
Journal of Environmental Management 354 (2024) 120404

Available online 19 February 2024
0301-4797/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research article 

Coupling machine learning and physical modelling for predicting runoff at 
catchment scale 

Sergio Zubelzu a,*, Abdulmomen Ghalkha b, Chaouki Ben Issaid b, Andrea Zanella c, 
Medhi Bennis b 

a Departamento de Ingeniería Agroforestal, Universidad Politécnica de Madrid, Madrid, Spain 
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A B S T R A C T   

In this paper, we present an approach that combines data-driven and physical modelling for predicting the runoff 
occurrence and volume at catchment scale. With that aim, we first estimated the runoff volume from recorded 
storms aided by the Green-Ampt infiltration model. Then, we used machine learning algorithms, namely 
LightGBM (LGBM) and Deep Neural Network (DNN), to predict the outputs of the physical model fed on a set of 
atmospheric variables (relative humidity, temperature, atmospheric pressure, and wind velocity) collected 
before or immediately after the beginning of the storm. Results for a small urban catchment in Madrid show DNN 
performed better in predicting the runoff occurrence and volume. Moreover, enriching the input primary at-
mospheric variables with auxiliary variables (e.g., storm intensity data recorded during the first hour, or rain 
volume and intensity estimates obtained from auxiliary regression methods) largely increased the model per-
formance. We show in this manuscript data-driven algorithms shaped by physical criteria can be successfully 
generated by allowing the data-driven algorithm learn from the output of physical models. It represents a novel 
approach for physics-informed data-driven algorithms shifting from common practices in hydrological modelling 
through machine learning.   

1. Introduction 

In 2017, a set of 230 experts, including well known hydrologists and 
scientists from other related disciplines, highlighted several unsolved 
questions in hydrology (Blösch et al., 2017). They arose some issues 
related to hydrologic laws and their suitability at different scales, the use 
of historical data vs soft data, the reduction of the amount of model 
structural/parameter/input uncertainty in hydrological prediction, 
among others. Following the conclusions presented in that work, the 
comprehensive understanding of the complex interactions among the 
physical processes underlying the hydrological systems still remained 
elusive. 

The accurate modelling of hydrological systems is complex, 
involving highly variable and interlinked distant processes, such as 
precipitation, infiltration and flood routing. Theories for modelling such 
phenomena were proposed long time ago (see, for example, 
Thornthwaite and Holzman, 1939; Darcy, 1856; Philip, 1957; Richards, 

1931; Saint Venant, 1871). Nonetheless, physical models still suffer 
from major problems, such as mathematical complexity, unreliability of 
parameterization when modelling large and heterogeneous watersheds, 
inability to adequately handle extreme spatial and temporal variability, 
or lack of random criteria in modelling the evolution of hydrological 
systems. Physical models are hence rigorous from a conceptual 
perspective but often prohibitively complex when large-scale accurate 
results are sought. 

Given the performance achieved by data-driven models in different 
fields, and the always larger amount of data available, many hydrolo-
gists have then explored in the last years the suitability of applying 
machine-learning (ML) for modelling hydrologic processes. Some recent 
and comprehensive overviews of this body of work are provided in 
Mohammadi (2022), Mosaffa et al. (2022) or Zounemat-Kermani et al. 
(2021). 

By analysing the literature, we can observe that the application of ML 
algorithms for modelling hydrological processes base on either 
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autoregressive approaches (Tikhamarine et al., 2020; Zuo et al., 2020; 
Shabri and Suhartono, 2012) or physical causality (Bui et al., 2020; 
Wang et al., 2020; Pourghasemi et al., 2020; Dariane and Azimi, 2018; 
Kratzert et al., 2019; Alizadeh et al., 2018; Zhong et al., 2023; Yokoo 
et al., 2022; Bhasme et al., 2022). The first group comprises models 
where outputs and inputs are time-lagged variables. Within the second 
group we can find models that seek to bind the model’s inputs and 
outputs by physical causality. This approach explores the so-called 
physics informed ML pathway for modelling hydrological processes 
which consists in shaping the machine learning algorithm following 
hydrological principia. 

