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A B S T R A C T

In this paper we make a rigorous analysis of the existence and characterization of the free
boundary related to the optimal stopping problem that maximizes the mean of an Ornstein–
Uhlenbeck bridge. The result includes the Brownian bridge problem as a limit case. The
methodology hereby presented relies on a time–space transformation that casts the original
problem into a more tractable one with an infinite horizon and a Brownian motion underneath.
We comment on two different numerical algorithms to compute the free-boundary equation and
discuss illustrative cases that shed light on the boundary’s shape. In particular, the free boundary
generally does not share the monotonicity of the Brownian bridge case.

1. Introduction

Since their first appearance in the seminal monograph of [35], Optimal Stopping Problems (OSPs) have become ubiquitous
tools in mathematical finance, stochastic analysis, and mathematical statistics, among many other fields. Particularly, OSPs that are
non-homogeneous in time are known to be mathematically challenging and, compared to the time-homogeneous counterpart, the
literature addressing this topic is scarce, non-comprehensive, and often heavy on smoothness conditions. Markov bridges are not
only time-inhomogeneous processes, but they also fail to meet the common assumption of Lipschitz continuity of the underlying
drift (see, e.g., Krylov and Aries [24, Chapter 3], or [22]), as their drifts explode when time approaches the horizon, thus inherently
adding an extra layer of complexity.

The first result in OSPs with Markov bridges was given by [34], who circumvented the complexity of dealing with a Brownian
Bridge (BB) by using a time–space transformation that allowed reformulating the problem into a more tractable one with a
Brownian motion underneath. Since then, more than fifty years ago, the use of Markov bridges in the context of OSPs has been
narrowed to extending the result of [34]: [17,18] studied alternative methods of solutions; [10,17] looked at a broader class of gain
functions, [21] randomized the horizon while [19,27], and [16] analyzed the randomization of the bridge’s terminal point.

In finance, the use of a BB in OSPs has been motivated by several applications. [6] applied it to the optimal selling of bonds; [3]
suggested the use of a BB to model mispriced assets that could rapidly return to their fair price, or perishable commodities that
become useless after a given deadline; and [17] used a BB to model the stock-pinning effect, that is, the phenomenon in which the
price of a stock tends to be pulled towards the strike price of one of its underlying options with massive trading volumes at the
expiration date. While these motivations encourage the investor to rely on a model with added information at the horizon, none of
them are exclusive to a BB, its usage being rather driven by tractability issues. Thus, in those same scenarios, other bridge processes
could be more appealing than the over-simplistic BB. In particular, we drive our attention to an Ornstein–Uhlenbeck Bridge (OUB)
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process, since its version without a fixed terminal point, the Ornstein–Uhlenbeck (OU) process, is often the reference model in many
financial problems.

Indeed, OU processes are a go-to in finance when it comes to modeling assets with prices that fluctuate around a given level.
his mean-reverting phenomenon has been systematically observed in a wide variety of markets. A good reference for either theory,
pplications, or empirical evidence of mean-reverting problems is [26]. An example is given by the pair trading strategy, which
onsists on holding a position in one asset as well as the opposite position in another, both assets known to be correlated in a
ay that the spread between their prices shows mean reversion. Recently, many authors have tackled pair trading by using an OSP
pproach with an OU process. [15] found the best time to liquidate the spread in the presence of a stop-loss level; [25] used a
iscounted double OSP to compute the optimal buy-low-sell-high strategy in a perpetual frame; and [23] extended that result to a
inite horizon and took the viewpoint of investors entering the spread either buying or shorting.

In this paper we solve the finite-horizon OSP featuring the identity as the gain function and an OUB as the underlying process.
he solution is provided in terms of a non-linear, Volterra-type integral equation. Similarly to [34], our methodology relies on
time–space change that casts the original problem into an infinite-horizon OSP with a Brownian motion as the underlying

rocess. Due to the complexity of our resulting OSP, we use a direct approach to solve it rather than using the common candidate-
erification scheme. We then show that one can either apply the inverse transformation to recover the solution of the original
SP or, equivalently, solve the Volterra integral equation reformulated back in terms of OUB. It is worth highlighting that the BB

ramework is included in our analysis as a limit case.
The rest of the paper is structured as follows. Section 2 introduces the main problem and some useful notation. In Section 3 we

erive the transformed OSP and establish its equivalence to the original one. The most technical part of the paper is relegated to
ection 4, in which we derive the solution of the reformulated OSP. From it, we use the reverse transformation to get the solution
ack to the original OSP in Section 5, where we also remark that both a BB and an OUB with general pulling level and terminal
ime are immediate consequences of our results. An algorithm for numerical approximations of the solution is given in Section 6,
long with a compendium of illustrative cases for different values of the OUB’s parameters. Concluding remarks are relegated to
ection 7.

. Formulation of the problem

Let 𝑋 = {𝑋𝑡}𝑡∈[0,1] be an OUB with terminal value 𝑋1 = 𝑧, 𝑧 ∈ R, and defined in the filtered space (𝛺, ,P, {𝑡}𝑡∈[0,1]). That is, for
an OU process 𝑋 = {𝑋𝑡}𝑡∈[0,1], take 𝑋 such that Law(𝑋,P) = Law(𝑋, P̃𝑧), where P̃𝑧 ∶= P

(

⋅|𝑋1 = 𝑧
)

. It is well known (see, e.g., [2])
that 𝑋 is the unique strong solution of the Stochastic Differential Equation (SDE)

d𝑋𝑡 = 𝜇(𝑡, 𝑋𝑡)d𝑡 + 𝛾d𝐵𝑡, 0 ≤ 𝑡 ≤ 1, (1)

with 𝛾 > 0 and

𝜇(𝑡, 𝑥) = 𝛼
𝑧 − cosh(𝛼(1 − 𝑡))𝑥

sinh(𝛼(1 − 𝑡))
, 𝛼 ≠ 0. (2)

Note that we can take {𝑡}𝑡∈[0,1] as the natural filtration of the underlying standard Brownian motion {𝐵𝑠}𝑡∈[0,1] in (1). The parameter
regulates the strength with which the OU process 𝑋 is attracted to (𝛼 > 0) or repulsed from (𝛼 < 0) the origin, resulting in the

trength of attraction of the OUB 𝑋 to the curve 𝑡 ↦ 𝑧∕ cosh(𝛼(1 − 𝑡)).
Consider the finite-horizon OSP

𝑉 (𝑡, 𝑥) ∶= sup
𝜏≤1−𝑡

E𝑡,𝑥
[

𝑋𝑡+𝜏
]

, (3)

here 𝑉 is the value function and E𝑡,𝑥 represents the expectation under the probability measure P𝑡,𝑥 defined as P𝑡,𝑥(⋅) ∶= P(⋅|𝑋𝑡 = 𝑥).
he supremum above is taken under all random times 𝜏 in the underlying filtration, such that 𝑡+ 𝜏 is a stopping time in {𝑡}𝑡∈[0,1].
enceforth, we will call 𝜏 a stopping time while keeping in mind that 𝑡 + 𝜏 is the actual stopping time.

. Reformulation of the problem

[2] provide the following space–time transformed representation for 𝑋:

𝑋𝑡 = 𝑎1(𝑡, 𝑋0, 𝑧) + 𝑎2(𝑡)𝐵𝜓(𝑡),

here the functions 𝑎1 and 𝑎2 take the form

𝑎1(𝑡, 𝑥, 𝑧) ∶= 𝑥
sinh(𝛼(1 − 𝑡))

sinh(𝛼)
+ 𝑧

sinh(𝛼𝑡)
sinh(𝛼)

, 𝑎2(𝑡) ∶= 𝛾𝑒𝛼𝑡
𝜅(1) − 𝜅(𝑡)

𝜅(1)
,

and 𝜓 ∶ [0, 1) → R+ is the time transformation 𝜓(𝑡) ∶= 𝜅(𝑡)𝜅(1)∕(𝜅(1) − 𝜅(𝑡)), with 𝜅(𝑡) ∶= (2𝛼)−1(1 − 𝑒−2𝛼𝑡). Notice that
𝑡 = 𝜅−1 (𝜓(𝑡)𝜅(1)∕(𝜓(𝑡) + 𝜅(1))) , where 𝜅−1(𝑠) = −(2𝛼)−1 ln(1 − 2𝛼𝑠). The following identities can be easily checked:

𝑎1(𝑡, 𝑥, 𝑧) =
(

𝑥 + 𝑧
𝜓(𝑡)𝑒−𝛼

𝜅(1)

)

1

𝑓
(

𝜓(𝑡)𝑒−𝛼
) , 𝑎2(𝑡) =

𝛾

𝑓
(

𝜓(𝑡)𝑒−𝛼
) ,
2

𝜅(1) 𝜅(1)
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𝑓 (𝑠) ∶=
√

(𝑒𝛼 + 𝑠) (𝑒−𝛼 + 𝑠). (4)

Therefore, if we set the time change 𝑠 = 𝜓(𝑡)𝑒−𝛼∕𝜅(1 − 𝑢), we get the space change

𝑋𝑡 =
𝑋0 + 𝑧𝑠
𝑓 (𝑠)

+
𝛾
𝑓 (𝑠)

𝐵𝑠𝜅(1)𝑒𝛼 =
𝑧𝑠 + 𝛾

√

𝜅(1)𝑒𝛼

𝑓 (𝑠)

(

𝐵𝑠 +
𝑋0

𝛾
√

𝜅(1)𝑒𝛼

)

. (5)

Let 𝑌 =
{

𝑌𝑠
}

𝑠≥0 be a Brownian motion starting at 𝑌0 = 𝑦 under the probability measure P𝑦, that is, P𝑦
(

𝑌0 = 𝑦
)

= 1. Consider the
infinite-horizon OSP

𝑊𝑐 (𝑠, 𝑦) ∶= sup
𝜎

E𝑦
[

𝐺𝑐 (𝑠 + 𝜎, 𝑌𝜎)
]

, (6)

with gain function

𝐺𝑐 (𝑠, 𝑦) ∶=
𝑐𝑠 + 𝑦
𝑓 (𝑠)

(7)

nd 𝑐 ∈ R. The parameter 𝑐 can be interpreted as a discount (𝑐 < 0) or interest (𝑐 > 0) rate per unit of time. The operator E𝑦
mphasizes that we are taking the mean with respect to P𝑦, and the supremum in (6) is taken over all the stopping times 𝜎 in the
atural filtration of

{

𝑌𝑠
}

𝑠≥0.
Solving an OSP means giving a tractable expression for the value function and finding a stopping time in which the supremum

s attained. Thereby, we show in the next proposition the equivalence between (3) and (6), by providing formulae that relate 𝑉 to
, and switch from a stopping time that is optimal in the former problem (if it exists) to one optimal in the latter.

roposition 1 (Time–Space Equivalence). Consider the time change 𝜐 ∶ [0, 1] → R such that 𝜐(𝑡) ∶= 𝜓(𝑡)𝑒−𝛼∕𝜅(1), and the space change
∶ R → R with 𝜂(𝑥) ∶= 𝑥∕(𝛾

√

𝜅(1)𝑒𝛼). Take (𝑡, 𝑥) ∈ [0, 1) × R and set 𝑠 = 𝜐(𝑡), 𝑐𝑧 = 𝜂(𝑧), and 𝑦 = 𝜂(𝑥). Then:

(i) The following equation holds:

𝑉 (𝑡, 𝑥) = 𝑧
𝑐𝑧
𝑊𝑐𝑧 (𝑠, 𝑦) . (8)

(ii) The stopping time 𝜎∗(𝑠, 𝑦) is optimal in (6) under P𝑦 for 𝑐 = 𝑐𝑧 if and only if

𝜏∗(𝑡, 𝑥) ∶= 𝜐−1
(

𝜎∗(𝑠, 𝑦)
)

(9)

is optimal in (3) under P𝑡,𝑥.

