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1 Introduction
The present paper is concerned with asymptotic estimates of the eigenvalue variation for magnetic Schrö-
dinger operators with Aharonov–Bohm potentials. These special potentials generate localized magnetic
fields, as they are produced by infinitely long thin solenoids intersecting perpendicularly the plane at fixed
points (poles), as the radius of the solenoids goes to zero and the magnetic flux remains constant.

The aimof thepresent paper is the investigation of eigenvalues of these operators as functions of the poles
on the domain. This study was initiated by the set of papers [1, 2, 4, 10, 19], where a single point moving
in the domain was considered, providing sharp asymptotics as it goes to an interior point or to a boundary
point. On the other hand, to the best of our knowledge, the only paper considering different poles is [18],
providing a continuity result for the eigenvalues and an improved regularity for simple eigenvalues as the
poles are distinct and far from the boundary.

Additional motivations for the study of eigenvalue functions of these operators appear in the theory of
spectral minimal partitions. We refer the interested reader to [7, 9, 14, 20] and references therein.

For a = (a1, a2) ∈ ℝ2, the Aharonov–Bohm magnetic potential with pole a and circulation 1
2 is defined

as
Aa(x) =

1
2(

−(x2 − a2)
(x1 − a1)2 + (x2 − a2)2

, x1 − a1
(x1 − a1)2 + (x2 − a2)2

), x = (x1, x2) ∈ ℝ2 \ {a}.

In this paper we consider potentials which are the sum of two different Aharonov–Bohm potentials whose
singularities are located at two different points in the domainmoving towards each other. For a > 0 small, let
a− = (−a, 0) and a+ = (a, 0) be the poles of the following Aharonov–Bohm potential:

Aa−,a+ (x) := −Aa− (x) + Aa+ (x) = −
1
2

(−x2, x1 + a)
(x1 + a)2 + x22

+
1
2

(−x2, x1 − a)
(x1 − a)2 + x22

. (1.1)
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Let Ω be an open, bounded and connected set inℝ2 such that 0 ∈ Ω. We consider the Schrödinger operator

HΩa−,a+ = (i∇ + Aa−,a+ )2 (1.2)

with homogeneous Dirichlet boundary conditions (see Section 3.1 for the notion of magnetic Hamiltonians)
and its eigenvalues (λak )k≥1, counted withmultiplicities. We denote by (λk)k≥1 the eigenvalues of the Dirichlet
Laplacian −∆ in Ω. As already mentioned, we know from [18] that for every k ≥ 1,

lim
a→0

λak = λk . (1.3)

The main result of the present paper is a sharp asymptotic for the eigenvalue variation λak − λk as the two
poles a− and a+ coalesce towards a point where the limit eigenfunction does not vanish.

A first result in this direction was given in [3], under a symmetry assumption on the domain.

Theorem 1.1 ([3, Theorem 1.13]). Let σ : ℝ2 → ℝ2, σ(x1, x2) = (x1, −x2). Let Ω be an open, bounded and con-
nected set in ℝ2 satisfying σ(Ω) = Ω and 0 ∈ Ω. Let λN be a simple eigenvalue of the Dirichlet Laplacian on Ω,
and let uN be a L2(Ω)-normalized eigenfunction associated to λN . Let k ∈ ℕ ∪ {0} be the order of vanishing of
uN at 0, and let α ∈ [0, π) be such that the minimal slope of nodal lines of uN is equal to α

k , so that

uN(r(cos t, sin t)) ∼ rkβ sin(α − kt) as r → 0+ for all t,

for some β ∈ ℝ \ {0} (see, e.g., [12]). Let us assume that α ̸= 0 (by symmetry of Ω, this forces α = π
2 , i.e, the

x1-axis is the bisector of two nodal lines of uN).
For a > 0 small, let a− = (−a, 0), a+ = (a, 0) ∈ Ω, and let λaN be the N-th eigenvalue for (i∇ + Aa−,a+ )2. Then

λaN − λN =
{{
{{
{

2π
|log a| |uN(0)|

2(1 + o(1)) if k = 0,

Ckπβ2a2k(1 + o(1)) if k ≥ 1

as a → 0+, with Ck > 0 being a positive constant depending only on k.

In the present paper we are able to remove, in the case k = 0 (i.e., when the limit eigenfunction uN does not
vanish at the collision point), the assumption on the symmetry of the domain, proving the following result.

Theorem 1.2 ([3, Theorem 1.17]). Let Ω be an open, bounded and connected set in ℝ2 such that 0 ∈ Ω. Let us
assume that there exists N ≥ 1 such that the N-th eigenvalue λN of the Dirichlet Laplacian in Ω is simple. Let uN
be a L2(Ω)-normalized eigenfunction associated to λN . If uN(0) ̸= 0, then

λaN − λN =
2πu2N(0)
|log a| (1 + o(1)) as a → 0+.

It isworthwhilementioning that in [18] simplemagnetic eigenvalues are proved to be analytic functions of the
configuration of the poles, provided the limit configuration is made of interior distinct poles. A consequence
of our result is that the latter assumption is even necessary, and simple eigenvalues are not analytic in a
neighborhood of configurations of poles collapsing outside nodal lines of the limit eigenfunction.

