeled by Birol et al. [42]. The process is carried out in a reactor
operating batchwise for the first 50 h (growth phase). During
this period, the concentration of biomass grows, and no penicillin
is produced. Then, the substrate feed is turned on, and in this
fed-batch phase the biomass concentration grows slowly and the
penicillin concentration increases.

For ease of reading, the set of equations defining the detailed
model [42] is reported in Appendix A, together with the values of
all inputs, parameters, and process noise characteristics. The sim-
plified FPM model includes significant parametric and structural
mismatch, and is also reported in Appendix A.

The 6 measurements available online from the process are pH
(ypH ), temperature (yT ), oxygen concentration (yO2 ), volume (yV ),
CO2 concentration (yCO2 ), and feed flow rate (yF ). A measurement
interval of 3 min is considered for process monitoring. Note that
yT and ypH are not accounted for by the FPM, yF is the only input
of the FPM, and the other available measurements correspond to
states of the FPM. White noise is added to all measurements, con-
sistently with the typical precision of industrial instrumentation.
The standard deviations of the noise signals are 0.05 for ypH , 0.05
K for yT , 0.0025 gO2 L−1 for yO2 , 0.01 L for yV , 0.06 molCO2 L−1 for
yCO2 , and 0.0002 L h−1 for yF .

The NOC dataset includes 35 batches, each one lasting 300 h.
Four faulty batches are considered, with the same length as the
normal ones. The faulty batch characteristics are as follows:

• Fault #1: slow ramp decrease in the aeration rate (unmea-
sured variable), which causes a drop in the oxygen mass
transfer coefficient and in the oxygen concentration in the
reactor;

• Fault #2: slow ramp decrease of the substrate concentra-
tion in the feed (unmeasured variable), which inhibits the
biomass growth;

• Fault #3: slow ramp decrease of the maximum growth rate
kinetic parameter, which reduces the biomass concentration
in the reactor;
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Table 2
Case study 1: parameters and feed conditions in the detailed and simplified models. In the detailed model, fluctuations are added to
the nominal values as smoothed-pseudo random binary signals with the indicated maximum/minimum amplitudes. In the simplified
model, constant (nominal) values are used.
Parameter or feed condition Symbol Units Nominal value Max/min amplitude

Residence time (all reactors) τ min 60 0
Mass transfer coefficient reactor 1 h1 min−1 2.70 0.80
Mass transfer coefficient reactor 2 h2 min−1 2.03 0.61
Mass transfer coefficient reactor 3 h3 min−1 1.35 0.41
Kinetic constant, reaction 1 kpol,i L mol−1 min−1 6.66E−02 0.017
Kinetic constant, reaction 2 kdegr,i min−1 8.34E−06 1.25E−06
Pressure in reactor i Pi Pa 130 6.5
Feed concentration of ethylene glycol cEG,0 mol L−1 6.50E−03 9.75E−04
Feed concentration of OH end-groups cOH,0 mol L−1 0.40 0.080
Feed concentration of COOH end-groups cCOOH,0 mol L−1 2.57E−03 2.57E−04
Feed concentration of ester groups cESTER,0 mol L−1 11.20 0.022

• Fault #4: high cooling water temperature (unmeasured vari-
able), which causes the reactor temperature to rise.

Numerical details on the faulty sequences are reported in Ap-
pendix A. We implement ten different realizations of each fault
scenario.

5. Results and discussion for case study 1

5.1. Design of the hybrid monitoring model

The 21 variables selected for inclusion in the augmented data
matrix of the hybrid monitoring model are listed in Table 3.
They comprise the 9 available field measurements and the 12
states estimated by the EKF using the FPM and the available mea-
surements. No model parameters are included in the augmented
matrix.

The difference in the concentration measurement intervals (1
min vs. 10 min, see Section 4.1) is dealt with using a two time-
scale EKF (Figure 3), which we borrow from [43]. EKF-1 receives
the frequent measurements and performs the prediction and
correction steps for all states except cCOOH,i, which is predicted
at open loop due to the observability conditions. EKF-2 receives
the infrequent measurements and provides corrections for cCOOH,i.
The accuracy of estimation of the unmeasured states cEG,i and
cESTER,i is improved through bias estimation [33]. Following the
approach adopted in [43], to satisfy the observability conditions
three biases are updated in EKF-1 (bEG,1, bEG,2 and bEG,3), whereas
the other three biases are updated in EKF-2 (bESTER,1, bESTER,2 and
bESTER,3).

