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A NOTE ON THE CLOSED RANGE OF ∂̄b ON q-CONVEX

MANIFOLDS

LUCA BARACCO AND ALEXANDER TUMANOV

To the memory of Nicholas Hanges

Abstract. We prove that the tangential Cauchy-Riemann operator ∂̄b has
closed range on Levi-pseudoconvex CR manifolds that are embedded in a q-
convex complex manifold X. Our result generalizes the known case when X is
a Stein manifold (in particular, when X = Cn).

1. Introduction

The ∂̄ operator in complex analysis is very important because it is involved in
the explanation of many phenomena concerning holomorphic functions and maps.
The solvability of ∂̄ on forms gives a characterization of domains of holomorphy
and of Stein manifolds. Moreover, the regularity of solutions of the ∂̄-equation gives
a different perspective on the regularity up to the boundary of biholomorphisms.
Similarly, the study of ∂̄b, which is the restriction to a hypersurface of ∂̄, is tightly
connected with geometric aspects of CR manifolds, like embeddability in Cn.

The natural environment to study these differential operators is the space of
forms with L2 coefficients. In these spaces the operators ∂̄ and ∂̄b are naturally
defined in the distribution sense. If Ω is a domain in Cn, then for any d < n we have a
closed densily defined unbounded operator ∂̄d : L2

(0,d)(Ω) −→ L2
(0,d+1)(Ω). It is easy

to check that ∂̄j+1 ◦ ∂̄j = 0, and thus (L2
0,j(Ω), ∂̄j)j=0,...,n is a complex. Similarly,

for ∂̄b the same hold. Forms in the kernel of ∂̄ (resp. ∂̄b) are called ∂̄-closed (resp.
∂̄b-closed), and those in the image ∂̄-exact (resp. ∂̄b-exact). In the ∂̄b problem, one is
given a (0, q)-form f that is ∂̄b-closed and wants to find a (0, q−1)-form u such that
∂̄bu = f (eventually with regularity requirements on the solution). The question has
been studied and solved for ∂̄ by Kohn and Hörmander for pseudoconvex domains
in Cn. For ∂̄b, the first result of this kind was proved for strictly pseudoconvex
hypersurface-type CR manifolds.

The starting point in tackling these problem is proving that the range of ∂̄ (∂̄b)
is closed, and this is done starting from the Kohn-Morrey-Hörmander identity. The
main difference between the two situations is that in dealing with ∂̄b one need to
control a mixed term that appears when integrating by parts. This mixed term
involves the derivative of the coefficients of the form in the so called “totally real”
direction. The presence of this term is what makes the closed range for ∂̄b harder to
check. For strictly pseudoconvex manifolds, the fact that ∂̄b has closed range was
been proved by Kohn (indeed he proved closed range not only in L2, but also in
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Sobolev spaces). Shaw [18] and Boas-Shaw [4] proved closed range for ∂̄b on bound-
aries of pseudoconvex domains in Cn. Their method does not generalize to domains
in manifolds. Kohn [11], using microlocal analysis, proved closed range of ∂̄b on
boundaries of pseudoconvex domains in Stein manifolds. Similar, from the complex
point of view, to the boundaries of domains are the CR manifolds of hypersurface
type (see Definition 2.3). Nicoara [15] proved closed range on pseudoconvex CR
manifolds of hypersurface type in Cn whose real dimension is larger than 3. Fi-
nally, Baracco [2] proved the 3 dimensional case using the technique of Kohn and
a desingularization argument of complexification.

The pseudoconvex case in Stein manifolds is well understood. Most of the tech-
niques adopted rely on the existence of a plurisubharmonic weight. This is indeed
a distinctive tract of Stein manifolds. Yet there are many other important mani-
folds that one encounter in complex analysis which do not have a plusubharmonic
weight like for instance the compact manifolds. In the attempt to bridge the gap
between these two extreme cases in [1] the notion of completely q-convex manifolds
is introduced. Roughly speaking a complex manifold X of dimension n is said to
be completely q-convex if X is endowed with an exhaustion function which has a
controlled number of positive Levi eigenvalues (namely greater than q+1 see Defi-
nitions 2.1 and 2.2 ). Since their introduction these manifolds have been intensively
studied. Most of the main tools in complex analysis can be considered in this new
setting (see [5, 7, 16] and the references therein) and the main difficulty is of course
the lack of convexity of the exhaustion funcion. In this paper we want to extend
further the results on the range of ∂̄b on pseudoconvex manifolds of hypersurface
type when these are contained in a completely q-convex manifold. We will assume
the existence of a q+1-convex weight defined only around M . Here is the statement
of our main result.