Theproof of Theorem1.2 relies essentially on the characterizationof themagnetic eigenvalue as an eigen-
value of the Dirichlet Laplacian in Ω with a small set removed, in the flavor of [3] (see Section 3.2 below).
In [3] only the case of symmetric domains was considered and the magnetic problem was shown to be spec-
trally equivalent to the eigenvalue problem for the Dirichlet Laplacian in the domain obtained by removing
the segment joining the poles. In the general non-symmetric case, we can still derive a spectral equivalence
with a Dirichlet problem in the domain obtained by removing from Ω the nodal lines of magnetic eigenfunc-
tions close to the collision point. The general shape of this removed set (which is not necessarily a segment as
in the symmetric case) creates some further difficulties. In particular, precise information about the diameter
of such a set is needed in order to apply the following result from [3].
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Theorem 1.3 ([3, Theorem 1.7]). Let Ω ⊂ ℝ2 be a bounded connected open set containing 0. Let λN be a simple
eigenvalue of theDirichlet Laplacian inΩ, and let uN bea L2(Ω)-normalized eigenfunction associated to λN such
that uN(0) ̸= 0. Let (Kε)ε>0 be a family of compact connected sets contained in Ω such that for every r > 0, there
exists ε̄ such that Kε ⊆ Dr for every ε ∈ (0, ε̄) (Dr denoting the disk of radius r centered at 0). Then

λN(Ω \ Kε) − λN = u2N(0)
2π

|log(diam Kε)|
+ o( 1

|log(diam Kε)|
) as ε → 0,

where λN(Ω \ Kε) denotes the N-th eigenvalue of the Dirichlet Laplacian in Ω \ Kε.

In order to apply Theorem 1.3, a crucial intermediate step in the proof of Theorem 1.2 is the estimate of
the diameter of nodal lines of magnetic eigenfunctions near the collision point. More precisely, we prove that
when a is sufficiently small, locally near 0 suitable (magnetic-real) eigenfunctions have a nodal set consisting
in a single regular curve connecting a− and a+. If da denotes the diameter of such a curve, we obtain that

lim
a→0+

|log a|
|log da|

= 1, (1.4)

see Section 4.
The paper is organized as follows. In Section 2 we obtain some preliminary upper bounds for the eigen-

value variation λaN − λN , testing the Rayleigh quotient for eigenvalues with proper test functions constructed
by suitable manipulation of limit eigenfunctions. In Section 3 we prove that, as the two poles of the operator
(1.2) move towards each other colliding at 0, λaN is equal to the N-th eigenvalue of the Laplacian in Ω with a
small piece of nodal line of themagnetic eigenfunction removed. Combining the upper estimates of Section 2
with Theorem 1.3, in Section 4 we succeed in estimating the diameter of the removed small set as in (1.4);
we then conclude the proof of Theorem 1.2 by combining (1.4) and Theorem 1.3.

2 Estimates from Above
We denote byHa the closure of C∞c (Ω \ {a+, a−},ℂ) with respect to the norm

‖u‖Ha = (∫
Ω

|(i∇ + Aa−,a+ )u|2 dx)
1/2
.

We observe that, by Poincaré and diamagnetic inequalities together with the Hardy type inequality proved
in [16],Ha ⊂ H1

0(Ω) with continuous inclusion. In order to estimate from above the eigenvalue λaN , we recall
the well-known Courant–Fisherminimax characterization:

λaN = min{ max
u∈F\{0}

∫Ω|(i∇ + Aa−,a+ )u|2 dx
∫Ω|u|

2 dx
: F is a subspace ofHa , dim F = N}. (2.1)

Lemma 2.1. Let τ ∈ (0, 1). For every 0 < ε < 1, there exists a continuous radial cut-off function ρε,τ : ℝ2 → ℝ
such that ρε,τ ∈ H1

loc(ℝ
2), which also has the following properties:

(i) 0 ≤ ρε,τ(x) ≤ 1 for all x ∈ ℝ2,
(ii) ρε,τ(x) = 0 if |x| ≤ ε, and ρε,τ(x) = 1 if |x| ≥ ετ,
(iii) ∫ℝ2 |∇ρε,τ|

2 dx = 2π
(τ−1) log ε ,

(iv) ∫ℝ2 (1 − ρ2ε,τ) dx = O(ε2τ) as ε → 0+.

Proof. We set

ρε,τ(x) =
{{{{
{{{{
{

0 if |x| ≤ ε,
log |x| − log(ε)
log(ετ) − log(ε) if ε < |x| < ετ ,

1 if |x| ≥ ετ .
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The function ρε,τ is continuous and locally in H1, with 0 ≤ ρε,τ ≤ 1. The function 1 − ρ2ε,τ is supported in the
disk of radius ετ centered at 0. We therefore have

∫
ℝ2

(1 − ρ2ε,τ(x)) dx ≤ πε2τ ,

which proves (iv). We have ∇ρε,τ(x) = 0 if |x| < ε or |x| > ετ, and

∇ρε,τ(x) =
x

(τ − 1) log(ε)|x|2

if ε < |x| < ετ. From this we directly obtain identity (iii).

Lemma 2.2. For all a > 0, there exists a smooth function ψa : ℝ2 \ sa → ℝ satisfying

∇ψa = Aa−,a+ ,

where sa is the segment in ℝ2 defined by sa := {(t, 0) : −a ≤ t ≤ a}. Furthermore, for every x ∈ ℝ2 \ {(0, 0)},
lima→0+ ψa(x) = 0.