We design the initial state covariance matrices (P0,EKF−1 and
P0,EKF−2) as diagonal matrices with zero variance for the biases,
and the same variance (equal to 1E-6) for all the other states. We
tune QEKF−1 and QEKF−2 heuristically to achieve quick and robust
convergence, resulting in:

QEKF−1 = diag(4E − 6 0 0 0 1E − 6 1E − 8 0 0 1E − 6

2.5E − 9 0 0 4E − 10 0 4E − 10 0 4E − 10 0) (31)

QEKF−2 = diag(0 0 2.5E − 9 0 0 0 2.5E − 9 0 0 0 2.5E − 9

0 0 3.6E − 7 0 3.6E − 7 0 3.6E − 7) (32)

In Eqs. (31) and (32), the first twelve elements along the
diagonal correspond to the estimated states (variable nos. 10–
21 in Table 3), whereas the last six refer to the bias vector
[bEG,1 bESTER,1 bEG,2 bESTER,2 bEG,3 bESTER,3]. Finally, REKF−1 and
REKF−2 are built according to Eq. (12), with σyOH,i = 4.9E-5 and
σyCOOH,i= 9E-8.

The typical estimation performance during a transient is
shown in Figure 4 for one unmeasured state in the second reactor.
The estimation accuracy is satisfactory.

Fig. 3. Architecture of the knowledge-driven block (two time-scale extended
Kalman filter) implemented for Case Study 1.
Source: Adapted from [43].

Fig. 4. Case study 1: EKF estimation performance for one unmeasurable state
in the second reactor during a transient.

We design a DPCA model on the 21 variables listed in Table 3
under NOC, sampling all signals every 10 min. The number L of
lagged measurements to be included in Zdyn (Eq. (20)) is heuristi-
cally derived from the overall residence time in the three reactors
(3 × 60 = 180 min), resulting in L = 18. The resulting size of
Zdyn is [512×399]. Eight PCs are used (this number being found
by cross-validation), explaining 54% of data variability on T 2, with
the remaining 46% being explained by SPE. The resulting control
charts under NOC are shown in Figure 5: no false alarms are
issued.

5.2. Fault detection and diagnosis

We compare the monitoring performances of the hybrid model
to those of a standard DD monitoring model and of a standard KD
monitoring approach. The standalone DD model uses only the 9
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Table 3
Case study 1: list of variables included in the augmented data matrix of the hybrid monitoring model.
Var. no. Variable name Reactor no. Symbol Units Variable type

1 Pressure 1 yP1 Pa Measurement
2 Hydroxyl end-groups concentration 1 ycOH,1 mol L−1 Measurement
3 Acid end-group concentration 1 ycCOOH,1 mol L−1 Measurement
4 Pressure 2 yP2 Pa Measurement
5 Hydroxyl end-group concentration 2 ycOH,2 mol L−1 Measurement
6 Acid end-group concentration 2 ycCOOH,2 mol L−1 Measurement
7 Pressure 3 yP3 Pa Measurement
8 Hydroxyl end-group concentration 3 ycOH,3 mol L−1 Measurement
9 Acid end-group concentration 3 ycCOOH,3 mol L−1 Measurement
10 Ethylene glycol concentration 1 cEG,1 mol L−1 Estimated state
11 Hydroxyl end-group concentration 1 cOH,1 mol L−1 Estimated state/Reconstructed

measurement
12 Acid end-group concentration 1 cCOOH,1 mol L−1 Estimated state/Reconstructed

measurement
13 Ester end-group concentration 1 cESTER,1 mol L−1 Estimated state
14 Ethylene glycol concentration 2 cEG,2 mol L−1 Estimated state
15 Hydroxyl end-group concentration 2 cOH,2 mol L−1 Estimated state/Reconstructed

measurement
16 Acid end-group concentration 2 cCOOH,2 mol L−1 Estimated state/Reconstructed

measurement
17 Ester end-group concentration 2 cESTER,2 mol L−1 Estimated state
18 Ethylene glycol concentration 3 cEG,3 mol L−1 Estimated state
19 Hydroxyl end-group concentration 3 cOH,3 mol L−1 Estimated state/Reconstructed

measurement
20 Acid end-group concentration 3 cCOOH,3 mol L−1 Estimated state/Reconstructed

measurement
21 Ester end-group concentration 3 cESTER,3 mol L−1 Estimated state

Fig. 5. Case study 1: control charts under normal operating conditions: (a) SPE chart, (b) Hotelling T 2 chart, (c) contributions to SPE. The dashed lines represent the
99% confidence limits.

measurements available from the process and is based on a DPCA
model designed with the same characteristics of the hybrid model
(18 lagged measurements spaced by 10 min). Cross-validation
suggests using 8 PCs for this model, too. Monitoring through a
standalone KD model is carried out using an EKF and χ2 tests
on ϵ (tk) and ϵ (tk, S) [12]. The confirmation test is implemented
with the same moving window of the hybrid and DD models; no
state augmentation is used.