Theorem 1.1. Let X be a complex manifold and M ⊂⊂ X a smooth compact,

pseduconvex-oriented CR submanifold of hypersurface type of dimension 2p − 1.
Assume that there exists a (q + 1)-convex function φ defined in a neighborhood of

M in X. Then

∂̄b : Dom(∂̄b)r,s−1 −→ L2
r,s(M)

has closed range if n − q ≤ s ≤ p + q − n and p > 2(n − q). Moreover, if X is

completely q-convex, then the same conclusion holds for p = 2(n− q).

The paper is organized as follows. In Section 2 recall some basic definitions and
we show how to realize a CR manifold of hypersurface type as the boundary of a
complex manifold Y . In Section 3 we present the proof of Theorem 1.1.

This paper was written for a special volume of CASJ dedicated to the memory of
Nicholas Hanges. He did pioniering work on propagation of holomorphic extendibil-
ity of CR functions, and we use related results in this paper. We will remember him
as a prominent mathematician, a wonderful person, and a great colleague.

2. Definitions and construction of a partial complexification

Let X be a complex manifold of dimension n endowed with a Hermitian product,

which we denote by (·, ·)p : T
(1,0)
p X × T

(1,0)
p X → C. We first extend this scalar

product to forms in the following way. Let L1, ..., Ln be a local orthonormal basis
of (1, 0)-vector fields, and let ω1, ..., ωn be the dual basis of (1, 0)-forms. We define
the scalar product on (1, 0) forms by declaring that ω1, ..., ωn is an orthonormal
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basis and we will denote this product again by (·, ·)p. Such product do not depend
on the choice of the basis L. For forms of higher bi-degree, say (r, s) we proceed in
the same way by declaring that ωI ∧ωJ is an orthonormal basis where I and J are
multi-indexes of lenght r and s respectively.

The volume form of X is thus given by dV = 1
inω1∧ω̄1∧· · ·∧ωn∧ω̄n. If Ω ⊂ X is

a relatively compact open subset with smooth boundary we define the space L2(Ω)
of square integrable functions on Ω as the set of all complex-valued measurable
functions f such that ∫

Ω

|f |2dV < ∞.

L2(Ω) is a Hilbert space with scalar product given by

〈f, g〉 :=

∫
Ω

f ḡ dV.

We extend this definition to forms and define for two integers 0 ≤ r, s ≤ n, the
space L2

(r,s)(Ω) which is the space of forms f such that f can be written lo-

cally as
∑

|I|=r|J|=s

fIJωI ∧ ω̄J where fIJ are measurable functions and such that

∫
Ω
(f, f)pdV (p) < ∞. The scalar product is defined similarly by

〈f, g〉 =

∫
Ω

(f, g)pdV (p).

Let D(Ω) be the space of functions on Ω which are smooth up to the boundary and
let Dr,s(Ω) be the corresponding space of (r, s)-forms with coefficients in D(Ω). On
these spaces, the operator ∂̄(r,s) is defined in the usual way as

∂̄r,s : Dr,s(Ω) −→ Dr,s+1(Ω)

In local coordinates we have

∂̄f(z) =
∑
IJj

∂

∂z̄j
fIJ dz̄j ∧ dzI ∧ dz̄J .