Proof. See [3, Lemma 3.1].

The first step in the proof of Theorem 1.2 is the following upper bound for the eigenvalue λaN .

Proposition 2.3. For every τ ∈ (0, 1),

λaN ≤ λN +
2π

(1 − τ)|log a| (u
2
N(0) + o(1)) as a → 0+.

The proof of Proposition 2.3 is based on estimates from above of the Rayleigh quotient for λaN computed at
some proper test functions constructed by suitable manipulation of limit eigenfunctions. To this end, let us
consider, for each j ∈ {1, . . . , N}, a real eigenfunction uj of −∆ with homogeneous Dirichlet boundary condi-
tions associated with λj, with ‖uj‖L2(Ω) = 1. Furthermore, we choose these eigenfunctions so that

∫
Ω

ujuk dx = 0 for j ̸= k. (2.2)

For j ∈ {1, . . . , N} and a > 0 small enough, we set

vaj,τ := e
iψaρ2a,τuj . (2.3)

We have that vaj,τ ∈ Ha. Lemma 2.1 and the Dominated Convergence Theorem imply that vaj,τ tends to uj in
L2(Ω) when a → 0+. This implies, in particular, that the functions vaj,τ are linearly independent for a small
enough.

Hence, for a > 0 small enough, EaN,τ = span{va1,τ , . . . , v
a
N,τ} is an N-dimensional subspace ofHa, so that,

in view of (2.1),

λaN ≤ max
u∈EaN,τ\{0}

∫Ω|(i∇ + Aa−,a+ )u|2 dx
∫Ω|u|

2 dx
=

∫Ω|(i∇ + Aa−,a+ )vaτ |2 dx
∫Ω|v

a
τ |2 dx

(2.4)

with

vaτ =
N
∑
j=1
αaj,τv

a
j,τ for some αa1,τ , . . . , α

a
N,τ ∈ ℂ such that

N
∑
j=1

|αaj,τ|
2 = 1. (2.5)

Lemma 2.4. For a > 0 small, let vaτ be as in (2.4)–(2.5). Then

∫
Ω

|vaτ |2 dx = 1 + O(a2τ) as a → 0+. (2.6)
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Proof. Taking into account (2.5), (2.3) and (2.2), we can write

∫
Ω

|vaτ |2 dx =
N
∑
j,k=1

αaj,τα
a
k,τ ∫

Ω

ρ22a,τujuk dx

= 1 +
N
∑
j=1

|αaj,τ|
2 ∫
Ω

(ρ22a,τ − 1)u2j dx + ∑
j ̸=k
αaj,τα

a
k,τ ∫

Ω

(ρ22a,τ − 1)ujuk dx.

Hence, the conclusion follows from Lemma 2.1 (iv).

Lemma 2.5. For a > 0 small, let vaτ be as in (2.4)–(2.5). Then

∫
Ω

|(i∇ + Aa−,a+ )vaτ |2 dx =
N
∑
j,k=1

αaj,τα
a
k,τ(

λj + λk
2 ∫

Ω\D2a

ρ22a,τujuk dx + ∫
D(2a)τ \D2a

ujuk|∇ρ2a,τ|2 dx), (2.7)

where, for all r > 0, Dr = {(x1, x2) ∈ ℝ2 : x21 + x
2
2 < r} denotes the disk of center (0, 0) and radius r.

Proof. Let us fix j and k in {1, . . . , N} (possibly equal). In Ω \ D2a, we have that

(i∇ + Aa−,a+ )vaj,τ ⋅ (i∇ + Aa−,a+ )vak,τ = ∇(ρ2a,τuj) ⋅ ∇(ρ2a,τuk)

= ρ22a,τ∇uj ⋅ ∇uk + ujuk|∇ρ2a,τ|
2 + (uj∇uk + uk∇uj) ⋅ ρ2a,τ∇ρ2a,τ

and, since ρ2a,τ∇ρ2a,τ = 1
2∇(ρ

2
2a,τ),

∫
Ω

(i∇ + Aa−,a+ )vaj,τ ⋅ (i∇ + Aa−,a+ )vak,τ dx

= ∫
Ω\D2a

ρ22a,τ∇uj ⋅ ∇uk dx + ∫
D(2a)τ \D2a

ujuk|∇ρ2a,τ|2 dx +
1
2 ∫
Ω\D2a

(uj∇uk + uk∇uj) ⋅ ∇(ρ22a,τ) dx. (2.8)

An integration by parts on the last term of (2.8) gives

∫
Ω

(i∇ + Aa−,a+ )vaj,τ ⋅ (i∇ + Aa−,a+ )vak,τ dx

= ∫
Ω\D2a

ρ22a,τ∇uj ⋅ ∇uk dx + ∫
D(2a)τ \D2a

ujuk|∇ρ2a,τ|2 dx −
1
2 ∫
Ω\D2a

(uj∆uk + 2∇uk ⋅ ∇uj + ∆ujuk)ρ22a,τ dx.

After cancellations, we get

∫
Ω

(i∇ + Aa−,a+ )vaj,τ ⋅ (i∇ + Aa−,a+ )vak,τ dx =
λk + λj
2 ∫

Ω\D2a

ρ22a,τujuk dx + ∫
D(2a)τ \D2a

ujuk|∇ρ2a,τ|2 dx. (2.9)

From bilinearity, (2.5) and (2.9), we obtain (2.7).