For each fault scenario, the fault detection time is reported
in Table 4 as an average across the relevant fault realizations.
Whereas the detection performances for Fault #4 result the same
for the hybrid and the DD models, the hybrid model detects
Fault #1 and Fault #3 much more promptly than the DD one
(170 and 320 min earlier, respectively). Additionally, Fault #2
(a subtle one) goes undetected by the DD model, whereas it is
correctly detected by the hybrid model. The KD method leads to
the worst detection performance, as it is severely compromised
by the process-model mismatch. Fault #2 is not detected, and
the average detection times for the other fault scenarios are

greater than those of the hybrid and DD models (changing the
confirmation test window size does not lead to any substantial
improvement). For this reason, the KD model will not be inves-
tigated further for this case study. Incidentally, if the process
is monitored by univariate control charts on measurements or
estimated states, unsatisfactory detection performances for all
fault scenarios are obtained (results are expected and are not
reported for conciseness).

The reason why the hybrid model performs better than the DD
model in fault detection can be explained as follows. Thanks to
the presence of the KD block (Figure 1), the hybrid model embeds
more information about the inner working of the process, namely
on how the measured variables and the states are expected to co-
vary under NOC. Hence, mutual deviations of measured variables
and states from the relevant reference trajectories (such as those
occurring after the onset of a fault) can be detected effectively.
For example, Fault #3 starts impacting on the (estimated) states
earlier than it does on the measurements, as can be seen from
Figure 6 for the representative profiles of the ethylene glycol
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Table 4
Case study 1: fault detection time using the hybrid monitoring model, the data-driven monitoring model and the knowledge-driven
monitoring model. The detection time runs from the fault onset, and the reported values are averaged across the 10 realizations of the
relevant fault. For the hybrid and data-driven models, the monitoring statistic alarming the fault is also indicated..
Fault number and type Primarily affected

variable or
parameter

Hybrid model
detection time
(min)

Data-driven model
detection time
(min)

Knowledge-driven
model detection time
(min)

#1: Ester feed concentration
decrease

cESTER,0 550 (SPE) 720 (T 2) 880

#2: Minor agitation fault h2 590 (SPE) (undetected) (undetected)
#3: Major agitation fault h2 380 (SPE) 700 (SPE) 930
#4: Pressure increase P2 40 (SPE) 40 (SPE) 890

Fig. 6. Case study 1: time profiles of the ethylene glycol concentration (estimated state) and of the ethylene glycol concentration (measured variable) before and
after the onset of Fault #3 (time = 300 min). The triangles indicate the detection instant of the hybrid model and of the data-driven model.

Fig. 7. Case study 1: representative contribution plots for the hybrid monitoring model at the first out-of-control observation for (a) Fault #1, (b) Fault #2, (c) Fault
#3, and (d) Fault #4. Variables are numbered as in Table 3. In all plots, the contributions of field measurements are in green, while those of estimated/reconstructed
variables are in red with diagonal lines. Control limits at 99% confidence are shown as dashed lines.
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Fig. 8. Case study 1: representative contribution plots for the purely data-driven model at the first out-of-control observation for (a) Fault #1, (b)Fault #3, and (c)
Fault #4. Variables are numbered as is in Table 3. Control limits at 99% confidence are shown as dashed lines.

Fig. 9. Case study 1: EKF estimation performance on the unmeasurable state and
under the same dynamic conditions of Figure 4, in the presence of significant
process-model mismatch and bad filter tuning.

concentration (an estimated state in the second reactor) and of
the hydroxyl end-group concentration (a measured output in the
same reactor). This piece of information is captured by the DD
block, and this allows anticipating the fault detection. On the
other hand, if the fault impacts on a measured variable directly,
rather than through (or after) the change in one or more states (as
occurs for reactor 2 pressure in Fault #4), it is unlikely that the
information provided by the KD block to the hybrid model can
lead to a significant improvement in the detection performance.

Contribution plots of the hybrid and of the DD models at the
first out-of-control signal are used for fault diagnosis. For Fault
#1, Figure 7a shows that the hybrid monitoring model points to
the concentration of ester in the first reactor (variable no. 13 in
Table 3, an estimated state) as most related to the deviation from
the NOC, which would straightforwardly suggest an abnormal
feed concentration change as a possible root-cause of the fault. On
the other hand, the information provided by the DD monitoring
model for fault diagnosis is more ambiguous: Figure 8a mislead-
ingly draws the attention to the concentration of acid end-groups
in the third reactor (variable no. 9), a measurement that is not
related to the root-cause of the fault directly. In ∼50% of the
realizations of this fault, the DD model provides T 2 contributions
outside the control limits for acid end-groups also in the first
and in the second reactors. Indeed, due to the reduced ester
concentration in the reactors caused by the fault, also the acid
end-group concentrations are expected to decrease because of the
ester degradation kinetics Eq. (28), but this is only a secondary
(slower) effect.

