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A B S T R A C T

An efficient technique to analyze non-stationary nonlinear random vibrations of dynamic systems endowed
with a fractional derivative term is presented. The technique itself represents an extension of the concept of
statistical linearization to this kind of systems, and it is applicable for both analytic and hysteretic system
nonlinearities. The technique first resorts to harmonic balancing in deriving response-amplitude dependent
equivalent damping and stiffness. This enables representation of the fractional derivative term as a linear
combination of the system response displacement and velocity with amplitude dependent coefficients. Then,
the expected values of these parameters are considered in proceeding to formulate a statistical linearization
solution scheme. In this context, the solution procedure is completed by integrating in time the covariance
Lyapunov equation associated with the derived equivalent linear system. The reliability of the proposed
technique is tested by a series of germane Monte Carlo studies. This juxtaposition is also used to elucidate
salient features of the technique, by varying the order of the fractional derivative term, and of the degree of the
nonlinearity in the system. It also points out the versatility of the technique in determining the non-stationary
values of auto-correlation and cross-correlations response parameters involving even the fractional derivative
term.
. Introduction

In estimating the response statistics of nonlinear dynamic systems,
he analytical approximations by Statistical Linearization (SL) [1–9]
ave attracted considerable interest in the literature. Further, engineer-
ng analyses require commonly the study of systems under evolutionary
n time excitations, that usually are stochastic in nature (e.g. earth-
uake, wind, waves). Thus, the study of the non-stationary response
f the system is often desirable [10,11]. In this context, when dealing
ith random excitations, SL is a quite versatile tool for estimating the
volution in time of the relevant response statistics.

A special kind of problems pertains to nonlinear dynamics systems
omprising an additional term with a fractional derivative operator.
his occurs when the system response dictates modeling its frequency-
ependent dissipative damping properties [12–14], or its viscoelas-
ic rheological features [15–19]. This operator derives its memory-
ersistent feature from its integral-based representation [20–23]. As a
onsequence, any problem involving a fractional derivative is ‘‘memory
ersistent’’. For this reason, specific solution strategies exist in the
iterature to conduct deterministic dynamic response analyses of sys-
ems endowed with fractional derivative terms. Among the analytical

∗ Corresponding author at: Department of Civil, Environmental and Architectural Engineering, University of Padova, Via F. Marzolo 9, 35131, Padova, Italy.
E-mail addresses: beatrice.pomaro@unipd.it (B. Pomaro), spanos@rice.edu (P.D. Spanos).

methods used to treat fractional equations are: the Laplace or Fourier
integral transformation method [24]; the perturbation method [25]; the
Harmonic Balancing (HB) method [26–28]; the deterministic averaging
method [29]; the semi-analytical decomposition method [30]; and
the variational iteration method [31]. Numerical procedures include
the differential transform method [32]; numerical quadrature, such
as product-integration and collocation methods [33,34]; the Finite
Difference Method (FDM) [35]; the Finite Element Method (FEM) [36];
the Boundary Element Method (BEM) [37]; and predictor–corrector
schemes [38].

For stochastic excitations, the problem of the response determi-
nation of systems comprising fractional terms has been addressed in
the literature both in the frequency domain [39], and in the time
domain [40]. This has set useful bases for subsequent research on
randomly excited, fractionally endowed systems. Research efforts to
treat this kind of systems under stochastic actions have focused mainly
on SL [41], Stochastic Averaging (SA) [11,42–44], perturbation meth-
ods [45], methods involving system dimension augmentation [46–48],
and wavelet-based methods [49].

The majority of the existing studies of fractionally endowed systems
subject to random loads are restricted to the investigation of stationary
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response statistics [50–52]. Among the non-stationary studies, consid-
erable attention has received the application of the SA technique in
the evaluation of the system survival probability, or its counterpart
(first-passage failure), for risk assessment purposes related to systems
with fractional elements [43,44,53]. Further, the SA technique has been
successfully applied in the literature in the assessment of the stability of
the stochastic system [42,54,55]. Comparatively, the non-stationary be-
havior of response statistical moments of fractionally endowed systems
has been less investigated [56].

In this paper, the determination of non-stationary statistics of the
response state variables associated with the aforementioned problem is
addressed. The work is motivated by the desire to make use of averag-
ing in time schemes in the original nonlinear system, while adhering to
the classical SL procedure. Simultaneously, the complete derivation of
the system non-stationary statistics is pursued, inclusive of the auto-
correlation and cross-correlations involving the fractional term. This
is achieved without resorting to the solution of the system associated
Fokker–Planck–Kolmogorov (FPK) equation. Numerical results for a
representative Duffing oscillator with fractional damping are shown.
Evidence of statistical correlations between the fractional term, and
the response displacement and velocity, is reported and captured by
the proposed technique. This is also confirmed by pertinent Monte
Carlo (MC) results obtained by treating the system with a standard
Newmark-method-based integration algorithm, where the fractional
term is numerically treated by resorting to the Grünwald–Letnikov
representation.

2. Mathematical formulation

2.1. Preliminary remarks

The fractional operator is a well-established [20–23] mathematical
tool. Perhaps, a most intuitive definition is [22]

𝐷𝛽
𝑡0 ,𝑡
𝑥 (𝑡) = 𝐷𝑛𝐽 𝑛−𝛽𝑡0 ,𝑡

𝑥 (𝑡) = 1
𝛤 (𝑛 − 𝛽)

𝑑𝑛

𝑑𝑡𝑛

[

∫

𝑡

𝑡0
(𝑡 − 𝜏)𝑛−𝛽−1 𝑥 (𝜏) 𝑑𝜏

]

, 𝛽 ∈ R+

(1)

here 𝐽 𝛽𝑡0 ,𝑡𝑥 (𝑡) is the Riemann–Liouville (RL) fractional integral of order
∈ R+, of a function 𝑥 (𝑡), and origin at terminal 𝑡0

𝛽
𝑡0 ,𝑡
𝑥 (𝑡) = 1

𝛤 (𝛽) ∫

𝑡

𝑡0
(𝑡 − 𝜏)𝛽−1 𝑥 (𝜏) 𝑑𝜏. (2)

Thus, the RL definition of the 𝛽-order derivative in Eq. (1) is obtained
by computing the 𝑛th order derivative of the integral of order (𝑛 − 𝛽), 𝑛
eing the smallest integer greater than 𝛽, that is: 𝑛 −1 ≤ 𝛽 < 𝑛 ∈ Z+. It
s clear from this definition that the 𝛽 -order fractional derivative of a
unction 𝑥 (𝑡) involves a convolution integral of the function itself. This
oints out the fading memory feature of this mathematical operator.
his feature distinguishes the fractional derivative from the integer-
rder derivative, which is defined locally. For this reason, the fractional
erivative is treated as a non-local or memory-persistent operator. As
uch, it is defined in terms of the present and of the ‘‘past’’ values (when
ime is involved), or of the values ‘‘in the surrounding space’’ (when
pace is involved).