If instead of a local coordinate system we use a local system of orthonormal vector
fields then we have

∂̄f(z) =
∑
I,J,j

LjfIJ ω̄j ∧ ωI ∧ ω̄J + · · · = A(f) + . . . (2.1)

where dots stand for terms which do not involve derivatives of f and A denote the
operator formed with all the terms containing the derivatives of f . Since Dr,s(Ω)
is dense in L2

(r,s)(Ω), we consider the maximal closed extension of ∂̄ (still called ∂̄),

and its L2-adjoint ∂̄∗. Particularly useful is the formal adjoint operator ϑ which
on smooth compactly supported forms is characterized by the property 〈ϑf, g〉 =
〈f, ∂̄g〉. In a local frame we have

ϑf =
∑
IK

∑
j

LjfI,jK ωI ∧ ωK + . . .

where dots stand for terms that do not contain derivatives of f . If φ : X → R is
a continuous functions we define the weighted Hermitian product with weight φ in
the following way

〈f, g〉φ :=

∫
Ω

e−φ(f, g)dV.
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The corresponding norm will be denoted by ‖ · ‖φ and the adjoint of ∂̄ in this
product will be denoted by ∂̄∗

φ. The formal adjoint operator ϑφ in a local frame is

ϑφf := (−1)r−1
∑
IK

∑
j

δφj fI,jK ωI ∧ ω̄K + · · · = B(f) + . . . (2.2)

where δφj u = Lj(u) − Lj(φ)u and dots stand for terms without derivatives of f
and B is the operator defined by the summation in the term in the middle of
2.2. In the sequel we shall use weighted scalar product with weights of the form
tλ, where λ is a convenient function and t a real parameter. When this choice is
made we shall indicate the corrisponding scalar product with 〈·, ·〉t and similarly
for ‖ · ‖t, ∂̄∗

t , ϑt, δtj . Let φ : X → R be a smooth function. We denote by ∂∂̄φ the

(1, 1)-form defined at every point z ∈ X by

∂∂̄φ(z) =

n∑
i,j=1

∂zi∂z̄jφ(z) dzi ∧ dz̄j ,

where z1, . . . , zn are local coordinates for X at z. If an orthonormal basis ωi of
(1, 0)-forms has been chosen, then we shall also write

∂∂̄φ =
∑
ij

φij ωi ∧ ω̄j .

The form ∂∂̄φ defines a Hermitian form, called the Levi form, on the holomorphic
tangent bundle T 1,0X of X . The Levi form will also be denoted by ∂∂̄φ, and is
defined in the following way. For z ∈ X and vectors X =

∑
ai∂zi and Y =

∑
i bi∂zj

in T 1,0
z X , we have

∂∂̄φ(z)(X,Y ) =

n∑
i,j=1

aib̄j ∂zi∂z̄jφ(z).

Definition 2.1. We say that φ is q-convex if the Levi form ∂∂̄φ has at least q
positive eigenvalues.

Definition 2.2. We say that X is completely q-convex if there exists a smooth
exhaustion function φ : X → R which is (q + 1)-convex.

Let J : TX → TX be the standard complex structure induced by the multipli-
cation by i and let M be a real submanifold of X .

Definition 2.3. The complex tangent space to M at a point z ∈ M is the subspace

TC

z M := TzM ∩ JTzM.

We will say that M is a CR manifold if TC
z M has constant dimension. The bundle

so formed is called the complex tangent bundle of M and is denoted by TCM . We
say that M is of hypersurface type if TM

TCM has rank 1.

Let M be a smooth, compact CR submanifold of X equipped with the induced
CR structure T 1,0M = CTM ∩ T 1,0X . The De Rham exterior derivative induces a
complex on skew-symmetric antiholomorphic forms on M . We denote such complex
by ∂̄b. Assume that M is of hypersurface type. Hence the complexified tangent
bundle CTM is spanned by T 1,0M , its conjugate T 0,1M and a single additional
vector field T . We can assume T to be purely imaginary, that is, satisfying T = −T .

Let η be a purely imaginary 1-form which annihilates T 1,0M ⊕ T 0,1M and nor-
malized so that 〈η, T 〉 = −1. The manifold M is orientable if there exists a global
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1-form section η (or vector field T ) and is pseudoconvex if the hermitian form de-
fined on T 1,0M by dη(X,Y ) = 〈dη,X ∧ Y 〉 is positive semidefinite. We say that M
is pseudoconvex-oriented if both properties are satisfied at the same time.