However, despite the growing interest dedicated to these approaches 
and their apparent good performance, concerns raise when data-driven 
algorithms are analysed in detail (Zanella et al., 2023). For what regards 
to autoregressive approaches, ML algorithms must ensure the temporal 
dimension of the input data they use is correct. Rainfall-runoff hydrol-
ogy is triggered by asynchronous events (storms) and using fixed-period 
time series (monthly, daily or even hourly), as is mostly done in previous 
published works, is not suitable for properly observing these processes. 
The focus has to be on hyetographs rather than the cumulative precip-
itation in long-time intervals. Similarly, the time lags considered for 
feeding the model must be coherent and going back several weeks or 
months is only defensible if the catchment physical and territorial 
characteristics allow the observed hydrological variable to be dependent 
on what happened weeks or months ago. It is especially questionable for 
some previous published works that found good performance in models 
predicting the streamflow fed on either 7 or 8 monthly lagged precipi-
tation or streamflow records. 

We strongly believe there is also still large field for improving the 
way physics informed ML algorithms are being built. The proper selec-
tion of physically related inputs and outputs is the key point we argue 
previous works are not addressing correctly. Previous attempts exploit 
existing datasets to build predictive models on poorly connected vari-
ables with no structured causal relationship defined by theoretical 
models. Most of the existing works select a set of weather, territorial or 
geographical parameters to feed the algorithms in the search for the 
combination yielding the best performance in predicting the output 
while obviating any physical theory supporting the relationship between 
input and output. 

In this paper, we seek a novel approach for designing data-driven 
algorithms based on physical theories that will help overcome the pre-
sented issues. We move away from previous ideas by interlocking both 
physically-based and data-driven modelling approaches, so as to build 
ML algorithms that embody the causal relationships defined by physical 
theories. 

We applied this idea to develop a data-driven algorithm for pre-
dicting the occurrence and volume of runoff from atmospheric variables 
recorded before the storm starts. We acted as follows: 1) we first 
extracted storm hyetographs from precipitation records; 2) then used 
the Green-Ampt theoretical model to determine whether each storm 
generates runoff and, in case, of what volume; 3) we trained some ML 
algorithms with atmospheric measurements (temperature, wind veloc-
ity, relative humidity and atmospheric pressure) collected just before 
the beginning of each storm event with the intent of predicting the 
occurrence and volume of runoff estimated by the Green-Ampt model. 

2. Materials and methods 

We retrieved weather records of precipitation (P), relative humidity 
(HR), temperature (T), atmospheric pressure (PB) and wind velocity 
(VV) from six weather stations1 located in Madrid city (Spain). We used 
hourly data from January 2019 to October 2022 (in total, 33,576 hourly 

samples of each variable). After cleaning spurious records, we extracted 
the storm hyetographs of each rainstorm event (defined as any set of 
positive precipitation records between two zero precipitation values). 
Then, we determined the aggregated volume (V), duration (D), average 
rainfall intensity (Iav) and maximum rainfall intensity (Im) of each 
storm event. We also stored HR, T, PB and VV records one, two, three, 
four and 5 h before the storm beginning and during the storm event as 
well. We then applied linear interpolation to increase the time granu-
larity of the measurements to 10 min. 

These hyetographs were then used as input variables to the Green- 
Ampt model as presented in Chow et al. (1988), from which we esti-
mated the occurrence of runoff and its characteristics, namely: volume 
(VR), maximum intensity (Rim), and average intensity (RIav). 

Our comprehensive assumption is that there exists physical causality 
between the evolution of the atmospheric variables (HR, T, PB, VV) 
before the storm starts, the derived storms characteristics and, conse-
quently, the runoff occurrence and volume estimated by the Green-Ampt 
model. Under these assumptions, we fed the data-driven algorithm on 
primary atmospheric variables (input) potentially explaining the final 
runoff characteristics (output), as sketched in see Fig. 1. The physical 
model in this case provide the ML algorithm with the output to be 
forecasted while the inputs are the set of atmospheric records collected 
before or immediately after the beginning of the storm. 

2.1. Physical modeling: the Green-Ampt model 

Let i(t) denote the rainfall intensity and f(t) be the potential infil-
tration rate of the ground at time t. Moreover, let P(t) and F(t) be the 
aggregated precipitation and infiltration values, respectively, up to time 
t. 

Then, as long as i(t) < f(t), rainfall completely infiltrates the ground, 
and runoff does not occur. In this condition, we have P(t) = F(t). On the 
contrary, if i(t) > f(t), the ground is no longer capable of absorbing all 
rainfall and the excess will flow on surface, creating runoff. The volume 
of runoff up to time t, when it occurs, is then given by VR(t) = P(t) − F(t). 