Proof. (i) We have already proved this part of the proposition. Indeed, (8) follows trivially from (3) and (5)–(7).
(ii) Suppose that 𝜎∗ = 𝜎∗(𝑠, 𝑦) is optimal in (6) under P𝑦 for 𝑐 = 𝑐𝑧. Assume that there exists a stopping time 𝜏′ = 𝜏′(𝑡, 𝑥) that

utperforms 𝜏∗ = 𝜏∗(𝑡, 𝑥) defined in (9), and set 𝜎′ = 𝜎′(𝑠, 𝑦) ∶= 𝜐−1(𝜏′). Then, by relying on (5), we get that

E𝑦
[

𝐺𝑐𝑧
(

𝑠 + 𝜎′, 𝑌𝜎′
)

]

= E𝑡,𝑥
[

𝑋𝑡+𝜏′
]

> E𝑡,𝑥
[

𝑋𝑡+𝜏∗
]

= E𝑦
[

𝐺𝑐𝑧
(

𝑠 + 𝜎∗, 𝑌𝜎∗
)

]

,

hich contradicts the fact that 𝜎∗ is optimal in (6). Then, we have proved the only if part of the statement. By following similar
rguments, one can prove that if 𝜎∗ is suboptimal, so it is 𝜏∗, which proves the if direction. □

. Solution of the reformulated problem: a direct approach

In this section we will work out a solution for the OSP (6). For the sake of briefness and since there is no risk of confusion,
hroughout the section we will use the notations 𝑊 = 𝑊𝑐 and 𝐺 = 𝐺𝑐 , so that (6) can be rewritten as

𝑊 (𝑠, 𝑦) = sup
𝜎

E𝑦
[

𝐺(𝑠 + 𝜎, 𝑌𝜎 )
]

. (10)

Notice that 0 ≤ 𝑠∕𝑓 (𝑠) ≤ 1 and 𝑓 (𝑠) ≥
√

1 + 𝑠2 for all 𝑠 ∈ R+, 𝑓 (0) = 1, and 𝑓 is increasing. Hence, the following holds for
𝑀 ∶= E

[

sup0≤𝑢≤1 ||𝐵𝑢||
]

and all (𝑠, 𝑦) ∈ R+ × R:

E𝑦
[

sup
𝑢≥0

|

|

|

𝐺
(

𝑠 + 𝑢, 𝑌𝑢
)

|

|

|

]

≤ |𝑐| + E𝑦
[

sup
𝑢≥0

|

|

𝑌𝑢||
𝑓 (𝑢)

]

≤ |𝑐| + |𝑦| + E

[

sup
𝑢≥0

|

|

𝐵𝑢||
√

1 + 𝑢2

]

≤ |𝑐| + |𝑦| +𝑀 + E

[

sup
𝑢≥1

|

|

𝐵𝑢||
√

1 + 𝑢2

]

= |𝑐| + |𝑦| +𝑀 + E

[

sup
𝑢≥1

𝑢
√

1 + 𝑢2
|

|

|

𝐵1∕𝑢
|

|

|

]

≤ |𝑐| + |𝑦| +𝑀 + E
[

sup ||𝐵1∕𝑢
|

|

]

= |𝑐| + |𝑦| + 2𝑀, (11)
3

𝑢≥1 | |
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where we used the time-inversion property of a Brownian motion in the first equality. Thereby, since 𝑀 < ∞ (see, e.g., Identity
.1.3 from [5]) and 𝐺 is continuous, we get that (see, e.g., Corollary 2.9, Remark 2.10, and equation (2.2.80) in [33]) the first
itting time

𝜎∗(𝑠, 𝑦) = inf
{

𝑢 ≥ 0 ∶ (𝑠 + 𝑢, 𝑌𝑢) ∈ 
}

(12)

nto the stopping set  ∶= {𝑊 = 𝐺} is optimal for (10). That is,

𝑊 (𝑠, 𝑦) = E𝑦
[

𝐺
(

𝑠 + 𝜎∗(𝑠, 𝑦), 𝑌𝜎∗(𝑠,𝑦)
)]

. (13)

fter applying Itô’s lemma to 𝐺
(

𝑠 + 𝑢, 𝑌 𝑦𝑢
)

, substituting 𝑢 for 𝜎 and 𝜎∗(𝑠, 𝑦) respectively, and taking expectation (which cancels the
artingale term), we get from (6) and (13) the following alternative representations of 𝑊 :

𝑊 (𝑠, 𝑦) − 𝐺(𝑠, 𝑦) = sup
𝜎

E𝑦
[

∫

𝜎

0
L𝐺

(

𝑠 + 𝑢, 𝑌𝑢
)

d𝑢
]

= E𝑦

[

∫

𝜎∗(𝑠,𝑦)

0
L𝐺

(

𝑠 + 𝑢, 𝑌𝑢
)

d𝑢

]

, (14)

here L = 𝜕𝑡 +
1
2 𝜕𝑥𝑥 is the infinitesimal generator of

{(

𝑠 + 𝑢, 𝑌𝑢
)}

𝑢≥0. Here and thereafter, 𝜕𝑡 and 𝜕𝑥 will stand, respectively, for the
differential operator with respect to time and space, while 𝜕𝑥𝑥 is a shorthand for 𝜕𝑥𝜕𝑥. Note that L𝐺 = 𝜕𝑡𝐺. Since many of the proofs
rely on the first-order partial derivatives of the gain function, we display them next for quick reference:

𝜕𝑡𝐺(𝑠, 𝑦) =
𝑐
(

𝑓 (𝑠) − 𝑠𝑓 ′(𝑠)
)

− 𝑓 ′(𝑠)𝑦
𝑓 2(𝑠)

, (15)

𝜕𝑥𝐺(𝑠, 𝑦) =
1
𝑓 (𝑠)

. (16)

To keep track of the initial condition in a way that does not change the underlying probability measure, we introduce the process
𝑦 =

{

𝑌 𝑦𝑠
}

𝑠≥0 such that

Law
(

{

𝑌 𝑦𝑠
}

𝑠≥0 ,P
)

= Law
(

{

𝑌𝑠
}

𝑠≥0 ,P𝑦
)

.

Notice that the characterization of the Optimal Stopping Time (OST) in (12) is too abstract to work with. In the next proposition
e characterize 𝜎∗(𝑠, 𝑦) by means of a function called the Optimal Stopping Boundary (OSB), which is the frontier between  and

ts complement  ∶= {𝑊 > 𝐺}. We also derive some properties about the shape of the OSB that shed light on the geometry of 
nd .

roposition 2 (Existence and Shape of the Optimal Stopping Boundary). There exists a function 𝑏 ∶ R+ → R such that  =
(𝑠, 𝑦) ∶ 𝑦 ≥ 𝑏(𝑠)}. Moreover, 𝑐(𝑓 (𝑠) − 𝑠𝑓 ′(𝑠))∕𝑓 (𝑠) < 𝑏(𝑠) <∞ for all 𝑠 ∈ R+.

Proof. The claimed shape for the stopping set,  = {(𝑠, 𝑦) ∶ 𝑦 ≥ 𝑏(𝑠)}, is a straightforward consequence of the fact that 𝑦 ↦
(𝑊 − 𝐺)(𝑠, 𝑦) is decreasing for all 𝑠 ∈ R+, which follows after (4), (14), and (15).

We now see that 𝑏(𝑠) > 𝑐(𝑓 (𝑠)−𝑠𝑓 ′(𝑠))∕𝑓 (𝑠) for all 𝑠 > 0. Fix a pair (𝑠, 𝑦) such that 𝜕𝑡𝐺(𝑠, 𝑦) > 0. Then, the continuity of 𝜕𝑡𝐺 allows
to pick a ball  such that (𝑠, 𝑦) ∈  and 𝜕𝑡𝐺 > 0 in . After recalling (14) and setting 𝜎 as the first exit time of

{(

𝑠 + 𝑢, 𝑌 𝑦𝑢
)}

𝑢≥0
from , we get that

𝑊 (𝑠, 𝑦) − 𝐺(𝑠, 𝑦) ≥ E𝑦
[

∫

𝜎

0
𝜕𝑡𝐺

(

𝑠 + 𝑢, 𝑌𝑢
)

d𝑢
]

> 0.

We conclude then that (𝑠, 𝑦) ∈ . Finally, the claimed lower bound for 𝑏 comes after using (15) to realize that 𝜕𝑡𝐺(𝑠, 𝑦) > 0 if and
only if 𝑦 < 𝑐(𝑓 (𝑠) − 𝑠𝑓 ′(𝑠))∕𝑓 (𝑠).

We now prove 𝑏(𝑠) < ∞ for all 𝑠 > 0. Let 𝑋 =
{

𝑋𝑡
}

𝑡∈[0,1] and 𝑋 =
{

𝑋𝑡
}

𝑡∈[0,1] be an OUB and a BB, respectively, with pinning
point 𝑋1 = 𝑋1 = 𝑧. The drift of 𝑋 has the form 𝜇(𝑡, 𝑥) = (𝑧 − 𝑥)∕(1 − 𝑡). Define 𝑚𝑧 ∶ [0, 1) → R such that

𝑚𝑧(𝑡) = 𝑧
sinh(𝛼(1 − 𝑡)) − 𝛼(1 − 𝑡)

sinh(𝛼(1 − 𝑡)) − 𝛼(1 − 𝑡) cosh(𝛼(1 − 𝑡))
,

and notice that 𝜇(𝑡, 𝑥) ≤ 𝜇(𝑡, 𝑥) if and only if 𝑥 ≥ 𝑚𝑧(𝑡). Take 𝑀𝑧 ∶= sup𝑡∈[0,1) 𝑚𝑧(𝑡) <∞ and notice the following relation:

𝑋𝑡 ≤ 𝑚𝑧(𝑡) + |𝑋𝑡 − 𝑚𝑧(𝑡)| ≤ 𝑚𝑧(𝑡) + |𝑋𝑡 − 𝑚𝑧(𝑡)| ≤𝑀𝑧 + |𝑋𝑡 −𝑀𝑧|. (17)

he second inequality in (17) holds since the drift of the process 𝑡 ↦ 𝑚𝑧(𝑡)+|𝑋𝑡−𝑚𝑧(𝑡)| is lower than the drift of 𝑡↦ 𝑚𝑧(𝑡)+|𝑋𝑡−𝑚𝑧(𝑡)|
nd, therefore, we can ensure that, pathwise, the first process is lower than the last one P-a.s. (see Corollary 3.1 by [30]). Indeed,
or 𝜀 > 0, define the function

𝑔𝜀(𝑥, 𝑚) ∶=

{

|𝑥 − 𝑚|, if |𝑥 − 𝑚| ≥ 𝜀,
1
2

(

𝜀 + 𝜀−1(𝑥 − 𝑚)2
)

, if |𝑥 − 𝑚| < 𝜀

and the processes

𝑌 (1),𝜀 ∶= 𝑚 (𝑡) + 𝑔
(

𝑋 ,𝑚 (𝑡)
)

, 𝑌 (2),𝜀 ∶= 𝑚 (𝑡) + 𝑔
(

𝑋 ,𝑚 (𝑡)
)

.