With respect to Faults #2 and #3, the hybrid model (Figure 7b
and 7c) clearly identifies an abnormal ethylene glycol concentra-
tion in the second reactor (variable no. 14, an estimated state)

as the variable most directly related to the fault, thus correctly
pointing the attention to a possibly abnormal mass transfer of EG
in that reactor. On the other hand, as already mentioned, Fault
#2 is not detected by the DD monitoring model because it is too
small in magnitude, whereas for Fault #3 the DD model points to
measured variable no. 5, i.e. to the hydroxyl end-group concen-
tration in reactor 2 (Figure 8b). In fact, accumulation of ethylene
glycol due to the fault hinders the polycondensation reaction
(Eq. (27)), leading to an increase inycOH,2 . However, attributing
a reduction in the polycondensation rate of reaction to a high
ethylene glycol concentration may not be straightforward. Finally,
Fault #4 can be diagnosed very easily both by the hybrid model
(Figure 7d) and by the DD model (Figure 8c), because this fault
impacts on reactor 2 pressure (measured variable no. 4) directly.

Note that very accurate state estimation is not required for
the hybrid monitoring system to perform well. In fact, the main
task of the KD block in Figure 1 is only to provide information
on how the estimated states (together with reconstructed mea-
surements and possibly adapted parameters) co-vary during the
process operation, regardless of the fact that the actual values
of the states may be somewhat different from the actual (and
unknown) ones. To clarify this point, we consider a stronger
process/model mismatch by altering the FPM dynamics through
summation of a constant term (equal to −2E-3) to the right-hand
side of Eq. (24), even though the process dynamics remains the
same. Additionally, we degrade the filter performance by tuning
QEKF−2 as:

QEKF−2 = diag(0 0 2.5E − 9 0 0 0 2.5E − 9 0 0 0

2.5E − 9 0 0 4E − 8 0 4E − 8 0 4E − 8). (33)

This results in unsatisfactory state estimation, as shown in Fig-
ure 9 for the same state and transient considered in Figure 4.

Nevertheless, the fault detection and fault diagnosis perfor-
mance of the hybrid monitoring model are almost the same as
those reported in Table 4 and shown in Figure 7 (results are not
reported for conciseness).

6. Results and discussion for case study 2

6.1. Design of the hybrid monitoring model

The augmented data matrix of the hybrid monitoring model
includes the 15 variables listed in Table 5. To improve the mon-
itoring performance, in addition to state estimation the EKF per-
forms online adaptation of three FPM parameters: µX,max (max-
imum growth parameter), Kla (mass transfer coefficient) and sF
(substrate concentration in the feed). We select these parameters
because they can provide useful insights for typical potential
faults that may affect the reactor, namely changes in kinetics,
mass transfer, or feed composition.
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Fig. 10. Case study 2: EKF parameter adaptation performance during a representative NOC batch of (a) the maximum specific biomass growth rate µX,max , (b) the
mass transfer coefficient K la , and (c) the substrate feed concentration sF .

Fig. 11. Case study 2: loadings for (a) the first PC and (b) the second PC of the MW-PCA model over one window width during the production phase. The variables
are numbered as in Table 5.

The modeled measurements (yO2 , yV , yCO2 ) and measured in-
put (yF ) are supplied to the EKF every 3 min. The P0, Q and R
matrices used are designed using the same criteria as in Case
study #1, resulting in (states and measurements are ordered as
is in Table 5):

P0 = diag(1.00E − 4 1.00E − 4 1.00E − 4 1.00E − 4

1.00E − 4 1.00E − 4 2.25E − 4 1.00 0.00) (34)

Q = diag(2.50E − 08 1.00E − 09 9.00E − 07 2.50E − 08

9.00E − 05 2.50E − 08 6.50E − 08 2.50E − 3 8.00E − 2)
(35)

R = diag(6.25E − 06 1.00E − 04 3.60E − 03) (36)

The resulting state estimation performance is satisfactory (re-
sults are reported in Appendix B, Figure B.1). Nevertheless, as
illustrated in Figure 10, the adapted parameters drift away from
their ‘‘true’’ values even under NOC, because the EKF adjusts
the model parameters in the attempt to compensate for the
detected process-model mismatch. This does not represent an
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Fig. 12. Case study 2: control charts under normal operating conditions for the knowledge-driven approach. (a) χ2 test on the single-point innovation (fault detection),
(b) χ2 test on the innovations on a 50 h moving window (fault confirmation). The dashed lines represent the 99% confidence limits.

Fig. 13. Case study 2: representative contribution plots for the purely data-driven model at the first out-of-control observation for (a) Fault #1, (b) Fault #2, (c)
Fault #3, and (d) Fault #4. Variables are numbered as is in Table 5. Control limits at 99% confidence are shown as dashed lines.

issue for the hybrid system, because it is the pattern of change of
the adjusted parameter profiles together with the profiles of all
other measured and estimated variables that matters for process
monitoring, regardless of the fact that each single parameter is
estimated accurately or not.

Incidentally, note that, in the presence of significant structural
mismatch, a comparison between the ‘‘process’’ and the ‘‘model’’
parameters might even not be entirely appropriate, because the
meaning of a parameter within the ‘‘process’’ may be different

from the one the same parameter has in the ‘‘model’’. This is es-
pecially true when a model parameter (e.g., the maximum growth
rate kinetic parameter; see Appendix A) is used to compactly
represent a set of physical mechanisms that are expected to occur
in the process, but are not described by the model equations
accurately.