Following Chow et al. (1988), the Green-Ampt model provides the 
potential infiltration rate f(t) as 

f (t) ≅ ks

(

1+
τf ⋅Δθ
F(t)

)

(1) 

and 

F(t) = ks ⋅ t+ τf ⋅ Δθ⋅Ln
(

1+
F(t)

τf ⋅Δθ

)

(2)  

where ks, Δθ and τf stand for the saturated hydraulic conductivity, the 
difference between the saturated and the initial soil water content and 
the wetting front suction head, respectively. This last parameter, in turn, 
can be estimated following Neuman (1976). 

τf =
1
Ks

∫h(θs)

h(θi)

K(θ)dh(θ) (3) 

aided by Van Genuchten (1980) and Mualem′s (1976) models for the 
soil conductivity and water retention curves: 

θ − θr

θs − θr
= θ∗ = [1 + (αh(θ))n

]
− m; (4)  

k(θ) = ksθ∗0.5
[
1 +

(
1 − θ∗1

m

)m]2
. (5)  

in the equations above, the parameters θs and θr indicate the saturated 
and residual soil moisture levels, θ* the normalised soil moisture and m, 
n and α a set of soil-type dependent parameters. 

We used the previous approach for estimating the occurrence of 
runoff (binary variable taking value 1 in case runoff occurs at any time 

1 “J.M.D. Moratalaz”, ”J.M.D. Villaverde”, ”Centro Municipal de Acústica”, 
”J.M.D. Hortaleza”, ”Peñagrande” and ”Plaza Elíptica”. 
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during the storm and 0 otherwise) and, if positive, the volume of runoff 
(VR(RD), where RD is the overall runoff duration), the maximum in-
tensity RIm = maxt{VR(t)-VR(t-1)}, and the average intensity RIav = VR 
(RD)/RD of each storm event. 

2.2. Data-driven inference algorithms 

Let {Xi, yi} represent a generic dataset, where Xi = {x1, x2, …, xn} are 
the i-th input variable vector and yi is the corresponding i-th output of 
the system. The goal of data-driven inference algorithms is to estimate a 
function Z(x) that minimizes some loss function L(y, Z(x)): 

Ẑ = arg minZEy,x[L(y,Z(x))]. (6)  

in our study, we used LGBM and DNN algorithms. The mathematical 
basis of both are given below.  

1) LGBM is a gradient boosting framework that uses a tree-based 
learning algorithm. Gradient boosting (GBDT) is a way to solve (6) 
in which Z(x) is represented as an ensemble of weak predictors, 
which are decision trees. The GBDT model with N stages can be 
expressed as: 

Z(x)=
∑N

j=1
hj
(
x; θj

)
(7)  

where hj(x; θj) is the j-th weak predictor, and θj is its parameter. 
Therefore, the model at the iteration j can be formulated as: 

Zj(x)= Zj− 1(x) + hj
(
x; θj

)
. (8) 

Therefore, GBDT avoids the high complexity encountered when 
trying to solve (6) with single-step optimization by dividing it into 
smaller sub-problems. In addition, LGBM uses a histogram-based 
approach to calculate the optimal splitting points for each feature. 
This involves dividing the feature values into a small number of discrete 
bins and then finding the optimal split point based on the histograms of 
these bins. This approach reduces the computational cost of determining 
the optimal splitting points and allows for faster training. 

2) DNNs are well suited for data with complex patterns and relation-
ships difficult to be modelled using traditional ML algorithms. DNNs 
consist of multiple layers of interconnected neurons, with each layer 
transforming the input data in a way that allows the next layer to 
extract more complex features from it. Each layer of the network 
consists of multiple neurons that perform a linear transformation 
followed by a non-linear activation function. By stacking many 
layers together, DNNs can learn highly abstract and hierarchical 
representations of data, which make them well suited for a wide 
range of machine learning tasks. 