4

𝑡 𝑧 𝜀 𝑡 𝑧 𝑡 𝑧 𝜀 𝑡 𝑧



Stochastic Processes and their Applications 172 (2024) 104342A. Azze et al.

d
𝜀

w
[

Denote by 𝜇(𝑖),𝜀 the drift of 𝑌 (𝑖),𝜀, 𝑖 = 1, 2. We obtain the following after a straightforward use of the Itô formula:

(𝜇(1),𝜀 − 𝜇(2),𝜀)(𝑡, 𝑥) = 𝜕1𝑔𝜀(𝑥, 𝑚(𝑡))(𝜇(𝑡, 𝑥) − 𝜇(𝑡, 𝑥)).

Therefore, after recalling the definition of 𝑚𝑧(𝑡) and noticing that 𝑥↦ 𝑔𝜀(𝑥, 𝑚(𝑡)) decreases for 𝑥 ≤ 𝑚(𝑡) and increases for 𝑥 ≥ 𝑚(𝑡), a
irect use of Corollary 3.1 from [30] yields that 𝑌 (1),𝜀

𝑡 ≥ 𝑌 (2),𝜀
𝑡 for all 𝑡 ∈ [0, 𝑇 ] P-a.s., which implies the claimed result after taking

→ 0 and realizing that, in such a case, 𝑔𝜀(𝑐, 𝑥) ↓ |𝑐 − 𝑥|.
The third inequality in (17) is straightforward from the definition of 𝑀𝑧. Therefore, if we consider the OSP

𝑉𝑀𝑧
(𝑡, 𝑥) = sup

𝜏≤1−𝑡
E𝑡,𝑥

[

𝑀𝑧 + |𝑋𝑡+𝜏 −𝑀𝑧|
]

,

we are allowed to state that 𝑉 ≤ 𝑉𝑀𝑧
. If we take a pair (𝑡, 𝑥) ∈ [0, 1] × [𝑀𝑧,∞) within the stopping set related to 𝑉𝑀𝑧

, then
𝑉 (𝑡, 𝑥) ≤ 𝑉𝑀𝑧

= 𝑥, meaning that (𝑡, 𝑥) lies in the stopping set of 𝑉 . Since it is known that the OSB related to 𝑉𝑀𝑧
is finite (actually,

this is one of the few cases in which the explicit form of the OSP with a finite horizon is available; see, e.g., Theorem 3.2 in [17]),
so is the one related to 𝑉 . Then, using (8), we conclude that 𝑏 is bounded from above. □

We next show that 𝑊 is Lipschitz continuous on sets of the type R+ ×, where  stands for a compact set in R.

Proposition 3 (Local Lipschitz Continuity of the Value Function). For any compact set  ⊂ R, there exists a constant 𝐿 > 0 such that

|

|

𝑊 (𝑠1, 𝑦1) −𝑊 (𝑠2, 𝑦2)|| ≤ 𝐿
(

|𝑠1 − 𝑠2| + |𝑦1 + 𝑦2|
)

for all (𝑠1, 𝑦1), (𝑠2, 𝑦2) ∈ R+ ×.

Proof. Take (𝑠1, 𝑦1), (𝑠2, 𝑦2) ∈ R+ × and realize that

𝑊 (𝑠1, 𝑦1) −𝑊 (𝑠2, 𝑦2) = sup
𝜎

E𝑦1
[

𝐺(𝑠1 + 𝜎, 𝑌𝜎 )
]

− sup
𝜎

E𝑦2
[

𝐺(𝑠1 + 𝜎, 𝑌𝜎 )
]

+ sup
𝜎

E𝑦2
[

𝐺(𝑠1 + 𝜎, 𝑌𝜎 )
]

− sup
𝜎

E𝑦2
[

𝐺(𝑠2 + 𝜎, 𝑌𝜎 )
]

.

Notice from (15) that the following relation holds:

|

|

𝜕𝑡𝐺(𝑠, 𝑦)|| ≤ 𝐾
(

1 +
|𝑦|
𝑓 (𝑢)

)

.

Then, since | sup𝜎 𝑎𝜎 − sup𝜎 𝑏𝜎 | ≤ sup𝜎 |𝑎𝜎 − 𝑏𝜎 |, alongside Jensen’s inequality, and (15) and (16), we get that
|

|

|

sup
𝜎

E𝑦1
[

𝐺(𝑠1 + 𝜎, 𝑌𝜎 )
]

− sup
𝜎

E𝑦2
[

𝐺(𝑠1 + 𝜎, 𝑌𝜎 )
]

|

|

|

≤ sup
𝜎

E
[

|

|

|

𝐺(𝑠1 + 𝜎, 𝑌
𝑦1
𝜎 ) − 𝐺(𝑠1 + 𝜎, 𝑌

𝑦2
𝜎 )||

|

]

= sup
𝜎

E
⎡

⎢

⎢

⎣

|

|

|

𝑌 𝑦1𝜎 − 𝑌 𝑦2𝜎
|

|

|

𝑓 (𝑠1 + 𝜎)

⎤

⎥

⎥

⎦

=
|𝑦1 − 𝑦2|
𝑓 (𝑠1)

≤ |𝑦1 − 𝑦2|,

here, in the last equality, we used the fact that 𝑓 increases and the representation 𝑌 𝑦𝑠 = 𝑦+𝐵𝑠, for the standard Brownian motion
𝐵𝑠

]

𝑠∈R+
. Likewise

|

|

|

sup
𝜎

E𝑦2
[

𝐺(𝑠1 + 𝜎, 𝑌𝜎 )
]

− sup
𝜎

E𝑦2
[

𝐺(𝑠2 + 𝜎, 𝑌𝜎 )
]

|

|

|

≤ sup
𝜎

E
[

|

|

|

𝐺(𝑠1 + 𝜎, 𝑌
𝑦2
𝜎 ) − 𝐺(𝑠2 + 𝜎, 𝑌

𝑦2
𝜎 )||

|

]

= |𝑠1 − 𝑠2| sup
𝜎

E
[

|

|

|

𝜕𝑡𝐺(𝜉, 𝑌
𝑦2
𝜎 )||

|

]

≤ |𝑠1 − 𝑠2|𝐾
⎛

⎜

⎜

⎝

1 + E
⎡

⎢

⎢

⎣

sup
𝑠≥0

|

|

|

𝑌 𝑦2𝑠
|

|

|

𝑓 (𝑠)

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

,

where 𝜉 ∈
(

min
{

𝑠1, 𝑠2
}

,max
{

𝑠1, 𝑠2
})

is a random variable that follows from the mean value theorem. Since we already proved in
(11) that E

[

sup𝑠≥0
|

|

|

𝑌 𝑦2𝑠
|

|

|

∕𝑓 (𝑠)
]

< ∞, the Lipschitz continuity of 𝑊 in R+ × follows. □

Beyond Lipschitz continuity, it turns out that the value function attains a higher smoothness away from the boundary. While this
assertion is trivial in the interior of the stopping region, where 𝑊 = 𝐺, we prove in the next proposition that it also holds in the
continuation set. In addition, we show that L𝑊 vanishes in , which establishes the equivalence between (10) and a free-boundary
problem.

Proposition 4 (Higher Smoothness of the Value Function and the Free-Boundary Problem). 𝑊 ∈ 𝐶1,2() and L𝑊 = 0 in .
5
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Proof. The fact that L𝑊 = 0 in  comes right after the strong Markov property of
{(

𝑠 + 𝑢, 𝑌𝑢
)}

𝑢≥0; see Peskir and Shiryaev [33,
ection 7.1] for more details.

Since 𝑊 is continuous on  (see Proposition 3) and the coefficients in the parabolic operator L = 𝜕𝑡+
1
2 𝜕𝑥𝑥 are constant (it suffices

o require local 𝛼-Hölder continuity), then standard theory from parabolic partial differential equations [20, Section 3, Theorem 9]
uarantees that, for an open rectangle 𝑅 ⊂ , the first initial–boundary value problem

L𝑔 = 0 in 𝑅, (18a)

𝑔 = 𝑊 on 𝜕𝑅 (18b)

as a unique solution 𝑔 ∈ 𝐶1,2(𝑅). Therefore, if we denote by 𝜏𝑅𝑐 the first time (𝑠+ 𝑢, 𝑌𝑢) exits 𝑅, we obtain the following for 𝑦 ∈ 𝑅:

𝑊 (𝑠, 𝑦) = E𝑦
[

𝑊 (𝑠 + 𝜏𝑅𝑐 , 𝑌𝜏𝑅𝑐 )
]

= E𝑦
[

𝑔(𝑠 + 𝜏𝑅𝑐 , 𝑌𝜏𝑅𝑐 )
]

= 𝑔(𝑡, 𝑥) + E𝑦
[

∫

𝜏𝑅𝑐

0
L𝑔(𝑠 + 𝑢, 𝑌𝑢) d𝑢

]

= 𝑔(𝑡, 𝑥),

where the first equality is due to the strong Markov property, the second one relies on (18b), the third one comes after a
straightforward application of Dynkin’s formula, and (18a) was used to obtain the last one. □

Not only the gain function has continuous partial derivatives away from the boundary, but we can provide relatively explicit
forms for those derivatives, as shown in the next proposition.

Proposition 5 (Partial Derivatives of the Value Function). Let 𝜎∗ = 𝜎∗(𝑠, 𝑦), for (𝑠, 𝑦) ∈ , and 𝑎 ∶= 𝑒−𝛼 + 𝑒𝛼 . Then,

𝜕𝑡𝑊 (𝑠, 𝑦) = 𝜕𝑡𝐺(𝑠, 𝑦) + E

[

∫

𝑠+𝜎∗

𝑠

1
𝑓 3(𝑢)

(

−𝑐 (𝑎 + 3𝑢) +
3 (𝑎 + 2𝑢)2

4𝑓 2(𝑢)
− 𝑌 𝑦𝑢−𝑠

)

d𝑢

]

(19)

and

𝜕𝑥𝑊 (𝑠, 𝑦) = E
[

1
𝑓 (𝑠 + 𝜎∗)

]

. (20)

roof. Take (𝑠, 𝑦) ∈  and 𝜀 > 0. Due to (10) and (13), we get the following for 𝜎∗ = 𝜎∗(𝑠, 𝑦):

𝜀−1 (𝑊 (𝑠, 𝑦) −𝑊 (𝑠 − 𝜀, 𝑦)) ≤ 𝜀−1E
[

𝐺(𝑠 + 𝜎∗, 𝑌 𝑦𝜎∗ ) − 𝐺(𝑠 − 𝜀 + 𝜎
∗, 𝑌 𝑦𝜎∗ )

]

.

ence, by letting 𝜀 → 0, using the dominated convergence theorem (see (11)), and recalling that 𝑊 ∈ 𝐶1,2() (see Proposition 4),
e get that

𝜕𝑡𝑊 (𝑠, 𝑦) ≤ E
[

𝜕𝑡𝐺(𝑠 + 𝜎∗, 𝑌
𝑦
𝜎∗ )

]

= 𝜕𝑡𝐺(𝑠, 𝑦) + E

[

∫

𝑠+𝜎∗

𝑠
L𝜕𝑡𝐺(𝑢, 𝑌 𝑦𝑠−𝑢) d𝑢

]

. (21)

n the same fashion we obtain

𝜀−1 (𝑊 (𝑠 + 𝜀, 𝑦) −𝑊 (𝑠, 𝑦)) ≥ 𝜀−1E
[

𝐺(𝑠 + 𝜀 + 𝜎∗, 𝑌 𝑦𝜎∗ ) − 𝐺(𝑠 + 𝜎
∗, 𝑌 𝑦𝜎∗ )

]

.

hus, by arguing as in (21) we get the reverse inequality, and therefore (19) is proved after computing L𝜕𝑡𝐺(𝑢, 𝑌
𝑦
𝑠−𝑢) = 𝜕𝑡𝑡𝐺(𝑢, 𝑌

𝑦
𝑠−𝑢).