We design an MW-PCA model for the DD block of the hybrid
monitoring system. Considering that the total batch duration is
300 h, measurements are retained every 1 h. After exploring
several windows widths, we select W = 50 h as the width
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Table 5
Case study 2: list of variables included in the augmented data matrix of the hybrid monitoring model.
# Symbol Variable Unit Type of variable

1 ypH pH – Measurement
2 yT temperature K Measurement
3 yO2 oxygen concentration gO2 L−1 Measurement
4 yV volume L Measurement
5 yCO2 CO2 concentration molCO2 L

−1 Measurement
6 yF feed flow rate L h−1 Measurement
7 X biomass concentration gX L−1 Estimated state
8 P penicillin concentration gP L−1 Estimated state
9 S substrate concentration gS L−1 Estimated state
10 cO2 oxygen concentration gO2 L−1 Estimated state/Reconstructed measurement
11 V volume L Estimated state/Reconstructed measurement
12 cCO2 CO2 concentration molCO2 L

−1 Estimated state/Reconstructed measurement
13 µX,max maximum growth parameter h−1 Adapted parameter
14 Kla mass transfer coefficient h−1 Adapted parameter
15 sF feed concentration gS L−1 Adapted parameter

Fig. 14. Case study 1: representative contribution plots for the hybrid monitoring model at the first out-of-control observation for (a) Fault #1, (b) Fault #2, (c) Fault
#3, and (d) Fault #4. Variables are numbered as in Table 5. In all plots, the contributions of field measurements are in green, while those of estimated/reconstructed
variables are in red with diagonal lines. Control limits at 99% confidence are shown as dashed lines.

leading to satisfactory monitoring performances. The size of ZMW

is [35×15] after 1 h, and grows of 15 columns per hour until 50 h.
Then, a fully developed ZMW of size [35×750] is used until the end
of the batch. Three PCs are used (found by cross-validation), with
an explained variance profile of ∼45% in the production phase,
after reaching a minimum of ∼25% at the switch between the
growth and the production phases, due to the high variability of
the switching instant across the NOC batches.

The loadings of the first two PCs over one window width
during the production phase (Figure 11) allow assessing the auto-
and cross-correlation of the variables included in the augmented

data matrix. MW-PCA provides a correlation model in which esti-
mated states, adapted parameters and measurements (including
those not accounted for by the FPM) are all intimately linked.
For example, from the analysis of the loadings on the first PC
(Figure 11a), it emerges that the reactor temperature (variable
no.2, which is measured but not modeled by the FPM) is not
only strongly auto-correlated, but also cross-correlated to several
variables modeled by the FPM, such as for example the reactor
volume (variable no.11). As will be shown in the next section, ex-
ploitation of the cross-correlation between states, measurements
and parameters enhances the monitoring capability of the hybrid
model.
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Table 6
Case study 2: fault detection time using the hybrid monitoring model, the data- driven monitoring model and the knowledge-driven monitoring model. The
detection time runs from the fault onset, and the reported values are averaged across the 10 realizations of the relevant fault. For the hybrid and data-driven
models, the monitoring statistic alarming the fault is also indicated.
Fault number type Primarily affected

variable or
parameter

Hybrid model
detection time
(h)

Data-driven
model detection
time (h)

Knowledge-driven
model detection time
(h)

#1: aeration rate decrease Kla 45 (SPE) 110 (SPE) 70
#2: substrate feed concentration decrease sF 35 (SPE) 70 (SPE) 62
#3: growth rate decrease µX,max 14 (SPE) 28 (SPE) (undetected)
#4: cooling water temperature rise T 35 (SPE) 35 (SPE) (undetected)

Table A.1
Case study 2: states of the detailed model, with indication on whether they are measured, and whether or not they are included
also in the simplified model.
State variable Symbol Initial value Units Measured? In the FPM?

Biomass concentration X 0.1 gX L−1 No Yes
Penicillin concentration P 0 gP L−1 No Yes
Substrate concentration S 15 gS L−1 No Yes
Dissolved oxygen concentration cO2 1.16 gO2 L−1 Yes Yes
Volume V 100 L Yes Yes
CO2concentration cCO2 0.5 mmolCO2 L−1 Yes Yes
Hydrogen ion concentration

[
H+

]
10−5.1 mol L−1 Yes No

Temperature T 297 K Yes No
Heat released Qr 0 cal No No

Table A.2
Case study 2: parameters the detailed model, with indication on whether or not they are included also in the simplified model.
Parameter Symbol Units Value In the FPM?