The mathematical representation of a single neuron in a layer can be 
written as: 

z(l)j =
∑n(l− 1)

i=1
ω(l)

ij x(l− 1)
i + b(l)

j (9)  

where l denotes the layer index, j the neuron index in that layer, n(l− 1) 

the number of neurons in the previous layer, wij
(l) the weight of the 

connection between neuron i in layer (l − 1) and neuron j in layer l, xi
(l− 1) 

the output of neuron i in layer (l − 1), bj
(l) the bias of neuron j in layer l, 

and zj
(l) the weighted sum of the inputs to neuron j in layer l. The output 

of a single neuron in the layer l can be written as: 

a(l)
j = f (j)

(
z(l)j

)
, (10)  

where f(j)(.) denotes the activation function at the j-th layer. The output 
of each layer is then passed as input to the next layer until we reach the 
last output layer, where the final output of the network is computed as: 

y= f (L)
(
z(L)

)
(11) 

being z(L) the weighted sum of the inputs to the output layer, and 
f(L)(.) the activation function of the output layer. 

The entire DNN can be written as a composition of functions as: 

y= f (L)
(
f (L− 1)( …f (2)

(
f (1)(x)

)))
. (12) 

The weights and biases of the neural network are learned through a 
process called backpropagation, where the error between predicted and 
true output is backpropagated through the network to adjust the weights 
and biases using gradient descent. 

2.3. Proposed architectures of machine learning algorithms mimicking 
physical behaviour 

We targeted both runoff occurrence (classification) and runoff 
characteristics (prediction) seeking to mimic the physical causality 
following different strategies as presented in the sections below and 
graphically illustrated in Fig. 2. 

2.3.1. Runoff occurrence 
To predict the occurrence of runoff, we tested different approaches, 

with progressively richer information sets, as explained below and dis-
played in Fig. 2. 

(1.a) The first basic approach consists in applying both LGBM and 
DNN classifiers to predict the occurrence of runoff (output) directly 
from primary atmospheric variables (HR, T, PB, VV) collected from 
one to 5 h before the beginning of a storm. 
(1.b) The second approach enriches the previous one by including in 
the input variables of the LGBM and DNN algorithms also the esti-
mate of the aggregate rainfall volume and maximum rain intensity as 
given by a regression model from the atmospheric primary variables. 
Notice that this method still requires measurements collected before 
the beginning of a storm but, conversely to the previous one, 
explicitly estimates the intermediate variables that are known to 
drive the runoff process. 

Fig. 1. Proposed conceptual approach for coupling data-driven and physical modelling.  
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(1.c) The third approach replicates 1.a but incorporating the recor-
ded precipitation volume during the first hour of the storm. In this 
case, the model can be applied only after the storm has started. 
(1.d) The last approach is as 1.c but it uses the storm precipitation 
volume and maximum intensity recorded after the storm rather than 
those predicted with regression models. This model is used as 
benchmark, since it can only be applied after the end of the storm. 

2.3.2. Runoff volume prediction 
We applied a similar approach to predict the (estimated) volume of 

runoff: 

(2.a) We employ LGBM and DNN regressors to predict the runoff 
volume using the primary atmospheric variables. 
(2.b) Model 2.b enriches 2.a with the predicted values of the runoff 
intensity and volume, obtained through a regression model from the 
primary variables. 

(2.c) Here we repeat 2.a, but using the actual measured precipitation 
volume during the first hour of the storm as auxiliary input variables 
in place of those estimated with the regression model. 
(2.d) Finally, similarly to what done for the classification, we repli-
cate 2.c by replacing the estimated precipitation volume and in-
tensity with those measured at the end of the storm. 

For running the models, data was divided into training and testing 
with ratios of 0.7 and 0.3 respectively. 

2.4. Performance metrics 

The performance of the runoff classifier is measured using both the 
F1 score given by 

F1 =
2⋅TP

2⋅TP + FP + FN
(13)  

where TP, FP and FN stand for the true positive, false positive and false 

Fig. 2. Illustration of the models’ construction with the predicted output from each step.  
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negative numbers. The F1 score combines precision (proportion of truly 
positive events over the total number of examples classified as positive) 
and recall (number of true positive examples over the total number of 
actual positive examples, i.e., the sum of the number of true positives 
and false negatives) metrics. In addition, we also consider a metric 
denoted by AUC, i.e., the area under the Receiver Operating Charac-
teristic curve (ROC) that captures the trade-off between detecting true 
positives and false positives. Both metrics range from 0 (null) to 1 
(outstanding). 