Several representations of this operator exist in the literature
22,23]. They mainly differ in the sequence of differentiation or inte-
ration [22]. For the numerical simulations in this work the Grünwald–
etnikov (GL) representation is used, because it is particularly con-
enient to treat computationally. The latter can be seen as a special
ase of the RL definition. It can be obtained from (1) by repeatedly
erforming integration by parts and differentiation. The GL definition
f the fractional operator yields [22]

𝐿𝐷
𝛽
𝑡0 ,𝑡
𝑥 (𝑡) =

𝑛−1
∑

𝑘=0

𝑥(𝑘)
(

𝑡0
)

(𝑡 − 𝑡0)−𝛽+𝑘

𝛤 (−𝛽 + 𝑘 + 1)
+ 1
𝛤 (𝑛 − 𝛽) ∫

𝑡

𝑡0
(𝑡 − 𝜏)𝑛−𝛽−1 𝑥(𝑛) (𝜏) 𝑑𝜏

(3)
 e

2

where the derivatives 𝑥(𝑘) (𝑡) for 𝑘 = 1, 2,… , 𝑛 − 1 must be continuous
in the closed interval [𝑡0, 𝑡], and 𝑛−1 ≤ 𝛽 < 𝑛 ∈ Z+. Alternatively to the
RL definition, the Caputo representation [22,23], to be adopted in an
ensuing section, can be used in dealing with fading memory problems.

2.2. Equation of motion

Consider a single-degree-of-freedom nonlinear oscillator

𝑚 ̈𝑥(𝑡) + 𝑐𝐷𝛽
0,𝑡𝑥(𝑡) + 𝑓 (𝑡, 𝑥, �̇�) = 𝑤(𝑡), (4)

with 𝑥 (0) = �̇� (0) = 0, subject to a zero-mean Gaussian white process
(𝑡), of two-sided power spectral density 𝑆𝑤 (𝜔) = 𝑆0. In Eq. (4) 𝑚 is

he mass coefficient; 𝑐 can be construed as a damping coefficient (for
= 1), or a stiffness coefficient (for 𝛽 = 0). In this sense the fractional

perator embodies both effects simultaneously for intermediate values
f 𝛽. The nonlinear restoring force is represented by the function
(𝑡, 𝑥, �̇�).

For the purpose of conducting pertinent MC simulations, and de-
ermining the time history 𝑥(𝑡) of the system, the governing equation
f motion is considered into 𝑁 timesteps of magnitude 𝛥𝑡, and solved
n time by a Newmark integration scheme. The fractional term is
reated by the G1-Algorithm, as outlined in [20], and elucidated
y [41], whereas, the nonlinearity term is treated by a Newton–
aphson scheme.

Expanding the series in Eq. (3), and setting 𝑡0 = 0, yields [41]

𝐺𝐿𝐷
𝛽
0,𝑡𝑥 (𝑡) = lim

𝛥𝑡→0
𝛥𝑡−𝛽

𝑁
∑

𝑘=0
𝐺𝐿𝑘𝑥(𝑡 − 𝑘𝛥𝑡), (5)

ith the 𝐺𝐿𝑘 coefficients represented by factorial terms

𝐿𝑘 = (−1)𝑘
(

𝛽

𝑘

)

. (6)

hey can, more conveniently, be recast in a recursive form [20] by
esorting to the properties of the Gamma function. Specifically,

𝐿𝑘 =
𝛤 (𝑘 − 𝛽)

𝛤 (−𝛽)𝛤 (𝑘 + 1)
=
𝑘 − 𝛽 − 1

𝑘
𝛤 (𝑘 − 𝛽 − 1)
𝛤 (−𝛽)𝛤 (𝑘)

=
𝑘 − 𝛽 − 1

𝑘
𝐺𝐿𝑘−1. (7)

Note from Eq. (7), that 𝐺𝐿𝑘=0 = 1.
Hence, the discretized equation of motion of the oscillator yields

𝑚𝛥�̈�𝑖+1 + 𝑐𝛥𝑡−𝛽
[ 𝑖+1
∑

𝑘=0
𝐺𝐿𝑘𝑥(𝑡𝑖+1 − 𝑘𝛥𝑡) −

𝑖
∑

𝑘=0
𝐺𝐿𝑘𝑥(𝑡𝑖 − 𝑘𝛥𝑡)

]

+ 𝛥𝑓 (𝑡, 𝑥, �̇�)𝑖+1 = 𝛥𝑤𝑖+1, (8)

ith the notation

𝑤𝑖+1 = 𝑤
(

𝑥𝑖+1
)

−𝑤
(

𝑥𝑖
)

; and

𝑓 (𝑡, 𝑥, �̇�)𝑖+1 = 𝑓
(

𝑡𝑖+1, 𝑥𝑖+1, �̇�𝑖+1
)

− 𝑓
(

𝑡𝑖, 𝑥𝑖, �̇�𝑖
)

. (9)

more compact form of Eq. (8), particularly advantageous for compu-
ations, was suggested in [41]

𝛥�̈�𝑖+1 + 𝑐𝛥𝑡−𝛽𝛥𝑥𝑖+1 + 𝛥𝑓 (𝑡, 𝑥, �̇�)𝑖+1 = 𝛥𝑤𝑖+1 − 𝑐𝛥𝑡−𝛽𝑃1, (10)

here 𝑃1 = 𝑃𝑘=1, with

𝑘 =
𝑖

∑

𝑘=0
𝐺𝐿𝑘𝛥𝑥𝑖+1−𝑘 + 𝐺𝐿𝑖+1𝑥0, (11)

nd with the notation

𝑥𝑖+1 = 𝑥𝑖+1 − 𝑥𝑖. (12)

t can be argued that the G1-Algorithm treats the fractional derivative
y truncating the infinite number of past terms required by the GL
epresentation beyond the most significant ones in magnitude; that is,
electing a finite but sufficiently large 𝑁 in Eq. (5). This captures the
on-locality of the operator, while limiting the requisite computational
ffort.
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2.3. Statistical linearization approach

Following the pioneering works by Booton [1], Kazakov [2], and
Caughey [3,57], with an early review by Spanos [58], the nonlinear
oscillator of Eq. (4) can be transformed into an optimal equivalent
linear system of the form