Penicillin hydrolysis rate constant K h−1 0.04 Yes
Yield of biomass on substrate YX/S gXg−1

S 0.45 Yes
Yield of penicillin on substrate YP/S gPg−1

S 0.90 Yes
Maintenance coefficient on substrate mx h−1 0.014 Yes
Feed substrate concentration sF gS L−1 600 Yes
Yield of biomass on oxygen YX/O gX g−1

O2
0.04 Yes

Yield of product on oxygen YP/O gP g−1
O2

0.20 Yes
Maintenance requirement of oxygen mo h−1 0.467 Yes
Solubility of oxygen in broth c∗

O2
gO2 L

−1 1.16 Yes
Volume loss parameter λ h−1 2.5E−4 Yes
Constant relating CO2 to growth α mmolCO2 g−1

X h−1 0.143 Yes
Constant relating CO2 to maintenance energy β mmolCO2 g−1

X h−1 4E7 Yes
Constant relating CO2 to penicillin production γ mmolCO2 L−1 h−1 10E−4 Yes
Maximum specific biomass growth rate µX,max h−1 0.092 Yes
Contois saturation constant kx gXL−1 0.15 Yes
Oxygen limitations constants (no limitation) Kox, Kop g−1

X L 0 Yes
Oxygen limitations constants (with limitation) Kox, Kop g−1

X L 2E−2, 5E−4 Yes
Maximum specific rate of product formation µP,max h−1 0.005 Yes
Inhibition constant kp gSL−1 0.0002 Yes
Inhibition constant for product formation KI gSL−1 0.10 Yes
Constant P – 3 Yes
Feed temperature of substrate Tf K 298 No
Constant for µ K1 [mol/L] 1E−10 No
Constant for µ #2 K2 [mol/L] 7E−5 No
Arrhenius constant for growth kg – 7E3 No
Activation energy for growth Eg cal mol−1 5100 No
Arrhenius constant for cell death kd – 1E33 No
Activation energy for cell death Ed cal mol−1 50000 No
Density × heat capacity of the medium ρcp cal ◦C−1 L−1 1/1500 No
Density × heat capacity of the cooling liquid ρcpc cal ◦C−1 L−1 1/2000 No
Yield of heat generation rq1 cal g−1

X 60 No
Constant in heat generation rq2 cal g−1

X h−1 1.6783E-4 No
Heat transfer coefficient a cal h−1 ◦C−1 1000 No
Constant b – 0.60 No
Constant for Kla α1 – 70 No
Constant for Kla α2 – 0.4 No
Proportionality constant γ mol [H+]g−1

X 1E−5 No
Cooling water temperature Tc K 290 No

6.2. Fault detection and diagnosis

We compare the fault detection and diagnosis performances
of the hybrid monitoring model to those of a standalone DD
monitoring model that uses only the 6 measurements available

from the process (Section 4.2 and first six entries in Table 5).
We use a window width of 50 h also for the DD model, and
cross-validation suggests retaining 3 PCs.

We also implement the KD fault detection and confirmation
tests on the innovation sequence of the EKF without parameter
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Table A.3
Case study 2: input variables of the detailed and simplified models, with indication on whether or not they are measured. In the detailed
model, fluctuations are added around the nominal values as smoothed pseudo-random binary signals with the indicated maximum/minimum
amplitudes. In the simplified model, constant (nominal) values are used.
Input variable Symbol Units Nominal value Max/min amplitude Measured? In the FPM?

Feed substrate F L h−1 0.045* 8E−4 Yes Yes
Aeration rate fg L h−1 8 0.08 No No
Agitator power Pw W 30 0.45 No No

*F = 0 L h−1 in the first 50 h of the batch.

Fig. B.1. Case study 2: EKF state estimation performance for three unmeasured states during a representative NOC batch: (a) substrate concentration, (b) biomass
concentration, and (c) penicillin concentration.

estimation for comparison. However, as shown in Figure 12,
this approach performs poorly: due to process-model mismatch,
false alarms are issued under NOC. Consequently, we build a
benchmark KD approach by monitoring drifts of the adjusted
parameters with respect to their nominal values [34]. Typical
profiles of the adjusted parameters under faulty conditions are
shown in Figures B.2–B.4 in Appendix B.

For each fault scenario, the fault detection time is reported in
Table 6 as an average across the relevant fault realizations for
the three monitoring approaches. The KD monitoring approach
struggles with the high variability of the adjusted parameter pro-
files under NOC, which masks faulty parametric drifts. Only Fault
#1 and Fault #2 are correctly detected and diagnosed (see also
Figure B.3a and Figure B.4b in Appendix B), although much later
than with the hybrid model. On the other hand, neither Fault #3
nor Fault #4 can be detected. This approach also suffers from an
additional limitation. Due to the fact that EKF adjusts the model
parameters to compensate for the process-model mismatch, the
effect of a fault gets smeared into simultaneous variations of
all parameters. This limits the possibility to monitor each single

parameter in order to detect and isolate the faults. For example,
looking at the very fluctuating substrate feed concentration esti-
mation during certain realizations of Fault #3 (Figure B.4c), one
might wrongly ascribe the faulty condition to this parameter.