For analysing the accuracy of the prediction model, we used the 
mean square error (MSE): 

MSE =
1
N

∑N

i=1
(yi − ŷi)

2 (14)  

where yi and ŷ represent the recorded and estimated values, 
respectively. 

2.5. Case study 

We have selected a 300.000 m2 (non-urbanised and uncultivated) 
catchment located in Madrid city (within the so-called La Solana de 
Valdebebas urban development). A seasonal water course drains the 
runoff from North-West to South-East. The catchment is completely 
surrounded by urbanised areas (see Fig. 3). 

We took four soil samples and estimated a loamy textural class from 
laboratory experiments (determining fractions of soil, sand and lime 
with soil densitometry and thus finding the textural classes aided by the 
USDA soil textural triangle). We gathered the soil physical parameters of 
a loamy soil required for running Neuman (1976), Van Genuchten 
(1980) and Mualem′s (1976) models from Carsel and Parrish (1998). 

3. Results 

In this section we report the results of our analysis. Successively, we 
analyse the empirical and model-generated data using standard statis-
tical tools with the aim of identifying possible relations that can be 
exploited to predict the runoff occurrence and characteristics from the 
observable variables. We finally consider the results given by the ML 
algorithms described in the previous section. 

3.1. Storms characteristics and simulated runoff 

In this section we present some descriptive statistics of the storms 
and explore the correlations between the storm and runoff characteris-
tics (outputs) and the primary atmospheric variables (inputs). 

3.1.1. Descriptive statistics 
Paying attention to the storm hyetographs (see supplementary 

documentation), we can observe that only a fraction of the storm events 
produces runoff (8.5% on average across the year), which implies that 
the dataset is highly unbalanced for our purposes. As we can perceive 
from Table 1, the central tendency metrics indicate that storms last, on 

average, 1.66 h (50% last up to 1 h) delivering 2.3 mm of water (50% of 
them actually discharge 0.4 mm or less), with 0.6 mm/h and 13.54 mm/ 
h of average and maximum rainfall intensities, respectively. Recorded 
data show strong positive skewness and kurtosis. 

We can hence conclude that runoff is more likely produced by storms 
with large volume rather than those with high (average or peak) rainfall 
intensity. Generally speaking, storms producing runoff last longer, rain 
greater volumes with greater rainfall intensity. 

Focusing on the relationship between storm duration, rained volume 
and maximum intensity (see scatterplots included in the supplementary 
documentation), positive linear relationships can be perceived between 
duration and volume, and between Volume and maximum intensity 
while, at least for the storms generating runoff, the relationship 
duration-maximum intensity roughly follows an exponential pattern. 

3.1.2. Correlations between storms characteristics and primary atmospheric 
variables 

The relation between the evolution of the primary explanatory var-
iables before the storm starts and the onset of runoff is elusive. Seeking 
differences between storms resulting or not in runoff (see the boxplots 
included in the supplementary documentation), we can only highlight 
that the relative humidity in case of storms producing runoff remains 
constant before the storm starts, while average, median and third 
quartile of the other variables tend to slightly decrease in storms pro-
ducing runoff getting closer to the beginning of the storm. The distri-
butions of the remaining variables for storms producing runoff look 
slightly more skewed, presenting a larger number of samples at the edge 
of the distribution. These results, however, are not conclusive, as these 
subtle statistical variations cannot be associated with certainty to the 

Fig. 3. Case study catchment located in La Solana de Valdebebas.  

Table 1 
Descriptive statistics. SD: standard deviation, Qn: n-th quartile, Skw: skew, K: 
Kurtosis. (all): all storms, (roff): storms producing runoff.  

Variable Maximum Mean Median SD Q25/ 
Q75 

Skw K 

D (h) (all) 29 1.66 1 2.96 0.1/2 3.15 12.99 
D (h) (roff) 29 6.53 4.5 6.71 3/9 1.29 0.93 
RD (h) 31 8.53 6.5 5.09 5/11 1.33 1.46 
V (mm) 

(all) 
72.5 2.3 0.4 5.06 0.1/2 4.97 36.24 

V (mm) 
(roff) 

72.5 12.21 9 8.16 7.2/ 
15.49 

2.21 5.71 

RV (mm) 59.3 5.21 2.7 7.11 1.2/ 
6.3 

3.16 13.92 

Iav (mm/h) 
(all) 