From (2.4) and (2.7), it follows that

λaN − λN ≤
1

∫Ω|v
a
τ |2 dx

[Qa(αa1,τ , α
a
2,τ , . . . , α

a
N,τ) + λN(1 − ∫

Ω

|vaτ |2 dx)], (2.10)

where Qa : ℂN → ℝ is the quadratic form defined as

Qa(z1, z2, . . . , zN) =
N
∑
j,k=1

Ma
jkzjzk , (2.11)

where
Ma
jk =

λj + λk
2 ∫

Ω\D2a

ρ22a,τujuk dx + ∫
D(2a)τ \D2a

ujuk|∇ρ2a,τ|2 dx − λNδjk , (2.12)

with δjk being the Kronecker delta.
To estimate the largest eigenvalue of the quadratic form Qa, we will use the following technical lemma.
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Lemma 2.6. For every ε > 0, let us consider the quadratic form

Qε : ℂN → ℝ, Qε(z1, z2, . . . , zN) =
N
∑
j,k=1

mj,k(ε)zjzk ,

withmj,k(ε) ∈ℂ such thatmj,k(ε) =mk,j(ε). Assume that there exist real numbers C > 0and K1, K2, . . . ,KN−1 < 0
such that

mN,N(ε) = Cε(1 + o(1)) as ε → 0+,
mj,j(ε) = Kj + o(1) as ε → 0+ for all j < N,

mj,k(ε) = mk,j(ε) = O(ε) as ε → 0+ for all j ̸= k.

Then

max{Qε(z1, . . . , zN) : (z1, . . . , zN) ∈ ℂN ,
N
∑
j=1

|zj|2 = 1} = Cε(1 + o(1)) as ε → 0+.

Proof. The result is contained in [1, Lemma 6.1], hence we omit the proof.

Lemma 2.7. For a > 0 small, let Qa : ℂN → ℝ be the quadratic form defined in (2.11)–(2.12). Then

max{Qa(z1, . . . , zN) : (z1, . . . , zN) ∈ ℂN ,
N
∑
j=1

|zj|2 = 1} =
2πu2N(0)

(1 − τ)|log(a)| (1 + o(1)) as a → 0+.

Proof. Since ∫Ω u
2
N = 1, we can write

Ma
NN = λN ∫

Ω

(ρ22a,τ − 1)u2N dx + ∫
D(2a)τ \D2a

u2N |∇ρ2a,τ|
2 dx.

Since uN ∈ L∞loc(Ω), from Lemma 2.1 (iv), it follows that

∫
Ω

(ρ22a,τ − 1)u2N dx = ∫
D(2a)τ

(ρ22a,τ − 1)u2N dx = O(a2τ) as a → 0+.

Since uN ∈ C∞loc(Ω), we have that u
2
N(x) − u

2
N(0) = O(|x|) as |x| → 0+. Then Lemma 2.1 (iii) implies that

∫
D(2a)τ \D2a

u2N |∇ρ2a,τ|
2 dx = u2N(0) ∫

D(2a)τ \D2a

|∇ρ2a,τ|2 dx + ∫
D(2a)τ \D2a

(u2N(x) − u
2
N(0))|∇ρ2a,τ(x)|

2 dx

= (u2N(0) + O(a
τ)) ∫

D(2a)τ \D2a

|∇ρ2a,τ|2 dx

=
2π

(τ − 1) log(2a) (u
2
N(0) + O(a

τ))

=
2π

(τ − 1) log(a)u
2
N(0)(1 + o(1)) as a → 0+.

Then
Ma
NN =

2π
(τ − 1) log(a)u

2
N(0)(1 + o(1)) as a → 0+. (2.13)

For all 1 ≤ j < N, we have that

Ma
jj = λj ∫

Ω\D2a

ρ22a,τu
2
j dx + ∫

D(2a)τ \D2a

u2j |∇ρ2a,τ|
2 dx − λN

= (λj − λN) + λj ∫
Ω

(ρ22a,τ − 1)u2j dx + ∫
Ω

u2j |∇ρ2a,τ|
2 dx,
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and hence, since uj ∈ C∞loc(Ω) and in view of Lemma 2.1,

Ma
jj = (λj − λN) + O(

1
|log a| ) = (λj − λN) + o(1) as a → 0+. (2.14)

Moreover, for all j, k = 1, . . . , N with j ̸= k, in view of (2.2) and Lemma 2.1, we have that

Ma
jk =

λj + λk
2 ∫

Ω\D2a

(ρ22a,τ − 1)ujuk dx + ∫
D(2a)τ \D2a

ujuk|∇ρ2a,τ|2 dx = O( 1
|log a| ) as a → 0+. (2.15)

In view of estimates (2.13), (2.14) and (2.15), we have that Qa satisfies the assumption of Lemma 2.6
(with ε = 1

|log a| ), hence the conclusion follows from Lemma 2.6.

Proof of Proposition 2.3. Combining (2.10), Lemma 2.7 and estimate (2.6), we obtain that

λaN − λN ≤
1

1 + O(a2τ)
[

2πu2N(0)
(1 − τ)|log(a)| (1 + o(1)) + O(a2τ)]

=
2πu2N(0)

(1 − τ)|log(a)| (1 + o(1)) as a → 0+,

thus completing the proof.