On the other hand, all fault scenarios are detected with hybrid
and DD monitoring models for all fault realizations. Still, the
hybrid monitoring model alarms the faults much earlier than the
DD one for all faults except Fault #4. For this fault, the reactor
temperature (a measured variable) is affected by the fault at the
same time as the states, and therefore the information the KD
block passes to the DD block does not contribute to improve the
detection performance.

The DD monitoring model does not allow diagnosing the faults
unambiguously, because different faults generate qualitatively
similar contribution plots. For example, both Fault #1 (Figure 13a)
and Fault #3 (Figure 13c) point to the oxygen concentration
(variable no.3), which is indeed a measurement strongly affected
by both faults, but is not useful to clearly discriminate the root-
causes of the faults. Reactor temperature (measured variable
no.2) is pinpointed as the suspected variable for both Fault #2
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Fig. B.2. Case study 2: EKF parameter adaptation performance for the maximum specific biomass growth rate µX,max during a representative batch for (a) Fault #1,
(b) Fault #2, (c) Fault #3, and (d) Fault #4.

(Figure 13b) and Fault #4 (Figure 13d), but this leaves the diag-
nosis problem open. The main difficulty with the DD monitoring
model is that in this system there are too few measurements
on which a fault can manifest. This implies that different faults
become visible only through the same measurements, which
makes fault diagnosis harder. On the other hand, in the hybrid
monitoring system the estimated states and adapted parameters
provide a set of additional ‘‘virtual measurements’’ that can cap-
ture a qualitative signature of the fault. Not only does this allow
to anticipate fault detection, but it can also point to the root-cause
of the fault in a more straightforward way, because − by design −

the virtual measurements represent the underlying mechanisms
through which the fault propagates into the system.

In fact, the contribution plots derived from the hybrid model
(Figure 14) provide information that is very helpful for fault
diagnosis. The aeration problem (Fault #1, Figure 14a) is marked
by anomalously small contributions for the mass transfer coef-
ficient (variable no. 14) and the oxygen concentration (variable
no. 10), whereas in Fault #2 the abnormal feed concentration
is clearly spotted (Figure 14b, variable no.15). For the biomass
growth rate decrease problem (Fault #3; Figure 14c), the most
significant contributions refer to variables related to the biomass
reaction, including the online adapted kinetic parameter (variable
no. 13); from this piece of information, a biomass growth reaction
problem can be diagnosed in a relatively easy way. The only fault
in which the main contribution is the reactor temperature is Fault
#4 (variable no. 2; Figure 14d), but temperature is a measurement
where an abnormal reactor cooling can leave a footprint directly.
Hence, the hybrid model contribution plot does no better than
the DD model one.

7. Conclusions

In this study, we proposed a novel framework for multivari-
ate process monitoring based on a hybrid modeling approach.
Real-time deterministic information about the process is first
obtained in a knowledge-driven block from a state estimator in
the form of estimated states, reconstructed measurements, and
possibly adapted parameters. The information is then passed to a
data-driven block, where it is exploited, in conjunction with the
available field measurements, by a latent-variable model that ac-
complishes multivariate fault detection and diagnosis. The design
of the two blocks is largely independent, which makes implemen-
tation of the proposed methodology easier.

We tested the hybrid methodology on two simulated case
studies, namely a continuous process and a fed-batch one. It
typically allowed for earlier fault detection than standard data-
driven and knowledge-driven approaches taken in isolation, even
when the state estimator did not perform entirely satisfactorily.
In addition, using the hybrid approach significantly facilitated
fault diagnosis.

The very satisfactory fault detection performance of the hybrid
approach derives from the fact that the estimated states (and pos-
sibly the adapted parameters) provide a set of additional variables
a fault can leave a footprint on. In most cases, these variables
respond to the fault earlier than the measurements, causing an
anticipated shift or break of the normal correlation structure of
the data, which can be promptly captured and alarmed by the
latent-variable model. With respect to fault diagnosis, if a fault
manifests itself as an abnormal change in one or more states (or
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Fig. B.3. Case study 2: EKF parameter adaptation performance for the mass transfer coefficient Kla during a representative batch for (a) Fault #1, (b) Fault #2, (c)
Fault #3, and (d) Fault #4.

parameters), diagnosing that fault with the hybrid model is gen-
erally easier, because the states and parameters straightforwardly
point to the inner mechanism that is being impacted by the fault.
This enables one to disclose the root-cause of the fault with less
ambiguity than can be done using field measurements alone.

The successful performance of the hybrid monitoring system is
due to the inclusion of the estimated states (and possibly of the
adapted parameters) within a multivariate framework together
with the measurements, rather than to the mere implementation
of a knowledge-driven component. In fact, traditional knowledge-
driven approaches (like innovation sequence monitoring or para-
metric drift detection) lack the well-known advantages of process
monitoring by latent-variable modeling, and they were found not
to be able to cope with even mild process-model mismatch.