13.54 0.6 0.2 0.99 0.1/ 
0.7 

4.62 33.27 

Iav (mm/h) 
(roff) 

10.8 1.63 1.39 0.92 1.05/ 
2.77 

2.03 4.36 

RIav (mm/ 
h) 

6.5 0.62 0.31 0.91 0.12/ 3.40 14.33 

Im (mm/h) 
(all) 

31.55 1.13 0.3 2.27 0.1/ 
1.2 

5.28 40.56 

Im (mm/h) 
(roff) 

31.55 3.93 3.45 1.96 2.7/ 
4.13 

2.54 9.22 

RIm (mm/ 
h) 

24.98 2.9 1.71 3.89 0.74/ 
3.51 

3.16 11.72  
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storms generating runoff (see the boxplots supplementary material). 
Yet the linear relationships observed between the storm character-

istics and primary atmospheric variables, are not strong, though relative 
humidity shows positive relations with every analysed storm charac-
teristic, and particularly with the maximum rainfall intensity. 

Though no evident non-linear relationships have been revealed be-
tween any combination of storm characteristics and primary variable 
either, some tendencies can be perceived: longer storm duration and 
large volume (see supplementary documentation, figures SM5 and SM6) 
are linked with non-extreme pressure and relative humidity and low 
wind velocity; large volume also looks correlated with temperature 
lower than average; greater maximum intensity often linked with low 
wind velocity (see supplementary documentation, figure SM7). Similar 
conclusions can be drawn when looking at the relationship between 
runoff related and atmospheric primary variables (see supplementary 
documentation, figures SM8 an SM.9). 

3.2. Data-driven algorithms 

3.2.1. Classification task 
By applying ML approaches, we can observe that, according to F1- 

score and ROC metrics (see Fig. 4), LGBM provides better predictions 
than DNN and that both algorithms perform better when fed on more 
informative set of inputs (from case a to d). The gap between models, 
however, reduce as we include more input variables. 

As shown in Fig. 4, the model 1a achieves very poor performance 
(LGBM 0.15 F1 and 0.55 AUC), from which we conclude that this model, 
only based on a set of non-processed variables observed before the 
beginning of the storm, is not capable of providing any valuable pre-
diction about the runoff occurrence. Adding the values of predicted 
volume and maximum precipitation intensity (model 1b) produces a 
very marginal improvement in performance (increasing the F1 score by 
0.05, but leaving the AUC essentially unchanged). With the third 
approach, where we used precipitation values collected during the first 
hour of the storm, we instead observe a significant improvement in 
performance, with an increase of 0.2 for both F1 and AUC scores 
compared with the previous case. This is a rather interesting result, from 
which two considerations can be drawn: first, the characteristics of the 
thunderstorm in an early interval after its onset are informative about 
the probability of that thunderstorm generating runoff later on; and 
secondly, these characteristics cannot be properly determined from the 
variables measured before the onset of the storm, using regression 
methods. 

Finally, with the methodology 1.d, which uses the true precipitation 
volume and intensities of the storm measured after it is ended, we obtain 
the best performance (both F1 and AUC exceed 0.8) for LGBM and DNN 
implementations, as expected considering that these same variables 
were used to generate the runoff process through the theoretical model 
that, however, requires a much finer time granularity and additional 
parameters not available to the ML models. This tells us that the ML 
approach is potentially able to infer the model parameters from the data, 

generating good prediction even with less accurate observations, pro-
vided that the training data respect the causal relationships predicted by 
the theory. 

Delving into the structure of the predictions, Table 2 presents the 
true positive and true negative rates. 

Except for model 1d, LGBM performs better in predicting the runoff 
occurrence while, as expected, both perform reasonably well in pre-
dicting the negative results. 

3.2.2. Prediction task 
We now focus on the regression problem, which consists in pre-

dicting the runoff volume estimated with Green-Ampt model. Table 3 
shows the MSE for runoff regression using both LGBM and DNN pre-
dictors for the different approaches previously described. 

We see that LGBM provides better performance especially when the 
real precipitation volume and intensity values are used (model 2d). With 
the other approaches the performance drops significantly, estimating 
the mean RV value (see Table 1) with an absolute error of about 2 mm 
(which yields a MSE of ±4, see Table 3). 