A CR curve γ on M is a real curve such that Tγ ⊂ TCM . A CR orbit is the
union of all piecewise smooth CR curves issued from a point of M . We denote by
O(z) the CR orbit of a point z ∈ M , and we say that a set S is CR invariant

if O(z) ⊂ S for all z ∈ S. By Sussmann’s Theorem [14], the orbit O(z) has the
structure of an immersed variety of X . Following [2] and [8], we prove that the
manifold M in question consists of a single orbit. The difference with [2, 8] is that
instead of holomorphic coordinate functions that are not available here, we use the
given (q+1)-convex function.

Proposition 2.4. Let X be a complex manifold and M a smooth, compact, con-

nected CR submanifold of hypersurface type. Let φ be a (q + 1)-convex function

defined on a neighborhood of M in X. Assume that the dimension of M is 2p− 1,
with p > n− q. Then M consists of a single CR orbit.

Proof. Let S ⊂ M be a closed, non empty CR invariant subset of M . Since M
is compact we can assume that S is the smallest of such sets i.e. that it doesn’t
contain any smaller closed non-empty CR invariant subset. We will now prove that
S = M . Assume by contradiction that S 6= M . For a point x ∈ S, we have only
two possibilities: either x is minimal in the sense of Tumanov (that is, the local CR
orbit of x contains a neighborhood of x in M) or there exists a complex manifold
of dimension p− 1 contained in M that passes through x. No point x ∈ S can be
minimal in the sense of Tumanov, otherwise the set S\O(x) would be proper, closed,
CR invariant, and strictly smaller than S. Hence S is foliated by complex manifolds
of dimension p− 1. Since S is compact, there exists a point x̄ of S where φ achieves
its maximum value. In particular, φ has a maximum on the complex leaf passing
through x̄. This is impossible, because the Levi form of φ has at least one positive
direction in the complex tangent space of M . We have reached a contradiction, thus
proving that S = M . Let now x ∈ M be the point where φ reaches its maximum.
By the same reasoning as above, we can rule out the case in which there exists a
complex manifold of dimension p− 1 contained in M that passes through x. Hence
x must be a minimal point in the sense of Tumanov. It follows that O(x) is open in
M . Since M is the smallest closed CR invariant subset element, we conclude that
O(x) = M . �

Proposition 2.5. Let M ⊂⊂ X be a smooth, compact, connected, pseudoconvex-

oriented CR manifold of hypersurface type of dimension 2p− 1. Let φ be a (q +1)-
convex function defined on a neighborhood of M in X, with q > n − p. Then M
is endowed with a partial one-sided complexification in X. That is, there exists a

complex manifold Y ⊂⊂ X which has M as the smooth connected component of its

boundary on the pseudoconvex side.

Proof. The proof follows closely [2], since some geometric details will be needed
in the next section we repeat the proof here for the reader’s convenience. The set
of points of M for which there exists a neighborhood where M has a one-sided,
positive, partial complexification is obviously open. We show that this set is also
non-empty and closed. Let z0 ∈ M be a point where there is no (p − 1) dimen-
sional complex submanifold S ⊂ M (see the proof of Proposition 2.4). Consider
a local coordinate patch U ⊂ C

n of X at z0 in which the projection πz0 : Cn →
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Tz0M + iTz0M
∼= Cp induces a diffeomorphism between M and πz0(M). Since

πz0(M) is part of a mininimal and pseudoconvex hypersurface, then (πz0 |M )−1 ex-
tends holomorphically to the pseudoconvex side πz0(M)+ by [20] and [21]. Moreover,
the map (πz0 |M )−1 parametrizes a one-sided complex manifold which has a neigh-
borhood of z0 in M as its boundary. By global pseudoconvexity and by uniqueness
of holomorphic functions having the same trace on a real hypersurface, one-sided
complex neighborhoods glue together into a complex neighborhood of a maximal
open subset M1 ⊂ M . This is indeed also closed. In fact, let z1 ∈ M1. Since M
consists of a single CR orbit by Proposition 2.4, then z1 is connected to any other
point of M1 by a piecewise smooth CR curve γ. The statement now follows from
the lemma below whose proof can be found in [2] and [22]. �

Lemma 2.6. Let M ⊂⊂ X be a smooth, pseudoconvex-oriented CR manifold of

hypersurface type. Let γ be a piecewise smooth CR curve connecting two points z0
and z1 of M . If M has complex extension in direction +JiT (z0) at z0, then M also

has complex extension in direction +JiT (z1) at z1.