𝑚�̈� (𝑡) + 𝑐𝐷𝛽
0,𝑡𝑥(𝑡) + 𝑐𝑒𝑞,𝑆𝐿

(

𝜎2𝑥, 𝜎
2
�̇�
)

�̇� (𝑡) + 𝑘𝑒𝑞,𝑆𝐿
(

𝜎2𝑥, 𝜎
2
�̇�
)

𝑥(𝑡) = 𝑤 (𝑡) , (13)

in such a manner that the response statistics of the linear system
approximate satisfactorily those of the nonlinear oscillator. According
to the classical SL technique, the optimal equivalent damping 𝑐𝑒𝑞,𝑆𝐿 and
tiffness 𝑘𝑒𝑞,𝑆𝐿 can be computed by minimizing the expected value of
he error 𝜖2(𝑡)

𝐸
{

𝜖2(𝑡)
}

= ⟨

[

𝑓 (𝑡, 𝑥, �̇�) − 𝑐𝑒𝑞,𝑆𝐿�̇�(𝑡) − 𝑘𝑒𝑞,𝑆𝐿𝑥(𝑡)
]2
⟩, (14)

where ⟨⟩ denotes mathematical expectation.
The minimization is pursued with respect to 𝑐𝑒𝑞,𝑆𝐿 and 𝑘𝑒𝑞,𝑆𝐿 by

using the equations

𝜕𝐸
{

𝜖2(𝑡)
}

𝜕𝑐𝑒𝑞,𝑆𝐿
= 0;

𝜕𝐸
{

𝜖2(𝑡)
}

𝜕𝑘𝑒𝑞,𝑆𝐿
= 0. (15)

f the analysis adopts approximations of 𝑥(𝑡) and �̇�(𝑡) as Gaussian
rocesses, these expressions simplify based on the properties of the
xpectation of the product of Gaussian variables [59]. Specifically,

𝑒𝑞,𝑆𝐿
(

𝜎2𝑥, 𝜎
2
�̇�
)

= ⟨

𝜕𝑓 (𝑡, 𝑥, �̇�)
𝜕�̇�

⟩, and 𝑘𝑒𝑞,𝑆𝐿(𝜎2𝑥 , 𝜎
2
�̇�) = ⟨

𝜕𝑓 (𝑡, 𝑥, �̇�)
𝜕𝑥

⟩. (16)

Note that, in doing this, it is assumed that the input process is Gaussian,
hence the response of the equivalent linear system is also Gaussian.

It is also pointed out that the equivalent quantities in Eq. (16)
account for the linearization of the restoring force 𝑓 (𝑡, 𝑥, �̇�), only, while
keeping the fractional term as it is. Clearly, they are time-dependent in
the non-stationary case.

2.4. Harmonic balancing

In treating the fractional term in Eq. (4), a solution to the equivalent
quantities for the fractional term in Eq. (13) involving temporal aver-
aging [57,60] is next pursued. In doing so, it is assumed that the system
exhibits pseudo-harmonic response. For the special case of Eq. (4) with
𝛽 = 1, and 𝑓 (𝑡, 𝑥, �̇�) = 𝑘𝑥, linear system, 𝜔0 =

√

𝑘∕𝑚 is the natural an-
gular frequency, and 𝑐0 is the damping coefficient of the corresponding
linear oscillator; 𝜁 = 𝑐0∕(2𝜔0𝑚) ≪ 1 is the associated ratio of critical
damping. Under these assumptions the response 𝑥 (𝑡) can be treated
as a narrow-band process [61]. As such, its pseudo-harmonic behavior
involves amplitude 𝑎 (𝑡), and phase 𝜃 (𝑡) characterized by slowly varying
in time statistics behavior [62,63]. For such functions it makes sense to
introduce individual cycles phase and amplitude. Specifically, set

𝑥 (𝑡) = 𝑎 (𝑡) cos[𝜔(𝑎)𝑡 + 𝜃(𝑡)], (17)

and

̇ (𝑡) = −𝜔(𝑎)𝑎 (𝑡) sin [𝜔(𝑎)𝑡 + 𝜃 (𝑡)] . (18)

In Eqs. (17) and (18) 𝜔(𝑎) denotes the undamped natural angular
frequency of the nonlinear oscillator of Eq. (1), to be determined as
a function of the response amplitude 𝑎 (𝑡).

Eqs. (17) and (18) can be regarded as two transformations between
the original variables, 𝑥 (𝑡) and �̇� (𝑡), and the new ones, 𝑎 (𝑡) and 𝜃 (𝑡).
Indeed, combining the two equations, yields

𝑎 (𝑡) =

√

𝑥2 (𝑡) +
�̇�2(𝑡)
𝜔2(𝑎)

, (19)

and

𝜃 (𝑡) = −𝜔(𝑎)𝑡 − arctan
(

�̇� (𝑡)
)

. (20)

𝜔(𝑎)𝑥 (𝑡)

3

Adopting the HB method [7,64], the fractional contribution over
one cycle of oscillation to the effective damping and stiffness of the
system, 𝑐𝐻𝐵,𝛽 and 𝑘𝐻𝐵,𝛽 , respectively, is determined as function of the
amplitude 𝑎. This is done by minimizing the mean square of the error
between the original and the linearized equation. In doing so, 𝑎 and 𝜃
are treated as constants in this interval. This leads to [52,53]

𝑐𝐻𝐵,𝛽 (𝑎) = − 1
𝜋𝑎𝜔 (𝑎)

[

c∫

2𝜋

0
𝐷𝛽

0,𝑡(𝑎 cos𝜓) sin𝜓d𝜓

]

, (21)

and

𝑘𝐻𝐵,𝛽 (𝑎) =
1
𝜋𝑎

[

c∫

2𝜋

0
𝐷𝛽

0,𝑡(𝑎 cos𝜓) cos𝜓d𝜓

]

, (22)

here 𝜓 = [𝜔(𝑎)𝑡 + 𝜃(𝑡)].
Introduce the compact expressions [52,53,56]

𝛽 (𝑎) = ∫

2𝜋

0
𝐷𝛽

0,𝑡 (𝑎 cos𝜓) sin𝜓d𝜓 (23)

nd

𝛽 (𝑎) = ∫

2𝜋

0
𝐷𝛽

0,𝑡 (𝑎 cos𝜓) cos𝜓d𝜓. (24)

ext, approximating the fractional derivatives according to [43,44],
hich is consistent with the Caputo representation of the fractional
erivative [22,23], yields

𝐻𝐵,𝛽 (𝑎) = −𝑐
𝑆𝛽 (𝑎)
𝜋𝑎𝜔(𝑎)

= 𝑐
𝜔1−𝛽 (𝑎)

sin
(

𝛽𝜋
2

)

, (25)

nd

𝐻𝐵,𝛽 (𝑎) = 𝑐
𝐹𝛽 (𝑎)
𝜋𝑎

= 𝑐𝜔𝛽 (𝑎) cos
(

𝛽𝜋
2

)

. (26)

It is clear form Eqs. (25) and (26) that the fractional term merely
introduces additional amplitude-dependent, hence time-dependent, da-
mping and stiffness. Thus, the fading memory of the operator with this
approach is captured by the amplitude itself. The latter depends on the
past history of the system oscillations.