To get the analog result for the space coordinate, notice that

𝜀−1 (𝑊 (𝑠, 𝑦) −𝑊 (𝑠, 𝑦 − 𝜀)) ≤ 𝜀−1E
[

𝑊 (𝑠 + 𝜎∗, 𝑌 𝑦𝜎∗ ) −𝑊 (𝑠 + 𝜎∗, 𝑌 𝑦−𝜀𝜎∗ )
]

≤ 𝜀−1E
[

𝐺(𝑠 + 𝜎∗, 𝑌 𝑦𝜎∗ ) − 𝐺(𝑠 + 𝜎
∗, 𝑌 𝑦−𝜀𝜎∗ )

]

= E
[

1
𝑓 (𝑠 + 𝜎∗)

]

,

while the same reasoning yields the inequality 𝜀−1 (𝑊 (𝑠, 𝑦 + 𝜀) −𝑊 (𝑠, 𝑦)) ≥ E
[

1∕𝑓 (𝑠 + 𝜎∗)
]

, and then, by letting 𝜀 → 0, we get (20).

So far we have proved that the solution of (10) also solves the free-boundary problem

L𝑊 (𝑠, 𝑦) = 0 for 𝑦 < 𝑏(𝑡), (22a)

𝑊 (𝑠, 𝑦) > 𝐺(𝑠, 𝑦) for 𝑦 < 𝑏(𝑡), (22b)

𝑊 (𝑠, 𝑦) = 𝐺(𝑠, 𝑦) for 𝑦 ≥ 𝑏(𝑡). (22c)

owever, an additional condition for the value function on the free boundary is required to guarantee a unique solution. Roughly
peaking, this condition comes in the form of smoothly binding the value and the gain functions with respect to the space coordinate,
rovided that the optimal boundary is (probabilistically) regular for the interior of 𝐷, that is, if after starting at a point (𝑠, 𝑦) ∈ 𝜕, the
rocess enters the interior of 𝐷 immediately P𝑦-a.s. (see [11]). This type of regularity can be derived for locally Lipschitz continuous
SBs (see Proposition 7 ahead).

In the next proposition we show that the boundary is Lipschitz continuous on any bounded interval. The proof is inspired by
heorem 4.3 from [12], which states the boundary’s local Lipschitz continuity for high-dimensional processes with some regularity
6

onditions. Our settings do not satisfy Assumption (D) in [12], which establishes a relation between the partial derivatives of 𝐺.
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Proposition 6 (Lipschitz Continuity of the Optimal Stopping Boundary). For any closed interval 𝐼 ∶= [𝑠, 𝑠] ⊂ R+, there exists a constant
𝐼 > 0 such that

|𝑏(𝑠1) − 𝑏(𝑠2)| ≤ 𝐿𝐼 , (23)

henever 𝑠1, 𝑠2 ∈ 𝐼 .

roof. Consider the function 𝐻 ∶ 𝐼 × R → R+, for a closed interval 𝐼 ⊂ R+, defined as 𝐻(𝑠, 𝑦) = 𝑊 (𝑠, 𝑦) − 𝐺(𝑠, 𝑦). Proposition 2
ntails that 𝑏 is bounded from below, and thus we can choose a constant 𝑟 ∈ R such that 𝑟 < inf {𝑏(𝑠) ∶ 𝑠 ∈ 𝐼}. Since 𝐼 × {𝑟} ⊂ ,

is continuous (see Proposition 3) and 𝐻|𝐼×{𝑟} > 0. Then, there exists 𝑎 > 0 such that 𝐻(𝑠, 𝑟) > 𝑎 for all 𝑠 ∈ 𝐼 . Therefore, for all
such that 0 < 𝛿 ≤ 𝑎, the equation 𝐻(𝑠, 𝑦) = 𝛿 has a solution in  for all 𝑠 ∈ 𝐼 . Moreover, this solution is unique for each 𝑠 since
𝑥𝐻 < 0 in  (see Proposition 5), and we denote it by 𝑏𝛿(𝑠), where 𝑏𝛿 ∶ 𝐼 → R. Away from the boundary, 𝐻 is regular enough to
pply the implicit function theorem that guarantees that 𝑏𝛿 is differentiable and

𝑏′𝛿(𝑠) = −𝜕𝑡𝐻(𝑠, 𝑏𝛿(𝑠))∕𝜕𝑥𝐻(𝑠, 𝑏𝛿(𝑠)). (24)

ote that 𝑏𝛿 is decreasing in 𝛿 and therefore converges pointwise to some limit function 𝑏0, which satisfies 𝑏0 ≤ 𝑏 in 𝐼 as 𝑏𝛿 < 𝑏 for
ll 𝛿. Since 𝐻(𝑠, 𝑏𝛿(𝑠)) = 𝛿 and 𝐻 is continuous, it follows that 𝐻(𝑠, 𝑏0(𝑠)) = 0 after taking 𝛿 → 0, which means that 𝑏0 ≥ 𝑏 in 𝐼 and
ence 𝑏0 = 𝑏 in 𝐼 .

Take (𝑠, 𝑦) ∈  such that 𝑦 > 𝑟. Set 𝜎∗ = 𝜎∗(𝑠, 𝑦) and consider

𝜎𝑟 = 𝜎𝑟(𝑠, 𝑦) ∶= inf
{

𝑢 ≥ 0 ∶
(

𝑠 + 𝑢, 𝑌 𝑦𝑢
)

∉ 𝐼 × (𝑟,∞)
}

.

ecalling (19), it is easy to check that

|

|

𝜕𝑡𝐻(𝑠, 𝑦)|
|

≤ 𝐾 (1)
𝐼 𝑚(𝑠, 𝑦), (25)

ith

𝑚(𝑠, 𝑦) ∶= E𝑦

[

∫

𝜎∗

0

(

1 +
|

|

𝑌𝑢||
𝑓 2(𝑠 + 𝑢)

)

d𝑢

]

and

𝐾 (1)
𝐼 ∶= max

{

sup
𝑢∈R+

1
𝑓 (𝑢)

, sup
𝑢∈R+

|

|

|

|

|

3 (𝑎 + 2𝑢)2

4𝑓 5(𝑢)
−
𝑐 (𝑎 + 3𝑢)
𝑓 3(𝑢)

|

|

|

|

|

}

.

Using the tower property of conditional expectation, alongside the strong Markov property, we get

𝑚(𝑠, 𝑦)

= E𝑦

[

∫

𝜎∗∧𝜎𝑟

0

(

1 +
|

|

𝑌𝑢||
𝑓 2(𝑠 + 𝑢)

)

d𝑢 + 1
(

𝜎𝑟 ≤ 𝜎∗
)

∫

𝜎∗

𝜎𝑟

(

1 +
|

|

𝑌𝑢||
𝑓 2(𝑠 + 𝑢)

)

d𝑢

]

= E𝑦
⎡

⎢

⎢

⎣

∫

𝜎∗∧𝜎𝑟

0

(

1 +
|

|

𝑌𝑢||
𝑓 2(𝑠 + 𝑢)

)

d𝑢 + 1
(

𝜎𝑟 ≤ 𝜎∗
)

E𝑦
⎡

⎢

⎢

⎣

∫

𝜎𝑟+𝜎∗
(

𝜎𝑟 ,𝑌𝜎𝑟
)

𝜎𝑟

(

1 +
|

|

𝑌𝑢||
𝑓 2(𝑠 + 𝑢)

)

d𝑢||
|

𝜎𝑟
⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

= E𝑦
⎡

⎢

⎢

⎣

∫

𝜎∗∧𝜎𝑟

0

(

1 +
|

|

𝑌𝑢||
𝑓 2(𝑠 + 𝑢)

)

d𝑢 + 1
(

𝜎𝑟 ≤ 𝜎∗
)

E𝑌𝜎𝑟

⎡

⎢

⎢

⎣

∫

𝜎∗
(

𝜎𝑟 ,𝑌𝜎𝑟
)

0

(

1 +
|

|

𝑌𝑢||
𝑓 2(𝑠 + 𝜎𝑟 + 𝑢)

)

d𝑢
⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

= E𝑦

[

∫

𝜎∗∧𝜎𝑟

0

(

1 +
|

|

𝑌𝑢||
𝑓 2(𝑠 + 𝑢)

)

d𝑢 + 1
(

𝜎𝑟 ≤ 𝜎∗
)

𝑚(𝑠 + 𝜎𝑟, 𝑌𝜎𝑟 )

]

. (26)

Notice that, for 𝑐 < 𝑟 < 𝑦 < 𝑏(𝑠), (𝑠+𝜎𝑟, 𝑌
𝑦
𝜎𝑟 ) ∈ 𝛤𝑠 on the set

{

𝜎𝑟 ≤ 𝜎∗
}

, with 𝛤𝑠 ∶= {(𝑠, �̄�) × {𝑟}}∪{�̄� × [𝑟, 𝑏(�̄�))} and �̄� ∶= sup {𝑠 ∶ 𝑠 ∈ 𝐼}.
Hence, the following holds true on the set

{

𝜎𝑟 ≤ 𝜎∗
}

:

𝑚
(

𝑠 + 𝜎𝑟, 𝑌 𝑦𝜎𝑟

)

≤ sup
(𝑡,𝑥)∈𝛤𝑠

𝑚 (𝑡, 𝑥)

≤ sup
(𝑡,𝑥)∈𝛤𝑠

E𝑥
[

∫

∞

0

(

1 +
|

|

𝑌𝑢||
𝑓 2(𝑡 + 𝑢)

)

d𝑢
]

≤ sup
(𝑡,𝑥)∈𝛤𝑠 ∫

∞

0

(

1 +
|𝑥|

𝑓 2(𝑡 + 𝑢)

)

d𝑢 + ∫

∞

0

E
[

|

|

𝐵𝑢||
]

𝑓 2(𝑡 + 𝑢)
d𝑢

≤ ∫

∞

0

(

1 +
|𝑏(�̄�)|
𝑓 2(𝑢)

)

d𝑢 + ∫

∞

0

√

2
𝜋

√

𝑢
𝑓 2(𝑢)

d𝑢 <∞. (27)

By plugging (27) into (26), after observing that
(

1 + |

|

𝑌𝑢|| ∕𝑓 2(𝑠 + 𝑢)
)

≤ 1 + max
{

| sup𝑠∈𝐼 𝑏(𝑠)|, |𝑟|
}

, and recalling (25), we obtain the
following for some constant 𝐾 (2)

𝐼 > 0:

| |

(2) [ ( )]
7

|

𝜕𝑡𝐻(𝑠, 𝑦)
|

≤ 𝐾𝐼 E𝑦 𝜎𝛿 ∧ 𝜎𝑟 + 1 𝜎𝑟 ≤ 𝜎𝛿 . (28)



Stochastic Processes and their Applications 172 (2024) 104342A. Azze et al.