LGBM makes it possible to reason on the importance of the features 
since the relevance of each input can be extracted from the model. 
Features that result in early stages are given higher importance. We see 
that the auxiliary variables rainfall volume (V) and maximum intensity 
(Im), either estimated (as in method 2b) or recorded (methods 2c and 
2d) have the highest importance when they are incorporated in the 
models. Wind velocity measured before the storm has higher perfor-
mance, followed by pressure and humidity respectively (Fig. 5) while 
the temperature comes last in terms of importance, except in 2a model 
(that, however, performs very poorly). 

4. Discussion 

In this manuscript we aimed at coupling both physically-based and 
data-driven algorithms. Both approaches have been extensively 
compared in the literature (Daliakopoulos and Tsanis, 2016; Hsu et al., 
1995; Ju et al., 2009; Rauf and Ghumman, 2018; Rezaeianzadeh et al., 
2013; Roodsari et al., 2019; Srivastava et al., 2006; Tokar and Markus, 
2000; Gharib and Davies, 2021; Kim et al., 2021) and some works show 
that ML algorithms achieve better performance than physical ones in 

Fig. 4. F1 score (a) and AUC (b) for proposed models.  

Table 2 
True positive and negative rates for any model and tested algorithm.  

Model Algorithm True positive rate True negative rate 

1a LGBM 0.43 0.59 
DNN 0.00 1.00 

1b LGBM 0.41 0.73 
DNN 0.00 1.00 

1c LGBM 0.58 0.85 
DNN 0.08 0.97 

1d LGBM 0.92 0.98 
DNN 0.92 0.98  
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modeling hydrological processes (Dawson and Wilby, 1998; Dibike and 
Solomatine, 2001; Best et al., 2015; Chaney et al., 2018; Ham et al., 
2019; Kim et al., 2020; Shen, 2018; Yang et al., 2017; Zhao et al., 2019). 
We believe this is not a productive discussion since data-driven models 
have to learn from physics as the correct pathway for ensuring scientific 
rigour. 

On that idea, we have addressed a simple hydrological problem: 
predicting the runoff occurrence caused by a storm in a catchment and, 
if positive, the runoff volume. We used the Green-Ampt infiltration 
model for estimating the runoff occurrence and, if positive, the runoff 
volume. We have built data-driven algorithms for predicting the output 
of the physical modelling (runoff) from the atmospheric variables 
potentially explaining the rainstorm event before it had started. 

We move away from previous experiences in hydrological modelling 
aided by ML in several planes. First, because we clearly let physics guide 
the strategy for both input selection and feeding strategy. As many other 
works, we feed ML algorithms on both stationary (soil-type dependent 
parameters) and time-dependent (weather records) variables but, in 
contrast to previous approaches, at two different functional (causal) 
planes. We force stationary variables to play their role through the 
physical theory. Following this idea, given the theoretical robustness of 
the physical law is indisputable, we can thus ensure the data driven 
algorithm has learned the way the stationary parameters explaining the 
phenomena are influencing the hydrological process. Engaging the 
physical theory, we can also be sure the parameters considered are 
completely and sufficiently explaining the phenomena. In this aspect we 
differ from previous approaches since many issues can be raised with 
respect to the validity (causality, completeness and sufficiency) of the 
parameters commonly used for predicting streamflow in previous works. 
For example, Kratzert et al. (2019) fed the model on many land, vege-
tation and soil-dependent parameters together with a set of weather 
variables, all of them incorporated at the same functional plane. A 
number of similar cases could also be discussed (see for example 

Shortridge et al., 2016; Konapala et al., 2020 or Kumar et al., 2021). 
Our approach also moves away from previous works with regards to 

time-dependent input variables. We focus on storm events rather than 
precipitation time series. Rainfall-runoff processes are determined by 
storm events and building predictive algorithms on daily (Hao and Bai, 
2023; Khosravi et al., 2022; Rezaeianzadeh et al., 2013; Ghorbani et al., 
2016; Boucher et al., 2020), monthly (Shabri and Suhartono, 2012; Deo 
and Şahin, 2016) or even hourly precipitation records (Rozos et al., 
2021; Kim et al., 2021) cannot provide the models for predicting the 
streamflow with the required theoretical consistency. Otherwise, some 
works feed their models on potentially autocorrelated (precipitation 
together with atmospheric pressure, temperature or wind velocity, for 
example) or irrelevant (the effect of potential evapotranspiration to 
explain streamflow at hourly, or even daily scale can be deeply dis-
cussed) variables. Those are the cases of, for example, Gauch et al. 
(2021), Lima et al. (2016) or Rasouli et al. (2012), among many others. 
To be sure we avoid the previous issues, we fed the ML algorithm only on 
a set of primary atmospheric variables potentially triggering rainfall 
events. 