3 Gauge Invariance, Nodal Sets and Reduction to the
Dirichlet–Laplacian

In the following, by a path γ we mean a piecewise C1 map γ : I Ü→ ℝ2, with I = [a, b] ⊂ ℝ being a closed
interval. It follows from the definition of Aa−,a+ (see (1.1)) that for any closed path γ (i.e., γ(a) = γ(b)),

1
2π ∮

γ

Aa−,a+ ⋅ ds =
1
2indγ(a

+) −
1
2indγ(a

−), (3.1)

where indγ(a+) (resp. indγ(a−)) is the winding number of γ around a+ (resp. a−).

3.1 Gauge Invariance

Let us give some results concerning the gauge invariance of our operators. In view of applying them to several
different situations,wegive statements valid for amagneticHamiltonian in anopenand connecteddomainD,
without restricting ourselves to the Aharonov–Bohm case.

In the following, the term vector potential (in an open connected domain D) stands for a smooth real
vector field A : D → ℝ2. In order to define the quantum mechanical Hamiltonian for a particle in D, under
the action of the magnetic field derived from the vector potential A, we first consider the differential operator

P = (i∇ + A)2

acting on smooth functions compactly supported in D. Using integration by parts (Green’s formula), one can
easily see that P is symmetric and positive. This is formally the desired Hamiltonian, but to obtain a self-
adjoint Schrödinger operator, we have to specify the boundary conditions on ∂D, which we choose to be
Dirichlet boundary conditions everywhere. More specifically, our Hamiltonian is the Friedrichs extension of
the differential operator P. We denote it by HDA , and we call it the magnetic Hamiltonian on D associated
with A.

We observe that the Aharonov–BohmoperatorHΩa−,a+ , introduced in (1.2) with the poles a− = (−a, 0) and
a+ = (a, 0) in Ω, can be defined as the magnetic Hamiltonian HΩ̇Aa−,a+ on Ω̇, where Ω̇ = Ω \ {a−, a+}, and that
the spectrumofHΩa−,a+ consists of the eigenvalues defined by (2.1). The spaceHa is the formdomain ofHΩa− ,a+ .
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Definition 3.1. We call gauge function a smooth complex valued functionψ : D → ℂ such that |ψ| ≡ 1. To any
gauge function ψ, we associate a gauge transformation acting as (A, u) Ü→ (A∗, u∗), with

A∗ = A − i∇ψ
ψ
, u∗ = ψu,

where ∇ψ = ∇(Reψ) + i∇(Imψ). We notice that, since |ψ| = 1, i ∇ψψ is a real vector field. Two magnetic poten-
tials are said to be gauge equivalent if one can be obtained from the other by a gauge transformation (this is
an equivalence relation).

The following result is a consequence of [17, Theorem 1.2].

Proposition 3.2. If A and A∗ are two gauge equivalent vector potentials, then the operators HDA and HDA∗ are
unitarily equivalent.

The equivalence between two vector potentials (which is equivalent to the fact that their difference is gauge-
equivalent to 0) can be determined using the following criterion.

Lemma 3.3. Let A be a vector potential in D. This is gauge equivalent to 0 if and only if

1
2π ∮

γ

A(s) ⋅ ds ∈ ℤ (3.2)

for every closed path γ contained in D.

Remark 3.4. The reverse implication in Lemma 3.3 is contained in [13, Theorem 1.1] for the Neumann
boundary condition.

Proof. Let us first prove the direct implication. We assume that A is gauge equivalent to 0, that is to say that
there exists a gauge function ψ such that

A ≡ i∇ψ
ψ
.

Fix a closedpath γ : I = [a, b] → D and consider themapping z =ψ ∘ γ from I toU,whereU= {z ∈ ℂ : |z| = 1}.
By the lifting property, there exists a piecewise C1 function θ : I → ℝ such that z(t) = exp(iθ(t)) for all t ∈ I.
This implies that

∇ψ(γ(t)) ⋅ γ�(t) = (ψ ∘ γ)�(t) = z�(t) = iθ�(t) exp(iθ(t)),

and therefore
i∇ψ
ψ

(γ(t)) ⋅ γ�(t) = −θ�(t).

This implies that

∮
γ

A(s) ⋅ ds =
b

∫
a

i∇ψ
ψ

(γ(t)) ⋅ γ�(t) dt = −
b

∫
a

θ�(t) dt = θ(a) − θ(b).

Since γ is a closed path, exp(iθ(a)) = exp(iθ(b)), and therefore

θ(a) − θ(b)
2π ∈ ℤ.

Let us now consider the reverse implication. We define a gauge function ψ in the following way. We fix
an (arbitrary) point X0 = (x0, y0) ∈ D. Let us show that for X = (x, y) ∈ D, the quantity

exp(−i∫
γ

A(s) ds)

does not depend on the choice of the path γ from X0 to X. Indeed, let γ1 and γ2 be two such paths, and let γ3
be the closed path obtained by going from X0 to X along γ1 and then from X to X0 along γ2. On the one hand,
we have

∮
γ3

A(s) ds = ∫
γ1

A(s) ds − ∫
γ2

A(s) ds.
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On the other hand, if (3.2) holds, we have

∮
γ3

A(s) ds ∈ 2πℤ.

This implies that
exp(−i ∫

γ1

A(s) ds) = exp(−i ∫
γ2

A(s) ds).