T

t
a
c

T

f
𝑏
c

h
f

P

P

Arguing as in (26) and recalling (16) along with (20), we get that

|

|

𝜕𝑥𝐻(𝑠, 𝑦)|
|

= E𝑦
[

1
𝑓 (𝑠)

− 1
𝑓 (𝑠 + 𝜎∗)

]

= E𝑦

[

∫

𝜎∗

0
−𝜕𝑡(1∕𝑓 )(𝑠 + 𝑢) d𝑢

]

= E𝑦

[

∫

𝜎∗∧𝜎𝑟

0
−𝜕𝑡(1∕𝑓 )(𝑠 + 𝑢) d𝑢 + 1

(

𝜎𝑟 ≤ 𝜎∗
)

|

|

|

𝜕𝑥𝐻(𝑠 + 𝜎𝑟, 𝑌𝜎𝑟 )
|

|

|

]

≥ E𝑦

[

∫

𝜎∗∧𝜎𝑟

0
−𝜕𝑡(1∕𝑓 )(𝑠 + 𝑢) d𝑢 + 1

(

𝜎𝑟 ≤ 𝜎∗, 𝜎𝑟 < 𝑠 − 𝑠
)

|

|

𝜕𝑥𝐻(𝑠 + 𝜎𝑟, 𝑟)||

]

. (29)

ake 𝜀 > 0 such that 𝜀 ∶= [𝑠, 𝑠 + 𝜀] × (𝑟 − 𝜀, 𝑟 + 𝜀) ⊂ , and consider the stopping time 𝜎𝜀 = inf
{

𝑢 ≥ 0 ∶ 𝑌 𝑟𝑢 ∉ 𝜀
}

. Observe that
𝜎∗(𝑠, 𝑟) > 𝜎𝜀 for all 𝑠 ∈ 𝐼 . Then,

|

|

𝜕𝑥𝐻(𝑠 + 𝜎𝑟, 𝑟)|| ≥ inf
𝑠∈𝐼

|

|

𝜕𝑥𝐻(𝑠, 𝑟)|
|

= inf
𝑠∈𝐼

E𝑟
[

1
𝑓 (𝑠)

− 1
𝑓 (𝑠 + 𝜎∗(𝑠, 𝑟))

]

≥ inf
𝑠∈𝐼

E𝑟
[

1
𝑓 (𝑠)

− 1
𝑓 (𝑠 + 𝜎𝜀)

]

≥ inf
𝑠∈𝐼

(

1
𝑓 (𝑠)

− 1
𝑓 (𝑠 + 𝜀)

)

P𝑟
(

𝜎𝜀 = 𝑠 + 𝜀 − 𝑠
)

=
(

1
𝑓 (𝑠)

− 1
𝑓 (𝑠 + 𝜀)

)

P𝑟
(

𝜎𝜀 = 𝑠 + 𝜀 − 𝑠
)

=
(

1
𝑓 (𝑠)

− 1
𝑓 (𝑠 + 𝜀)

)

P

(

sup
𝑢≤𝑠+𝜀−𝑠

|𝐵𝑢| < 𝜀

)

> 0, (30)

where we used the fact that 𝑠 ↦ 1∕𝑓 (𝑠) − 1∕𝑓 (𝑠 + 𝑢) is decreasing for all 𝑢 ≥ 0. The third inequality comes after using the law of
the total probability and discarding the positive addend relative to the event

{

𝜎𝜀 < 𝑠 + 𝜀 − 𝑠
}

, while the last identity, coming after
he equivalence of the two probability terms, is a direct consequence of the definition of 𝜎𝜀. After noticing that −𝜕𝑡(1∕𝑓 ) is positive
nd decreasing, which means that −𝜕𝑡(1∕𝑓 )(𝑠 + 𝑢) ≥ −𝜕𝑡(1∕𝑓 )(𝑠) > 0 for all 𝑢 ≤ 𝜎𝑟, and by plugging (30) into (29), we obtain, for a
onstant 𝐾 (3)

𝐼,𝜀 > 0,

|

|

𝜕𝑥𝐻(𝑠, 𝑦)|
|

≥ 𝐾 (3)
𝐼 E𝑦

[

𝜎∗ ∧ 𝜎𝑟 + 1
(

𝜎𝑟 ≤ 𝜎∗, 𝜎𝑟 < 𝑠 − 𝑠
)]

. (31)

herefore, using (28) and (31) in (24) yields the following bound for some constant 𝐾 (4)
𝐼 > 0, 𝑦𝛿 = 𝑏𝛿(𝑠), and 𝜎𝛿 = 𝜎∗(𝑠, 𝑦𝛿):

|

|

|

𝑏′𝛿(𝑠)
|

|

|

≤ 𝐾 (4)
𝐼

E𝑦𝛿
[

𝜎𝛿 ∧ 𝜎𝑟 + 1
(

𝜎𝑟 ≤ 𝜎𝛿
)]

E𝑦𝛿
[

𝜎𝛿 ∧ 𝜎𝑟 + 1
(

𝜎𝑟 ≤ 𝜎𝛿 , 𝜎𝑟 < 𝑠 − 𝑠
)]

≤ 𝐾 (4)
𝐼

(

1 +
P𝑦𝛿

(

𝜎𝑟 ≤ 𝜎𝛿
)

E𝑦𝛿
[

𝜎𝛿 ∧ 𝜎𝑟 + 1
(

𝜎𝑟 ≤ 𝜎𝛿 , 𝜎𝑟 < 𝑠 − 𝑠
)]

)

≤ 𝐾 (4)
𝐼

(

1 +
P𝑦𝛿

(

𝜎𝑟 ≤ 𝜎𝛿 , 𝜎𝑟 = �̄� − 𝑠
)

E𝑦𝛿
[

𝜎𝛿 ∧ 𝜎𝑟
] +

P𝑦𝛿
(

𝜎𝑟 ≤ 𝜎𝛿 , 𝜎𝑟 < �̄� − 𝑠
)

E𝑦𝛿
[

𝜎𝛿 ∧ 𝜎𝑟 + 1
(

𝜎𝑟 ≤ 𝜎𝛿 , 𝜎𝑟 < 𝑠 − 𝑠
)]

)

≤ 𝐾 (4)
𝐼

(

2 +
P𝑦𝛿

(

𝜎𝑟 ≤ 𝜎𝛿 , 𝜎𝑟 = �̄� − 𝑠
)

E𝑦𝛿
[

1
(

𝜎𝑟 ≤ 𝜎𝛿 , 𝜎𝑟 = �̄� − 𝑠
) (

𝜎𝛿 ∧ 𝜎𝑟
)]

)

≤ 𝐾 (4)
𝐼

(

2 + 1
�̄� − 𝑠

)

. (32)

If we set 𝐼𝜀 = [𝑠, �̄�−𝜀] for 𝜀 > 0 small enough, then, by relying on (32), we obtain the existence of a constant 𝐿𝐼𝜀 > 0, independent
rom 𝛿, such that |𝑏′𝛿(𝑠)| < 𝐿𝐼𝜀 for all 𝑠 ∈ 𝐼𝜀 and 0 < 𝛿 ≤ 𝑎. We are thus able to use the Arzelà–Ascoli’s theorem to guarantee that
𝛿 converges to 𝑏 uniformly with respect to 𝛿 in 𝐼𝜀. The proof is concluded after realizing that the Lipschitz continuity property is
losed under the uniform limit operation, and that 𝜀 can be chosen arbitrarily. □

Once we have the Lipschitz continuity of the boundary on bounded sets, we proceed to illustrate in the following proposition
ow to obtain the principle of smooth fit, which, as we highlighted before, is required to provide a unique solution to the associated
ree-boundary problem (22a)–(22c).

roposition 7 (The Smooth-Fit Condition). For all 𝑠 ≥ 0, 𝑦↦ 𝑊 (𝑠, 𝑦) is differentiable at 𝑦 = 𝑏(𝑠). Moreover, 𝜕𝑥𝑊 (𝑠, 𝑏(𝑠)) = 𝜕𝑥𝐺(𝑠, 𝑏(𝑠)).

roof. Recall that we have already obtained in (20) an explicit form for 𝜕𝑥𝑊 away from the boundary, namely,

𝜕𝑥𝑊 (𝑠, 𝑦) = E
[

1
𝑓 (𝑠 + 𝜎∗(𝑠, 𝑦))

]

, (𝑠, 𝑦) ∈ .

The principle of smooth fit is just the validation of this formula whenever 𝑦 = 𝑏(𝑠), 𝑠 ∈ R .
8

+
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We have that 𝜕𝑥𝑊 (𝑠, 𝑏(𝑠)+) = 𝜕𝑥𝐺(𝑠, 𝑏(𝑠)) = 1∕𝑓 (𝑠), as 𝜎∗(𝑠, 𝑦) = 0 for all 𝑦 ≥ 𝑏(𝑠). By relying on the law of the iterated logarithm
alongside the local Lipschitz continuity of 𝑏, we get that (𝑠, 𝑏(𝑠)) is probabilistically regular for the interior of , that is,

lim
𝜀↓0

P
(

inf
𝑢∈(0,𝜀)

(

𝑌 𝑠,𝑏(𝑠)𝑢 − 𝑏(𝑠 + 𝑢)
)

< 0
)

= lim
𝜀↓0

P

(

inf
𝑢∈(0,𝜀)

𝑌 𝑠,𝑏(𝑠)𝑢 − 𝑏(𝑠 + 𝑢)
√

2𝑢 ln(ln(1∕𝑢))
< 0

)

≥ lim
𝜀↓0

P

(

inf
𝑢∈(0,𝜀)

𝑌 𝑠,𝑏(𝑠)𝑢 − 𝑏(𝑠) + 𝐿𝑠𝑢
√

2𝑢 ln(ln(1∕𝑢))
< 0

)

= P

(

lim inf
𝑢↓0

𝑌 𝑠,𝑏(𝑠)𝑢 − 𝑏(𝑠) + 𝐿𝑠𝑢
√

2𝑢 ln(ln(1∕𝑢))
< 0

)

= 1,

or some 𝐿𝑠 > 0. Corollary 6 from [11] then provides that 𝜎∗(𝑠, 𝑏(𝑠)−) = 𝜎∗(𝑠, 𝑏(𝑠)) = 0 P-a.s. and, hence, the dominated convergence
heorem entails that 𝜕𝑥𝑊 (𝑠, 𝑏(𝑠)−) = 1∕𝑓 (𝑠) = 𝜕𝑥𝐺(𝑠, 𝑏(𝑠)), thus concluding that the smooth-fit condition holds. □

We are now in the position of getting a tractable characterization of both the value function and the OSB. Propositions 2–7 allow
s to use an extension of Itô’s lemma on the function 𝑊 (𝑠 + 𝑡, 𝑌𝑡) for 𝑡 ≥ 0. This extension was originally derived by [31] and later
estated, in a way applies more directly to our framework, in Lemma A2 from [9]. Recalling that L𝑊 = 0 on  and 𝑊 = 𝐺 on ,
nd after taking P𝑦-expectation (which cancels the martingale term), we get

𝑊 (𝑠, 𝑦) = E𝑦
[

𝑊 (𝑠 + 𝑡, 𝑌𝑡)
]

− E𝑦
[

∫

𝑡

0
(L𝑊 )

(

𝑠 + 𝑢, 𝑌𝑢
)

d𝑢
]

= E𝑦
[

𝑊 (𝑠 + 𝑡, 𝑌𝑡)
]

− E𝑦
[

∫

𝑡

0
𝜕𝑡𝐺

(

𝑠 + 𝑢, 𝑌𝑢
)

1
(

𝑌𝑢 ≥ 𝑏(𝑠 + 𝑢)
)

d𝑢
]

, (33)

here the local-time term does not appear due to the smooth-fit condition.

emma 8. For all (𝑠, 𝑦) ∈ R+ × R,

lim
𝑢→∞

E𝑦
[

𝑊 (𝑠 + 𝑢, 𝑌𝑢)
]

= 𝑐.

roof. The Markov property of 𝑌 , together with the fact that both 𝑠 ↦ 𝑠∕𝑓 (𝑠) and 𝑠 ↦ 𝑓 (𝑠) are increasing and 𝑠∕𝑓 (𝑠) → 1 as 𝑠 → ∞,
mplies that

E𝑦
[

𝑊 (𝑠 + 𝑢, 𝑌𝑢)
]

= E𝑦
[

sup
𝜎

E𝑌𝑢
[

𝐺
(

𝑠 + 𝑢 + 𝜎, 𝑌𝜎
)]