As for all data-driven methodologies, a word of caution must
be mentioned for the hybrid approach in relation to the region
wherein the process is run. In fact, the monitoring performance
may be compromised if the process is operated away from the
region over which the data-driven component was calibrated.
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Appendix A. Penicillin manufacturing: detailed and simplified
models

The fed-batch process for the manufacturing of penicillin by
biomass fermentation is simulated using the detailed model by
Birol et al. [42].
dX
dt

= µxX −
X
V

dV
dt

(A.1)

dP
dt

= µPX − KP −
P
V

dV
dt

(A.2)
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Fig. B.4. Case study 2: EKF parameter adaptation performance for the substrate feed concentration sF during a representative batch for (a) Fault #1, (b) Fault #2,
(c) Fault #3, and (d) Fault #4.

dS
dt

= −
µx

YX/S
X −

µP

YP/S
X − mxX + F

sF
V

−
S
V

dV
dt

(A.3)

dCO2

dt
=

µx

YX/O
X −

µP

YP/O
X − moX + Kla

(
c∗

O2
− cO2

)
−

CO2

V
dV
dt

(A.4)

with:

Kla = α1
√
fg

(
Pw

V

)α2

. (A.5)

dV
dt

=
U
sF

+ Fa/b − Vλ(e
5(T−T0)
Tv−T0 − 1) (A.6)

dcCO2

dt
= α

dX
dt

+ βX + γ (A.7)

µP = µP,max
S

kp + S(1 + S/KI )

Cp
O2

kopX + Cp
O2

(A.8)

µX =

⎡⎣ µx,max

1 +
K1
[H+] +

[H+]
K2

⎤⎦ S
kxX + S

CO2

koxX + CO2

×

{[
kg exp

(
−

Eg
RT

)]
−

[
kd exp

(
−

Ed
RT

)]}
(A.9)

d
[
H+

]
dt

= γ

(
µX −

FX
V

)
+

[
−δ+

√
(δ2+4·10−14)

2 −
[
H+

]]
∆t

(A.10)

with:

δ =

[
10−14

[H+]
−

[
H+

]]
V −

Ca/b (Fa + Fb) ∆t
V + (Fa + Fb) ∆t

. (A.11)

dQr

dt
= rq1

dX
dt

V + rq2XV . (A.12)

dT
dt

=
F
sF

(
Tf − T

)
+

1
Vρcp

⎡⎣Qr −
aF b+1

c (T − Tc)

Fc +

(
aFbc

2ρcpc

)
⎤⎦ . (A.13)

We report in Table A.1 the symbols used for the states and
outputs, and in Tables A.2 and A.3 those used for the parameters
and the inputs, respectively.

To allow for more variability under NOC, thus making the
monitoring problem more challenging, we detune the pH and
temperature loops with respect to the original tuning in [42].
We also include process noise as fluctuations in the inputs, as
reported in Table A.3.

The faulty batches discussed in Section 4.2 are initialized as
the NOC ones, and then the following changes are considered in
the detailed model:

• Fault #1: aeration rate decreases by 0.01 L h−1 from 150 h
to 300 h;

• Fault #2: substrate feed concentration decreases by 0.50 gS
L−1 h−1 from 150 h to 300 h;

• Fault #3: µX,max decreases by 3.2E−4 h−2 from 15 h to 140
h;

• Fault #4: Tc = 298 K from the beginning of the batch.
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The simplified model by Bajpai and Reuss [44], complemented
with the CO2 balance and a simplified version of the volume loss
equation from Birol et al. [42], are used as the FPM. Namely,
the FPM is composed by Eqs. (A.1)–(A.4), Eqs. (A.7)–(A.8) and
the following equations as the volume balance and the biomass
growth kinetics:
dV
dt

= F − λV (A.14)

µX = µX,max
S

kxX + S
CO2

koxX + CO2

(A.15)

States, parameters and inputs are set as in Tables A.1–A.3. Note
that the FPM retains only 6 of the 9 states of the process. The main
sources of parametric and structural mismatch are as follows:

• protons, heat and energy balances Eqs. (A.10)–(A.13) are not
included in the FPM;

• Eqs. (A.14) and (A.15) do not consider the effects of pH and
temperature on the kinetic parameters and on the volume
loss by evaporation, which are significant in the process and
are accounted for in the detailed model;

• in the process, the mass transfer coefficient Kla depends on
two inputs (fg and Pw , Eq. (A.5)), which are subject to small
fluctuations. The FPM neglects this dependency, assuming
Kla = 120.3 h−1.

Appendix B. Penicillin manufacturing: state estimation and
parameter adaptation results

In this appendix we report representative results for state
estimation and parameter adaptation in Case Study 2. Figure B.1
shows the estimations of three unmeasured states (substrate,
biomass and penicillin concentrations) during a representative
NOC batch. The adapted values of the maximum specific biomass
growth rate, mass transfer coefficient, and substrate feed concen-
tration during representative batches for each fault scenario are
reported in Figs. B.2–B.4 (respectively).
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