Remark 2.7. In the proof of Proposition 2.4 we have used [20] and [21] to build a
one sided complexification of M near minimal points. The results in [20] and [21],
however, do not specify on which side of M this complexification lies. Our hypothe-
ses on the pseudoconvexity of M assures that the side of the complexification at
minimal points is the pseudoconvex side of M , namely the side pointed by JiT .

3. Proof of the main result

We follow the same proof as in [2], and first prove a closed range theorem for ∂̄
on an annulus-like domain:

Proposition 3.1. Let M and φ be as in Proposition 2.5 and assume further that

p > 2(n− q). Then there exists a complex sub-manifold Y of X of dimension p with

smooth boundary ∂Y such that ∂Y = M ∪ M2, where M2 is CR of hypersurface

type. Moreover, if ∂̄ is the Cauchy Riemann operator on Y , for a suitable weight

function λ we have, for all f ∈ Dom(∂̄∗
t )r,s ∩ C∞

(r,s)(Y ), that

t‖f‖2t ≤ C(‖∂̄f‖2t+‖∂̄∗
t f‖

2
t )+Ct‖f‖

2
−1 ∀s ≥ n−q, s ≤ p+q−n−1, ∀t > 0. (3.1)

Proof. First we equip the manifold X with an Hermitian product in such a way
that if φ1(z) ≤ · · · ≤ φn(z) are the ordered eigenvalues of ∂∂̄φ(z), then

φ1(z) + · · ·+ φn−q(z) > c > 0

for some constant c and for every z in a neighborhood of M . This is possible
because φn−q > 0 by the q + 1-convexity of φ (see [5, Lemma IX.3.1]). Let Y be
the complex manifold constructed in Proposition 2.5. Note that by the construcion
made there we have that for any point z0 ∈ M there exists a local coordinate patch
U ⊂ Cn of X at z0 in which the projection πz0 : Cn → Tz0M + iTz0M

∼= Cp

induces a diffeomorphism between M ∩ U and πz0(M) and is a biholomorphism
between Y ∩ U and πz0(M)+ ∩ V where V ia a convenient neighborhood of π(z0)
in Cp. We shall use πz0 as a local coordinate chart of Y . Let ρ : Y → R be a
smooth, non-negative function such that ρ = 0 on M , and dρ 6= 0 on M . Since
M is pseudoconvex, then the negative eigenvalues of the Levi form of − log(ρ) are
bounded from below. In fact, in the local chart as above around z0 ∈ M we have
that ρ = hdM where h is a positive and non vanishing smooth function and dM is
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the Euclidean distance in Cp of πz0(z) from πz0(M). Then by Oka’s lemma we have
that − log(dM ) is plurisubharmonic then − log(ρ) = − log(h) − log(dM ). The Levi
form ∂∂̄φ restricted to T 1,0Y has at least p + q + 1 − n positive eigenvalues. Let
ϕ := − log(ρ)+Cφ. If the constant C is large enough, then ∂∂̄ϕ restricted to T 1,0Y
has at least the same number of positive eigenvalues as ∂∂̄φ. Since dρ 6= 0 , then
dϕ 6= 0 in a neighborhood of M in Y . In particular, the subset of Y defined by the
equation ρe−Cφ = e−K is a regular hypersurface if K is large enough. We call it M2.
The Levi form of M2 has at least p+ q − n positive eigenvalues. We consider now
the annulus-like domain, which we call again Y , defined by ϕ > K. The boundary
of Y consists of the two connected components M and M2. We exploit [5, Lemma
IX.3.1] once again to choose the Hermitian metric on X in a neighborhood of M2