Further, in the presence of the random excitation 𝑤(𝑡) it is reason-
able to replace 𝑐𝐻𝐵,𝛽 (𝑎) and 𝑘𝐻𝐵,𝛽 (𝑎) by their expected values 𝑐𝑒𝑞,𝛽 and
𝑘𝑒𝑞,𝛽 [7]. That is,

𝑐𝑒𝑞,𝛽 = ⟨−𝑐
𝑆𝛽 (𝑎)
𝜋𝑎𝜔 (𝑎)

⟩, (27)

nd

𝑒𝑞,𝛽 = ⟨𝑐
𝐹𝛽 (𝑎)
𝜋𝑎

⟩. (28)

Next, that the probability density function of the response amplitude
is approximated by a Rayleigh distribution with time-dependent pa-
rameters [7,65], which depend on the time-dependent variance of the
oscillator response displacement. That is,

𝑝 (𝑎) = 𝑎
𝜎2𝑥
𝑒
− 𝑎2

2𝜎2𝑥 ; with 𝜎2𝑥 = 𝜎2𝑥 (𝑡) . (29)

Then, the corresponding equivalent quantities can be determined by
the equations

𝑐𝑒𝑞,𝛽
(

𝜎2𝑥
)

= ∫

∞

0

[

−𝑐
𝑆𝛽 (𝑎)
𝜋𝑎𝜔 (𝑎)

]

𝑝 (𝑎) 𝑑𝑎, (30)

and

𝑘𝑒𝑞,𝛽
(

𝜎2𝑥
)

= ∫

∞

0

[

𝑐
𝐹𝛽 (𝑎)
𝜋𝑎

]

𝑝 (𝑎) 𝑑𝑎. (31)

Thus, the initial system of Eq. (4) can be linearized as

𝑚�̈� (𝑡) + 𝑐𝑒𝑞
(

𝜎2𝑥 , 𝜎
2
�̇�
)

�̇� (𝑡) + 𝑘𝑒𝑞
(

𝜎2𝑥, 𝜎
2
�̇�
)

𝑥(𝑡) = 𝑤 (𝑡) (32)

with

𝑐
(

𝜎2, 𝜎2
)

= 𝑐
(

𝜎2, 𝜎2
)

+ 𝑐
(

𝜎2
)

, (33)
𝑒𝑞 𝑥 �̇� 𝑒𝑞,𝑆𝐿 𝑥 �̇� 𝑒𝑞,𝛽 𝑥
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and

𝑘𝑒𝑞
(

𝜎2𝑥, 𝜎
2
�̇�
)

= 𝑘𝑒𝑞,𝑆𝐿
(

𝜎2𝑥, 𝜎
2
�̇�
)

+ 𝑘𝑒𝑞,𝛽
(

𝜎2𝑥
)

. (34)

In computing the expressions of Eqs. (30) and (31), an approxi-
mation to 𝜔(𝑎) is used, involving the equivalent stiffness associated
with system of Eq. (13), 𝑘𝑒𝑞,𝑆𝐿, at the stationary regime. The latter
can be obtained by the classical SL technique, as shown in Section 2.3,
accounting, as well, for the contribution to the effective stiffness of
the system by the fractional term. In this regard, first, the stationary
response variance of the initial nonlinear oscillator 𝜎2𝑥𝑆𝐿 is computed
by resorting to the input–output relationship applicable for the consid-
ered oscillator, endowed with a fractional term, as proposed in [41].
Specifically, 𝜎2𝑥𝑆𝐿 is derived iteratively by setting [7,41]

𝜎2𝑥𝑆𝐿 = ∫

∞

−∞
𝑆𝑥 (𝜔) 𝑑𝜔 = ∫

∞

−∞

𝑆𝑤(𝜔)
|

|

|

−𝑚𝜔2 + 𝑘𝑒𝑞,𝑆𝐿 + 𝑐𝑒𝑞,𝑆𝐿𝑖𝜔 + (𝑖𝜔)𝛽𝑐||
|

2
𝑑𝜔,

(35)

where, in the specific case: 𝑆𝑤 (𝜔) = 𝑆0. It can be argued, once
ore, from Eq. (35) that the fractional derivative term induces in

he system dynamics both additional damping and stiffness terms,
requency-dependent, through the term (𝑖𝜔)𝛽 . Specifically, to account

approximately for the fractional term, the equation

𝜔(𝑎) ≅

√

�̂�𝑒𝑞,𝑆𝐿
𝑚

=

√

𝑘𝑒𝑞,𝑆𝐿 + Re[(𝑖𝜔)𝛽𝑐]
𝑚

(36)

is used for estimating the values of Eqs. (27) and (28), where �̂�𝑒𝑞,𝑆𝐿 is
the modified stationary equivalent stiffness, due to the fractional term.

2.5. Non-stationary response statistics

Next, by direct manipulation of the equation of motion, expres-
sions for the non-stationary variance of the response displacement
and velocity, and covariance between the two, are sought. This can
be achieved by solving the associated oscillator response covariance
Lyapunov equation [7]. Specifically, Eq. (32) is written in the state
variables form

�̇� = 𝐆𝐳 + 𝐟 , (37)

where

𝐳 =
[

𝑥(𝑡)

�̇�(𝑡)

]

, 𝐟 =
⎡

⎢

⎢

⎣

0
𝑤(𝑡)
𝑚

⎤

⎥

⎥

⎦

, and 𝐆 =
⎡

⎢

⎢

⎣

0 1

−
𝑘𝑒𝑞

(

𝜎2𝑥 , 𝜎
2
�̇�
)

𝑚
− −

𝑐𝑒𝑞(𝜎2𝑥, 𝜎
2
�̇�)

𝑚

⎤

⎥

⎥

⎦

.