]

≤ E𝑦
[

E𝑌𝑢

[

sup
𝑟≥0

𝐺
(

𝑠 + 𝑢 + 𝑟, 𝑌𝑟
)

]]

= E𝑦
[

E𝑌𝑢

[

sup
𝑟≥0

{

𝑐 𝑠 + 𝑢 + 𝑟
𝑓 (𝑠 + 𝑢 + 𝑟)

+
𝑌𝑟

𝑓 (𝑠 + 𝑢 + 𝑟)

}]]

≤ 𝑐
(

1(𝑐 > 0) + 𝑠 + 𝑢
𝑓 (𝑠 + 𝑢)

1(𝑐 ≤ 0)
)

+ E𝑦
[

sup
𝑟≥0

𝑌𝑢+𝑟
𝑓 (𝑢 + 𝑟)

]

, (34)

and

E𝑦
[

𝑊 (𝑠 + 𝑢, 𝑌𝑢)
]

≥ E𝑦
[

E𝑌𝑢

[

inf
𝑟≥0

𝐺
(

𝑠 + 𝑢 + 𝑟, 𝑌𝑟
)

]]

≥ 𝑐
(

1(𝑐 < 0) + 𝑠 + 𝑢
𝑓 (𝑠 + 𝑢)

1(𝑐 ≥ 0)
)

+ E𝑦
[

inf
𝑟≥0

𝑌𝑢+𝑟
𝑓 (𝑠 + 𝑢 + 𝑟)

]

. (35)

Notice that

lim
𝑢→∞

E𝑦
[

sup
𝑟≥0

𝑌𝑢+𝑟
𝑓 (𝑢 + 𝑟)

]

= E𝑦
[

lim
𝑢→∞

sup
𝑟≥𝑢

𝑌𝑟
𝑓 (𝑟)

]

= E𝑦
[

lim sup
𝑢→∞

𝑌𝑢
𝑓 (𝑢)

]

= 0,

where in the first equality we applied the monotone convergence theorem and in the second one we used the law of the iterated
logarithm as an estimate of the convergence of the process in the numerator. A similar argument yields

lim
𝑢→∞

E𝑦
[

inf
𝑟≥0

𝑌𝑢+𝑟
𝑓 (𝑠 + 𝑢 + 𝑟)

]

= E𝑦
[

lim
𝑢→∞

inf
𝑟≥𝑢

𝑌𝑟
𝑓 (𝑠 + 𝑟)

]

= E𝑦
[

lim inf
𝑢→∞

𝑌𝑢
𝑓 (𝑠 + 𝑢)

]

= 0.

hus, we can take 𝑢 → ∞ in both (34) and (35) to complete the proof. □

By taking 𝑡 → ∞ in (33) and relying on Lemma 8, we get the following pricing formula for the value function:

𝑊 (𝑠, 𝑦) = 𝑐 − E𝑦
[

∫

∞

0
(L𝑊 )

(

𝑠 + 𝑢, 𝑌𝑢
)

d𝑢
]

= 𝑐 − E𝑦
[

∫

∞

0
𝜕𝑡𝐺

(

𝑠 + 𝑢, 𝑌𝑢
)

1
(

𝑌𝑢 ≥ 𝑏(𝑠 + 𝑢)
)

d𝑢
]

. (36)

We can obtain a more tractable version of (36) by exploiting the linearity of 𝑦 ↦ 𝜕𝑡𝐺(𝑠, 𝑦) (see (15)) as well as the Gaussianity of
𝑌 . Specifically, since 𝑌 ∼  (𝑦, 𝑢) under P , then E

[

𝑌 1
(

𝑌 ≥ 𝑥
)]

= �̄�((𝑥− 𝑦)∕
√

𝑢)𝑦+
√

𝑢𝜙((𝑥− 𝑦)∕
√

𝑢), where �̄� and 𝜙 denote the
9
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survival and the density functions of a standard normal random variable, respectively. By shifting the integrating variable 𝑠 units
to the right, we get that

𝑊 (𝑠, 𝑦) = 𝑐 − ∫

∞

𝑠

1
𝑓 (𝑢)

⎛

⎜

⎜

⎜

⎝

𝑐�̄�𝑠,𝑦,𝑢,𝑏(𝑢) −
(𝑎 + 2𝑢)

(

(𝑦 + 𝑐𝑢)�̄�𝑠,𝑦,𝑢,𝑏(𝑢) +
√

𝑢 − 𝑠𝜙𝑠,𝑦,𝑢,𝑏(𝑢)
)

2𝑓 2(𝑢)

⎞

⎟

⎟

⎟

⎠

d𝑢, (37)

where 𝑎 = 𝑒−𝛼 + 𝑒𝛼 and

�̄�𝑠1 ,𝑦1 ,𝑠2 ,𝑦2 ∶= �̄�

(

𝑦2 − 𝑦1
√

𝑠2 − 𝑠1

)

, 𝜙𝑠1 ,𝑦1 ,𝑠2 ,𝑦2 ∶= 𝜙

(

𝑦2 − 𝑦1
√

𝑠2 − 𝑠1

)

, 𝑦1, 𝑦2 ∈ R, 𝑠2 ≥ 𝑠1 ≥ 0.

ake now 𝑦 ↓ 𝑏(𝑠) in both (36) and (37) to derive the free-boundary equation

𝐺(𝑠, 𝑏(𝑠)) = 𝑐 − E𝑏(𝑠)
[

∫

∞

0
𝜕𝑡𝐺

(

𝑠 + 𝑢, 𝑌𝑢
)

1
(

𝑌𝑢 ≥ 𝑏(𝑠 + 𝑢)
)

d𝑢
]

, (38)

longside its more explicit expression

𝐺(𝑠, 𝑏(𝑠))

= 𝑐 − ∫

∞

𝑠

1
𝑓 (𝑢)

⎛

⎜

⎜

⎜

⎝

𝑐�̄�𝑠,𝑏(𝑠),𝑢,𝑏(𝑢) −
(𝑎 + 2𝑢)

(

(𝑏(𝑠) + 𝑐𝑢)�̄�𝑠,𝑏(𝑠),𝑢,𝑏(𝑢) +
√

𝑢 − 𝑠𝜙𝑠,𝑏(𝑠),𝑢,𝑏(𝑢)
)

2𝑓 2(𝑢)

⎞

⎟

⎟

⎟

⎠

d𝑢.

It turns out that there exists a unique function 𝑏 that solves (38), as we state in the next theorem. The proof of such an assertion
follows from adapting the methodology used in Peskir [32, Theorem 3.1], where the uniqueness of the solution of the free-boundary
equation is addressed for an American put option with a geometric Brownian motion.

Theorem 9. The integral Eq. (38) admits a unique solution among the class of continuous functions 𝛽 ∶ R+ → R of bounded variation.

Proof. Suppose there exists a function 𝛽 ∶ R+ → R solving the integral Eq. (38), and define 𝑊 𝛽 as in (36), but with 𝛽 instead of 𝑏.
Since the integrand in (37) is twice continuously differentiable with respect to 𝑦 and once with respect to 𝑠, we can use the Leibnitz
rule to obtain 𝜕𝑥𝑊 𝛽 , 𝜕𝑥𝑥𝑊 𝛽 , and 𝜕𝑡𝑊 𝛽 by differentiating within the integral symbol in (37), ensuring that these are continuous
functions on R+ × R. Besides, the following expression for L𝑊 𝛽 can be easily computed from (36):

L𝑊 𝛽 (𝑠, 𝑦) = 𝜕𝑡𝐺(𝑡, 𝑦)1(𝑦 ≥ 𝛽(𝑠)).

Define the sets

𝛽 ∶=
{

(𝑠, 𝑦) ∈ R+ × R ∶ 𝑦 < 𝛽(𝑠)
}

, 𝛽 ∶=
{

(𝑠, 𝑦) ∈ R+ × R ∶ 𝑦 ≥ 𝛽(𝑠)
}

.

Since 𝑊 𝛽 ∈ 𝐶(R+ × R), L𝑊 𝛽 (𝑠, 𝑦) is locally bounded, and 𝛽 is assumed to be continuous and of bounded variation, we can apply
the iii-b version of the Itô formula extension in Lemma A2 in [9] (see [31] for an original formulation) to obtain

𝑊 𝛽 (𝑠, 𝑦) = E𝑦
[

𝑊 𝛽 (𝑠 + 𝑡, 𝑌𝑡)
]

− E𝑦
[

∫

𝑡

0
𝜕𝑡𝐺

(

𝑠 + 𝑢, 𝑌𝑢
)

1
(

𝑌𝑢 ≥ 𝛽(𝑠 + 𝑢)
)

d𝑢
]

, (39)

where the martingale term is canceled after taking P𝑦-expectation and the local time term is missing due to the continuity of 𝜕𝑥𝑊 𝛽

on 𝜕𝛽 . In addition,

𝐺(𝑠, 𝑦) = E𝑦
[

𝐺(𝑠 + 𝑡, 𝑌𝑡)
]

− E𝑦
[

∫

𝑡

0
𝜕𝑡𝐺

(

𝑠 + 𝑢, 𝑌𝑢
)

d𝑢
]

. (40)

Due to the law of the iterated logarithm, and recalling (7) and (15), we obtain

lim
𝑢→∞

𝐺(𝑠 + 𝑢, 𝑌𝑢) = 𝑐 (41)

and

lim
𝑢→∞

𝜕𝑡𝐺
(

𝑠 + 𝑢, 𝑌𝑢
)

= 0 (42)

P𝑦-a.s. for all 𝑦 ∈ R. We get the following from the fact that 𝑊 𝛽 satisfies (36) with 𝛽 instead of 𝑏, along with the dominated
convergence theorem and (42):

lim
𝑢→∞

𝑊 𝛽 (𝑠 + 𝑢, 𝑌𝑢) = 𝑐 (43)

P𝑦-a.s. for all 𝑦 ∈ R. Consider the first hitting time 𝜎𝛽 into 𝛽 , fix (𝑠, 𝑦) ∈ 𝛽 . From (41) and (43), and the fact that 𝑊 𝛽 (𝑠, 𝛽(𝑠)) =
𝐺(𝑠, 𝛽(𝑠)) for all 𝑠 ∈ R+ (as 𝛽 solves (38)), it follows that 𝑊 𝛽(𝑠 + 𝜎𝛽 , 𝑌𝜎𝛽

)

= 𝐺
(

𝑠 + 𝜎𝛽 , 𝑌𝜎𝛽
)

P𝑦-a.s. for all 𝑦 ∈ R and all 𝑠 ∈ R+.
Relying on this last identity along with the fact that P𝑦(𝑌𝑢 ≥ 𝛽(𝑡 + 𝑠)) = 1 for all 0 ≤ 𝑢 ≤ 𝜎𝛽 , and using (39) and (40), we obtain

𝑊 𝛽 (𝑠, 𝑦) = E𝑦
[

𝑊 𝛽(𝑠 + 𝜎 , 𝑌𝜎
)

]

− E𝑦
[ 𝜎𝛽

𝜕𝑡𝐺
(

𝑠 + 𝑢, 𝑌𝑢
)

d𝑢
]

10

𝛽 𝛽 ∫0
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[

𝐺𝛽
(

𝑠 + 𝜎𝛽 , 𝑌𝜎𝛽
)

]

− E𝑦
[

∫

𝜎𝛽

0
𝜕𝑡𝐺

(

𝑠 + 𝑢, 𝑌𝑢
)

d𝑢
]