By the connectedness of D, there exists a path from X0 to X for any X ∈ Ω (we can even choose it piecewise
linear). We can therefore define, without ambiguity, a function ψ : Ω → ℂ by

ψ(X) = exp(−i∫
γ

A(s) ds).

It is immediate from the definition that |ψ| ≡ 1 and that ψ is smooth, with

∇ψ(X) = −iψ(X)A(X).

It is therefore a gauge function sending A to 0.

Lemma3.3 can be used to define a set of eigenfunctions forHΩa−,a+ having special nice properties, aswas done
in [13, Section 3] for the Neumann boundary condition. It is analogous to the set of real eigenfunctions for
the usual Dirichlet–Laplacian. To define it, we will construct a conjugation, that is, an antilinear antiunitary
operator, which commutes with HΩa−,a+ . To simplify the notation, we denoteAa−,a+ byA and HΩa−,a+ by H in the
rest of this section.

According to (3.1), the vector potential 2A satisfies condition (3.2) of Lemma 3.3 on Ω̇, and therefore is
gauge equivalent to 0. Therefore, there exists a gauge function ψ in Ω̇ such that

2A = −i∇ψ
ψ

in Ω̇.

We now define the antilinear antiunitary operator K by

Ku = ψū.

For all u ∈ C∞0 (Ω̇,ℂ),

(i∇ + A)(ψū) = ψ(i∇ + i∇ψ
ψ

+ A)ū = ψ(i∇ − A)ū = −ψ(i∇ + A)u.

The above formula and the fact that K is antilinear and antiunitary, imply that for all u and v in C∞0 (Ω̇,ℂ),

⟨K−1HKu, v⟩ = ⟨Kv, HKu⟩ = ∫
Ω

(i∇ + A)(ψv̄) ⋅ (i∇ + A)(ψū) dx = ∫
Ω

(i∇ + A)v ⋅ (i∇ + A)u dx = ⟨Hu, v⟩,

where ⟨f, g⟩ = ∫Ω f ḡ dx denotes the standard scalar product on the complex Hilbert space L2(Ω,ℂ). By den-
sity, we conclude that

K−1HK = H.

Definition 3.5. We say that a function u ∈ L2(Ω,ℂ) ismagnetic-real when Ku = u.

Let us denote by R the set of magnetic-real functions in L2(Ω,ℂ). The restriction of the scalar product to R

gives it the structure of a real Hilbert space. The commutation relationHK = KH implies thatR is stable under
the action of H. We denote by HR the restriction of H to R. There exists an orthonormal basis of R formed by
eigenfunctions of HR. Such a basis can be seen as a basis of magnetic-real eigenfunctions of the operator H
in the complex Hilbert space L2(Ω,ℂ).

Let us now fix an eigenfunction u of HR (or, equivalently, a magnetic-real eigenfunction of H). We define
its nodal setN(u) as the closure in Ω of the zero-set u−1({0}). Let us describe the local structure ofN(u). In the
sequel, by a regular curve or regular arcwemean a curve admitting a C1,α parametrization for some α ∈ (0, 1).
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Theorem 3.6. The setN(u) has the following properties:
(i) N(u) is, locally in Ω̇, a regular curve, except possibly at a finite number of singular points {Xj}j∈{1,...,n}.
(ii) For j ∈ {1, . . . , n}, in the neighborhoodof Xj,N(u) consists of an evennumber of regular half-curvesmeeting

at Xj with equal angles (so that Xj can be seen as a cross-point).
(iii) In the neighborhood of a+ (resp. a−), N(u) consists of an odd number of regular half-curves meeting at a+

(resp. a−) with equal angles (in particular this means that a+ and a− are always contained inN(u)).

Proof. The proof is essentially contained in [20, Theorem 1.5] (see also [5]); for the sake of completeness we
present a sketch of it. Let the eigenfunction u be associatedwith the eigenvalue λ, so that Hu = λu. Let x0 be a
point in Ω̇. For ε > 0, we denote by D(x0, ε) the open disk {x : |x − x0| < ε}. Let us show that we can find ε > 0
small enough and a local gauge transformation φ : D(x0, ε) → ℂ such that A∗ = A − i ∇φφ = 0 and u∗ = φu is
a real-valued function in D(x0, ε). Indeed, let us define, as before, a gauge function ψ such that 2A = −i ∇ψψ .
For ε > 0 small enough, we can define a smooth function φ : D(x0, ε) → ℂ such that ψ(x) = (φ(x))2 for all
x ∈ D(x0, ε), by taking

φ(x) = exp(− i2 arg(ψ(x))),

with arg a determination of the argument in ψ(D(x0, ε)). A direct computation shows that for x ∈ D(x0, ε),

i∇φ(x)
φ(x)

=
i
2
∇ψ(x)
ψ(x)

= A(x).

The gauge transformation on D(x0, ε) associated with φ therefore sends A to 0. Furthermore, since u is K-
real, we have ψū = φ2u = u in D(x0, ε), and therefore φu = φu. The real-valued function v = φu satisfies
−∆v = λv, and, since |φ| ≡ 1 on D(x0, ε), we have that N(v) ∩ D(x0, ε) = N(u) ∩ D(x0, ε). Parts (i) and (ii) of
Theorem3.6 then follow from classical results on the nodal set of Laplacian eigenfunctions (see, for instance,
[15, Theorem 2.1] and [20, Theorem 4.2]).