(38)

In Eq. (38) the terms 𝑐𝑒𝑞
(

𝜎2𝑥 , 𝜎
2
�̇�
)

and 𝑘𝑒𝑞
(

𝜎2𝑥 , 𝜎
2
�̇�
)

are the equivalent
amping, and the equivalent stiffness defined in Eqs. (33) and (34),
n the pursuit to linearize the equation of motion by time-averaging
he system response. They depend on time through their dependence
n the system response statistics. Then the evolution of the covariance
atrix 𝐕 of the oscillator, that is,

=

[

𝑣11 𝑣12

𝑣21 𝑣22

]

=

[

𝜎2𝑥 𝜎𝑥�̇�

𝜎�̇�𝑥 𝜎2�̇�

]

(39)

s governed by the differential covariance Lyapunov equation

̇ = 𝐆𝐕𝐓 + 𝐕𝐆𝐓 + 𝐃; 𝐃 =
⎡

⎢

⎢

⎣

0 0

0
2𝜋𝑆0

𝑚2

⎤

⎥

⎥

⎦

. (40)

his is claimed with the provision that 𝑤(𝑡) is a zero-mean white
oise of spectral level 𝑆0, and correlation function 2𝜋𝑆0𝛿(𝜏), with 𝛿(𝜏)
he Dirac delta function. Note that for the random Gaussian excita-
ion 𝑤(𝑡)∕𝑚 the correlation function is 2𝜋𝑆0𝛿(𝜏)∕𝑚2. Through Eq. (40)
he non-stationary statistical moments of the system response are de-
ermined, by setting appropriate equivalent linear quantities for the
 e

4

damping and stiffness of the original nonlinear oscillator endowed with
a fractional term.

Note that the linearizing terms 𝑐𝑒𝑞
(

𝜎2𝑥, 𝜎
2
�̇�
)

and 𝑘𝑒𝑞
(

𝜎2𝑥, 𝜎
2
�̇�
)

both
epend on the variances of the displacement and of the velocity,
n general. Thus, Eq. (40) constitutes a system of nonlinear coupled
ifferential equations.

Further, note that when restricting the analysis to the stationary
egime, and to zero nonlinearity, and null fractional term, the variances
f the stationary response displacement and velocity to white noise
xcitation obtained by Eq. (40) are given by the diagonal components
f 𝐕. That is,

11 = 𝜎2𝑥0 =
𝜋𝑆0

2𝜁𝜔3
0𝑚

2
; and 𝑣22 = 𝜎2�̇�0 =

𝜋𝑆0

2𝜁𝜔0𝑚2
. (41)

It is understood that information on the auto-correlation of the
fractional term, and on the cross-correlations between the integer and
the fractional state variables, is not directly retrievable by using the
Lyapunov equation. Further, it is worth noting that Eq. (40) can handle
arbitrary forms of the excitations, even non-white, by making use of
pre-filtering [7].

At this point, it is perhaps worthwhile to juxtapose the herein
proposed technique versus the time-dependent formulation proposed
in [56], as a generalization to the results reported in a former pa-
per [11]. Specifically, the formulation in [56] applies HB both to the
fractional, and to the non-fractional nonlinear term in the problem.
Then, it utilizes the solution of the FPK partial differential equa-
tion associated with the probability density function of the ampli-
tude response. Specifically, the surrogate system with time-dependent
quantities

𝑚�̈�(𝑡) + 𝑐𝑠(𝑡)�̇�(𝑡) + 𝑘𝑠(𝑡)𝑥(𝑡) = 𝑤 (𝑡) , (42)

s used, with [56]

𝑠 (𝑡) = ∫

∞

0

[

𝑆 (𝑎)
𝑎𝜔(𝑎)

− 𝑐
𝑆𝛽 (𝑎)
𝜋𝑎𝜔 (𝑎)

]

𝑝 (𝑎, 𝑡) 𝑑𝑎

= ∫

∞

0

𝑆 (𝑎)
𝑎𝜔 (𝑎)

𝑝 (𝑎, 𝑡) 𝑑𝑎 + 𝑐 sin
(

𝛽𝜋
2

)

∫

∞

0

1
𝜔1−𝛽 (𝑎)

𝑝 (𝑎, 𝑡) 𝑑𝐴, (43)

and

𝑘𝑠 (𝑡) = ∫

∞

0

[

𝐹 (𝑎)
𝑎

+ 𝑐
𝐹𝛽 (𝑎)
𝜋𝑎

]

𝑝 (𝑎, 𝑡) 𝑑𝑎

= ∫

∞

0

𝐹 (𝑎)
𝑎

𝑝 (𝑎, 𝑡) 𝑑𝑎 + 𝑐 cos
(

𝛽𝜋
2

)

∫

∞

0
𝜔𝛽 (𝑎) 𝑝 (𝑎, 𝑡) 𝑑𝐴, (44)

ith 𝑆𝛽 (𝑎) and 𝐹𝛽 (𝑎) in Eqs. (43) and (44) taking the expressions of
qs. (23) and (24), and 𝑆 (𝑎), 𝐹 (𝑎) as defined in [7].

It is pointed out that expressions in Eqs. (43) and (44) require the
nowledge of the variance of the system at each time step via the
robability 𝑝 (𝑎, 𝑡). In this context, a first order stochastic differential
quation for the response amplitude 𝑎 is derived under Gaussian noise
xcitation [66]. The amplitude probability density is also represented
y a Rayleigh distribution with time-dependent parameters

(𝑎, 𝑡) = 𝑎
𝜎2𝑥(𝑡)

𝑒
− 𝑎2

2𝜎2𝑥 (𝑡) , (45)

where the response standard deviation satisfies the differential equa-
tion [56]

̇ 2𝑥 (𝑡) = −𝑐𝑠
(

𝜎2𝑥 (𝑡)
)

𝜎2𝑥(𝑡) +
𝜋𝑆

[

𝑘𝑠
(

𝜎2𝑥 (𝑡)
)

, 𝑡
]

𝑘𝑠(𝜎2𝑥(𝑡))
. (46)

Again, it is seen that Eqs. (43) and (44) contain 𝜔 (𝑎), whose depen-
dence on amplitude is captured by Eq. (44), since

√

𝑘𝑠(𝑎)
𝑚 = 𝜔(𝑎).

urther, for the computations of the expressions in Eqs. (43) and (44),
he expected value of 𝜔 (𝑎) is used. Clearly, compared to Eq. (36) of the
erein proposed technique, the procedure adopted in [56] introduces
he additional complexity and computational cost in determining the
ffective natural frequency in time step when integrating Eq. (46).