so that the following is true: if ϕ1(z) ≤ · · · ≤ ϕp−1(z) are the ordered eigenvalues

of the tangential Levi form ∂∂̄ϕ (i.e. restricted to T (1,0)M2) at a point z ∈ M2,
then the sum of any n − q of such eigenvalues is strictly positive. We now follow
[19, page 260]. First we choose the weight function. Let λ ∈ C2(Y ) be a function
such that λ = φ in a neighborhood of M and λ = −ϕ in a neighborhood of M2. It
is enough to prove 3.1 locally in a neighborhood of the boundary ∂Y . Let z ∈ M
and Uz a small neighborhood of z in X . Choose a local system of orthonormal
holomorphic vector fields L1, . . . , Lp tangent to Y such that Lj(ρ) = −δjp, and
let ω1, ..., ωp be the corresponding dual frame. Following [19] and [9] we have the
following Kohn-Hörmander-Morrey type formula:

‖∂̄f‖2t + ‖∂̄∗
t f‖

2
t =

∑
I,J

∑
j

‖L̄jfIJ‖
2
t + t

∑
I,K

′ ∑
j,k

(λjkfI,jK , fI,kK)t

−
∑
IK

′ ∑
j,k<p

∫
M∩Uz

〈ρjkfI,jK , fI,kK〉tdS +R(f) + E(f).
(3.2)

where R(f) + E(f) are terms as in [19, page 263] that arise when manipulating
‖∂̄f‖2t + ‖∂̄∗

t f‖
2
t . In fact when we replace the terms inside the norms with the

terms defined in equations 2.1 and 2.2 we consider first the terms that contain
squares of derivatives of f and we group all the other terms in the term indicated
by R(f). So R(f) contains only terms that can be estimated, uniformly in t, by
(‖A(f)‖t + ‖B(f)‖t + ‖f‖t)‖f‖t. The next step in proving 3.2 is to turn the L
derivatives of f in ‖B(f)‖2t into L derivatives by integration by parts. In doing
so some new terms arise. These terms that can be estimated uniformly in t by
(‖L(f)‖t‖f‖t where ‖L(u)‖2t =

∑
j ‖Lj(u)‖

2
t + ‖u‖2t and we indicate these terms

with E(f). By the pseudoconvexity of M , the last boundary integral in (3.2) is
positive, and can therefore be dropped. Near M we have that λ = φ, and thus
λjk = φjk . Moreover, by the choice of the Hermitian product, the sum of any n− q
eigenvalues of the Levi form of φ is strictly positive. Hence the second term on
the left side of 3.2 is greater than tc‖f‖2t if the antiholomorphic degree s of f is
s ≥ n− q. The terms R(f) and E(f) can be estimated using the first two term on
the right hand side of 3.2. Let now z be a point of M2. We start with the same
formula 3.2 where M is replaced by M2 and ρ is replaced by a defining equation
of M2 which is of the form ρ2 = (λ+K)h where h is a positive function such that
|dρ2| = 1 on M2. After integrating by parts the terms of type ‖L̄jfIJ‖

2
t for j < p
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we obtain

‖∂̄f‖2t + ‖∂̄∗
t f‖

2
t =

∑
I,J

′
‖L̄p(fIJ )‖

2
t +

∑
I,J

′ ∑
j<p

‖δtjfI,J‖
2
t

+ t
∑
I,K

′ ∑
j,k

(λjkfI,jK , fI,kK)t − t
∑
I,J

′ ∑
j<p

(λjjfI,J , fI,J)t

+
∑
I,K

′ ∑
j,k<p

∫
M2∩U

hλjkfI,jK f̄I,kKe−tλdS

−
∑
I,J

′ ∑
j<p

∫
M2∩U

hλjj |fI,J |
2e−tλdS + E(f) +R(f).