To prove part (iii) of Theorem 3.6, we use the regularity result of [20] for the Dirichlet problem associated
with a one-pole Aharonov–Bohm operator. Indeed, let ε > 0 be small enough so that D = D(a+, ε) ⊂ Ω and
a− ∉ D. By this choice of ε, Aa− = ∇f on D, with f a smooth function, so that the domain D and the magnetic
potential A, restricted to D, satisfy the hypotheses of [20, Theorem 1.5]. The function u is a solution of the
Dirichlet problem

{
(i∇ + A)2u − λu = 0 in D,
u = γ on ∂D,

with γ = u|∂D ∈ W1,∞(∂D). A direct application of [20, Theorem 1.5] gives property (iii) around a+. We can
obtain property (iii) around a− by exchanging the role of a+ and a−.

3.2 Reduction to the Dirichlet–Laplacian

Our aim in this subsection is to show that, as the two poles of the operator (1.2) coalesce into a point at which
uN does not vanish, λaN is equal to the N-th eigenvalue of the Laplacian in Ω with a small subset concentrating
at 0 removed.

Theorem 3.7. Let us assume that there exists N ≥ 1 such that the N-th eigenvalue λN of the Dirichlet Laplacian
in Ω is simple. Let uN be a L2(Ω)-normalized eigenfunction associated λN and assume that uN(0) ̸= 0. Then, for
all a > 0 sufficiently small, there exists a compact connected set Ka ⊂ Ω such that

λaN = λN(Ω \ Ka),

and Ka concentrates around 0 as a → 0+, i.e., for any ε > 0, there exists δ > 0 such that if a < δ, then Ka ⊂ Dε.

We will divide the proof into two lemmas.
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Lemma 3.8. Let R > 0 be such that DR ⊂ Ω and uN(x) ̸= 0 for all x ∈ DR. Let r ∈ (0, R). We denote by Cr,R the
closed ring

Cr,R = {x ∈ ℝ2 : r ≤ |x| ≤ R}.

There exists δ > 0 such that if 0 < a < δ and u is a magnetic-real eigenfunction associated with λaN , then u does
not vanish in Cr,R.

Proof. Let us assume, by contradiction, that there exists a sequence an → 0+ such that for all n ≥ 1, λanN
admits an eigenfunction φn which vanishes somewhere in Cr,R. Let us denotes by Xn a zero of φn in Cr,R.

According to [18, Section III], we can assume, up to extraction and a suitable normalization of φn, that
φn → uN in L2(Ω). Since H is a uniformly regular elliptic operator in a neighborhood of Cr,R, φn converges
to uN uniformly on Cr,R. Furthermore, up to one additional extraction, we can assume that Xn → X∞ ∈ Cr,R.
This implies that uN(X∞) = 0, contradicting the fact that uN(x) ̸= 0 for all x ∈ DR.

Lemma 3.9. For all R > 0 such that DR ⊂ Ω and uN(x) ̸= 0 for all x ∈ DR, there exists δ > 0 such that if 0 < a < δ
and uaN is a magnetic-real eigenfunction associated with λ

a
N , thenN(uaN) ∩ DR consists in a single regular curve

connecting a− and a+.

Proof. By the continuity of (a−, a+) Ü→ λaN (see [18]), we have that

Λ = max
a∈[0,R]

λaN ∈ (0, +∞). (3.3)

Let us choose r ∈ (0, R) such that

r < √ λ1(D1)
Λ , (3.4)

where λ1(D1) is the 1-st eigenvalue of the Laplacian in the unit disk D1. According to Lemma 3.8, there exists
δ(r) > 0 such that if a < δ(r), then any eigenfunction associated to λaN does not vanish in the closed ring Cr,R.

Let us assume that 0 < a < δ(r) and a < r, and let uaN be an eigenfunction associated with λaN . The proof
relies on a topological analysis of N� := N(uaN) ∩ DR, inspired by previous work on nodal sets and minimal
partitions (see [8, Section 6] and references therein). Lemma 3.8 implies thatN� is compactly included in Dr.
Theorem 3.6 implies thatN� consists of a finite number of regular arcs connecting a finite number of singular
points. In other words, N� is a regular planar graph. Let us denote by V the set of vertices of N�, by b1 the
number of its connected components and by μ the number of its faces. By face, wemean a connected compo-
nent ofℝ2 \N�. There is always one unbounded face, so μ ≥ 1. Furthermore, for all w ∈ V, we denote by ν(w)
the degree of the vertex w, that is to say the number of half-curves ending at w. Let us note that, according
to Theorem 3.6, both a− and a+ belong to V and have an odd degree, and any other vertex can only have an
even degree. These quantities are related through Euler’s formula for planar graphs:

μ = b1 + ∑
w∈V

(
ν(w)
2 − 1) + 1. (3.5)

For this classical formula, see, for instance, [6, Theorems 1.1 and 9.5]. Note that this reference treats the case
of a connectedgraph. Thegeneralizationusedhere is easily obtainedby linking the b1 connected components
of the graph with b1 − 1 edges, in order to go back to the connected case.