https://en.wikipedia.org/wiki/Lyapunov_equation
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2.6. Fractional term correlation statistics

Revisiting expressions in Eqs. (25) and (26), derived from an ap-
proximation of the Caputo derivative [22,23,67], and following the
developments of [43,44], the fractional term can be conveniently ex-
pressed as

𝐷𝛽
0,𝑡𝑥 (𝑡) = 𝜔𝛽−1 (𝑎)

[

�̇� (𝑡) sin
(

𝛽𝜋
2

)

+ 𝑥 (𝑡)𝜔 (𝑎) cos
(

𝛽𝜋
2

)]

+
𝜔𝛽−1 (𝑎)
𝛤 (1 − 𝛽)

�̇� (𝑡) sin [𝜔 (𝑎) 𝑡] − 𝑥 (𝑡)𝜔 (𝑎) cos [𝜔 (𝑎) 𝑡]
[𝜔 (𝑎) 𝑡]𝛽

+ 𝑜 [𝜔 (𝑎) 𝑡]−𝛽−1 ,

(47)

in this manner simplifying the calculations of expressions in Eqs. (23)
and (24). Notably, the fractional derivative term can be construed as a
combination of the system displacement and velocity. This corroborates
the argument that, in effect, the contribution of the fractional derivative
term to the dynamic system is the introduction of time-dependent
additional damping, and stiffness. It does not itself reflect memory
of the past events experienced by the system. This must, rather, be
attributed implicitly to the system amplitude quantity.

By considering the analytical representation for the fractional term
of Eq. (47), approximated to 𝑜 [𝜔 (𝑎) 𝑡]−𝛽−1, and after neglecting this last
term, the fractional term can be recast as a combination of the system
displacement and velocity. That is,

𝐷𝛽
0,𝑡𝑥 (𝑡) = 𝐶(𝑎, 𝑡)𝑥(𝑡) +𝐷(𝑎, 𝑡)�̇� (𝑡) , (48)

where 𝐶(𝑎, 𝑡) and 𝐷(𝑎, 𝑡) are the time-dependent trigonometric expres-
sions

𝐶(𝑎, 𝑡) = 𝜔𝛽−1 (𝑎)
[

𝜔 (𝑎) cos
(

𝛽𝜋
2

)]

−
𝜔𝛽−1 (𝑎)
𝛤 (1 − 𝛽)

𝜔 (𝑎) cos [𝜔 (𝑎) 𝑡]
[𝜔 (𝑎) 𝑡]𝛽

, (49)

and

𝐷(𝑎, 𝑡) = 𝜔𝛽−1 (𝑎) sin
(

𝛽𝜋
2

)

+
𝜔𝛽−1 (𝑎)
𝛤 (1 − 𝛽)

sin [𝜔 (𝑎) 𝑡]
[𝜔 (𝑎) 𝑡]𝛽

. (50)

These equations lead to

𝐷𝛽
0,𝑡𝑥 (𝑡)

2 = 𝐶2(𝑎, 𝑡)𝑥2 (𝑡) +𝐷2(𝑎, 𝑡)�̇�2 (𝑡) + 2𝐶(𝑎, 𝑡)𝐷(𝑎, 𝑡)𝑥(𝑡)�̇� (𝑡) . (51)

Thus, the auto-correlation of the fractional term 𝜎2
𝐷𝛽0,𝑡𝑥

is computed as a

function of the variances of the displacement and the velocity, 𝜎2𝑥 and
𝜎2�̇�, respectively, and of the cross-correlation between the two, 𝜎𝑥�̇�, that
are the components of 𝐕 in Eq. (39). Specifically,

𝜎2
𝐷𝛽0,𝑡𝑥

= ⟨𝐷𝛽
0,𝑡𝑥 (𝑡)

2
⟩ = ⟨𝐶2(𝑎, 𝑡)⟩𝜎2𝑥 + ⟨𝐷2 (𝑎, 𝑡)⟩𝜎2�̇� + 2⟨𝐶(𝑎, 𝑡)𝐷(𝑎, 𝑡)⟩𝜎𝑥�̇�.

(52)

In a similar manner, the two cross-correlation terms, 𝜎𝑥𝐷𝛽0,𝑡𝑥
and 𝜎�̇�𝐷𝛽0,𝑡𝑥

,
can be computed as

𝜎𝑥𝐷𝛽0,𝑡𝑥
= ⟨𝐷𝛽

0,𝑡𝑥 (𝑡) 𝑥(𝑡)⟩ = ⟨𝐶(𝑎, 𝑡)⟩𝜎2𝑥 + ⟨𝐶(𝑎, 𝑡)𝐷(𝑎, 𝑡)⟩𝜎𝑥�̇�, (53)

and

𝜎�̇�𝐷𝛽0,𝑡𝑥
= ⟨𝐷𝛽

0,𝑡𝑥 (𝑡) �̇� (𝑡)⟩ = ⟨𝐶 (𝑎, 𝑡)𝐷 (𝑎, 𝑡)⟩𝜎𝑥�̇� + ⟨𝐷(𝑎, 𝑡)⟩𝜎2�̇� . (54)

Clearly, Eqs. (52)–(54) point out the statistical independence between
the response amplitude and the displacement. It is noted that other
schemes [48] that require the solution of an augmented transient
problem of the kind of Eq. (40) due to the presence of the fractional
derivative term can be used. Nevertheless, the cross-correlations be-
tween the fractional term and the displacement or the velocity, as well
as the auto-correlation of the fractional derivative term, can only be
determined indirectly, from the main statistics obtained by solving the
same problem of Eq. (40).
 s

5

3. Numerical results

Without lack of generality, for the purpose of assessing the relia-
bility of the proposed linearization scheme, a Duffing oscillator with a
fractional element is considered. The restoring function in this case is
represented by the equation

𝑓 (𝑡, 𝑥, �̇�) = 𝑘𝑥(1 + 𝜙𝑥2), (55)

where the constant 𝜙 captures the strength of the nonlinearity. Further,
the oscillator is described by the equation

𝑚 ̈𝑥(𝑡) + 𝑐𝐷𝛽
0,𝑡𝑥(𝑡) + 𝑘𝑥(1 + 𝜙𝑥

2) = 𝑤(𝑡), (56)

with 𝑥 (0) = �̇� (0) = 0 as initial conditions.
Classical SL yields

𝑐𝑒𝑞,𝑆𝐿
(

𝜎2𝑥, 𝜎
2
�̇�
)

= 0; and 𝑘𝑒𝑞,𝑆𝐿
(

𝜎2𝑥, 𝜎
2
�̇�
)

= 𝑘 + 3𝜙𝑘𝜎2𝑥 . (57)

Further, from Eqs. (33)–(35) one derives

𝑐𝑒𝑞
(

𝜎2𝑥
)

= 𝑐𝑒𝑞,𝛽
(

𝜎2𝑥
)

, (58)

𝑘𝑒𝑞
(

𝜎2𝑥
)

= 𝑘 + 3𝜙𝑘𝜎2𝑥 + 𝑘𝑒𝑞,𝛽
(

𝜎2𝑥
)

, (59)

and

𝜔(𝑎) ≅

√

�̂�𝑒𝑞,𝑆𝐿
𝑚

=

√

𝑘 + 3𝜙𝑘𝜎2𝑥 + Re[(𝑖𝜔)𝛽𝑐]
𝑚

. (60)

These expressions are substituted into Eq. (38) to derive from Eq. (40)
the non-stationary evolution of the variances of the system response
using the proposed technique.