= 𝐺(𝑠, 𝑦),

which proves that 𝑊 𝛽 = 𝐺 on 𝛽 .
Define now the first hitting time 𝜎𝛽 into 𝛽 . Note that either 𝜎𝛽 = 0 for (𝑠, 𝑦) ∈ 𝛽 , on which 𝑊 𝛽 = 𝐺, or 𝑌𝑢 < 𝛽(𝑠 + 𝑢) for all

0 ≤ 𝑢 < 𝜎𝛽 . We derive from (39) that

𝑊 𝛽 (𝑠, 𝑦) = E𝑦
[

𝑊 𝛽
(

𝑠 + 𝜎𝛽 , 𝑌𝜎𝛽

)]

= E𝑦
[

𝐺
(

𝑠 + 𝜎𝛽 , 𝑌𝜎𝛽

)]

for all (𝑠, 𝑦) ∈ R+ × R, which, after recalling the definition of 𝑊 in (6), proves that 𝑊 𝛽 ≤ 𝑊 .
Take (𝑠, 𝑦) ∈ 𝛽 ∩  and consider the first hitting time 𝜎 into the continuation set . Since 𝑊 = 𝐺 on  and 𝑊 𝛽 = 𝐺 on 𝛽 ,

by relying on (36), (39), and the fact that P𝑦
(

𝑌𝑢 ≥ 𝑏(𝑠 + 𝑢)
)

= 1 for all 0 ≤ 𝑢 < 𝜎 , we get

E𝑦
[

𝑊
(

𝑠 + 𝜎 , 𝑌𝜎
)]

= 𝐺(𝑠, 𝑦) + E𝑦
[

∫

𝜎

0
𝜕𝑡𝐺

(

𝑠 + 𝑢, 𝑌𝑢
)

d𝑢
]

,

E𝑦
[

𝑊 𝛽
(

𝑠 + 𝜎 , 𝑌𝜎
)]

= 𝐺(𝑠, 𝑦) + E𝑦
[

∫

𝜎

0
𝜕𝑡𝐺

(

𝑠 + 𝑢, 𝑌𝑢
)

1
(

𝑌𝑢 ≥ 𝛽(𝑠 + 𝑢)
)

d𝑢
]

.

After recalling that 𝑊 𝛽 ≤ 𝑊 , we can merge the two previous equalities into

E𝑦
[

∫

𝜎

0
𝜕𝑡𝐺

(

𝑠 + 𝑢, 𝑌𝑢
)

1
(

𝑌𝑢 ≥ 𝛽(𝑠 + 𝑢)
)

d𝑢
]

≤ E𝑦
[

∫

𝜎

0
𝜕𝑡𝐺

(

𝑠 + 𝑢, 𝑌𝑢
)

d𝑢
]

,

which, alongside the fact that 𝜕𝑡𝐺(𝑠, 𝑦) < 0 for all (𝑠, 𝑦) ∈  (otherwise we get from (33) that the first exit time from a ball around
(𝑠, 𝑦) small enough will yield a better strategy than stopping immediately) and the continuity of 𝛽, implies that 𝑏 ≥ 𝛽.

Suppose that there exists a point 𝑠 ∈ R+ such that 𝑏(𝑠) > 𝛽(𝑠) and fix 𝑦 ∈ (𝛽(𝑠), 𝑏(𝑠)). Consider the stopping time 𝜎∗ = 𝜎∗(𝑠, 𝑦) and
plug it into both (36) and (39) to obtain

E𝑦
[

𝑊 𝛽 (𝑠 + 𝜎∗, 𝑌𝜎∗
)]

= E𝑦
[

𝐺
(

𝑠 + 𝜎∗, 𝑌𝜎∗
)]

= 𝑊 𝛽 (𝑠, 𝑦) + E𝑦

[

∫

𝜎∗

0
𝜕𝑡𝐺

(

𝑠 + 𝑢, 𝑌𝑢
)

1
(

𝑌𝑢 ≥ 𝛽(𝑠 + 𝑢)
)

d𝑢

]

and

E𝑦
[

𝑊
(

𝑠 + 𝜎∗, 𝑌𝜎∗
)]

= E𝑦
[

𝐺
(

𝑠 + 𝜎∗, 𝑌𝜎∗
)]

= 𝑊 (𝑠, 𝑦).

Thus, since 𝑊 𝛽 ≤ 𝑊 , we get

E𝑦

[

∫

𝜎∗

0
𝜕𝑡𝐺

(

𝑠 + 𝑢, 𝑌𝑢
)

1
(

𝑌𝑢 ≥ 𝛽(𝑠 + 𝑢)
)

d𝑢

]

≥ 0.

Using the fact that 𝑦 < 𝑏(𝑠), the continuity of 𝑏, and the time-continuity of the process 𝑌 , we can state that 𝜎∗ > 0 P𝑦-a.s. Therefore,
since 𝜕𝑡𝐺(𝑠, 𝑦) < 0 for all (𝑠, 𝑦) ∈ 𝛽 (the same arguments used to prove that 𝜕𝑡𝐺 < 0 in  lead to this conclusion) the previous
inequality can only stand if 1

(

𝑌𝑢 ≥ 𝛽(𝑠 + 𝑢)
)

= 0 for all 0 ≤ 𝑢 ≤ 𝜎∗, meaning that 𝑏(𝑠 + 𝑢) ≤ 𝛽(𝑠 + 𝑢) in the same interval, which
contradicts the assumption 𝑏(𝑠) > 𝛽(𝑠) due to the continuity of both 𝑏 and 𝛽. □

5. Solution of the original problem and some extensions

Recall that the OSPs (3) and (6) are equivalent, meaning that the value functions and the OSTs of both problems are linked
through a homeomorphic transformation. Details on how to actually translate one problem into the other were given in Proposition 1.
It then follows that the stopping time 𝜏∗(𝑡, 𝑥) defined in (9) is optimal for (6) and it admits the following alternative representation
under P𝑥:

𝜏∗(𝑡, 𝑥) = inf
{

𝑢 ≥ 0 ∶ 𝑋𝑡+𝑢 ≥ 𝛽(𝑡 + 𝑢)
}

, 𝛽(𝑡) = 𝑧
𝑐𝑧
𝐺𝑐𝑧 (𝑠, 𝑏(𝑠)) , (44)

here 𝛽 is the OSB associated to (3), and 𝑠 = 𝜐(𝑡) and 𝑐𝑧 = 𝜂(𝑧) are defined in Proposition 1. We can obtain both 𝑉 and 𝛽 without
equiring the computation of 𝑊 and 𝑏. Indeed, consider the infinitesimal generator of

{(

𝑡, 𝑋𝑡
)}

𝑡∈[0,1], L𝑋 , and set 𝑦 = 𝜂(𝑥), 𝑠𝜀 = 𝑠+𝜀,
nd 𝑡𝜀 = 𝜐−1(𝑠𝜀) for 𝜀 ∈ R. By means of (8) and the chain rule, we get that

𝑧
𝑐𝑧

(

L𝑊𝑐𝑧

)

(𝑠, 𝑦) ∶= lim
𝜀→0

𝜀−1
(

E𝑦
[

𝑧
𝑐𝑧
𝑊𝑐𝑧

(

𝑠𝜀, 𝑌𝜀
)

]

− 𝑧
𝑐𝑧
𝑊𝑐𝑧 (𝑠, 𝑦)

)

= lim
𝜀→0

𝜀−1
(

E𝑡,𝑥
[

𝑉 (𝑡𝜀, 𝑋𝑡𝜀 )
]

− 𝑉 (𝑡, 𝑥)
)

( ) ( −1)′
11

= L𝑋𝑉 (𝑡, 𝑥) 𝜐 (𝑠).
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Hence, after multiplying both sides of (33) by 𝑧∕𝑐𝑧, integrating with respect to 𝜐−1(𝑢) instead of 𝑢, and recalling that L𝑋𝑉 (𝑡, 𝑥) = 0
for all 𝑥 ≤ 𝛽(𝑡) and 𝑉 (𝑡, 𝑥) = 𝑥 for all 𝑥 ≥ 𝛽(𝑡), we get the pricing formula

𝑉 (𝑡, 𝑥) = 𝑧 − E𝑡,𝑥

[

∫

1−𝑡

0
(L𝑋𝑉 )(𝑡 + 𝑢,𝑋𝑡+𝑢) d𝑢

]

= 𝑧 − E𝑡,𝑥

[

∫

1−𝑡

0
𝜇(𝑡 + 𝑢,𝑋𝑡+𝑢)1(𝑋𝑡+𝑢 ≥ 𝛽(𝑡 + 𝑢)) d𝑢

]

. (45)

In the same fashion we obtained (37), we can take advantage of the linearity of 𝑥↦ 𝜇(𝑡, 𝑥) and the Gaussian marginal distributions
of 𝑋 to come up with the following refined version of (45):

𝑉 (𝑡, 𝑥) = 𝑧 − ∫

1

𝑡
𝐾(𝑡, 𝑥, 𝑢, 𝛽(𝑢)) d𝑢, (46)

where, for 𝑥1, 𝑥2 ∈ R and 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 1,

𝐾(𝑡1, 𝑥1, 𝑡2, 𝑥2) ∶= 𝛼
𝑧�̃�𝑡1 ,𝑥1 ,𝑡2 ,𝑥2 − cosh(𝛼(1 − 𝑡2))(𝑚𝑡2 (𝑡1, 𝑥1)�̃�𝑡1 ,𝑥1 ,𝑡2 ,𝑥2 + 𝑣𝑡2 (𝑡1)𝜙𝑡1 ,𝑥1 ,𝑡2 ,𝑥2 )

sinh(𝛼(1 − 𝑡2))
, (47)

ith

�̃�𝑡1 ,𝑥1 ,𝑡2 ,𝑥2 ∶= �̄�

(

𝑥2 − 𝑚𝑡2 (𝑡1, 𝑥1)
𝑣𝑡2 (𝑡1)

)

, 𝜙𝑡1 ,𝑥1 ,𝑡2 ,𝑥2 ∶= 𝜙

(

𝑥2 − 𝑚𝑡2 (𝑡1, 𝑥1)
𝑣𝑡2 (𝑡1)

)

nd

𝑚𝑡2 (𝑡1, 𝑥1) ∶= E𝑡1 ,𝑥1
[

𝑋𝑡2

]

=
𝑥1 sinh(𝛼(1 − 𝑡2)) + 𝑧 sinh(𝛼(𝑡2 − 𝑡1))

sinh(𝛼(1 − 𝑡1))
,

𝑣𝑡2 (𝑡1) ∶=
√

Var𝑡1
[

𝑋𝑡2

]

=

√

𝛾2

𝛼
sinh(𝛼(1 − 𝑡2)) sinh(𝛼(𝑡2 − 𝑡1))

sinh(𝛼(1 − 𝑡1))
.

Consequently, by taking 𝑥 ↓ 𝛽(𝑡) in (45) (or by directly transforming (38) in the same way we obtained (45) from (36)), we get the
free-boundary equation

𝛽(𝑡) = 𝑧 − E𝑡,𝛽(𝑡)

[

∫

1−𝑡

0
(L𝑋𝑉 )(𝑡 + 𝑢,𝑋𝑡+𝑢) d𝑢

]

= 𝑧 − E𝑡,𝛽(𝑡)

[

∫

1−𝑡

0
𝜇(𝑡 + 𝑢,𝑋𝑡+𝑢)1(𝑋𝑡+𝑢 ≥ 𝛽(𝑡 + 𝑢)) d𝑢

]

,

which may also be expressed as

𝛽(𝑡) = 𝑧 − ∫

1

𝑡
𝐾(𝑡, 𝛽(𝑡), 𝑢, 𝛽(𝑢)) d𝑢. (48)

The next three remarks broaden the scope of applicability of the OUB as the underlying model in (3). In particular, the two first
reveal that setting the terminal time to 1 and the pulling level (coming from the asymptotic mean of the OU process underneath)
to 0 does not take a toll on generality, while the last one shows that the OSP for the BB arises as a limit case when 𝛼 → 0.