Let us show by contradiction that μ = 1. If μ ≥ 2, there exists a bounded face of the graphN�, which is a
nodal domain of uaN entirely contained in Dr. Let us call it ω. We denote by λk(ω, a−, a+) the k-th eigenvalue
of the operator (i∇ + Aa−,a+ )2 inω, with homogeneous Dirichlet boundary condition on ∂ω. Sinceω is a nodal
domain, for some k(a) ∈ ℕ \ {0} depending on a, we have that

λaN = λk(a)(ω, a−, a+) ≥ λ1(ω, a−, a+).

By the diamagnetic inequality,
λ1(ω, a−, a+) ≥ λ1(ω),
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where λ1(ω) is the 1-st eigenvalue of the Dirichlet Laplacian in ω. By domain monotonicity,

λ1(ω) ≥ λ1(Dr) =
λ1(D1)
r2

.

Hence, we obtain

r ≥ √
λ1(D1)
λaN

,

thus contradicting (3.4). We conclude that μ = 1.
Going back to Euler’s formula (3.5), we obtain

∑
w∈V

(
ν(w)
2 − 1) = −b1 ≤ −1. (3.6)

According to Theorem3.6, we have ν(w)
2 − 1 ≥ −1

2 ifw ∈ {a−, a+}, and ν(w)
2 − 1 ≥ 1 ifw ∈ V \ {a−, a+}. Inequal-

ity (3.6) can therefore be satisfied only if V = {a−, a+} and ν(a−) = ν(a+) = 1, that is to say if N� is a regular
arc connecting a− and a+.

We are now in position to prove Theorem 3.7.

Proof of Theorem 3.7. FromLemma3.9, it follows that for a sufficiently small, there exists a curveKa inN(uaN)
connecting a− and a+ and (in view of Lemma 3.8) concentrating at 0, where uaN is a magnetic-real eigenfunc-
tion associated with λaN .

Let us write Ω�
a = Ω \ Ka. Since Ka is contained in N(uaN), we have that there exists k(a) ∈ ℕ \ {0} (de-

pending on a) such that
λaN = λk(a)(Ω�

a , a−, a+), (3.7)

where λk(a)(Ω�
a , a−, a+) denotes the k(a)-th eigenvalue of H

Ω�
a

a−,a+ .
Let us consider a closed path γ in Ω�

a. By the definition of Ω�
a, γ does not meet Ka, whichmeans that Ka is

contained in a connected component of ℝ2 \ γ. Since the function X Ü→ Indγ(X) is constant on all connected
components ofℝ2 \ γ, we have that Indγ(a−) = Indγ(a+). According to (3.1), this implies that

1
2π ∮

γ

Aa−,a+ ⋅ ds = 0.

In view of Lemma 3.3, we conclude that Aa−,a+ is gauge equivalent to 0 in Ω�
a, and hence Proposition 3.2

ensures that
λk(a)(Ω�

a , a−, a+) = λk(a)(Ω�
a). (3.8)

Combining (3.7) and (3.8), we obtain
λaN = λk(a)(Ω�

a). (3.9)

We observe that a Ü→ k(a) stays bounded as a → 0+. Indeed if, by contradiction, k(an) → +∞ along some
sequence an → 0+, by (3.9), we should have

λanN = λk(an)(Ω�
an ) ≥ λk(an)(Ω) → +∞,

thus contradicting (3.3).
Then, for any sequence an → 0+, there exists a subsequence anj such that k(anj ) → k for some k. Since

k(a) is integer-valued we have that necessarily k(anj ) = k ∈ ℕ \ {0} for j sufficiently large. Hence, (3.9) yields
λanjN = λk(Ω \ Kanj ). It iswell known (see, e.g., [11, Theorem1.2]) that λk(Ω \ Kanj ) → λk(Ω) as j → +∞; hence,
taking into account (1.3), we conclude that k = N. Moreover, since the limit of k(anj ) does not depend on the
subsequence and a Ü→ k(a) is integer-valued, we conclude that k(a) = N for all a sufficiently small, so that
(3.9) becomes

λaN = λN(Ω�
a),

and the proof is complete.
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4 Proof of Theorem 1.2
We are in position to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. For a > 0 small, let Ka ⊂ Ω be as in Theorem 3.7. We denote as

da := diam Ka

the diameter of Ka. From Theorem 1.3, it follows that

λN(Ω \ Ka) − λN = u2N(0)
2π

|log da|
+ o( 1

|log da|
) as a → 0+.

Hence, in view of Theorem 3.7,

λaN − λN = u2N(0)
2π

|log da|
+ o( 1

|log da|
) as a → 0+. (4.1)

From (4.1) and Proposition 2.3, it follows that for every τ ∈ (0, 1),

1
|log da|

(1 + o(1)) ≤ 1
(1 − τ)|log a| (1 + o(1)),

and then
|log a|
|log da|

≤
1

1 − τ
(1 + o(1)) as a → 0+. (4.2)

On the other hand, since a−, a+ ∈ Ka, we have that da ≥ 2a, so that |log a| ≥ |log da| + log 2 and

|log a|
|log da|

≥ 1 + O( 1
|log da|

) = 1 + o(1), as a → 0+. (4.3)

Combining (4.2) and (4.3), we conclude that

1 ≤ lim inf
a→0+

|log a|
|log da|

≤ lim sup
a→0+

|log a|
|log da|

≤
1

1 − τ

for every τ ∈ (0, 1), and then, letting τ → 0+, we obtain that

lim
a→0+

|log a|
|log da|

= 1. (4.4)

The conclusion then follows from (4.1) and (4.4).
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