(3.3)

Here we have used the fact that the defining function ofM2 has essentially the same
Levi form as the weight function λ. We first examine the terms of 3.3 consisting of
boundary integrals. It is not restrictive for our purposes to assume that pointwise
the tangential Levi form is diagonal and let lλ1 , ..., l

λ
p−1 be its eigenvalues. Then

∑
I,K

′ ∑
j,k<p

λjkfI,jK f̄I,kK =
∑
I,J

′ ∑
j∈J

lλj |fI,J |
2. (3.4)

After subtracting from (3.4) the term coming from the second boundary integral,
which is just the trace of the tangential Levi form, we obtain

−
∑
J

′ ∑
j /∈J,

lλj |fI,J |
2 >

∑
J

′
c|fI,J |

2, (3.5)

where c is strictly positive as soon as |J | < p + q − n. In a similar way we can
handle the tangential terms (i.e. those for j, k < p and p /∈ K, J) in the second line
of (3.3). The terms with either p ∈ J,K or j = p or k = p can be handled as in
[19]. �

Choosing t large enough, we can pass from (3.3) to a priori estimates of higher
Sobolev order. As a consequence using the elliptic regularization technique as was
done in [12] and [10] we obtain that the space of harmonic forms on Y which is the
space Hr,s

t (Y ) := ker(∂̄) ∩ ker(∂̄∗
t ), is finite dimensional and moreover we have a

Hodge decomposition on the space of forms orthogonal to Hr,s
t (Y ), existence and

global Sobolev regularity of the ∂̄-Neumann operator Nt.
We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. By Proposition 3.1 there exists a complex submanifold Y
whose boundary contains M . We follow [11] Paragraph 5 and we have that ∂̄b
has closed range in degree s if 3.1 holds in degree s and p − s − 1. Therefore by
Proposition 3.1 we have closed range of ∂̄b for n − q ≤ s ≤ p + q − n provided
p+ q − n− 1 ≥ n− q, that is, p > 2(n− q).

If X is q-complete, then by [13] it is possible to extend M to an analytic set E
whose boundary, in the sense of currents, is M . By the Hironaka desingularization
theorem [23] there exists a manifold Ẽ and a proper bimeromorphic map π : Ẽ → E
such that π is an isomorphism over the non singular part of E. Near M we have
that E coincides with Y at the regular points of E. Since π is onto and since the
regular part of E is dense and connected, it follows that Ẽ contains an isomorphic
copy of Y and π is an actual diffeomorphism near the boundary. Pulling back φ on
Ẽ, we can repeat the proof of Theorem 3.1, where the boundary of the manifold Y
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is now just M . Following the same proof we conclude that the range of ∂̄b is closed
for p = 2(n− q). �

4. Acknowledgements

The authors would like to thank Martino Fassina for useful comments on the
manuscript and the anonymous referee whose advice improved greatly the exposi-
tory quality of the paper.

References

[1] A. Andreotti and H. Grauert Thorme de finitude pour la cohomologie des espaces
complexes. (French) Bull. Soc. Math. France 90 (1962), 193259.

[2] L. Baracco—The range of the tangential Cauchy-Riemann system to a CR embedded
manifold, Invent. Math. 190 (2012), no. 2, 505510

[3] D. Burns—Global behaviour of some tangential Cauchy-Riemann equations, Pure Conf.,
Park City, Utah Dekker N.Y. (1979), 51–56

[4] H. Boas and M.C. Shaw—Sobolev estimates for the Lewy operator on weakly pseudo-
convex boundaries, Math. Ann. 274 (1986), no. 2, 221231.

[5] J.P. Demailly—Complex Analytic and Differential Geometry www-fourier.ujf-
grenoble.fr/ demailly/manuscripts/agbook.pdf

[6] F.L. Harvey and H.B. Lawson—On boundaries of analytic varieties, I, Annals of Math.
102 (1975), 223–290

[7] G. Henkin and J. Leiterer— Andreotti-Grauert theory by integral formulas. Progress
in Mathematics, 74. Birkhuser Boston, Inc., Boston, MA, (1988)

[8] B. Joricke—Some remarks concerning holomorphically convex hulls and envelopes of
holomorphy, Math. Z. 218 n. 1 (1995), 143–157
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