Remark 1 (OUB with a General Pulling Level). Let 𝑋𝜃 =
{

𝑋𝜃
𝑡
}

𝑡∈[0,1] be an OU process satisfying the SDE d𝑋𝜃
𝑡 = 𝛼(𝑋𝜃

𝑡 − 𝜃) d𝑡 + 𝛾 d𝐵𝑡.
hat is, 𝑋𝜃,𝑧 is pulled towards 𝜃 with a time-dependent strength dictated by 𝛼. Denote by 𝑋𝜃,𝑧 =

{

𝑋𝜃,𝑧
𝑡

}

𝑡∈[0,1] the OUB process
uilt on top of 𝑋𝜃 and such that 𝑋𝜃,𝑧

1 = 𝑧. It is easy to check that 𝑋𝜃,𝑧 = 𝑋0,𝑧−𝜃 + 𝜃, whenever 𝑋0,𝑧−𝜃
0 = 𝑋𝜃,𝑧

0 − 𝜃. Denote by 𝑉 𝜃,𝑧

nd 𝛽𝜃,𝑧 the value function and the OSB related to the OSP (3) with 𝑋 replaced by 𝑋𝜃,𝑧. Then 𝑉 𝜃,𝑧(𝑡, 𝑥) = 𝑉 0,𝑧−𝜃(𝑡, 𝑥 − 𝜃) + 𝜃 and
𝑏𝜃,𝑧(𝑡) = 𝑏0,𝑧−𝜃(𝑡) + 𝜃.

Remark 2 (OUB with a General Horizon). Denote by 𝑋𝛼,𝛾,𝑇 =
{

𝑋𝛼,𝛾,𝑇
𝑡

}

𝑡∈[0,𝑇 ] an OUB with slope 𝛼, volatility 𝛾, and horizon 𝑇 .
Likewise, let 𝑉 𝛼,𝛾,𝑇 and 𝛽𝛼,𝛾,𝑇 be the corresponding value function and the OSB. By relying on the scaling property of a Brownian
motion, one can easily verify that 𝑋𝛼𝑟,𝛾,𝑇

𝑡 = 𝑋𝛼,𝛾𝑟−1∕2 ,𝑟𝑇
𝑟𝑡 P𝑥-a.s. for any 𝑟 > 0. Consequently, 𝑉 𝛼𝑟,𝛾,𝑇 (𝑡, 𝑥) = 𝑉 𝛼,𝛾𝑟−1∕2 ,𝑟𝑇 (𝑟𝑡, 𝑥) and

𝛽𝛼𝑟,𝛾,𝑇 (𝑡) = 𝛽𝛼,𝛾𝑟−1∕2 ,𝑟𝑇 (𝑟𝑡). Thereby, by taking 𝑟 = 1∕𝑇 , one can derive 𝑉 𝛼,𝛾,𝑇 and 𝛽𝛼,𝛾,𝑇 for any set of values 𝛼, 𝛾, and 𝑇 from the
solution of the OSP in (3).

Remark 3 (BB from an OUB). To emphasize the dependence on 𝛼, denote by 𝑋(𝛼), 𝑉𝛼 , and 𝛽𝛼 , respectively, the OUB solving (1),
he value function in (13), and the corresponding OSB. The process 𝑋𝑡(𝛼) has the following integral representation under P𝑥 [2]:

𝑋𝑡 = 𝑥
sinh(𝛼(1 − 𝑡))

sinh(𝛼)
+ 𝑧

sinh(𝛼𝑡)
sinh(𝛼)

+ 𝜎 ∫

𝑡

0

sinh(𝛼(1 − 𝑡))
sinh(𝛼(1 − 𝑢))

d𝐵𝑢,

from where we can conclude, after taking 𝛼 → 0 and using the dominated convergence theorem, that 𝑋𝑡(𝛼) → 𝑋𝑡 P𝑥-a.s. for all
∈ [0, 1), where 𝑋 is a BB process with final value �̃�1 = 𝑧. Then, by applying Theorem 5 from [8] we have that 𝑉𝛼 → 𝑉 , and hence
𝛽 → 𝛽, as 𝛼 → 0, where 𝑉 and 𝛽 are the value function and the OSB related to 𝑋.
12
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Fig. 1. Optimal stopping boundary estimation for different values of 𝛼. The boundary is pulled towards 0 with a strength that increases as both |𝛼| (values of
𝛼 with equal absolute values yield the same boundary) and the residual time to the horizon 1 − 𝑡 increases. As 𝛼 → 0, the boundary estimation is shown to
converge towards the OSB of a BB (dashed line), which is known to be 𝑧 + 𝐿

√

1 − 𝑡, for 𝐿 ≈ 0.8399.

Remark 4 (Time-Dependent Gain Function). Note that the same methodology used to obtain the solution of (3), that is, the time–space
transformation of the OUB into a BM, might be extended to cover a wider class of time-dependent gain functions. Indeed, let

𝑉 (𝑡, 𝑥) ∶= sup
𝜏≤1−𝑡

E𝑡,𝑥
[

𝐹
(

𝑡 + 𝜏,𝑋𝑡+𝜏
)

]

for 𝐹 ∶ [0, 𝑇 ] × R ↦ R. Then, using the same notation and arguing as in Proposition 1, one can get that

𝑉 (𝑡, 𝑥) ∶= 𝑊𝑐𝑧 (𝑠, 𝑦)

for

𝑊𝑐 (𝑠, 𝑦) ∶= sup
𝜎

E𝑦
[

𝐺𝑐 (𝑠 + 𝜎, 𝑌𝜎 )
]

, 𝐺𝑐 (𝑠, 𝑦) ∶= 𝐹
(

𝜈−1(𝑠), 𝑧
𝑐𝑧
𝐺𝑐𝑧 (𝑠, 𝑦)

)

.

herefore, solving 𝑉 and 𝑊 are equivalent problems as happens with 𝑉 and 𝑊 . As long as 𝐹 is linear in its space coordinate, the
pplicability of the methods used in Section 4 to solve 𝑊 might come straightforwardly provided smoothness of its time coordinate,
amely, among others, partial derivability, boundedness, and limit as time diverges. The time-smoothness of 𝐹 is inherited from
hat of 𝐺 and the change of time 𝜐.

emark 5 (Gauss–Markov Bridges). The methodology we used to obtain the solution to the OSP (3) is essentially based on the time–
pace equivalence (5), which allows us to work in the simpler Brownian motion scenario. Such types of representations are not
xclusive to the OUB, but they are shared by processes that result from conditioning Gauss–Markov processes to hit a deterministic
erminal point (see, e.g., [4,28], and [7]). Therefore, the OSPs of processes from this wider class of bridges can be addressed by
ollowing a Brownian-motion representation approach similar to the one used in this paper to solve the OUB case. The recent work
f [1] further develops this idea.

. Numerical results

The free-boundary Eq. (48) does not admit a closed-form solution and thus numerical procedures are needed to compute an
pproximate boundary. By exploiting the fact that the OSB at a given time 𝑡 depends only on its shape from 𝑡 up to the horizon,
ne can discretize the integral in (48) by means of a right Riemann sum and, since the terminal value 𝛽(1) is known, the entire
oundary can be computed in a backward form. This method of backward induction is detailed in Detemple [13, Chapter 8] and
xamples of its implementation can be found, e.g., in [29]. Another approach to solve (48) is by using Picard iterations, that is, by
reating (48) as a fixed-point problem in which the entire boundary is updated in each step. The works of [10,14] use this approach
o solve the associated Volterra-type integral equation characterizing the OSB. To the best of our knowledge, when it comes to
on-linear integral equations arisen from OSPs, the convergence of both the Picard scheme and the backward induction technique
re numerically checked rather than formally proved. Therefore, we chose to use the Picard scheme since empirical tests suggested
faster convergence rate while keeping a similar accuracy compared to the backward induction approach.

Define a partition of [0, 1], namely, 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 1 for 𝑁 ∈ N. Given that 𝛽(1) = 𝑧, we will initialize the Picard
terations by starting with the constant boundary 𝛽(0) ∶ [0, 1] → R with 𝛽(0) ≡ 𝑧. The updating mechanism that generates subsequent
oundaries is laid down in the following formula, which comes after discretizing the integral in (48) by using a right Riemann sum:

𝛽(𝑘)𝑖 = 𝑧 −
𝑁−2
∑

𝐾
(

𝑡𝑖, 𝛽
(𝑘−1)
𝑖 , 𝑡𝑗+1, 𝛽

(𝑘−1)
𝑗+1

)

(𝑡𝑗+1 − 𝑡𝑗 ), 𝑘 = 1, 2,…
13
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Fig. 2. Optimal stopping boundary estimation for different values of 𝛾. The boundary exhibits an increasing proportional relationship with respect to 𝛾.

Fig. 3. Optimal stopping boundary estimation for different values of 𝑧 and 𝑁 . We display 𝑡↦ 𝛽(𝑡) − 𝑧 to allow a clearer comparison across the different values
f 𝑧. As 𝑁 increases the boundary estimation is seen to converge.

e neglect the (𝑁 − 1)-addend and allow the sum to run only until 𝑁 − 2 since 𝐾(𝑡, 𝑥, 1, 𝑧) is not well defined, and therefore the
ast integral piece cannot be included in the right Riemann sum. As the overall integral is finite, the last piece vanishes as 𝑡𝑁−1
pproaches 1.

We chose to stop the fixed-point Picard algorithm after the 𝑚th iteration if 𝑚 = min
{

𝑘 > 0 ∶ max𝑖=1,…,𝑁 |𝛽𝑘−1𝑖 − 𝛽𝑘𝑖 | < 𝜀
}

or 𝜀 = 10−4. Empirical evidence suggested that the best performance of the algorithm was achieved when using a non-uniform
esh whose distances 𝑡𝑖 − 𝑡𝑖−1 smoothly decrease as 𝑖 increases. In our computations, we used the logarithmically-spaced partition

𝑖 = ln (1 + 𝑖(𝑒 − 1)∕𝑁), where 𝑁 = 500 unless is otherwise specified.
Figs. 1, 2, and 3 reveal how the OSB’s shape is affected by different sets of values for the slope 𝛼, the volatility 𝛾, and the anchor

oint 𝑧.
The code implementing the boundary computation is available at https://github.com/aguazz/OSP_OUB.

. Conclusions

In this paper we solved the finite-horizon OSP for an OUB process with the identity as the gain function. To the best of our
nowledge, so far the only Markov bridge addressed by the optimal stopping literature has been the BB and some slight variations of
t (see, e.g., [9,10,16–19,21,27,34]). Markov bridges are potentially useful in mathematical finance as they allow including additional
nformation at some terminal time.

Arguing as [34] for the BB, we worked out the OUB case by coming up with an equivalent OSP having a Brownian motion as
he underlying process after time–space transforming the OUB. Contrary to [34], the complexity of our problem did not allow us to
uess a candidate solution, and we directly characterized the value function and the OSB by means of the pricing formula and the
ree-boundary equation. However, the equivalence between both OSPs was used only to facilitate technicalities along the proofs,
nd it is not necessary to compute the solution, since both the pricing formula and the free-boundary equation are also provided in
he original formulation. We discussed how to use a Picard iteration algorithm to numerically approximate the OSB and displayed
14

ome examples to illustrate how different sets of values for the OUB’s parameters rule the shape of the OSB.

https://github.com/aguazz/OSP_OUB
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