MC simulations (500 in number) corresponding to various values
of the order of the fractional derivative have been conducted. Fur-
ther, various values for the strength of the nonlinearity 𝜙 have been
considered. The oscillator has 𝑚 = 1, and 𝑘 = 4. The 𝑐 coefficient
in Eq. (56) is set to a critical damping value of 𝜁 = 5%, that is:
𝑐 = 2𝑚𝜁𝜔0 = 0.2. A white noise process of unit spectral level (𝑆0 = 1)
as been considered. The time integration step has been selected equal
o 0.01. The GL coefficients have been retained up to the order of
0−5. The reliability of the Newmark algorithm in solving the equation
f motion has been examined by juxtaposing results obtained via the
lgorithm proposed by Katsikadelis [68]. A comparison between two
ime-histories obtained via the two time-integration schemes, for 𝛽 =
.7, and 𝜙 = 10∕𝜎2𝑥0 is shown in Fig. 1.

In Figs. 2 to 4 results for a system characterized by 𝛽 = 0.5, and
= 10∕𝜎2𝑥0 are shown. Specifically, in Figs. 2 and 3 the non-stationary

esults are presented for the variance of the response displacement and
elocity, respectively, normalized with respect to the corresponding
heoretical variance of the stationary response of the linear part of
he system, computed for 𝛽 = 1. They are referred to as 𝜎2𝑥0 and
2
�̇�0, respectively, henceforth. In Fig. 2 the solution obtained by the
roposed technique is compared to the one obtained using the formu-
ation provided in [56]. Both are found in a good agreement with the
C simulations. Nevertheless, a slight difference in the non-stationary

ehavior is observed by using the two approaches. Interestingly, the
roposed technique yields at the stationary regime a solution which
oincides with the solution derived by using the classical SL technique
Eq. (35)), as proposed in [41]. This is evident for all of the examined
rders of 𝛽; only partial results are reported herein, for succinctness. It
s observed from Fig. 3 that the proposed technique yields satisfactory
esults also in terms of the velocity variance, in juxtaposition with the
orresponding MC solution.

In Fig. 4 the non-stationary statistics involving the fractional deriva-
ive term is shown. Specifically, the auto-correlation of the fractional
erivative term, 𝜎2

𝐷𝛽0,𝑡𝑥
, and the cross-correlations between the lat-

er and displacement, or velocity, 𝜎𝑥𝐷𝛽0,𝑡𝑥
or 𝜎�̇�𝐷𝛽0,𝑡𝑥

, respectively, are
hown. Results obtained as discussed in Section 2.6 are juxtaposed with
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Fig. 1. Oscillator with Duffing nonlinearity 𝜙 = 10∕𝜎2𝑥0; 𝑚 = 1; 𝑘 = 4; 𝑐 = 0.2, and 𝛽 = 0.7, excited by white noise of unit spectral density; comparison of time-histories obtained by
ime-integrating the equation of motion via Newmark algorithm, and by using the algorithm in Ref. [68].
Fig. 2. Oscillator with Duffing nonlinearity: 𝜙 = 10∕𝜎2𝑥0; 𝑚 = 1; 𝑘 = 4; 𝑐 = 0.2; 𝛽 = 0.5 and white noise excitation of unit spectral density; comparison involving various techniques
for estimating the non-stationary response displacement variance.
t
e

those obtained via MC analyses, showing a good agreement. Notably,
these quantities capture a persistent non-zero correlation between the
fractional derivative and the system displacement and velocity. Nev-
ertheless, the response displacement and integer velocity become zero
correlated, as expected, in the stationary regime, as captured by the
black solid line in the same figure.
6

An estimate of the expected value of the response amplitude is
shown in Fig. 5, and compared with MC results. Specifically, the
expected value of the amplitude has been estimated as a function of
the numerical values of 𝑥 (𝑡) and �̇�(𝑡) by using Eq. (19). In doing this,
wo approaches are compared. They differ in terms of the specific
stimate of 𝜔 (𝑎): in one case 𝜔 (𝑎) is approximated as proposed in
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Fig. 3. Oscillator with Duffing nonlinearity: 𝜙 = 10∕𝜎2𝑥0; 𝑚 = 1; 𝑘 = 4; 𝑐 = 0.2; 𝛽 = 0.5 and white noise excitation of unit spectral density; non-stationary response velocity variance.
Fig. 4. Oscillator with Duffing nonlinearity: 𝜙 = 10∕𝜎2𝑥0; 𝑚 = 1; 𝑘 = 4; 𝑐 = 0.2; 𝛽 = 0.5 and white noise excitation of unit spectral density; comparison between MC results and results
obtained by the proposed technique for estimating the non-stationary statistics involving the fractional derivative term, and the cross-correlation between response displacement
and velocity.
Eq. (36), starting from the stationary regime effective stiffness derived
from the classical SL technique; in the second case 𝜔 (𝑎) is approximated
by its expected value. The numerical results from MC simulations are
compared with the analytic expression of the expected value of the
response amplitude. That is, by means of the averaging expression

⟨𝑎 (𝑡)⟩ = ∫

∞

0
𝑎𝑝 (𝑎) 𝑑𝑎. (61)

The probability density in Eq. (61) is taken as defined by Eq. (29) in
the case of the proposed technique, or from the expression in Eq. (45)
7

as proposed in [56], for comparison. If the expected value of the
amplitude is computed analytically, the dependence in time of the
amplitude is reflected by the time-dependence of 𝜎2𝑥. This quantity is
obtained either by solving the system of Eqs. (40) in the case of the
proposed technique, or by solving Eq. (46).