Paying attention to the outputs and the performance of the devel-
oped models, we can see that the obtained models fed on the entire set of 
variables (models 1d and 2d) provided good performance metrics 
(comparable to the results achieved by the vast majority of previous 
works presented in the literature), while the algorithms with more in-
terest in predicting in advance (1a, 1b, 1c, 2a, 2b, 2c) did not perform 
better than the average. Models 1a, 1b, 2a and 2b presented in this work 
were fed only on time-advanced primary variables, while in models 1c 
and 2c the recorded precipitation during the first hour was added to the 
input vector. Though the models 1c and 2c can be applied only 1 h after 
the beginning of the storm, they are still of interest given that the storms 
producing runoff last on average 6.5 h, and they would deliver useful 
predictions once the first hour has passed. The patterns showed by the 
feature importance can be deemed reasonable when looking at models b, 
c and d, while they do not look such explicable for models a, which 
suggests the algorithm was not able to efficiently capture the (linear) 
relationships between the output and the inputs. From the theoretical 
basis (and also from the observed linear correlation coefficients, though 
weak), one could expect the relative humidity should have more 
importance in triggering the storm and, consequently, in explaining the 
runoff occurrence and volume. 

Though we believe the results of some models (particularly, b and c) 

Table 3 
MSE (mm2) achieved for each model and algorithm.  

Model LGBM DNN 

2a 4.06 4.11 
2b 4.09 4.19 
2c 4.70 4.71 
2d 0.71 1.04  

Fig. 5. Features importance in LGBM for each model.  
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look promising, the idea presented in this work still has field for 
improvement. We have run simple experiments for setting the required 
parameters for physical modelling, and better experimental data 
allowing finer model calibration (on runoff generation and soil physical 
properties) will undoubtedly drive to more accurate predictions of 
runoff and better performance of the derived data-driven algorithms. 
Experience and knowledge ascertain the physical causality between the 
atmospheric status before the storm starts and the subsequent evolution 
of rainstorm and, consequently, runoff. Though the data have not 
robustly supported such statement, we have observed some weak dif-
ferential patterns between storms producing runoff and not, and some 
linear correlations between atmospheric variables and storm charac-
teristics that point to those causality. This suggests the dataset is not 
large enough to let the model capture that pattern. The observed feature 
importance of models, comprising only atmospheric variables, also 
suggest the dataset is not large enough to capture the observed corre-
lations between output and inputs. Enlarging the dataset will help 
overcome those issues. 

5. Conclusions 

The results achieved in this work have proven the suitability of 
building effective data-driven algorithms for modelling event-based 
hydrological phenomena shaped by physical criteria. Letting the data- 
driven algorithm learn from the output of physical models, and 
feeding it on primary weather variables, made it possible to interlock 
both modelling approaches. The algorithm embraces the physical cau-
sality among the variables granted by theoretical models and the 
generalization capabilities of data-driven approaches. The strategy for 
merging physical and data driven approaches we present in this 
manuscript represents a novel insight not previously explored by re-
searchers. While previous physics informed ML approaches simply select 
a set of inputs, often poorly, physically correlated with outputs, we 
provide a novel insight shaping ML algorithms with physical criteria by 
letting the ML algorithm learn from physical modelling. The output of 
the physical model becomes the output for the ML algorithm what 
represent a clear shift in relation to previous works. 

Although the data has not shown clear patterns for the relationship 
between atmospheric and either storm or runoff-related variables that 
might have helped the algorithm design, still the developed algorithms 
have yielded promising performance in predicting runoff occurrence 
and volume when fed on both primary atmospheric variables before the 
storm starts and the recorded rainfall volume during the first hour of the 
storm. Conversely, the algorithms fed only on the set variables recorded 
before the storms starts have not provided satisfactory performance. 
Large space for improving has been however detected since the achieved 
performance is still poor. Checking different algorithms, enlarging the 
dataset with more data from storms (including more extreme events), 
considering other variables that may better correlate with storm volume 
and duration, will likely help obtain better performance. 
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