In Figs. 6 to 9 similar results are shown for 𝛽 = 1. In particular, for
this value of 𝛽 a comparison of the non-stationary results obtained by
the classical SL technique is done (see dashed black line in Figs. 6 and
7). Further, note that for unit 𝛽 the variance of the fractional term, and
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r

Fig. 5. Oscillator with Duffing nonlinearity: 𝜙 = 10∕𝜎2𝑥0; 𝑚 = 1; 𝑘 = 4; 𝑐 = 0.2; 𝛽 = 0.5 and white noise excitation of unit spectral density; non-stationary expected value of the
esponse amplitude.
Fig. 6. Oscillator with Duffing nonlinearity: 𝜙 = 10∕𝜎2𝑥0; 𝑚 = 1; 𝑘 = 4; 𝑐 = 0.2; 𝛽 = 1.0 and white noise excitation of unit spectral density; comparison involving various techniques
for estimating the non-stationary response displacement variance.
w
s

v
s

the cross-correlation between the velocity and the fractional term co-
incide. Similarly, the cross-correlation term between the displacement
and the fractional term coincides with the cross-correlation between
the displacement and the velocity, leading to null correlation between
the two at the stationary regime, as theoretically expected; see Fig. 8.

Further, in Fig. 9 the expected value of the response amplitude is
shown versus time for a system involving unit value of 𝛽. It is seen that
the MC results yield identical solutions using either of the approaches.
With regards to the analytic estimate, it is seen that the proposed
 𝛽

8

technique tends to underestimate the MC results, while the averaging
method proposed in [56] tends to slightly overestimate them.

For a value of the order of the fractional derivative term 𝛽 = 1.3, and
ith caution on the range of validity of the approximation in Eq. (47),

imilar results are shown in Figs. 10 to 13.
Finally, in Fig. 14 the stationary value of the response displacement

ariance, normalized with respect to the theoretical variance of the
tationary response of the linear part of the system corresponding to
= 1, 𝜎2 , is shown versus the degree of the nonlinearity for a
𝑥0
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Fig. 7. Oscillator with Duffing nonlinearity: 𝜙 = 10∕𝜎2𝑥0; 𝑚 = 1; 𝑘 = 4; 𝑐 = 0.2; 𝛽 = 1.0 and white noise excitation of unit spectral density; non-stationary response velocity variance.
Fig. 8. Oscillator with Duffing nonlinearity: 𝜙 = 10∕𝜎2𝑥0; 𝑚 = 1; 𝑘 = 4; 𝑐 = 0.2; 𝛽 = 1.0 and white noise excitation of unit spectral density; comparison between MC results and results
obtained by the proposed technique for estimating the non-stationary statistics involving the fractional derivative term.
fixed fractional order 𝛽 = 0.7, just a representative value, where the
onlinearity factor 𝜌 = 𝜙𝜎2𝑥0 is introduced. It is noted that the degree
f reliability in estimating the stationary regime response displacement
ariance by the proposed technique is almost invariant versus the
egree of the nonlinearity, even for strong nonlinearity levels.
9

4. Concluding remarks

In this paper a generalization of the Statistical Linearization tech-
nique for determining the non-stationary response statistics of non-
linear oscillators endowed with fractional elements, subject to white
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r

Fig. 9. Oscillator with Duffing nonlinearity: 𝜙 = 10∕𝜎2𝑥0; 𝑚 = 1; 𝑘 = 4; 𝑐 = 0.2; 𝛽 = 1.0 and white noise excitation of unit spectral density; non-stationary expected value of the
esponse amplitude.
Fig. 10. Oscillator with Duffing nonlinearity: 𝜙 = 10∕𝜎2𝑥0; 𝑚 = 1; 𝑘 = 4; 𝑐 = 0.2; 𝛽 = 1.3 and white noise excitation of unit spectral density; comparison involving various techniques
for estimating the non-stationary response displacement variance.
noise excitation, has been developed. The technique resorts to a pre-
treatment of the system response by the Harmonic Balancing technique,
limited to the fractional term, in deriving response-amplitude depen-
dent equivalent damping and stiffness. Expectations of these values
are next derived by averaging them through the probability density
10
function of the response amplitude, for which a Rayleigh distribution
with time-dependent parameters is used. In this manner, the expected
values of the equivalent quantities are determined as functions of the
variance of the system response itself. Further, the covariance Lya-
punov equation associated with the derived equivalent system is solved
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Fig. 11. Oscillator with Duffing nonlinearity: 𝜙 = 10∕𝜎2𝑥0; 𝑚 = 1; 𝑘 = 4; 𝑐 = 0.2; 𝛽 = 1.3 and white noise excitation of unit spectral density; non-stationary response velocity variance.
Fig. 12. Oscillator with Duffing nonlinearity: 𝜙 = 10∕𝜎2𝑥0; 𝑚 = 1; 𝑘 = 4; 𝑐 = 0.2; 𝛽 = 1.3 and white noise excitation of unit spectral density; comparison between MC results and
results obtained by the proposed technique for estimating the non-stationary statistics involving the fractional derivative term.
numerically, to derive non-stationary estimates of the auto-correlations,
and cross-correlation functions of the response displacement, and ve-
locity. These are also used to determine a posteriori similar expressions
regarding the fractional term itself and the integer-order state variables
of the oscillator.
11
The attractiveness of the developed technique relates to its appli-
cability to a broad class of nonlinear systems, and stochastic exci-
tations, as well as to the possibility of deriving important oscillator
response statistics at a low computational cost. It is pointed out that
the versatility of the approach is contingent upon the assumption of
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Fig. 13. Oscillator with Duffing nonlinearity: 𝜙 = 10∕𝜎2𝑥0; 𝑚 = 1; 𝑘 = 4; 𝑐 = 0.2; 𝛽 = 1.3 and white noise excitation of unit spectral density; non-stationary expected value of the
esponse amplitude.
Fig. 14. Oscillator with Duffing nonlinearity: 𝜙 = 10∕𝜎2𝑥0; 𝑚 = 1; 𝑘 = 4; 𝑐 = 0.2; 𝛽 = 0.7 and white noise excitation of unit spectral density; comparison involving various techniques
for estimating the stationary response displacement variance versus the nonlinearity factor 𝜌 = 𝜙𝜎2𝑥0.
p
r
a

pseudo-harmonic response process, and within the range of validity
f the Harmonic Balancing approximation of the fractional term. The
uxtaposition of results obtained by the developed technique and by
12
ertinent Monte Carlo simulations has demonstrated its accuracy and
eliability for a broad range of the order of the fractional derivative,
nd even for strongly nonlinear oscillators.
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